
Compression of Uncertain Trajectories in Road Networks

Tianyi Li† Ruikai Huang⋆ Lu Chen† Christian S. Jensen† Torben Bach Pedersen†

†Department of Computer Science, Aalborg University, Denmark
⋆College of Computer Science, Zhejiang University, Hangzhou, China

{tianyi, luchen, csj, tbp}@cs.aau.dk ngzuekai@zju.edu.cn

ABSTRACT
Massive volumes of uncertain trajectory data are being generated
by GPS devices. Due to the limitations of GPS data, these trajecto-
ries are generally uncertain. This state of affairs renders it is attrac-
tive to be able to compress uncertain trajectories and to be able to
query the trajectories efficiently without the need for (full) decom-
pression. Unlike existing studies that target accurate trajectories,
we propose a framework that accommodates uncertain trajectories
in road networks. To address the large cardinality of instances of
a single uncertain trajectory, we exploit the similarity between un-
certain trajectory instances and provide a referential representation.
First, we propose a reference selection algorithm based on the no-
tion of Fine-grained Jaccard Distance to efficiently select trajectory
instances as references. Then we provide referential representa-
tions of the different types of information contained in trajectories to
achieve high compression ratios. In particular, a new compression
scheme for temporal information is presented to take into account
variations in sample intervals. Finally, we propose an index and
develop filtering techniques to support efficient queries over com-
pressed uncertain trajectories. Extensive experiments with real-life
datasets offer insight into the properties of the framework and sug-
gest that it is capable of outperforming the existing state-of-the-art
method in terms of both compression ratio and efficiency.
PVLDB Reference Format:
Tianyi Li, Ruikai Huang, Lu Chen, Christian S. Jensen, and Torben Bach
Pedersen. Compression of Uncertain Trajectories in Road Networks. PVLDB,
13(7): 1050-1063, 2020.
DOI: https://doi.org/10.14778/3384345.3384353

Keywords
Compression, Uncertain Trajectory, Road Network, Query

1. INTRODUCTION
GPS sensors in smart-phones, in-vehicle navigation systems, and

wearable devices more generally are generating massive volumes
of raw trajectories, increasing the cost of data storage and transmis-
sion [20, 21, 42]. This has led to the proposal of a variety of tra-
jectory compression methods that fall into two general categories:

This work is licensed under the Creative Commons Attribution
NonCommercialNoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/byncnd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 13, No. 7
ISSN 21508097.
DOI: https://doi.org/10.14778/3384345.3384353

(a) Raw trajectory (b) 1st trajectory instance

(c) 2nd trajectory instance (d) 3rd trajectory instance
Figure 1: A real-life example of a raw trajectory and a corre-
sponding network-constrained uncertain trajectory
raw trajectory compression and road network-embedded compres-
sion. The former category of methods aim to compress trajectories
without considering an underlying road network [1, 3, 4, 6, 8, 9, 11,
13, 16, 22, 23, 24, 25, 27, 29, 30, 40, 41, 44]. Methods in the latter
category first project a trajectory onto a road network using a map-
matching algorithm and then exploit the road network to reduce the
storage by transforming the mapped trajectories into compact for-
mats [5, 13, 17, 18, 30, 31]. As map-matching can help improve
the quality of trajectories and as in-network trajectories are useful,
we study road network-embedded compression.
The uncertainty of trajectories is caused by two characteristics,

a low sampling rate and inaccurate GPS positions [38, 45]. A low
sampling rate can make multiple routes between two map-matched
GPS positions possible, while position inaccuracy means that a raw
GPS position may be map-matched to multiple road-network posi-
tions. Here, a real-life example is shown in Fig. 1a for a trajectory
consisting of 8 raw GPS points recorded by a taxi in Hangzhou,
China. All these GPS points are off the road, and the sampling
interval between two green points exceeds 4 minutes. To address
this, probabilistic map-matching [2, 15] has been proposed to trans-
form a raw trajectory into a set of network-constrained trajectory
instances. Instead of mapping each position in a raw trajectory to
a unique road-network location, probabilistic map-matching gen-
erally finds several potential road-network locations. Figs. 1b, 1c,
and 1d are trajectory instances generated from Fig. 1a, which are
similar to each other. To the best of our knowledge, no existing so-
lutions aim to compress uncertain trajectories, which is the target
of our study.
Two challenges must be addressed in order to effectively com-

press uncertain trajectories. The first challenge is how to achieve
a high compression ratio. As shown in the example in Fig. 1, the
instances of an uncertain trajectory are similar, which is also val-
idated by statistics from three real-life datasets, to be covered in
Section 4.2. Hence, we adopt a referential representation for uncer-

1050

tain trajectories that has proven effective for highly similar genome
sequences [10, 34, 35]. The second challenge is how to support ef-
ficient querying of compressed uncertain trajectories. An existing
study [40] provides an index for accurate compressed trajectories
that considers neither the uncertainty nor is applicable to referen-
tially represented trajectory instances. Consequently, we propose
a novel indexing technique that eliminates both shortcomings and
also propose associated query processing algorithms.
We integrate these contributions into a novel framework that com-

presses uncertain trajectories and supports efficient query process-
ing without the need for (full) decompression. First, we separate
the temporal, path, and distance information of uncertain trajecto-
ries, thus following the state-of-the-art TED model [40]. Here, we
propose a representation of the temporal information to improve the
compression ratio when sample intervals vary. Then, we represent
trajectory instances referentially using a two-step process, i.e., se-
lecting high-quality reference trajectory instances and transforming
other trajectory instances accordingly. As part of this, we propose
a Fine-grained Jaccard Distance function to measure the similarity
between trajectories, and we propose a greedy algorithm to effi-
ciently select high-quality references. Finally, we develop an index
structure and algorithms that exploit effective filtering techniques
and partial decompression to support typical probabilistic queries
on compressed uncertain trajectories.
In summary, our main contributions are as follows:

• We propose a novel uncertain trajectory compression frame-
work that supports efficient probabilistic query processing.
To the best of our knowledge, this is the first proposal for
compression of uncertain trajectories in road networks.

• We develop a representation that accommodates a novel en-
coding scheme for the temporal information of trajectories,
and we use referential representation to compress uncertain
trajectories in road networks.

• We design an effective indexing structure and filtering tech-
niques to accelerate query processing, including the process-
ing of probabilistic where, when, and range queries.

• We conduct extensive experimental evaluations that offer in-
sight into the framework and demonstrate that it is able to out-
perform the state-of-the-art solution [40] by a factor of more
than two in terms of the compression ratio and by more than
one order of magnitude in terms of compression efficiency.

The rest of the paper is organized as follows. We present prelimi-
naries in Section 2 and give an overview of the proposed framework
in Section 3. Section 4 details the representation and compression
schemes, and Section 5 covers the index structure and the query pro-
cessing methodology. Section 6 reports the experimental results.
Section 7 reviews related work, and Section 8 concludes and offers
directions for future work.

2. PRELIMINARIES
Weproceed to introduce probabilisticmap-matching and the TED

model. Table 1 summarizes frequently used notation.

2.1 Probabilistic MapMatching
A raw trajectory is a series of time-stamped point locations p0, ...,

pn−1 of a moving object of the form (x, y, t), where (x, y) is a
point location in 2D Euclidean space, with x being a longitude and
y being a latitude, and t is a timestamp. Tp = ⟨p0, ..., p6⟩ in Fig. 2a
is an example of a raw trajectory.

Table 1: Frequently used notation
Notation Description
Tu a set of uncertain trajectories
Tuj an uncertain trajectory in Tu
Nj the number of instances in Tuj

nj
p the number of pivots selected for Tuj

Tujw an instance of the uncertain trajectory Tuj

SV (Tujw) the start vertex of Tujw
D(Tujw) the relative distance sequence of Tujw
Tujw.p the probability of Tujw
E(Tujw) the edge sequence of Tujw
T ′(Tujw) the time flag bit-string of Tujw
T (Tuj) the time sequence of Tuj
li the ith mapped location
Ref ji the ith reference in Tuj

Ref ji .Rrs the referential representation set of Ref ji
Nref jik the kth non-reference in the set Ref ji .Rrs
Comϕ(Nref

j
ik,Ref

j
i) the referential representation of Nref jik

ϕj
ik(Mah) the hth factor in Comϕ(Nref

j
ik,Ref

j
i)

ˆseq the binary code of a sequence seq
ωseq the flag array of a sequence seq
γseq the original array of a sequence seq

Definition 1. A road network is modeled as a directed graph
G = (V,E), where V is a set of vertices v (x, y) denoting inter-
sections or end points, andE is a set of directed edges e (vi → vj).
Here, (x, y) denotes the 2D location of a vertex.

For simplicity, we use v and (vi → vj) to denote a vertex and a
directed edge of a road network, respectively. Map-matching [14,
28] aligns a raw trajectory with the road network that constrains the
movement of the corresponding object, and the result is a network-
constrained accurate trajectory. This process transforms each orig-
inal point location into a mapped location.

Definition 2. A mapped location l is a network-constrained lo-
cation in a road network G, represented as ⟨(vs → ve), ndist, t⟩,
where ndist is the network distance between vs and l on (vs → ve)
and t is a timestamp.

For example in Fig. 2a, l6 = ⟨(v7 → v8), ndist, 5:27:25⟩ is the
mapped location corresponding to p6; thus, the two have the same
timestamp. We also denote amapped location as ⟨(vs → ve), ndist⟩
when the timestamp t is not considered.

Definition 3. A network-constrained accurate trajectory Tr =
⟨l0, l1, ..., ln−1⟩ is a time-ordered sequence of mapped locations
l0, l1, ..., ln−1 of a moving object.

For example in Fig. 2a, Tr = ⟨l0, ..., l6⟩ is a network-constrained
accurate trajectory.

Definition 4. Given two vertices vs and ve in a road network
G, a path is a sequence of connected edges (vi → vj), that starts
from vs and ends at ve, i.e., (vs → v1), (v1 → v2), · · · , (vn−1

→ ve).

For example in Fig. 2a, the path of Tp after map-matching is
(v1 → v2), (v2 → v3), · · · , (v7 → v8). A network-constrained
accurate trajectory encodes a unique path of a raw trajectory af-
ter map-matching. However, to take into account the uncertainty in
raw trajectories (as shown in Fig. 1) when mapping them to the road
network, probabilistic map-matching [2, 15] is proposed. Unlike
a network-constrained accurate trajectory, a network-constrained
uncertain trajectory encodes a set of potential paths, each of which
is associated with a likelihood.

1051

1

(a) Tu (b) Tu
1

1 (c) Tu
1

3

2

4

1

l2
l3
l4l5l6

2

2

l0 l1'1 1 1

1
2

4

1

l1

l2
l3
l4l5

2

2

l6''' 2

1 0 1 l0
v10

v9

1

v1
l0

l1

l2
l3
l4l5l6

v2

2

4

v3 v4
v5

v6

v7v8

p00
p1

p2
p3

p4p5p6
p0=(120.0692, 30.28622, 5:03:25)

p1=(120.0724, 30.28618, 5:07:25)

p2=(120.0757, 30.28621, 5:11:26)

p3=(120.0762, 30.28621, 5:15:26)

p4=(120.0772, 30.28620, 5:19:25)

p5=(120.0786, 30.28617, 5:23:25)

p6=(120.0796, 30.28498, 5:27:25)
2

1
2

2

4

1

2

ndist

1

2

Figure 2: Instances of the network-constrained uncertain trajectory Tu1

Table 2: An example of TED representation
E(Tr) ⟨185190→ 1,2,1,2,2,0,4,1,0⟩
D(Tr) ⟨0.875,0.25,0.5,0.875,0.5,0,0.875⟩
T ′(Tr) ⟨1,0,1,0,1,1,1,1,1⟩

T (Tr)
⟨(0, 5:03:25), (1, 5:07:25), (2, 5:11:26)
(3, 5:15:26), (4, 5:19:25), (6, 5:27:25)⟩

Definition 5. A network-constrained uncertain trajectory Tuj
contains a set of instances Tujw (1 ≤ w ≤ N j) generated from a
raw trajectory Tp. Each Tujw is associated with a probability and is
represented by a time-ordered sequence of mapped locations that is
different from that of Tujv (1 ≤ v ≤ N j ∧ v ̸= w). All instances of
Tuj share the same temporal information for all mapped locations.

Fig. 2 shows a network-constrained uncertain trajectory Tu1 gen-
erated from the raw trajectory Tp = ⟨p0, ..., p6⟩. Tu1 contains three
instances, i.e., Tu11, Tu12, and Tu13, where Tu11 = ⟨l0, l1, l2, l3, l4, l5,
l6⟩ has probability 0.75, Tu12 = ⟨l0, l1′ , l2, l3, l4, l5, l6⟩ has proba-
bility 0.2, and Tu13 = ⟨l0, l1, l2, l3, l4, l5, l6′⟩ has probability 0.05.
They share the temporal information ⟨5:03:25, 5:07:25, 5:11:26,
5:15:26, 5:19:25, 5:23:25, 5:27:25⟩, as they are all generated from
Tp. In this example, the uncertain trajectory has three possible paths
(v1 → v2), (v2 → v3), (v3 → v4), · · · , (v7 → v8) for Tu11,
(v1 → v2), (v2 → v10), (v10 → v4), · · · , (v7 → v8) for Tu12,
and (v1 → v2), (v2 → v3), (v3 → v4), · · · , (v8 → v9) for Tu13.
In contrast, only Tu11 that has the highest probability would be cho-
sen as the network-constrained accurate trajectory Tr.
In the rest of the paper, we use accurate trajectory instead of

network-constrained accurate trajectory, and we use uncertain tra-
jectory instead of network-constrained uncertain trajectory when
this does not cause any ambiguity.

2.2 TED Representation
TED represents an accurate trajectory Tr as an edge sequence

E(Tr), a time sequence T (Tr), a time flag bit-string T ′(Tr), and
a relative distance sequence D(Tr). Fig. 2a shows an example of
Tr, where an object moves from (v1 → v2) to (v7 → v8) in se-
quence, and li (0 ≤ i ≤ 6) are the mapped locations. The TED
representation of Tr is shown in Table 2.
Edge Sequence. E(Tr) is represented by a start vertex v fol-

lowed by a sequence of outgoing edge numbers.

Definition 6. The outgoing edge number no (≥ 1) of an edge
(vs → ve) means that (vs → ve) is the no

th exit edge of vs.

In Fig. 2a, the edge sequence of Tr can be straightforwardly rep-
resented as ⟨(v1 → v2), (v2 → v3), ..., (v7 → v8)⟩. Let ID of
v1 be 185190, and assume that (v1 → v2) is labeled as the first
outgoing edge w.r.t. v1. Then (v1 → v2) can be represented as

185190→ 1. Here, we keep the ID of v1 to identify the start vertex
of the path. Next, if (v2 → v3) is assigned as the second outgoing
edge w.r.t. v2, (v2 → v3) is encoded as 2. To capture that an edge
(vs → ve) has r (r > 1) GPS points located on it, TED includes
(r − 1) 0s after (vs → ve)’s outgoing edge number w.r.t. vs. As
shown in Table 2, the 0 after the 2 (2 is the outgoing edge number
of (v5 → v6) w.r.t. v5) in E(Tr) indicates that (v5 → v6) has two
mapped locations, i.e., l2 and l3.
Time Sequence. T (Tr) is represented by omitting the consec-

utive timestamps with unchanged sample intervals. For example,
⟨ti, ti+1, ti+2⟩ is encoded as ⟨(i, ti), (i+2, ti+2)⟩ if ti+2−ti+1 =
ti+1 − ti. However, statistics from real-life datasets show that
the actual sample intervals vary frequently over time. To be spe-
cific, the sample interval changes every 6.80, 2.32 and 1.97 sample
intervals on average on three real-life datasets, namely the Den-
mark (DK), Chengdu (CD), and Hangzhou (HZ) datasets, respec-
tively. This translates into redundant representations and subse-
quent poor compression ratios for TED. We propose a new com-
pression scheme that tackles this problem (Section 4.1).
Time Flag Bit-String. T ′(Tr) is a time flag bit-string that maps

timestamps in T (Tr) to outgoing edge numbers inE(Tr). As shown
in Table 2, the mapping between the timestamps in T (Tr) and out-
going edge numbers inE(Tr) is not a one-to-one mapping. The rea-
son is that an edge used by a trajectory may not contain any mapped
location. For example, the fourth bit 0 of T ′(Tr) indicates that no
GPS point is mapped to (v4 → v5); otherwise, it is set to 1.
Relative Distance Sequence. D(Tr) is a sequence of relative

distances of the mapped locations on their edges.

Definition 7. Given a mapped location l = ⟨(vs → ve), ndist⟩,
the relative distance rd of l w.r.t. (vs → ve) is the ratio of ndist to
the length of (vs → ve) (denoted as |(vs → ve)|).

For example in Fig. 2a, rd of l6 = ⟨(v7 → v8), ndist⟩ w.r.t.
(v7 → v8) is ndist

|(v7→v8)|
. In the rest of the paper, we use ⟨(vs →

ve), ndist⟩ and ⟨(vs → ve), rd⟩ to represent a mapped location l
interchangeably, as they are semantically equivalent.

2.3 Compression with TED
We illustrate TED’s compression [40] of E(Tr), T (Tr), T ′(Tr),

andD(Tr).
Compression on E(Tr). Each E(Tr) has a start vertex fol-

lowed by a sequence of outgoing edge numbers, as illustrated in
Section 2.2. TED compressesE(Tr) using the following three steps:
i) encoding each outgoing edge number using ⌈log2(o)⌉ bits, where
o is the maximal number of outgoing edges for all vertices v ∈ V ;
ii) grouping trajectories by the length of the binary code of E(Tr),
and forming anA×B binary code matrix for each group, whereA

1052

is the number of trajectories and B is the length of E(Tr); iii) ap-
plying multiple bases-based compression to each matrix, based on
the observation that the highest bit of each code in the matrix has
a high probability of being 0. Although the last two steps improve
the compression ratio, we do not adopt them in our proposal due
to two reasons. First, additional cost must be expended to group
trajectories according to their lengths. Second, they require extra
space for storing the auxiliary information and extra time for ma-
trix operations during the multiple bases-based compression.
Compression on T (Tr) and T ′(Tr). Each element in T (Tr)

is binary encoded while T ′(Tr) are bit-strings that are compressed
using an existing bitmap compression algorithm [33].
Compression ofD(Tr). D(Tr) is encoded by using a distance-

preserving scheme. The binary code C(rd) of a relative distance
rd (0 ≤ rd < 1) is defined as C(rd) =

∑I
i=0 C(rdxi)

1
2i
, where

C(rdxi) is its i
th bit (i ≥ 0). Given an error bound η, I equals

the smallest number of bits having |C(rd)− rd| ≤ η. In addition,
a PDDP-tree is proposed to further reduce the storage cost.

3. FRAMEWORK
We study the compression and subsequent querying of network-

constrained uncertain trajectories (NCUTs). We take Tu = {Tuj |1
≤ j ≤ M}, where M is the number of uncertain trajectories, as
the input to our framework. Each Tuj contains a set of instances
Tujw (1 ≤ w ≤ N j) consisting of i) Ue(Tujw) that is the edge
sequence of Tujw; ii) Ud(Tujw) that is the relative distances of all
mapped locations; iii) Ut′(Tujw) that is the time flag bit-string to
associate timestamps with edges; and iv)U(Tujw).p that is the prob-
ability associated with Tujw. All Tujw (1 ≤ w ≤ N j) share the same
time sequenceUt(Tuj). Fig. 3 depicts our framework for Uncertain
Trajectory Compression and Querying (UTCQ) that encompasses
three steps, where the red dashed box encloses the input and output
to the steps, the blue dashed boxes capture the operations conducted
during each step, and the orange dashed boxes capture techniques
corresponding to each step.
The trajectory representor converts the NCUTs into a new for-

mat. This primarily involves three operations, i.e., improved TED
representation, reference selection, and referential representation,
as described below:

i) We separate the start vertices from the edge sequencesUe(Tu)
= {Ue(Tuj)|Tuj ∈ Tu} to obtain SV (Tu) and E(Tu), to
achieve amore compact format. Moreover, we propose a new
scheme to represent the time sequencesUt(Tu) = {Ut(Tuj)|
Tuj ∈ Tu} to achieve a high compression ratio. The details
are presented in Section 4.1.

ii) The representation of path information SV (Tuj) andE(Tuj)
of each uncertain trajectory Tuj is given to the reference se-
lector (Fig. 3 1⃝), that selects one or more high-quality ref-
erence instances for each uncertain trajectory. For each se-
lected reference Ref ji , the reference selector finds a set of
non-references (denoted as Ref ji .Rrs), i.e., other instances
that can be represented by Ref ji . The reference selector sends
the above results back to the improved TED representation
step to identify the references as well as their non-references
(Fig. 3 2⃝). The detailed algorithm is covered in Section 4.3.

iii) For each uncertain trajectory Tuj , the non-reference instances
of Tuj are represented according to their references, by apply-
ing a referential representation method (Fig. 3 3⃝). Several
formats are proposed to represent the non-references com-
pactly. The details are provided in Section 4.2.

The trajectory compressor compresses the references and non-
references into binary codes. Specifically, we adapt Exp-Golomb

Trajectory

Representor

Improved TED

Representation

Sample Interval

Adaptive Representation

E(Tu), SV(Tu)

Reference

Selection

1

2

Referential

Representation

Ref (Tu), Ref (Tu).Rrs

3

Pivot-selection and

Fine-grained

Jaccard Distance

Computation

Trajectory

Compressor
Binary Encoding

Improved Exp-

Golomb Encoding

Query

Processor

Tu

Index Structure

NCUTs

UTCQ(Tu)

 Compressed

Tu

Query

Results

Com(Tu, piv)

ProbabilisticWhen Query

ProbabilisticWhere Query

Probabilistic Range Query

Flag and Original Array

Temporal Index

Spatial Index

 Trajectories

(1)

(2)

(3)

Partially Decompressed

Trajectories

Figure 3: Framework

encoding [32] to compress T (Tuj), and we apply variable-length
encoding to compress each non-reference based on its reference,
in order to further reduce the storage cost. The detailed method is
covered in Section 4.4.
The query processor is equipped with efficient algorithms that

only partially decompress compressed trajectories. Specifically, we
construct and use two auxiliary data structures to facilitate decom-
pression of necessary information of non-references. In addition,
we build a spatio-temporal index during compression that can ef-
fectively reduce the search space without the need for full decom-
pression. The details are presented in Section 5.

4. REPRESENTOR AND COMPRESSOR
We present the expression and encoding scheme designed for un-

certain trajectories. We use the running example depicted in Fig. 2,
which contains three instances (i.e., Tu11, Tu12, and Tu13) of an uncer-
tain trajectory Tu1.

4.1 Improved TED Representation
Wedenote each uncertain trajectory instanceTujw (1 ≤ w ≤ N j)

of a particular NCUT Tuj as a tuple (SV (Tujw), E(Tujw), D(Tujw),
T ′(Tujw), Tujw.p). Table 3 shows how the example in Fig. 2 is rep-
resented.

SV (Tuj
w). SV (Tujw) is the start vertex ID of the first edge tra-

versed by Tujw. In Table 3, SV (Tu11) = 185190, which is the ID of
v1 in Fig. 2a.

D(Tuj
w) and Tuj

w.p. D(Tujw) and Tujw.p are the relative dis-
tance sequence (cf. Definition 7) and probability generated via
the probabilistic map-matching process. As Tuj consists of N j in-
stances, we have

∑Nj

w=1 Tu
j
w.p = 1.

E(Tuj
w). E(Tujw) is the edge sequence of Tujw (exclude the start

vertex). We adopt the representation of edge sequence used by TED
to represent it.

T ′(Tuj
w). We represent the time flag bit-stringT ′(Tujw) bymod-

ifying the TED representation slightly. The first and last edges tra-
versed by Tujw must each have at least one GPS point mapped onto
them, so the first and last bits of T ′(Tujw)must be 1. As a result, we
omit the first and last bits when representing T ′(Tujw), to improve
the compression ratio.
The sample interval is unstable in real-life applications, and TED

has a problemwhen representing such trajectories. In order to tackle

1053

Table 3: Example of improved TED representation of Tu1 in Fig. 2
w 1 2 3

SV (Tu1w) 185190 185190 185190
E(Tu1w) ⟨1, 2, 1, 2, 2, 0, 4, 1, 0⟩ ⟨1, 1, 1, 2, 2, 0, 4, 1, 0⟩ ⟨1, 2, 1, 2, 2, 0, 4, 1, 2⟩
D(Tu1w) ⟨0.875, 0.25, 0.5, 0.875, 0.5, 0, 0.875⟩ ⟨0.875, 0.25, 0.5, 0.875, 0.5, 0, 0.875⟩ ⟨0.875, 0.25, 0.5, 0.875, 0.5, 0, 0.5⟩
T ′(Tu1w) ⟨0, 1, 0, 1, 1, 1, 1⟩ ⟨1, 0, 0, 1, 1, 1, 1⟩ ⟨0, 1, 0, 1, 1, 1, 1⟩
Tu1w.p 0.75 0.2 0.05

Table 4: An referential representation example for Table 3
ϕ Comϕ(Nref 111,Ref 11) Comϕ(Nref 112,Ref 11)
SV ∅ ∅
E ⟨(0, 1, 1), (2, 7)⟩ ⟨(0, 8, 2)⟩
D ∅ ⟨(6, 0.5)⟩
T ′ ⟨(1, 2), (3, 4)⟩ ∅

0 1 (1,50] (50,100] >100
0.0

0.3

0.6

0.9

F
ra
ct
io
n

Differences (sec)

DK CD HZ

(a) Sample intervals

0.0

0.2

0.4

0.6

Edit distance between uncertain trajectories

DK CD HZ

[3,5] ≥9[6,8]

F
ra
ct
io
n

Edit distance within an uncertain trajectory
[0,2]

0.0

0.2

0.4

0.6

0.8
DK CD HZ

≥9

F
ra
ct
io
n

[6,8][3,5][0,2]

(b) Similarity
Figure 4: Statistics of real-life datasets

this problem, we develop a new representation scheme to represent
T (Tuj), namely Sample Interval Adaptive Representation (SIAR) .
Sample Interval Adaptive Representation of T (Tuj). Fig. 4a

counts the differences between the actual sample intervals and the
default ones using three real-life datasets, i.e., DK, CD, and HZ. As
can be observed, most of the actual sample intervals (93% in DK,
62% in CD, and 54% in HZ) are equal to or deviate only 1 second
from the default one. Motivated by this, we only record the differ-
ence between the (actual) sample interval and the default one. As-
sume that the time sequence of Tuj starts with t0 and that Ts is the
default sample interval. SIAR keeps t0 as the first value in T (Tuj)
and represents the following timestamps as (ti+1− ti)−Ts, where
ti is the ith timestamp. Given the time sequence ⟨5:03:25, 5:07:25,
5:11:26, 5:15:26, 5:19:25, 5:23:25, 5:27:25⟩, an example of SIAR
used in UTCQ is T (Tu1) = ⟨5:03:25, 0, 1, 0, -1, 0, 0⟩, where the
default sample interval is 240 sec. In contrast, TED represents the
sequence as ⟨(0, 5:03:25), (1, 5:07:25), (2, 5:11:26), (3, 5:15:26), (4,
5:19:25), (6, 5:27:25)⟩, because most of its adjacent (actual) sam-
ple intervals are different. Hence, SIAR achieves a more compact
representation when the sample interval varies frequently.

4.2 Referential Representation
The referential representation encodes the differences of an in-

put sequence w.r.t. a reference sequence by exploiting the simi-
larity between them (i.e., the more similar the sequences are, the
higher the compression ratio). It is a lossless encoding [10, 34,
35]. Fig. 4b shows statistics on the similarity between trajectory
instances in DK, CD, and HZ. Here, we use edit distance to mea-
sure the similarity ofE(·) between two instances as in [37, 43]. As
can be observed, the edit distance between most of the instances of
a particular uncertain trajectory (88% in DK, 94% in CD, and 83%
in HZ) is at most 5, while that between most of the instances from
different uncertain trajectories (53% in DK, 77% in CD, and 54%
in HZ) is no less than 9. Hence, we only apply the referential repre-
sentation to the trajectory instances of an uncertain trajectory rather
than to the instances of different uncertain trajectories, to guaran-

tee high compression ratios. For each uncertain trajectory, we se-
lect one or more instances as references, i.e., reference trajectory
instances (see Section 4.3 for the selection). Then, other instances
can be represented according to their reference using a set of factors
defined below.

Definition 8. Given a non-reference Nref jik and its correspond-
ing reference Ref ji , Nref

j
ik can be expressed as a list of factors, i.e.,

Comϕ(Nref jik,Ref
j
i) = ⟨ϕj

ik(Mah)|1 ≤ h ≤ H⟩, where H is the
number of factors, and a factor ϕj

ik(Mah) denotes a subsequence
in Nref jik.

Since one reference can be used for representing multiple non-
references, we use the referential representation set Ref ji .Rrs to de-
note the set of Nref jik (1 ≤ k ≤ |Ref ji .Rrs|) represented by Ref ji .
Table 4 shows the referential representation of Table 3, where Tu11
is selected as the reference Ref 11 and is used to represent Tu12 and
Tu13 (also called Nref 111 and Nref

1
12). The detailed representation is

explained below.
E(Nref jik). Several strategies exist for encoding a factor [10, 34,

35]. We adopt the (S,L,M) representation [35] to encode each
factor of ComE(Nref jik,Ref

j
i), as it has a high compression ratio

when the to-be-compressed sequence and the reference are highly
similar. Specifically,S is the start position of the subsequence in the
reference,L is the length of the subsequence, andM is the firstmis-
matched element following the subsequence. However, we rewrite
the form of each factor in two cases:
A) WhenM does not exist (no mismatch), we record the factor

as (S,L), omittingM . This does not introduce any ambigu-
ity, since (S,L) only occurs at the end of the factor list.

B) When an outgoing edge number (denoted asno) inE(Nref jik)
does not exist in E(Ref ji), we denote the factor by assigning
S = |E(Ref ji)| andM = no, where |E(Ref ji)| is the length
of E(Ref ji). The idea is to append no to the end of the ref-
erence, i.e., to consider no as its last value. We further omit
L as it always equals 1. Hence, the factor in this case has the
form (S,M). For example, given E(Tu14) = ⟨3, 2, 1, 2, 2⟩,
we have E1

13(Ma1) = (9, 3), by referentially representing
Tu14 (denoted as Nref 113).

T ′(Nref jik). The referential representation of T
′(Nref jik) is sim-

ilar to that of E(Nref jik). We represent each factor using the for-
mat (S,L) because M can be inferred easily from the reference.
To be specific, if the bit immediately following the longest prefix
in T ′(Ref ji) is 1, the first mis-matched bit in T ′(Nref jik) is 0, i.e.,
M = 0; otherwise, M = 1. Specifically, we always keep the
last factor in the form (S,L,M) when M exists in order to avoid
ambiguity. Then, if T ′(Nref jik) is exactly the same as T ′(Ref ji),
ComT ′(Nref jik,Ref

j
i) = ∅ (as shown in Table 4).

D(Nref jik). We observe that even though a raw positional point
could be mapped to two different edges via the probabilistic map-
matching, the mapped locations may have the same relative dis-
tance, as the GPS records shown in Fig. 1. Based on this observa-
tion, we encode each factor inD(Nref jik) using the format (pos, rd),

1054

where pos is the position of the different value rd. Note that this
strategy is not good for referentially representing E(Nref jik) and
T ′(Nref jik) because their lengths vary across the instances of a sin-
gle uncertain trajectory Tuj .
Finally, we omit SV (Nref jik). Because we do not choose a non-

reference Nref jik that has a different start vertex than Rref ji . Also,
we do not referentially compress T (Nref jik) or Nref

j
ik.p, because

i) all instances for a single uncertain trajectory Tuj share the same
T (Tuj), and ii) the probability Nref jik.p has quite different values.

4.3 Reference Selection
Intuitively, the more similar a reference and a non-reference are,

the higher the compression ratio. A naive reference selection strat-
egy is to try every instance as the reference. However, its cost is
too high. Inspired by an existing study [35], we use the similar-
ity between the referential representations of trajectory instances to
approximate their exact one. Here, we first select a set of pivots,
and then represent each instance using these pivots. Thereafter, a
fine-grained Jaccard Distance function is defined to estimate the
similarity between two represented instances.
Pivot Selection. We select a set of pivots {pivi|1 ≤ i ≤ nj

p}
from Tuj . High-quality pivots are usually far away from each other
and far away from other instances [7]. Hence, we i) randomly
choose a trajectory instance and referentially represent all the re-
maining ones according to it; ii) select the one with the most factors
as a pivot; iii) referentially represent all the trajectory instances us-
ing the most recently selected pivot; and iv) we repeat steps ii) and
iii) until enough pivots are selected. Note that we only referentially
represent E(·) of each trajectory instance by that of each pivot, as
it is sufficient to distinguish the distances between instances.
Pivot Representation. We adopt the format (S,L) [10] to repre-

sent each factor in step iii). An example of (S,L) representation in
Table 3 is ComE(Tu11, piv1) = ⟨(0, 8), (5, 1)⟩, where piv1 = Tu13.
If an outgoing edge number inE(Tujw) does not exist inE(pivi), we
omit the factor but increase the number of factors by 1. After pivot
selection and representation, we get the referential representations
of each trajectory Tuj w.r.t. a set of pivots, i.e., ComE(Tujw, pivi)
(1 ≤ w ≤ N j , 1 ≤ i ≤ nj

p). The time complexity of pivot
selection and representation for a Tuj is O(N j · nj

p · avg(|E|) ·
avg(|ComE |), where nj

p is the number of pivots selected for Tuj ,
avg(|E|) is the average length of E(·) of all instances of Tuj , and
avg(|ComE |) is the average length of all instances w.r.t. all pivots
of Tuj .
Fine-grained Jaccard Distance Function. Given two trajec-

tory instances Tujw and Tujv , and a pivot pivi, we use the similar-
ity between ComE(Tujw, pivi) and ComE(Tujv, pivi) to estimate the
similarity between E(Tujw) and E(Tujv). Previous work [35] uses
the Jaccard Distance to measure the similarity. However, this dis-
tance is inaccurate in some cases. Given piv1 = Tu13 andE(Tu15) =
⟨1, 2, 1, 2, 2, 0, 4⟩, we haveComE(Tu11, piv1)= ⟨(0, 8), (5, 1)⟩ and
ComE(Tu15, piv1) = ⟨(0, 7)⟩. Thus, the Jaccard Distance between
them is 1. However, E(Tu11) is actually very similar to E(Tu15). To
obtain a more fine-grained distance notion, we propose a new dis-
tance metric, called Fine-grained Jaccard Distance (FJD), to cal-
culate the distance from E(Tujw) to E(Tujv) against a pivot pivi.

FJD(Tujw → Tujv, pivi)(w ̸= v)

=

∑H′

h′=1sim(E
j
iv(Mah′),ComE(Tujw, pivi))
max{H,H ′} ,

(1)

whereH andH ′ denote the number of factors in ComE(Tujw, pivi)
and ComE(Tujv, pivi), respectively, while Ej

iv(Mah′) denotes the

h′th factor (Siv
h′ , Liv

h′) in ComE(Tujv, pivi). In addition, we use
sim(Ej

iv(Mah′),ComE(Tujw, pivi)) to measure the similarity be-
tween Ej

iv(Mah′) and ComE(Tujw, pivi), calculated as follows,

sim(Ej
iv(Mah′),ComE(Tujw, pivi))

=
maxHh=1(E

j
iw(Mah) ∩ Ej

iv(Mah′))

max{Liw
max, Liv

h′}
(2)

We define Ej
iw(Mah) ∩ Ej

iv(Mah′) as max{min{Siw
h + Liw

h , Siv
h′

+Liv
h′} −max{Siw

h , Siv
h′}, 0}, and Liw

max = argmaxLiw
h

Ej
iw(Mah)

∩Ej
iv(Mah′). If Liw

max is not unique, we choose the minimum value.

Example 1. (FJD computation) Consider the example in Table
3. Given piv1 = Tu13, we have ComE(Tu11, piv1) = ⟨(0, 8), (5, 1)⟩
and ComE(Tu12, piv1) = ⟨(0, 1), (0, 1), (2, 6), (5, 1)⟩. Then we
calculate E1

11(Ma1)∩E1
12(Ma1)

max{L11
1 ,L12

1 } = 1
8
, in order to get sim(E1

12(Ma1),
ComE(Tu11, piv1)). Similarly, we are able to gain sim(E1

12(Ma2),
ComE(Tu11, piv1)) =

1
8
, sim(E1

12(Ma3), ComE(Tu11, piv1)) =
3
4
,

and sim(E1
12(Ma4),ComE(Tu11, piv1)) = 1. Hence, FJD(Tu11 →

Tu12, piv1) = (1
8
+ 1

8
+ 3

4
+ 1)/4 = 1

2
.

Based on FJD(Tujw → Tujv, pivi), we present our score func-
tion SF(Tujw, Tujv) (w ̸= v) for representing Tujv by Tujw, which is

calculated as Tujw.p · maxn
j
p

i=1FJD(Tu
j
w → Tujv, pivi). Here, a tra-

jectory instance with higher probability of occurrence is expected
to get a higher chance to be a reference, in order to speed up de-
compression during querying. Therefore, we multiply Tujw.p with
the maximum FJD value. SF(Tujw, Tujw) (1 ≤ w ≤ N j) is set
to 0, as we do not consider the case of representing a trajectory in-
stance by itself. In addition, we calculate SF(Tujw, Tujw) only when
SV (Tujw) = SV (Tujv), because two trajectory instances with dif-
ferent start vertices usually are not similar to each other. According
to the score function SF, the optimal reference for Tujv can be de-
rived by the following formula:

Ref (Tujv) = argmax
Tujw

SF(Tujw, Tujv) (3)

There are two constraints in our setting: i) each non-reference only
has one reference, to avoid redundancy; and ii) we only consider
single-order compression. Our goal of reference selection is tomax-
imize

∑
Tujw,Tujv∈Tuj SF(Tu

j
w, Tujv) for an uncertain trajectory Tuj

under these two constraints. Unfortunately, we have to enumerate
all the possible combinations to get the best selection choice, which
is unfeasible, as the enumeration cost is O(((N j)2)!) for Tuj .
Therefore, we propose a greedy algorithm, shown in Algorithm

1, for selecting the references for each uncertain trajectory Tuj (1 ≤
j ≤ M). By applying SF to each pair of instances of an uncertain
trajectory Tuj , we can get a score matrix SM, where SM [w][v] =
SF (Tujw, Tujv) is the score of representing Tujv by Tujw. Algorithm
1 shows that we always choose the maximal element from SM,
since it represents the current best reference. After each selection,
we delete the elements in SM that do not satisfy the constraints
(Line 7 and 9). The above-mentioned procedure is repeated un-
til SM = ∅ or the current maximum of it is 0. In the latter case,
the trajectory instances that have not been selected are formally
added to the reference set of Tuj for easier query processing but
are not associated with a reference representation set (Lines 11–
13). The efficiency of Algorithm 1 can be further improved by
pre-sorting the elements in SM. The time complexity of reference
selection for Tuj is O(N j · nj

p · avg(|E|) · avg(|ComE |) + N j2 ·
nj
p · avg(|ComE |)2 +N j2 · 2 logN

j

2), while the space complexity
is O(N j · nj

p · avg(|ComE |) + (N j)2 · nj
p).

1055

Algorithm 1: Reference Selection Algorithm
Input: SM of Tuj
Output: the reference set Ref (Tuj) of Tuj , and the referential

representation set of each reference in Ref (Tuj) if it exists
1 initialize an empty reference set Ref (Tuj)
2 while SM ̸= ∅ do
3 select the maximum score SM [w][v] from SM
4 if SM [w][v] > 0 then
5 if Tujw /∈ Ref (Tuj) then
6 add Tujw to Ref (Tuj), and create Tujw.Rrs
7 remove SM [v′][w] from SM (1 ≤ v′ ≤ Nj)

8 add Tujv to Tujw.Rrs
9 remove SM [w′][v], SM [v][w′′] from SM

(1 ≤ w′, w′′ ≤ Nj)
10 else
11 for each diagonal element SM [w][w] in SM do
12 if SM [w][w] exists then
13 add Tujw to Ref (Tuj)
14 return Ref (Tuj) and the non-empty Tujw.Rrs for each

Tujw ∈ Ref (Tuj)

Example 2. (Algorithm 1 overview) Assuming that we only se-
lect Tu13 as a pivot for Tu1, we get an SM. Then we find the maxi-
mum in SM, i.e., SF (Tu11, Tu12), based on which we get a reference
Tu11 and add Tu12 to its Rrs. Afterwards, SM [w′][2]∪SM [2][w′′]∪
SM [v′][1] (1 ≤ w′, w′′, v′ ≤ 3) are removed from SM according
to the two constraints. This process is shown below,

SM =

 0 3
8

1
3

7
80

0 1
30

1
40

1
80

0

 →

 A0 AA
3
8

1
3

SS
7
80 A0 SS

1
30

SS
1
40 SS

1
80

0

Then we add Tu13 to Tu11.Rrs due to SM [1][3] > SM [3][3], and
remove SM [w′][3] ∪ SM [3][w′′](1 ≤ w′, w′′ ≤ 3) from SM.
Finally, since SM = ∅, we return the reference Tu11 with its Rrs =
{Tu12, Tu13} for Tu1.

4.4 Compression
Binary Encoding References. We follow TED [40] to compress

E(Ref). As discussed in Section 2.2, we omit the time-consuming
procedures of TED. In this case, UTCQ still outperforms TED in
terms of compressing ratio due to the referential representation and
compression, while significantly improving the compression effi-
ciency. Also, we adopt the PDDP-tree [40], which is the only lossy
component in our framework, to encodeD(Ref) and Ref .p that are
floats. We use the error bounds ηD and ηp to constrain their com-
pression accuracy. Both ηD and ηp are pre-set compression param-
eters, and the actual errors between the original and compressed
data are constrained by these settings. T ′(Ref) is already repre-
sented as bit strings as discussed in Section 4.1 and does not need
any further compression. Moreover, we propose an improved Exp-
Golomb encoding to compress T (Ref), which effectively addresses
the sample interval fluctuation.
Improved Exp-Golomb Encoding. As different deviations be-

tween the actual sample interval and the default occur with differ-
ent frequencies, encoding each value of T (Tuj) in a binary code
with fixed length may waste space. Specifically, we find that small
deviations are much more frequent than large ones. The statistics
in Fig. 4a exemplify this. Thus, we adopt the well-known Exp-
Golomb encoding [32] to compress T (Tuj). It encodes smaller
values with shorter lengths and larger values with longer lengths.
We set the parameter k, which controls the length of the first group,

to 0. Given timestamps ti and ti+1 of an uncertain trajectory Tuj
with default sample interval Ts, we let △ti = (ti+1 − ti) − Ts

(0 ≤ i < |T (Tuj)| − 1), where |T (Tuj)| is the length of T (Tuj).
However, since △ti may be negative, the Exp-Golomb encoding
needs to be modified.
Assuming that the longest actual sample interval is Tl, we have

△ti ∈ (−Ts, Tl − Ts] (0 ≤ i < |T (Tuj)| − 1). We divide
[0,max{Ts − 1, Tl − Ts}] into n groups, where n = ⌈log2(max
{Ts − 1, Tl − Ts} + 1)⌉, and the range of the jth(j ≥ 0) group
is
[
−2j+1 + 2, −2j + 1

]
∪
[
2j − 1, 2j+1 − 2

]
. This way, all the

possible deviations between the actual sample interval and the de-
fault one can be covered as [−max{Ts − 1, Tl − Ts},max{Ts −
1, Tl − Ts}] ⊆ [−2n + 2, 2n − 2]. The offset of △ti in the jth
group is given by | △ ti| − (2j − 1). Moreover, we add one 1
bit immediately before the offset if △ti is a negative digit; other-
wise, 0 is added. Following the example of SIAR in Section 4.1,
⟨5:03:25, 0, 1, 0, -1, 0, 0⟩ is encoded as ⟨00100011100011101, 0,
1000, 0, 1010, 0, 0⟩ by the improved Exp-Golomb encoding. Hence
the compression ratio of T (Tu1) by our method is 32×7

12+17
= 7.72,

while the counterpart by TED is 32×7
(17+12)×6

= 1.29, where we as-
sume each trajectory contains at most 212 timestamps and ti (0≤ i
< |T (Tuj)|) is encoded using 17 bits.
Binary Encoding Non-references. Let |E(Ref ji)| be the length

of E(Ref ji) and o be the maximum number of outgoing edges for
any vertex v ∈ V . Then S takes ⌈log2 |E(Ref ji)|+ 1⌉ bits,L takes
⌈log2 |E(Ref ji)|⌉ bits, andM takes ⌈log2 o⌉ bits when performing
binary encoding of a factor (S,L,M) in E(Nref jik). Next, S and
L in the factor of T ′(Nref jik) are encoded in ⌈log2 |T

′(Ref ji)|⌉ bits,
whileM takes 1 bit. Further, pos in each factor ofD(Nref jik) occu-
pies ⌈log2 |D(Ref jik)|⌉ bits, and rd is encoded by a PDDP-tree [40].
It can be seen that, by using referential representation, binary codes
of different non-references may have different lengths depending
on their similarities to the corresponding references, further saving
space. We denote the binary code of a sequence seq as ˆseq in the
rest of the paper, e.g., the binary code of E(·) is denoted as Ê(·).
Overall, the space complexity of compressing Tuj isO(N j ·nj

p ·
avg(|ComE |) + (N j)2 · nj

p + sizein(Tuj) + sizeout(Tuj)), where
sizein(Tuj) and sizeout(Tuj) are the input size and the compressed
size of Tuj , respectively.

5. QUERY PROCESSOR
In this section, we describe how to compute queries directly on

compressed uncertain trajectories. First of all, we introduce a strat-
egy to extract the necessary information from compressed time flag
bit-strings by means of partial decompression. Second, we design
an index to achieve fast retrieval and partial decompression. In ad-
dition, several pruning techniques are proposed to more efficiently
support probabilistic queries on compressed uncertain trajectories.

5.1 Time Flag Bitstring Decompression
We have represented the time flag bit-strings of non-references

as a list of factors. Since time flag bit-strings associate D(·) and
T (·)withE(·), we need to get the number of 1s before any position
in order to support queries over compressed data [40]. Naively, we
can first decompress factors of ˆComT ′(Nref jik,Ref

j
i) to T

′(Nref jik),
and then count the number, with the costO(| ˆComT ′(Nref jik, Ref

j
i)|

+|T ′(Nref jik)|). To accelerate this, we propose an effective method
by constructing two assisting arrays, flag array and original array.
Flag Array and Original Array. The flag array of T ′(Ref ji) is

denoted as ω
T ′(Ref ji)

, and counts the number of 1s before the gth

(not including g) bit of T ′(Ref ji) (0 < g ≤ |T ′(Ref ji)|). However,

1056

T ′(Ref ji) omits the first and last bit of the original time flag bit-
string during representation (in Section 4.1). Therefore, we define
the original array, γ

T ′(Ref ji)
, which records the number of 1s until

the gth bit in the original time flag bit-string (0 ≤ g < |T ′(Ref ji)|).
Here, we simplify φ

T ′(Ref ji)
and φ

T ′(Nref j
ik

)
by representing them as

φRef ji
and φNref j

ik
, where φ ∈ {ω, γ}.

For a reference Ref ji , it is easy to get ωRef ji
by linearly scanning

T ′(Ref ji). To get γNref j
ik
for a non-reference, we propose a strategy

by partially decompressing ComT ′(Nref jik,Ref
j
i). Given ωRef ji

and
g, we can get γNref j

ik
[g] by only decompressing at most one factor in

ComT ′(Nref jik,Ref
j
i). More specifically, we first locate the factor

in ComT ′(Nref jik, Ref
j
i) that the g

th bit of the original T ′(Nref jik)
falls into, as follows.

maxh s.t. h+

h∑
l=1

Lik
l ≤ g ∧ h < H, (4)

whereH is the number of factors inComT ′(Nref jik,Ref
j
i) andL

ik
l is

the length of the subsequence represented by T ′j
ik(Mal). Formula

4 ensures that the gth bit of the original T ′(Nref jik) either falls into
T ′j

ik(Mah+1) or exactly corresponds to the M that is omitted in
T ′j

ik(Mah). Thus we only need to decompress T ′j
ik(Mah+1) after

calculating the number of 1s within the subsequence before the (h+
1)th factor, as follows.

Z =1 +

h∑
l=1

ωRef ji
[Sik

l + Lik
l]− ωRef ji

[Sik
l]

+ ∼ T ′(Ref j
i)[S

ik
l + Lik

l],

(5)

where ∼ (x) means NOT(x), i.e., the neglected mismatched ele-
ments of T ′j

ik(Mal), and Sik
l refers to the start position of the sub-

sequence represented by T ′j
ik(Mal). Let g′ = g − h−

∑h
l=1 L

ik
l .

Then γNref j
ik
[g] can be derived as follows.

γNref j
ik
[g] =Z + ωRef ji

[Sik
h+1 + g′]− ωRef ji

[Sik
h+1], (6)

where g ≥ Lik
1 + 1 ∧ g < H +

∑H
l=1 L

ik
l (H ̸= 1).

Hence, we extract the necessary information γNref j
ik
[g] with the

cost O(| ˆComT ′(Nref jik,Ref
j
i)| +

|T ′(Nref j
ik

)|
H

) if g is given, where
|T ′(Nref j

ik
)|

H
is the average length of each factor.

5.2 StIU Index
We propose an index, called Spatio-temporal Information based

Uncertain Trajectory Index (StIU), to support efficient probabilis-
tic queries by partial decompression. The partial decompression is
lossless and decompresses only the information necessary for an-
swering queries [40]. As shown in Fig. 5a, an StIU index is built
on Tu1, where Tu11 (used as Ref 11) and Tu

1
2 (used as Nref 111) are in-

stances of the uncertain trajectory Tu1 depicted in Fig. 2. Let the IDs
of v1, v2, v3, v4, v5, and v7 be 185190, 185191, 185192, 185194,
228476, and 228478, respectively. Assume that the mapping posi-
tions of the relative distances of l1, l2, and l5 in D̂(Ref 11) are 6, 12,
and 30, respectively, and that the maximum outgoing edge num-
ber of the road network in Fig. 5b is 7. The index contains two
parts. The upper part indexes the temporal information of trajecto-
ries, while the lower part supports effective spatial search.
Temporal Index of StIU. We first partition a day into equal-

length time intervals. Then, we associate each interval with the

[5:00:00, 5:30:00)

Ref

(5:03:25,0,17)

(185190,0,0,1,0.2)

(185192,1,6,1,0.2)

(228476,3,12,1,0.2)

(228478,6,30,1,0.2)

(185190,0,0)

(185194,2,11)

Nref

[4:30:00, 5:00:00)

Temporal Index

Spatial Index

Tu

re1

re2

re3

re4

(a) Index Structure

v4

v5

v6

v7v8

v10

v3

v2v1
l0

l1

l2

l3
l4
l5l6

l1'

re4re3
re1 re2

RE1

RE222

0

(b) Tu11 and Tu12

Figure 5: StIU built on Tu = {Tu1} depicted in Fig. 2

uncertain trajectories, whose timestamps intersect with it. The in-
formation on an uncertain trajectory Tuj corresponding to a time
interval is stored in a tuple (t.start, t.no, t.pos), where t.start is the
earliest timestamp of Tuj falling into the time interval, t.no indi-
cates that t.start is the t.noth timestamp in T (Tuj), and t.pos refers
to the matching position of the (t.no+ 1)th timestamp in T̂ (Tuj).
Spatial Index of StIU. We further organize the trajectory in-

stances in each time interval according to their spatial information.
To be specific, we first partition the road networkG using grid cells,
each of which represents a region rei. Then we create tuples, each
linking a trajectory instance to a region it has passed. The tuples
for a trajectory instance form a chronologically ordered list. For
example, in Fig. 5a, the tuple associated with re3 is followed by
that associated with re4 for Tu11 (used as Ref 11). Before detailing
the index information stored in each tuple of Tujw, we introduce the
concept of final vertex.

Definition 9. A final vertex of a trajectory instance Tujw w.r.t. a
region re is a vertex inG that is traversed by the trajectory instance
immediately before reaching re, denoted as Tujw.fv of re.

For example, in Fig. 5b, v3 is Ref 11 .fv w.r.t. re4. Then, we in-
troduce the format of a tuple for a reference Ref ji associated with a
region re, if (Ref ji .Rrs∪Ref ji)∩re ̸= ∅. Accordingly, there are two
possible cases for Ref ji if it has a tuple corresponding to re: i) Ref ji
passed re itself; ii) Ref ji did not pass re but ∃Nref jik ∈ Ref ji .Rrs s.t.
Nref jik passed re.
For the first case, the tuple corresponding to re is stored as (fv.id,

fv.no, d.pos, ptotal, pmax), where 1) fv.id (≥ 0) is the ID of Ref ji .fv
w.r.t. re; 2) fv.no indicates the position of fv.id in E(Ref ji); 3)
d.pos is the matching position of the d.noth relative distance in
D̂(Ref ji), where d.no=γRef ji [fv.no]; 4) with Ω defined as the sub-

set of all trajectory instances Ref ji ∪ Ref ji .Rrs that overlap re, ptotal
is then the sum of the probabilities of all instances in Ω; and 5)
pmax = Nref jik′ .p such that ∀Nref jik ∈ Ω: Nref jik′ .p ≥ Nref jik.p. If
∀Nref jik ∈ Ref ji .Rrs, Nref

j
ik does not overlap re, pmax is set to 0.

For the second case, each tuple has the form (fv.id, ptotal, pmax).
Specifically, we set fv.id = ∞, which indicates that Ref ji itself did
not traverse re, and ptotal and pmax are the same as for the first case.
The tuple for a non-reference Nref jik w.r.t. re has the form (rv.id,

rv.no, ma.pos), where 1) rv.id is the ID of the first vertex rv repre-
sented in Ej

ik(Mah) (the hth factor of ComE(Nref jik,Ref
j
i)), such

that Ej
ik(Mah) contains Nref jik.fv of re; 2) rv.no indicates the po-

sition of rv in E(Nref jik); and 3) ma.pos is the matching position
of Ej

ik(Mah) in ˆComE(Nref jik,Ref
j
i). In the case when a factor

“crosses” more than one region, we only keep the tuple for the re-
gion that the trajectory instance traverses first. In the case when re is
the first region traversed by Tujw or Tujw.fv of re is exactlySV (Tujw),
we store (SV (Tujw), 0, 0, pmax, ptotal) if Tujw is a reference, and we
store (SV (Tujw), 0, 0) if Tujw is a non-reference.

1057

5.3 Probabilistic Queries
Based on StIU, three representative types of queries, namely prob-

abilistic where, when, and range queries, can be performed.

Definition 10. (Probabilistic where query)Given a timestamp
t, a probability α, and a compressed uncertain trajectory Tuj , a
probabilistic where querywhere(Tuj , t, α) returns the set of mapped
locations at time t of the instances Tujw ∈ Tuj with Tujw.p ≥ α.
Each location is given as ⟨(vs → ve), ndist⟩, where (vs → ve)
is the edge traversed by Tujw, and ndist is the network distance be-
tween vs and the location at t.

Definition 11. (Probabilistic when query)Given a mapped lo-
cation ⟨(vs → ve), rd⟩, a probability α, and a compressed uncer-
tain trajectory Tuj , a probabilistic when query when(Tuj , ⟨(vs →
ve), rd⟩, α) returns the set of timestamps, where rd is the relative
distance of the location w.r.t. (vs → ve), and each timestamp t
corresponds to a instance Tujw of Tuj with Tujw.p ≥ α, such that
Tujw passed ⟨(vs → ve), rd⟩ at t.

Example 3. (Probabilistic where andwhen query) Let the IDs of
v6 and v7 be 228477 and 228478, respectively, and the length of the
edge (v6 → v7) be 200. Given a query where(Tu1, 5:21:25, 0.25)
and assume that the time partition duration of StIU is 15 minutes,
we locate the tuple (5:15:26, 3, 23) through binary search, as its
t.start is the closest timestamp to 5:21:25 with t.start≤ 5:21:25,
and then decompress T̂ (Tu1) from its 23th bit. In this way, we get
the result ⟨228477 → 228478, 150⟩ without full decompression.
Similarly, given the road network partition shown in Fig. 5b and
a query when(Tu1, ⟨228477 → 228478, 0.75⟩, 0.25), we search
from v5 according to the tuple (228476, 3, 12, 1, 0.2) in StIU and
return 5:21:25.

Definition 12. (Probabilistic range query) Given a query re-
gion RE, a timestamp tq , and a collection of compressed uncertain
trajectories Tu, a probabilistic range query range(Tu,RE, tq, α)
returns the set of uncertain trajectories Tuj(1 ≤ j ≤ M) in Tu,
such that

∑
Tujw∈Tuj∧Tujw∩RE̸=∅ Tu

j
w.p ≥ α at tq .

Example 4. (Probabilistic range query) A query range(Tu, re3
∪re4, 5:05:25, 0.5) returns Tu1, as Tu11, Tu12, Tu13 overlaps re3∪ re4
at 5:05:25 and

∑3
w=1 Tu

1
w.p = 1(> 0.5). However, a range(Tu,

RE1, 5:05:25, 0.5) returns empty due to Tu1 ∩ RE1 = ∅.

5.4 Filtering and Validating Lemmas
When querying using the StIU, we can effectively avoid unneces-

sary decompression by exploiting ptotal and pmax that are maintained
for each reference.

Lemma 1. Given a query when(Tuj , ⟨(vs → ve), rd⟩, α), if
pmax < α holds for all the tuples of reference Ref ji in the StIU cor-
responding to the region where ⟨(vs → ve), rd⟩ is located then we
do not need to fully decompress Ref ji .
Proof. Let re be the region where ⟨(vs → ve), rd⟩ is located, and

Ω′ be the subset of Ref ji .Rrs that overlaps re. If pmax < α holds for
every tuple (under each time interval) associated with region re, it
follows that ∀Nref jik ∈ Ω′, Nref jik.p < α due to Nref jik.p ≤ pmax.
As a result, the timestamps of all non-references within Ω′ will not
be returned in accordance with the definition of a probabilistic when
query. Therefore, Ref ji does not need to be fully decompressed.

Example 5. (Filtering by Lemma 1) Given a query when(Tu1,
⟨(185191 → 185192), 0.25⟩, 0.5) in Fig. 5b, Ref 11 does not need
to be fully decompressed. This is because Ref 11 .pmax w.r.t. re3 where
⟨(185191 → 185192), 0.25⟩ falls is 0.2, implying that Nref 11k.p <
0.5 (k = 1, 2).

Lemma 2. Given a spatial region RE, a timestamp tq , and two
edges (vs → ve) and (vs′ → ve′) where an uncertain trajectory
instance Tuji is located at timestamps tb and tb′ (tb ≤ tq ≤ tb′), (i)
if the subpath sp from vs to ve′ satisfies sp ∈ RE then Tuji overlaps
RE at tq; (ii) if the subpath sp from vs to ve′ satisfies sp∩ RE = ∅
then Tuji does not overlap RE at tq .

Proof. Let the location where Tuji is located at tq be l. Then, l
must be located on sp due to tb ≤ tq ≤ tb′ . Hence, Tuji overlapsRE
at tq if sp ∈ RE; Tuji does not overlap RE at tq if sp∩ RE = ∅.

Lemma 3. Given a query range(Tu,RE, tq, α) and a set Canj
that contains the instances of Tuj ∈ Tu satisfying condition (i) in
Lemma 2, if the sum of the probabilities of all the instances in Canj
is not smaller than α then Tuj should be in the query result.

We omit the proof of Lemma 3 as it is straightforward.

Lemma 4. Given a query range(Tu,RE, tq, α), a region retotal
(RE ⊆ retotal), and a set Canj that contains all the instances of
Tuj ∈ Tu that overlap retotal during [tb, tb′] (tb ≤ tq ≤ tb′), if the
sum of probabilities of all the instances in Canj is smaller than α
then Tuj does not qualify as a query result.

Proof. Let Can′j be a set of instances of Tuj that overlaps RE at
tq . We have Can′j ⊆ Canj due to RE ⊆ retotal and tq ∈ [tb, tb′].
As a result, the sum of probabilities of instances in Can′j can not be
greater than that in Canj . Thus, if

∑
Tuji∈Canj Tu

j
i .p < α then Tuj

does not qualify as a query result.

Example 6. (Filtering by Lemmas 2, 3, and 4) Given a query
range(Tu, re3 ∪ re4, 5:05:25, 0.5) in Fig. 5 and ηp = 1

2048
, we

can get the subpath sp1 from v1 to v4 after partially decompress-
ing T (Tu1) and E(Ref 11), where Ref

1
1 is located on (v1 → v2) at

5:03:25 and located on (v3 → v4) at 5:07:25. According to Lemma
2, we can ensure that Ref 11 must overlap re3∪re4 at 5:05:25without
decompressing D(Ref 11). Since Ref

1
1 .p ≥ 0.5, Tu1 can be directly

returned by Lemma 3. Given a query range(Tu,RE1, 5:05:25, 0.5),
we can infer that Ref 11 , Nref

1
11 and Nref

1
12 do not overlap RE1 with-

out decompressingD(Ref 11),D(Nref 111) andD(Nref 112) according
to Lemma 2. This is because sp1 ∩ RE1 = ∅ and sp2 ∩ RE1 = ∅,
where sp2 is the subpath of Nref 111 from v1 to v10. Then, since the
sum of the probabilities of instances in Can1(= ∅) w.r.t. retotal(=
RE1) is 0 (< 0.5), Tu1 can be safely pruned by Lemma 4. Consider
another example range(Tu,RE2,5:05:25, 0.8). Assume that only
Ref 11 traversed re1, Tu1 can be safely pruned by Lemma 4 with-
out checking any of its other instances, as the sum of the proba-
bilities of instances in Can1(= {Ref 11 }) w.r.t. retotal(= re1) is
0.75 (< 0.8).

Due to the space limitation, the detailed algorithms for proba-
bilistic where, when, and range quires are omitted.

6. EXPERIMENTS
We report on extensive experiments aimed at evaluating the per-

formance of the proposed framework.

6.1 Experimental Setting
Datasets. We use three real-life datasets, i.e., Denmark (DK),

Chengdu (CD), and Hangzhou (HZ), as described in Table 5, while
the road network information is shown in Table 6. The DK dataset
is collected from 162 vehicles over about 2 years (Jan. 2007 to
Dec. 2008) in Denmark. The CD dataset is collected from 14,864
taxis over one month (Aug. 2014) in Chengdu, China. The HZ

1058

Table 5: Trajectory datasets
Datasets Storage of NCUTs # of trajectories # of trajectory instances # of edges per trajectory Default sample interval
Denmark 0.97GB 266,913 Average 9 (2 to 434) Average 14 (2 to 139) 1s
Chengdu 5.00GB 1,956,640 Average 3 (2 to 192) Average 11 (2 to 148) 10s
Hangzhou 20.20GB 1,807,895 Average 13 (2 to 1,500) Average 13 (2 to 189) 20s

Table 6: Road network information
Road network # of edges # of vertices Out degree
Denmark 818,020 667,950 Average 2.449
Chengdu 125,929 88,868 Average 2.834
Hangzhou 85,949 61,581 Average 2.791

Table 7: Parameter ranges and default values
Parameter Range
Number of instances 20%, 40%, 60%, 80%, 100%
Trajectory length 20%, 40%, 60%, 80%, 100%
Number of pivots 1, 2, 3, 4, 5
Number of grid cells 82, 162, 322, 642, 1282
Time partition duration (min) 10, 20, 30, 40, 50, 60
Error bound of distance (meter) 1

8
, 1
16
, 1
32
, 1
64
, 1
128

Error bound of probability 1
128

, 1
256

, 1
512

, 1
1024

, 1
2048

dataset is collected from 24,515 taxis over one month (Nov. 2011)
in Hangzhou, China.
Comparison Algorithm. As this is the first study on the com-

pression of uncertain trajectories, we adapt the state-of-the-art work
for the compression of accurate trajectories, i.e., the TED frame-
work [40], to compress each uncertain trajectory instance while us-
ing the same to compress probability as our UTCQ.We omit bitmap
compression [40], as it is time consuming and it is also applicable
to UTCQ.
Parameter Setting. In the experiments, we study the effect on

the performance of the parameters summarized in Table 7. In ad-
dition, due to the use of the PDDP-tree [40], the error bound for
representing the relative distance ηD is set to 1

128
, while the error

bound w.r.t. probability ηp is set to 1
512

for the DK and CD datasets
and to 1

2048
for the HZ dataset. As the HZ dataset contains more

instances for each uncertain trajectory, it is given a lower ηp.
Performance Metrics. For compression, we use the compres-

sion ratio, compression time, and maximum memory cost as the
performance metrics. For query processing, we use the index size,
query time, average difference, and F1 score as performance met-
rics. All algorithms are implemented in C++ and run on a computer
with Intel Core i9-9880H CPU (2.30 GHz) and 32 GB memory.

6.2 Performance of Compression
We first compare UTCQ and TED in terms of compression ratio

and time. Table 8 shows the results, where T, E, D, T′, and p refer
to the compression ratios of time, edge, relative distance, time flag
bit-string, and probability, respectively, and Total denotes the total
compression ratio. As observed, UTCQ outperforms TED more
than 2–3 times in terms of compression ratio. The compression ratio
of time offers evidence of the effectiveness of the SIAR scheme,
while the compression ratios of edge, relative distance, and time
flag bit-string reveal the effectiveness of referential compression.
Moreover, the compression time of UTCQ is always more than 1–2
orders of magnitude smaller than that of TED, which validates the
efficiency of UTCQ.
Effect of the Number of Instances. Fig. 6 shows the compres-

sion ratio and time when varying the number of trajectory instances.
Specifically, we filter the trajectories with fewer than 20 instances
in the datasets. As observed, the compression ratio of UTCQ im-
proves slightly when increasing the number of instances, while that

60 70 80 90 100
0

5

10

15

C
o
m
p
re
ss
io
n
ra
ti
o
(C
R
)

Number of instances (%)

UTCQ-CR

TED-CR

10
0

10
1

10
2

10
3

0.19

37
44

50
57 64

0.430.350.28
0.22

C
o
m
p
re
ss
io
n
ti
m
e
(s
ec
)UTCQ-time

TED-time

(a) DK dataset

60 70 80 90 100
0

5

10

15

C
o
m
p
re
ss
io
n
ra
ti
o
(C
R
)

Number of instances (%)

UTCQ-CR

TED-CR

10
2

10
3

10
4

10
5

10
6

1438
1278

1131983838

15.57
12.609.997.695.67

C
o
m
p
re
ss
io
n
ti
m
e
(s
ec
)UTCQ-time

TED-time

(b) HZ dataset
Figure 6: Effect of the number of instances

20 40 60 80 100
0

4

8

12

UTCQ-CR

TED-CR

C
o
m
p
re
ss
io
n
ra
ti
o
(C
R
)

Length (%)

10
0

10
1

10
2

10
3

10
4

C
o
m
p
re
ss
io
n
ti
m
e
(s
ec
)UTCQ-time

TED-time

0.02

155
123926229

0.05

0.04
0.04

0.03

(a) CD dataset

20 40 60 80 100
0

10

20

UTCQ-CR

TED-CR

714
563420277135

8.268.148.04
7.86

C
o
m
p
re
ss
io
n
ra
ti
o
(C
R
)

Length (%)

7.97

10
1

10
2

10
3

10
4

10
5

C
o
m
p
re
ss
io
n
ti
m
e
(s
ec
)UTCQ-time

TED-time

(b) HZ dataset
Figure 7: Effect of the trajectory length

of TED is unaffected. The reason is that the more instances we
have, the more can be referentially represented by UTCQ. In con-
trast, TED compression is independent of the number of instances.
Moreover, the time of UTCQ and TED growswith the number of in-
stances, and UTCQ is 1–2 orders of magnitude faster than TED. Fi-
nally, the digits along with the compression time are the maximum
memory cost during compression. As can be seen, the maximum
memory cost of TED is always 1–2 orders of magnitude higher than
that of UTCQ. This is because UTCQ processes uncertain trajecto-
ries one by one, while TED has to load all the E(·) for the prepa-
ration of matrix transformation and partitioning [40]. In addition,
the memory cost grows with the number of instance, in accordance
with the space complexity.
Effect of the Trajectory Length. Fig. 7 reports the compres-

sion performance results for different lengths of trajectories. We
eliminate trajectories with fewer than 20 edges and vary the tra-
jectory length from 20% to 100% of the total number of edges.
As can be seen, the compression ratios of UTCQ on both CD and
HZ first increase slightly and then drop. This is because, on the
one hand, the compression ratio of time increases with the trajec-
tory length, while, on the other hand, the referential compression
performance drops due to the larger dissimilarity among longer se-
quences. Moreover, the compression ratio of TEDdecreases slightly
as the highest bits of the entry path representation in one column [40]
are more unlikely to be all 0. Finally, both the compression time and
maximum memory cost increase slightly with the trajectory length,
and UTCQ always uses 1–3 orders of magnitude less space and 1–2
orders of magnitude less time than TED.
Effect of the Number of Pivots. Fig. 8 reports on the impact

of the number of pivots on the compression performance. It can be
seen that the compression ratio increases with the number of piv-
ots used. The reason is that the more pivots, the higher the accu-
racy of the proposed similarity measure. On the other hand, the
compression time and the maximal memory cost increase. As can
be observed, the maximum memory cost on the CD dataset is the
smallest, since it has the shortest and the least instances for each un-
certain trajectory on average among the three datasets. Specifically,
we set the default pivot count to 1 on CD and HZ datasets, while set

1059

Table 8: Comparison on three datasets

Datasets
UTCQ TED

Compression ratio Time(s) Compression ratio Time(s)Total T E D T′ p Total T E D T′ p
Denmark 14.342 7.685 14.861 26.171 15.843 7.111 23 4.439 4.545 11.888 9.143 1 7.111 1823
Chengdu 11.867 3.128 13.589 15.141 18.061 7.111 135 4.287 1.707 11.247 9.143 1 7.111 65310
Hangzhou 13.787 3.193 16.092 17.815 14.592 5.818 1031 4.008 1.418 9.376 9.143 1 5.818 980447

1 2 3 4 5
10

12

14

C
o
m
p
re
ss
io
n
ra
ti
o
(C
R
)

Number of pivots

DK CD HZ

(a) Compression ratio

1 2 3 4 5

10
1

10
2

10
3

0.95
0.77

0.62
0.430.25

0.12
0.11

0.09
0.070.05

76.74

61.44
46.51

30.8615.57

C
o
m
p
re
ss
io
n
ti
m
e
(s
ec
)

Number of pivots

DK CD HZ

(b) Compression time

Figure 8: Effect of pivots

0

15

30

45

128×12864×6432×3216×16

In
d
ex
si
ze
(M
B
)

Number of grid cells

UTCQ (s-size)

TED (size)

8×8

UTCQ (t-size)UTCQ-time

TED-time

10
-2

10
-1

10
0

10
1

10
2

10
3

Q
u
er
y
T
im
e
(m
s)

(a) DK dataset

0

400

800

1200

In
d
ex
si
ze
(M
B
)

Number of grid cells
128×12864×6432×3216×168×8

UTCQ (s-size)

TED (size)

10
1

10
2

10
3

10
4

Q
u
er
y
ti
m
e
(m
s)

UTCQ-time

TED-time

UTCQ (t-size)

(b) HZ dataset

10 20 30 40 50 60
1.0

1.1

1.2

1.3

1.4

In
d
ex
si
ze
(M
B
)

Time partition duration (min)

UTCQ (t-size)

0

40

80

120

Q
u
er
y
ti
m
e
(µ
s)

UTCQ-time

(c) DK dataset

10 20 30 40 50 60
0

10

20

30

In
d
ex
si
ze
(M
B
)

Time partition duration (min)

UTCQ (t-size)

0

20

40

60

Q
u
er
y
ti
m
e
(m
s)

UTCQ-time

(d) HZ dataset

Figure 9: Effect of spatial and temporal partition granularity
on probabilistic range queries

that to 2 on DK dataset. We do this because on DK dataset, the com-
pression ratio improves significantly from 1 to 2 without reducing
the efficiency considerably.

6.3 Query Performance
Probabilistic Range Query. Fig. 9 reports the performance of

probabilistic range queries when varying the spatio-temporal par-
tition granularity. Here, we omit coverage of probabilistic where
and when queries, as they are largely unaffected by variations in
the spatio-temporal partitioning. Fig. 9 indicates that the proposed
index size is smaller than that of TED, which is due to the referential
compression. It is clear that the query time decreases as road net-
works and time intervals are partitioned at finer granularities. More-
over, UTCQ is faster than TED, which is due to the index structure
and the filtering and validating techniques.
Probabilistic Where and When Queries. We also report the

performance (i.e., the query time) of probabilistic where and when
queries. Fig. 10 shows that UTCQ is faster than TED for both prob-
abilistic where and when queries, due to the temporal index of StIU
and Lemma 1 that are used for filtering. However, the superiority of
UTCQ is not obvious on DK dataset for probabilistic when query,
because the query performance (i.e., the pruning ability of Lemma
1) relies on the distribution of the dataset.
Effect of Error Bound. Fig. 11 studies the effect of the error

bounds of the PDDP-tree [40] on the query accuracy, where the
average difference and the F1(= 2 precision·recall

precision+recall) score are the per-

DK CD HZ
10

-1

10
0

10
1

10
2

Q
u
er
y
ti
m
e
(s
ec
)

Dataset

UTCQ TED

(a) Probabilistic where query

DK CD HZ
10

0

10
1

10
2

Q
u
er
y
ti
m
e
(s
ec
)

Dataset

UTCQ TED

(b) Probabilistic when query

Figure 10: Probabilistic where and when query performance

1/128 1/64 1/32 1/16 1/8
0

2

4

6

A
v
er
ag
e
d
if
fe
re
n
ce
(m
)

Error bound of relative distance (m)

Where-CD

Where-HZ

0.00

0.15

0.30

0.45

A
v
er
ag
e
d
if
fe
re
n
ce
(s
ec
)When-CD

When-HZ

(a) Relative distance

1/2048 1/1024 1/512 1/256 1/128
0.96

0.98

1.00

F
1
sc
o
re

Error bound of probability

Where-CD When-CD

Where-HZ When-HZ

(b) Probability

Figure 11: Effect of error bound on query accuracy
formance metrics. Specifically, the average difference is the devia-
tion between the query results derived from the original versus the
compressed datasets. It is measured in meters (m) for probabilistic
where queries and in seconds (sec) for probabilistic when queries.
Fig. 11 shows that the average difference is small, especially when
ηD is set to the default value; and the F1 score is always close to
1. These indicate that the error caused by PDDP-tree encoding is
small. We omit the results on range queries because they achieve
similar performance.

6.4 Scalability
Fig. 12 reports on the scalability of compression and query pro-

cessing, where the data size is varied from 20% to 100% of the
total dataset storage size. Fig. 12a shows that the compression ra-
tios achieved by both UTCQ and TED are roughly independent of
the dataset size. This is because the compression ratio is unaffected
by the number of uncertain trajectories, but rather depends on the
number and the lengths of instances. In Fig. 12b, the compression
time of UTCQ is measured by the left y axis in black color, while
that of TED is measured by the right y axis in blue color. Two axes
are used to show more clearly the time for both solutions that differ
substantially. We see that the compression time of UTCQ increases
linearly as it processes trajectories one by one, while that of TED
increases super linearly due to its matrix operations. As expected,
the query time of both UTCQ and TED increase linearly with the
growth in the data size, as shown in Figs. 12c and 12d.

7. RELATED WORK
Trajectory compression can be classified into raw data-oriented

compression and road network-embedded compression.

7.1 Raw Dataoriented Compression
Raw data-oriented compression techniques are designed to com-

pact trajectories that have not been map-matched. A typical ap-
proach is to use trajectory simplification that approximates an orig-

1060

20 40 60 80 100
0

5

10

15
C
o
m
p
re
ss
io
n
ra
ti
o
(C
R
)

Data size (%)

UTCQ-CD TED-CD

UTCQ-HZ TED-HZ

(a) Compression ratio

20 40 60 80 100
0

400

800

1200

C
o
m
p
re
ss
io
n
ti
m
e
(s
ec
)

Data size (%)

UTCQ-CD

UTCQ-HZ

10
3

10
4

10
5

10
6

C
o
m
p
re
ss
io
n
ti
m
e
(s
ec
)TED-CD

TED-HZ

(b) Compression time

20 40 60 80 100

0

50

100

150

Q
u
er
y
ti
m
e
(m
s)

Data size (%)

UTCQ TED

(c) CD dataset

20 40 60 80 100

0

200

400

600

800

Q
u
er
y
ti
m
e
(m
s)

Data size (%)

UTCQ TED

(d) HZ dataset

Figure 12: Scalability of compression and query processing
inal trajectory by a subsequence of the trajectory while attempting
to minimize the information loss according to certain distance mea-
sures. The Bellaman [1] method uses dynamic programming to find
a subsequence with the minimum spatial distance error. TheMRPA
algorithm [8] employs a distance measure called Integral Square
Synchronous Euclidean Distance to simplify trajectories.To mini-
mize the simplification error under a storage budget, Min-Error [25]
is proposed. It protects the direction information of trajectories us-
ing a direction-based error measurement to detect the sharp change
of directions of trajectories. In addition, trajectory simplication
methods can be classified into offline methods [1, 8, 25] and on-
line methods [4, 22, 23, 24, 29], where the offline methods require
that full trajectories are available before compression starts, while
the online methods can compress trajectories in streaming settings.
Comprehensive experimental evaluations of trajectory simplifica-
tion techniques are available [41].
Approaches based on other strategies also exist. Philippe et al. [9]

propose two strategies, Single Trajectory Delta compression and
Cluster-based compression. The former compresses each single tra-
jectory by encoding the deviation between successive values. The
latter clusters similar subtrajectories and only stores one summary
trajectory per cluster. Wandelt and Sun [36] propose a lossless com-
pression technique for 4D trajectories that exploits the similarities
between subtrajectories by predicting the next point in a trajectory
based on previous trajectories. Cai et al. [3] assume that moving
objects are likely to maintain a certain mode during a period and ex-
tract this mode as a state vector based on sampling. Zhao et al. [44]
construct a reference trajectory set and represent a raw trajectory
as a concatenation of a series reference trajectories within a given
spatio-temporal deviation threshold. More recently, Gao et al. [11]
also study semantic-based compression.
The above methods do not consider the road network embedding

and are not competitive in our setting.

7.2 Road Networkembedded Compression
Road network-embedded compression leverages an underlying

road network to achieve better trajectory compression. GPS points
are first map-matched to road segments [2, 14, 15, 26]. Since a
sequence of successive points can often be mapped to, and repre-
sented by, the same segment, spatial redundancy can be reduced,
which yields a higher compression ratio. Auxiliary information,
such as frequent travel paths and shortest travel paths are also uti-
lized in existing studies [13, 16, 18, 30] to improve compression.
Road network-embedded compression can be classified as spatial
compression or spatio-temporal compression.

Spatial compression. Krogh et al. [18] compress a trajectory
by only storing the first and last edge of each shortest path in the
trajectory. Koide et al. [17] present a compression technique for
spatial information of trajectories and support the retrieval of sub-
paths. Specifically, they store path information in a Huffman-based
Wavelet Tree (HWT) that counts the frequency of each label in ad-
vance. Chen et al. [5] compress trajectories by retaining out-edges
with remarkable heading changes. Sui et al. [31] assign each GPS
point to the middle point of a segment and propose a road-network
partitioning strategy on which the compression ratio depends.
Spatio-temporal compression. Most existing studies [6, 12, 13,

16, 30] represent the temporal information of trajectories as pairs
(d, t), where d is the network distance traveled at the timestamp t
since the start of the trajectory. Sun et al. [13, 30] propose a two-
stage spatial compression algorithms encompassing shortest path
and frequent sub-trajectory compression. Ji et al. [16] encode out-
going road segments clockwise based on a pre-computed clock-
wise code table. Chen et al. [6] focus mainly on reducing the fre-
quency of data transmission and adopt existing integer encoding
approaches [19, 39] to compress trajectories.
The work closest to ours is TED [40]. Instead of representing

(d, t) together, TED represents them individually, leading to a loss-
less compression in terms of t and a higher compression ratio. In
addition, it provides an index structure for facilitating queries of
compressed trajectories. However, TED cannot solve our problem
efficiently as it is not designed to take the uncertainty of trajectories
into account. In contrast, we exploit the similarities between uncer-
tain trajectory instances to achieve high performance. To the best
of our knowledge, we propose the first framework for compress-
ing and querying uncertain trajectories. Moreover, we propose an
effective index structure to support efficient queries against com-
pressed uncertain trajectories.

8. CONCLUSION
Wepropose a novel framework for compressing and querying un-

certain trajectories. We referentially represent uncertain trajectories
by exploiting similarities between trajectory instances. To achieve
this, we propose a reference selection algorithm that uses a new sim-
ilarity measure, as well as several referential representation formats
that make it possible to represent trajectories at a high compression
ratio. As part of this, we propose an effective representation of the
temporal information in trajectories that addresses fluctuations in
the sampling time intervals as seen in real-life data. In addition,
we propose an effective index for compressed trajectories and de-
velop filtering techniques to accelerate probabilistic where, when,
and range queries over compressed data, where flag array and orig-
inal array structures are constructed to extract necessary informa-
tion without full decompression. Extensive experiments conducted
on three real datasets show that the UTCQ framework is 2–3 times
better than the state-of-the-art method in terms of compression ra-
tio, uses 1–3 orders of magnitude less memory, is 1–2 orders of
magnitude faster in terms of compression time, and is always faster
in terms of query time. In the future, it is of interest to introduce
a multiple-order representation that may further improve the com-
pression performance, and it may also be possible to develop tech-
niques that can recover a non-reference without decompressing its
reference.

ACKNOWLEDGMENTS
This work was supported by the DiCyPS project, funded by Inno-
vation Fund Denmark. Lu Chen is the corresponding author of the
work.

1061

9. REFERENCES
[1] R. Bellman and B. Kotkin. On the approximation of curves

by line segments using dynamic programming. ii. Technical
report, RAND CORP SANTA MONICA CALIF, 1962.

[2] M. Bierlaire, J. Chen, and J. Newman. A probabilistic map
matching method for smartphone GPS data. TRANSPORT
RES C-EMER, 26:78–98, 2013.

[3] Z. Cai, F. Ren, J. Chen, and Z. Ding. Vector-based trajectory
storage and query for intelligent transport system. TITS,
19(5):1508–1519, 2017.

[4] W. Cao and Y. Li. Dots: An online and near-optimal
trajectory simplification algorithm. J Syst Softw, 126:34–44,
2017.

[5] C. Chen, Y. Ding, X. Xie, S. Zhang, Z. Wang, and L. Feng.
Trajcompressor: An online map-matching-based trajectory
compression framework leveraging vehicle heading direction
and change. TITS, 2019.

[6] J. Chen, Z. Xiao, D. Wang, D. Chen, V. Havyarimana, J. Bai,
and H. Chen. Toward opportunistic compression and
transmission for private car trajectory data collection. IEEE
Sens. J., 19(5):1925–1935, 2018.

[7] L. Chen, Y. Gao, X. Li, C. S. Jensen, and G. Chen. Efficient
metric indexing for similarity search. In ICDE, pages
591–602, 2015.

[8] M. Chen, M. Xu, and P. Franti. A fast o(n) multiresolution
polygonal approximation algorithm for GPS trajectory
simplification. TIP, 21(5):2770–2785, 2012.

[9] P. Cudre-Mauroux, E. Wu, and S. Madden. Trajstore: An
adaptive storage system for very large trajectory data sets. In
ICDE, pages 109–120, 2010.

[10] S. Deorowicz and S. Grabowski. Robust relative
compression of genomes with random access.
Bioinformatics, 27(21):2979–2986, 2011.

[11] C. Gao, Y. Zhao, R. Wu, Q. Yang, and J. Shao. Semantic
trajectory compression via multi-resolution
synchronization-based clustering. Knowl Based Syst,
174:177–193, 2019.

[12] Y. Gao, B. Zheng, G. Chen, Q. Li, C. Chen, and G. Chen.
Efficient mutual nearest neighbor query processing for
moving object trajectories. Inf. Sci, 180(11):2176–2195,
2010.

[13] Y. Han, W. Sun, and B. Zheng. Compress: A comprehensive
framework of trajectory compression in road networks.
TODS, 42(2):11, 2017.

[14] G. Hu, J. Shao, F. Liu, Y. Wang, and H. Shen. If-matching:
Towards accurate map-matching with information fusion.
TKDE, 29(1):114–127, 2016.

[15] G. R. Jagadeesh and T. Srikanthan. Probabilistic map
matching of sparse and noisy smartphone location data. In
ITSC, pages 812–817, 2015.

[16] Y. Ji, Y. Zang, W. Luo, X. Zhou, Y. Ding, and L. M. Ni.
Clockwise compression for trajectory data under road
network constraints. In ICBDA, pages 472–481, 2016.

[17] S. Koide, Y. Tadokoro, C. Xiao, and Y. Ishikawa. CiNCT:
Compression and retrieval for massive vehicular trajectories
via relative movement labeling. In ICDE, pages 1097–1108,
2018.

[18] B. Krogh, C. S. Jensen, and K. Torp. Efficient in-memory
indexing of network-constrained trajectories. In
SIGSPATIAL, pages 17–26, 2016.

[19] D. Lemire and L. Boytsov. Decoding billions of integers per

second through vectorization. SOFTWARE PRACT EXPER,
45(1):1–29, 2015.

[20] Y. Li, K. Gai, L. Qiu, M. Qiu, and H. Zhao. Intelligent
cryptography approach for secure distributed big data storage
in cloud computing. Inf. Sci, 387:103–115, 2017.

[21] Y. Li, H. Zhang, X. Liang, and B. Huang.
Event-triggered-based distributed cooperative energy
management for multienergy systems. IEEE T IND
INFORM, 15(4):2008–2022, 2018.

[22] X. Lin, J. Jiang, S. Ma, Y. Zuo, and C. Hu. One-pass
trajectory simplification using the synchronous Euclidean
distance. arXiv preprint arXiv:1801.05360, 2018.

[23] J. Liu, K. Zhao, P. Sommer, S. Shang, B. Kusy, and
R. Jurdak. Bounded quadrant system: Error-bounded
trajectory compression on the go. In ICDE, pages 987–998,
2015.

[24] J. Liu, K. Zhao, P. Sommer, S. Shang, B. Kusy, J.-G. Lee,
and R. Jurdak. A novel framework for online amnesic
trajectory compression in resource-constrained
environments. TKDE, 28(11):2827–2841, 2016.

[25] C. Long, R. C.-W. Wong, and H. Jagadish. Trajectory
simplification: on minimizing the direction-based error.
PVLDB, 8(1):49–60, 2014.

[26] Y. Lou, C. Zhang, Y. Zheng, X. Xie, W. Wang, and Y. Huang.
Map-matching for low-sampling-rate gps trajectories. In
SIGSPATIAL, pages 352–361, 2009.

[27] J. Muckell, P. W. Olsen, J.-H. Hwang, C. T. Lawson, and
S. Ravi. Compression of trajectory data: a comprehensive
evaluation and new approach. GeoInf, 18(3):435–460, 2014.

[28] D. A. Peixoto, H. Q. V. Nguyen, B. Zheng, and X. Zhou. A
framework for parallel map-matching at scale using Spark.
DISTRIB PARALLEL DAT, 37(4):697–720, 2019.

[29] M. Potamias, K. Patroumpas, and T. Sellis. Sampling
trajectory streams with spatiotemporal criteria. In SSDBM,
pages 275–284, 2006.

[30] R. Song, W. Sun, B. Zheng, and Y. Zheng. Press: A novel
framework of trajectory compression in road networks.
PVLDB, 7(9):661–672, 2014.

[31] P. Sui and X. Yang. A privacy-preserving compression
storage method for large trajectory data in road network. J.
Grid Comput., 16(2):229–245, 2018.

[32] J. Teuhola. A compression method for clustered bit-vectors.
INFORM PROCESS LETT, 7(6):308–311, 1978.

[33] S. J. van Schaik and O. de Moor. A memory efficient
reachability data structure through bit vector compression. In
SIGMOD, pages 913–924, 2011.

[34] S. Wandelt and U. Leser. Adaptive efficient compression of
genomes. ALGORITHM MOL BIOL, 7(1):30, 2012.

[35] S. Wandelt and U. Leser. Fresco: Referential compression of
highly similar sequences. TCBB, 10(5):1275–1288, 2013.

[36] S. Wandelt and X. Sun. Efficient compression of
4D-trajectory data in air traffic management. TITS,
16(2):844–853, 2014.

[37] J. Wang, J. Feng, and G. Li. Trie-join: Efficient trie-based
string similarity joins with edit-distance constraints. PVLDB,
3(1–2):1219–1230, 2010.

[38] L.-Y. Wei, Y. Zheng, and W.-C. Peng. Constructing popular
routes from uncertain trajectories. In KDD, pages 195–203,
2012.

[39] H. Yan, S. Ding, and T. Suel. Inverted index compression
and query processing with optimized document ordering. In

1062

WWW, pages 401–410, 2009.
[40] X. Yang, B. Wang, K. Yang, C. Liu, and B. Zheng. A novel

representation and compression for queries on trajectories in
road networks. TKDE, 30(4):613–629, 2017.

[41] D. Zhang, M. Ding, D. Yang, Y. Liu, J. Fan, and H. Shen.
Trajectory simplification: an experimental study and quality
analysis. PVLDB, 11(9):934–946, 2018.

[42] H. Zhang, Y. Li, D. W. Gao, and J. Zhou. Distributed optimal
energy management for energy internet. IEEE T IND
INFORM, 13(6):3081–3097, 2017.

[43] Z. Zhang, M. Hadjieleftheriou, B. C. Ooi, and D. Srivastava.
Bed-tree: an all-purpose index structure for string similarity
search based on edit distance. In SIGMOD, pages 915–926,
2010.

[44] Y. Zhao, S. Shang, Y. Wang, B. Zheng, Q. V. H. Nguyen, and
K. Zheng. Rest: A reference-based framework for
spatio-temporal trajectory compression. In KDD, pages
2797–2806, 2018.

[45] Y. Zheng. Trajectory data mining: an overview. TIST,
6(3):29, 2015.

1063

