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ABSTRACT
This paper presents a new technique for migrating data be-
tween different schemas. Our method expresses the schema
mapping as a Datalog program and automatically synthe-
sizes a Datalog program from simple input-output examples
to perform data migration. This approach can transform
data between different types of schemas (e.g., relational-to-
graph, document-to-relational) and performs synthesis effi-
ciently by leveraging the semantics of Datalog. We imple-
ment the proposed technique as a tool called Dynamite and
show its effectiveness by evaluating Dynamite on 28 realis-
tic data migration scenarios.

PVLDB Reference Format:
Yuepeng Wang, Rushi Shah, Abby Criswell, Rong Pan, Isil Dil-
lig. Data Migration using Datalog Program Synthesis. PVLDB,
13(7): 1006-1019, 2020.
DOI: https://doi.org/10.14778/3384345.3384350

1. INTRODUCTION
A prevalent task in today’s “big data era” is the need to

transform data stored in a source schema to a different tar-
get schema. For example, this task arises frequently when
parties need to exchange or integrate data that are stored
in different formats. In addition, as the needs of businesses
evolve over time, it may become necessary to change the
schema of the underlying database or move to a different
type of database altogether. For instance, there are several
real-world scenarios that necessitate shifting from a rela-
tional database to a non-SQL database or vice versa.

In this paper, we present a new programming-by-example
technique for automatically migrating data from one schema
to another. Given a small input-output example illustrat-
ing the source and target data, our method automatically
synthesizes a program that transforms data in the source for-
mat to its corresponding target format. Furthermore, unlike
prior programming-by-example efforts in this space [5, 38,
49], our method can transform data between several types
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Figure 1: Schematic workflow of Dynamite.

of database schemas, such as from a graph database to a re-
lational one or from a SQL database to a JSON document.

One of the key ideas underlying our method is to reduce
the automated data migration problem to that of synthe-
sizing a Datalog program from examples. Inspired by the
similarity between Datalog rules and popular schema map-
ping formalisms, such as GLAV [5, 20] and tuple-generating
dependencies [37], our method expresses the correspondence
between the source and target schemas as a Datalog pro-
gram in which extensional relations define the source schema
and intensional relations represent the target. Then, given
an input-output example (I,O), finding a suitable schema
mapping boils down to inferring a Datalog program P such
that (I,O) is a model of P. Furthermore, because a Datalog
program is executable, we can automate the data migration
task by simply executing the synthesized Datalog program
P on the source instance.

While we have found Datalog programs to be a natural
fit for expressing data migration tasks that arise in practice,
automating Datalog program synthesis turns out to be a
challenging task for several reasons: First, without some a-
priori knowledge about the underlying schema mapping, it
is unclear what the structure of the Datalog program would
look like. Second, even if we “fix” the general structure of
the Datalog rules, the search space over all possible Datalog
programs is still very large. Our method deals with these
challenges by employing a practical algorithm that leverages
both the semantics of Datalog programs as well as our target
application domain. As shown schematically in Figure 1, our
proposed synthesis algorithm consists of three steps:

Attribute mapping inference. The first step of our ap-
proach is to infer an attribute mapping Ψ which maps each
attribute in the source schema to a set of attributes that it
may correspond to. While this attribute mapping does not
uniquely define how to transform the source database to the
target one, it substantially constrains the space of possible
Datalog programs that we need to consider.

Sketch generation. In the next step, our method leverages
the inferred attribute mapping Ψ to express the search space
of all possible schema mappings as a Datalog program sketch
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where some of the arguments of the extensional relations
are unknown. While such a sketch represents a finite search
space, this space is exponentially large, making it infeasible
to naively enumerate all programs defined by the sketch.

Sketch completion. The final and most crucial ingredi-
ent of our method is the sketch completion step that per-
forms Datalog-specific deductive reasoning to dramatically
prune the search space. Specifically, given a Datalog pro-
gram that does not satisfy the input-output examples, our
method performs logical inference to rule out many other
Datalog programs from the search space. In particular, our
method leverages a semantics-preserving transformation as
well as a new concept called minimal distinguishing projec-
tion (MDP) to generalize from one incorrect Datalog pro-
gram to many others.

Results. We have implemented our proposed technique in
a prototype called Dynamite and evaluate it on 28 data
migration tasks between real-world data-sets. These tasks
involve transformations between different types of source
and target schemas, including relational, document, and
graph databases. Our experimental results show that Dyna-
mite can successfully automate all of these tasks using small
input-output examples that consist of just a few records.
Furthermore, our method performs synthesis quite fast (with
an average of 7.3 seconds per benchmark) and can be used to
migrate real-world database instances to the target schema
in an average of 12.7 minutes per database.

Contributions. The contributions of this paper include:

• a formulation of the automated data migration problem
in terms of Datalog program synthesis;
• a new algorithm for synthesizing Datalog programs;
• an implementation of our technique in a tool called Dy-

namite and experimental evaluation on 28 data exchange
tasks between real-world data-sets.

2. OVERVIEW
In this section, we give a high-level overview of our method

using a simple motivating example. Specifically, consider a
document database with the following schema:

Univ: [{ id: Int, name: String,
Admit: [{uid: Int, count: Int}] }]

This database stores a list of universities, where each uni-
versity has its own id, name, and graduate school admission
information. Specifically, the admission information consists
of a university identifier and the number of undergraduate
students admitted from that university.

Now, suppose that we need to transform this data to the
following alternative schema:
Admission:[{grad: String, ug: String, num: Int}]

This new schema stores admission information as tuples
consisting of a graduate school grad, an undergraduate school
ug, and an integer num that indicates the number of under-
graduates from ug that went to graduate school at grad. As
an example, Figure 2(a) shows a small subset of the data in
the source schema, and 2(b) shows its corresponding repre-
sentation in the target schema.

For this example, the desired transformation from the
source to the target schema can be represented using the
following simple Datalog program:

Admission(grad, ug,num) :-

Univ(id1, grad, v1),Admit(v1, id2,num),Univ(id2, ug, ).

Univ: [
{id:1, name:"U1",
Admit: [
{uid:1, count:10},
{uid:2, count:50}]},

{id:2, name:"U2",
Admit: [
{uid:2, count:20},
{uid:1, count:40}]}

]

(a) Input Documents

Admission: [
{grad:"U1",
ug:"U1", num:10},

{grad:"U1",
ug:"U2", num:50},

{grad:"U2",
ug:"U2", num:20},

{grad:"U2",
ug:"U1", num:40}

]

(b) Output Documents

Figure 2: Example database instances.

Here, the relation Univ corresponds to a university entity
in the source schema, and the relation Admit denotes its
nested Admit attribute. In the body of the Datalog rule, the
third argument of the first Univ occurrence has the same
first argument as Admit ; this indicates that (id2,num) is
nested inside the university entry (id1, grad). Essentially,
this Datalog rule says the following: “If there exists a pair of
universities with identifiers id1, id2 and names grad, ug in the
source document, and if (id2, num) is a nested attribute of
id1, then there should be an Admission entry (grad, ug,num)
in the target database.”

In what follows, we explain how Dynamite synthesizes
the above Datalog program given just the source and target
schemas and the input-output example from Figure 2.

Attribute Mapping. As mentioned in Section 1, our ap-
proach starts by inferring an attribute mapping Ψ, which
specifies which attribute in the source schema may corre-
spond to which other attributes (either in the source or tar-
get). For instance, based on the example provided in Fig-
ure 2, Dynamite infers the following attribute mapping Ψ:

id → {uid} name → {grad, ug}
uid → {id} count → {num}

Since the values stored in the name attribute of Univ in the
source schema are the same as the values stored in the grad
and ug attributes of the target schema, Ψ maps source at-
tribute name to both target attributes grad and ug. Observe
that our inferred attribute mapping can also map source at-
tributes to other source attributes. For example, since the
values in the id field of Univ are the same as the values
stored in the nested uid attribute, Ψ also maps id to uid
and vice versa.

Sketch Generation. In the next step, Dynamite uses the
inferred attribute mapping Ψ to generate a program sketch
Ω that defines the search space over all possible Datalog
programs that we need to consider. Towards this goal, we
introduce an extensional (resp. intensional) relation for each
document in the source (resp. target) schema, including
relations for nested documents. In this case, there is a single
intensional relation Admission for the target schema; thus,
we introduce the following single Datalog rule sketch with
the Admission relation as its head:

Admission(grad, ug, num) :-

Univ(??1, ??2, v1),Admit(v1, ??3, ??4),
Univ(??5, ??6, ),Univ(??7, ??8, ).

(1)

??1, ??3, ??5, ??7 ∈ {id1, id2, id3, uid1} ??4 ∈ {num, count1}
??2, ??6, ??8 ∈ {grad, ug,name1,name2,name3}

Here, ??i represents a hole (i.e., unknown) in the sketch,
and its domain is indicated as ??i ∈ {e1, . . . , en}, meaning
that hole ??i can be instantiated with an element drawn
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grad ug num
U1 U1 10
U2 U2 20

(a) Actual Result

grad ug num
U1 U1 10
U1 U2 50
U2 U2 20
U2 U1 40

(b) Expected Result

Figure 3: Actual and expected results of program P.

from {e1, . . . , en}. To see where this sketch is coming from,
we make the following observations:

• According to Ψ, the grad attribute in the target schema
comes from the name attribute of Univ ; thus, we must
have an occurrence of Univ in the rule body.

• Similarly, the ug attribute in the target schema comes
from the name attribute of Univ in the source; thus, we
may need another occurrence of Univ in the body.

• Since the num attribute comes from the count attribute in
the nested Admit document, the body of the Datalog rule
contains Univ(??1, ??2, v1),Admit(v1, ??3, ??4) denoting
an Admit document stored inside some Univ entity (the
nesting relation is indicated through variable v1).

• The domain of each hole is determined by Ψ and the num-
ber of occurrences of each relation in the Datalog sketch.
For example, since there are three occurrences of Univ,
we have three variables id1, id2, id3 associated with the id
attribute of Univ. The domain of hole ??1 is given by
{id1, id2, id3, uid1} because it refers to the id attribute of
Univ, and id may be an “alias” of uid according to Ψ.

Sketch Completion. While the Datalog program sketch
Ω given above looks quite simple, it actually has 64, 000 pos-
sible completions; thus, a brute-force enumeration strategy
is intractable. To solve this problem, Dynamite utilizes a
novel sketch completion algorithm that aims to learn from
failed synthesis attempts. Towards this goal, we encode all
possible completions of sketch Ω as a satisfiability-modulo-
theory (SMT) constraint Φ where each model of Φ corre-
sponds to a possible completion of Ω. For the sketch from
Equation 1, our SMT encoding is the following formula Φ:

(x1 = id1 ∨ x1 = id2 ∨ x1 = id3 ∨ x1 = uid1)
∧ (x2 = grad ∨ x2 = ug ∨ x2 = name1 ∨ . . . ∨ x2 = name3)
∧ . . . ∧ (x8 = grad ∨ x8 = ug ∨ . . . ∨ x8 = name3)

Here, for each hole ??i in the sketch, we introduce a variable
xi and stipulate that xi must be instantiated with exactly
one of the elements in its domain.1 Furthermore, since Dat-
alog requires all variables in the head to occur in the rule
body, we also conjoin the following constraint with Φ to
enforce this requirement:

(x2 = grad∨ x6 = grad)∧ (x2 = ug∨ x6 = ug)∧ (x4 = num)

Next, we query the SMT solver for a model of this formula.
In this case, one possible model σ of Φ is:

x1 = id1 ∧ x2 = grad ∧ x3 = id1 ∧ x4 = num
∧ x5 = id1 ∧ x6 = ug ∧ x7 = id2 ∧ x8 = name1

(2)

which corresponds to the following Datalog program P:
Admission(grad, ug,num) :- Univ(id1, grad, v1),

Admit(v1, id1,num), Univ(id1, ug, ),Univ(id2,name1, ).

However, this program does not satisfy the user-provided
example because evaluating it on the input yields a result
that is different from the expected one (see Figure 3).

1In the SMT encoding, one should think of id1, id2 etc. as
constants rather than variables.

Now, in the next iteration, we want the SMT solver to
return a model that corresponds to a different Datalog pro-
gram. Towards this goal, one possibility would be to conjoin
the negation of σ with our SMT encoding, but this would
rule out just a single program in our search space. To make
synthesis more tractable, we instead analyze the root cause
of failure and try to infer other Datalog programs that also
do not satisfy the examples.

To achieve this goal, our sketch completion algorithm lever-
ages two key insights: First, given a Datalog program P,
we can obtain a set of semantically equivalent Datalog pro-
grams by renaming variables in an equality-preserving way.
Second, since our goal is to rule out incorrect (rather than
just semantically equivalent) programs, we can further en-
large the set of rejected Datalog programs by performing
root-cause analysis. Specifically, we express the root cause of
incorrectness as a minimal distinguishing projection (MDP),
which is a minimal set of attributes that distinguishes the
expected output from the actual output. For instance, con-
sider the actual and expected outputs O and O′ shown in
Figure 3. An MDP for this example is the singleton num
because taking the projection of O and O′ on num yields
different results.

Using these two key insights, our sketch completion algo-
rithm infers 720 other Datalog programs that are guaranteed
not to satisfy the input-output example and represents them
using the following SMT formula:

(x4 = num ∧ x1 6= x2 ∧ x1 = x3 ∧ x1 6= x4 ∧ x1 = x5
∧x1 6= x6 ∧ x1 6= x7 ∧ x1 6= x8 ∧ · · · ∧ x7 6= x8)

(3)

We can use the negation of this formula as a “blocking
clause” by conjoining it with the SMT encoding and rule
out many infeasible solutions at the same time.

After repeatedly sampling models of the sketch encoding
and adding blocking clauses as discussed above, Dynamite
finally obtains the following model:

x1 = id1 ∧ x2 = grad ∧ x3 = id2 ∧ x4 = num
∧x5 = id2 ∧ x6 = ug ∧ x7 = id3 ∧ x8 = name1

which corresponds to the following Datalog program (after
some basic simplification):

Admission(grad, ug,num) :-

Univ(id1, grad, v1),Admit(v1, id2,num),Univ(id2, ug, ).

This program is consistent with the provided examples and
can automate the desired data migration task.

3. PRELIMINARIES
In this section, we review some preliminary information

on Datalog and our schema representation; then, we explain
how to represent data migration programs in Datalog.

3.1 Schema Representation
We represent database schemas using non-recursive record

types, which are general enough to express a wide variety
of database schemas, including XML and JSON documents
and graph databases. Specifically, a schema S is a mapping
from type names N to their definition:

Schema S ::= N → T
Type T ::= τ | {N1, . . . , Nn}

A type definition is either a primitive type τ or a set of
named attributes {N1, . . . Nk}, and the type of attribute Ni
is given by the schema S. An attribute N is a primitive
attribute if S(N) = τ for some primitive type τ . Given a
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schema S, we write PrimAttrbs(S) to denote all primitive
attributes in S, and we write parent(N) = N ′ if N ∈ S(N ′).

Example 1. Consider the JSON document schema from
our motivating example in Section 2:

Univ: [{ id: Int, name: String,
Admit: [{uid: Int, count: Int}] }]

In our representation, this schema is represented as follows:

S(Univ) = {id, name, Admit} S(Admit) = {uid, count}
S(id) = S(uid) = S(count) = Int S(name) = String

Example 2. Consider the following relational schema:

User(id : Int, name : String, address : String)

In our representation, this schema is represented as follows:

S(User) = {id, name, address}
S(id) = Int S(name) = S(address) = String

Example 3. Consider the following graph schema:

Actor
aid     : Int      
name : String

ACT_IN
role : String

Movie
mid : Int      
title : String

To convert this schema to our representation, we first
introduce two attributes source and target to denote the
source and target nodes of the edge. Then, the graph schema
corresponds the following mapping in our representation:

S(Movie) = {mid, title} S(Actor) = {aid, name}
S(ACT IN) = {source, target, role}

S(mid) = S(aid) = S(source) = S(target) = Int
S(title) = S(name) = S(role) = String

3.2 Datalog
As shown in Figure 4, a Datalog program consists of a list

of rules, where each rule is of the form H :- B. Here, H
is referred as the head of the rule and B is the body. The
head H is a single relation of the form R(v1, . . . , vn), and
the body B is a collection of predicates B1, B2, . . . , Bn. In
the remainder of this paper, we sometimes also write

H1, . . . , Hm :- B1, B2, . . . , Bn.

as short-hand formDatalog rules with the same body. Pred-
icates that appear only in the body are known as extensional
relations and correspond to known facts. Predicates that
appear in the head are called intensional relations and cor-
respond to the output of the Datalog program.

Semantics. The semantics of Datalog programs are typ-
ically given using Herbrand models of first-order logic for-
mulas [13]. In particular, each Datalog rule R of the form
H(~x) :- B(~x, ~y) corresponds to a first-order formula JRK =
∀~x, ~y. B(~x, ~y) → H(~x), and the semantics of the Datalog
program can be expressed as the conjunction of each rule-
level formula. Then, given a Datalog program P and an
input I (i.e., a set of ground formulas), the output corre-
sponds to the least Herbrand model of JPK ∧ I.

3.3 Data Migration using Datalog
We now discuss how to perform data migration using Dat-

alog. The basic idea is as follows: First, given a source
database instance D over schema S, we express D as a col-
lection of Datalog facts over extensional relations R. Then,
we express the target schema S ′ using intensional relations

Program ::= Rule+ Rule ::= Head :- Body.
Head ::= Pred Body ::= Pred+

Pred ::= R(v+) v ∈ Variable R ∈ Relation

Figure 4: Syntax of Datalog programs.

R′ and construct a set of (non-recursive) Datalog rules, one
for each intensional relation in R′. Finally, we run this Dat-
alog program and translate the resulting facts into the target
database instance. Since programs can be evaluated using
an off-the-shelf Datalog solver, we only explain how to trans-
late between database instances and Datalog facts.

From instances to facts. Given a database instance D
over schema S, we introduce an extensional relation symbol
RN for each record type with name N in S and assign a
unique identifier Id(r) to every record r in the database in-
stance. Then, for each instance r = {a1 : v1, . . . , an : vn} of
record type N , we generate a fact RN (c0, c1, . . . , cn) where:

ci =


Id(parent(r)), if i = 0 and r is a nested record

vi, if S(ai) is a primitive type

Id(r), if S(ai) is a record type

Intuitively, relation RN has an extra argument that keeps
track of its parent record in the database instance if N is
nested in another record type. In this case, the first argu-
ment of RN denotes the unique identifier for the record in
which it is nested.

Example 4. For the JSON document from Figure 2(a),
our method generates the following Datalog facts

Univ(1, “U1”, id1) Univ(2, “U2”, id2) Admit(id1, 1, 10)
Admit(id2, 2, 20) Admit(id1, 2, 50) Admit(id2, 1, 40)

where id1 and id2 are unique identifiers.

From facts to instances. We convert Datalog facts to
the target database instance using the inverse procedure.
Specifically, given a Datalog fact RN (c1, . . . , cn) for record
type N : {a1, . . . , an}, we create a record instance using a
function BuildRecord(RN , N) = {a1 : v1, . . . , an : vn} where

vi =


ci, if S(ai) is a primitive type

BuildRecord(Rai , ai), if S(ai) is a record type and

the first argument of Rai is ci

Observe that the BuildRecord procedure builds the record
recursively by chasing parent identifiers into other relations.

4. DATALOG PROGRAM SYNTHESIS
In this section, we describe our algorithm for automati-

cally synthesizing Datalog programs from an input-output
example E = (I,O). Here, I corresponds to an example of
the database instance in the source schema, and O demon-
strates the desired target instance. We start by giving a
high-level overview of the synthesis algorithm and then ex-
plain each of the key ingredients in more detail.

4.1 Algorithm Overview
The top-level algorithm for synthesizing Datalog programs

is summarized in Algorithm 1. The Synthesize procedure
takes as input a source schema S, a target schema S ′, and
an input-output example E = (I,O). The return value is ei-
ther a Datalog program P such that evaluating P on I yields
O (i.e. JPKI = O) or ⊥ to indicate that the desired data
migration task cannot be represented as a Datalog program.
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Algorithm 1 Synthesizing Datalog programs

1: procedure Synthesize(S,S ′, E)
Input: Source schema S, target schema S′,

example E = (I,O)
Output: Datalog program P or ⊥ to indicate failure

2: Ψ← InferAttrMapping(S,S′, E);
3: Ω← SketchGen(Ψ,S,S′);
4: Φ← Encode(Ω);
5: while SAT(Φ) do
6: σ ← GetModel(Φ);
7: P ← Instantiate(Ω, σ);
8: O′ ← JPKI ;
9: if O′ = O then return P;

10: Φ← Φ ∧Analyze(σ,O′,O);

11: return ⊥;

As shown in Algorithm 1, the Synthesize procedure first
invokes the InferAttrMapping procedure (line 2) to infer
an attribute mapping Ψ. Specifically, Ψ is a mapping from
each a ∈ PrimAttrbs(S) to a set of attributes {a1, . . . , an}
where ai ∈ PrimAttrbs(S) ∪ PrimAttrbs(S ′) such that:

a′ ∈ Ψ(a) ⇔ Πa′(D) ⊆ Πa(I)

where D stands for either I or O. Thus, InferAttrMap-
ping is conservative and maps a source attribute a to an-
other attribute a′ if the values contained in a′ are a subset
of those contained in a.

Next, the algorithm invokes SketchGen (line 3) to gener-
ate a Datalog program sketch Ω based on Ψ. As mentioned
in Section 2, a sketch Ω is a Datalog program with unknown
arguments in the rule body, and the sketch also determines
the domain for each unknown. Thus, if the sketch contains
n unknowns, each with k elements in its domain, then the
sketch encodes a search space of kn possible programs.

Lines 4-10 of the Synthesize algorithm perform lazy enu-
meration over possible sketch completions. Given a sketch
Ω, we first generate an SMT formula Φ whose models cor-
respond to all possible completions of Ω (line 4). Then, the
loop in lines 5-10 repeatedly queries a model of Φ (line 6),
tests if the corresponding Datalog program is consistent with
the example (lines 7-9), and adds a blocking clause to Φ if it
is not (line 10). The blocking clause is obtained via the call
to the Analyze procedure, which performs Datalog-specific
deductive reasoning to infer a whole set of programs that
are guaranteed not to satisfy the examples.

In the remainder of this section, we explain the sketch
generation and completion procedures in more detail.

4.2 Sketch Generation
Given an attribute mapping Ψ, the goal of sketch gen-

eration is to construct the skeleton of the target Datalog
program. Our sketch language is similar to the Datalog
syntax in Figure 4, except that it allows holes (denoted by
??) as special constructs indicating unknown expressions.
As summarized in Algorithm 2, the SketchGen procedure
iterates over each top-level record in the target schema and,
for each record type, it generates a Datalog rule sketch us-
ing the helper procedure GenRuleSketch. 2 Conceptu-
ally, GenRuleSketch performs the following tasks: First,
it generates a set of intensional predicates for each top-level

2The property of the generated sketch is characterized and
proved in Appendix A of the extended version [47].

Algorithm 2 Generating Datalog program sketches

1: procedure SketchGen(Ψ,S,S ′)
Input: Attribute mapping Ψ, source schema S,

target schema S′
Output: Program sketch Ω

2: Ω← ∅;
3: for each top-level record type N ∈ S′ do
4: R← GenRuleSketch(Ψ,S,S′, N);
5: Ω← Ω ∪ {R};
6: return Ω;

7: procedure GenRuleSketch(Ψ,S,S′, N)

8: H ← GenIntensionalPreds(S′, N); B ← ∅;
9: for each a ∈ dom(Ψ) do

10: repeat |{a′ | a′ ∈ PrimAttrbs(N)∧a′ ∈ Ψ(a)}| times
11: N ← RecName(a);
12: B ← B ∪GenExtensionalPreds(S, N);

13: for each ??a ∈ Holes(B) do
14: V ← {va′ | a′ ∈ PrimAttrbs(N) ∧ a′ ∈ Ψ(a)};
15: for each a′ ∈ Ψ(a)∪{a} and a′ ∈ PrimAttrbs(S) do
16: n← CopyNum(B,RecName(a′));
17: V ← V ∪

⋃n
i=1{via′};

18: B ← B[??a 7→ ??a ∈ V ];

19: return H :- B.;

S′(N) ∈ PrimType

S′ ` N ; (vN , ∅)
(InPrim)

S′(N) = {a1, . . . , an} isNested(N)
S′ ` ai ; (vi, Hi) i = 1, . . . , n

S′ ` N ; (vN , {RN (vN , v1, . . . , vn)} ∪
⋃n
i=1Hi)

(InRecNested)

S′(N) = {a1, . . . , an} ¬isNested(N)
S′ ` ai ; (vi, Hi) i = 1, . . . , n

S′ ` N ; ( , {RN (v1, . . . , vn)} ∪
⋃n
i=1Hi)

(InRec)

Figure 5: Inference rules describing GenIntensional-
Preds

record in the target schema (line 8). The intensional predi-
cates do not contain any unknowns and only appear in the
head of the Datalog rules. Next, the loop (lines 9–12) con-
structs the skeleton of each Datalog rule body by generating
extensional predicates for the relevant source record types.
The extensional predicates do contain unknowns, and there
can be multiple occurrences of a relation symbol in the body.
Finally, the loop in lines 13–18 generates the domain for each
unknown used in the rule body.
Head generation. Given a top-level record type N in the
target schema, the procedure GenIntensionalPreds gen-
erates the head of the corresponding Datalog rule for N . If
N does not contain any nested records, then the head con-
sists of a single predicate, but, in general, the head contains
as many predicates as are (transitively) nested in N .

In more detail, Figure 5 presents the GenIntensional-
Preds procedure as inference rules that derive judgments
of the form S ′ ` N ; (v,H) where H corresponds to the
head of the Datalog rule for record type N . As expected,
these rules are recursive and build the predicate set H for
N from those of its nested records. Specifically, given a
top-level record N with attributes a1, . . . , an, the rule In-
Rec first generates predicates Hi for each attribute ai and
then introduces an additional relation RN (v1, . . . , vn) for N
itself. Predicate generation for nested relations (rule InRec-
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S(N) ∈ PrimType

S ` N ↪→ (??N , )
(ExPrim)

S(N) = {a1, . . . , an} fresh vN
S ` ai ↪→ (hi, ) i = 1, . . . , n

N ′ = parent(N) S ` N ′ ↪→ ( , B′)

S ` N ↪→ (vN , {RN (vN , h1, . . . , hn)} ∪B′)
(ExRecNested)

S(N) = {a1, . . . , an} ¬isNested(N)
S ` ai ↪→ (hi, ) i = 1, . . . , n

S ` N ↪→ ( , {RN (h1, . . . , hn)})
(ExRec)

Figure 6: Inference rules for GenExtensionalPreds

Nested) is similar, but we introduce a new variable vN that
is used for connecting N to its parent relation. The InPrim
rule corresponds to the base case of GenIntensionalPreds
and generates variables for attributes of primitive type.

Body sketch generation. We now consider sketch genera-
tion for the body of each Datalog rule (lines 9–12 in Algo-
rithm 2). Given a record type N in the source schema and
its corresponding predicate(s) RN , the loop in lines 9–12 of
Algorithm 2 generates as many copies of RN in the rule body
as there are head attributes that “come from” RN according
to Ψ. Specifically, Algorithm 2 invokes a procedure called
GenExtensionalPreds, described in Figure 6, to generate
each copy of the extensional predicate symbol.

Given a record type N in the source schema, GenEx-
tensionalPreds generates predicates up until the top-level
record that contains N . The rules in Figure 6 are of the form
S ` N ↪→ (h,B), where B is the sketch body for record type
N . The ExPrim rule is the base case to generate sketch holes
for primitive attributes. Given a record N with attributes
a1, . . . , an and its parent N ′, the rule ExRecNested recur-
sively generates the body predicates B′ for the parent record
N ′ and adds an additional predicate RN (vN , h1, . . . , hn) for
N itself. Here vN is a variable for connecting N and its par-
ent N ′, and hi is the hole or variable for attribute ai. In the
case where N is a top level record, the ExRec rule generates
a singleton predicate RN (h1, . . . , hn).

Example 5. Suppose we want to generate the body sketch
for the rule associated with record type T : {a′ : Int, b′ :
Int} in the target schema. Also, suppose we are given the
attribute mapping Ψ where Ψ(a) = a′ and Ψ(b) = b′ and
source attributes a, b belong to the following record type in
the source schema: C : {a : Int, D : {b : Int}}. According
to Ψ, a′ comes from attribute a of record type C in the source
schema, so we have a copy of RC in the sketch body. Based
on the rules of Figure 6, we generate predicate RC(??a, v

1
D),

where ??a is the hole for attribute a and v1D is a fresh vari-
able. Similarly, since b′ comes from attribute b of record type
D, we generate predicates RC(??a, v

2
D) and RD(v2D, ??b).

Putting them together, we obtain the following sketch body:

RC(??a, v
1
D), RC(??a, v

2
D), RD(v2D, ??b)

Domain generation. Having constructed the skeleton of
the Datalog program, we still need to determine the set of
variables that each hole in the sketch can be instantiated
with. Towards this goal, the last part of GenRuleSketch
(lines 13–18 in Algorithm 2) constructs the domain V for
each hole as follows: First, for each attribute a of source
relation RN , we introduce as many variables v1a, . . . , v

k
a as

there are copies of RN . Next, for the purposes of this dis-
cussion, let us say that attributes a and b “alias” each other

if b ∈ Ψ(a) or vice versa. Then, given a hole ??x associ-
ated with attribute x, the domain of ??x consists of all the
variables associated with attribute x or one of its aliases.

Example 6. Consider the same schemas and attribute
mapping from Example 5 and the following body sketch:

RC(??a, v
1
D), RC(??a, v

2
D), RD(v2D, ??b)

Here, we have ??a ∈ {va′ , v1a, v2a} and ??b ∈ {vb′ , v1b}.

4.3 Sketch Completion
While the sketch generated by Algorithm 2 defines a fi-

nite search space of Datalog programs, this search space is
still exponentially large. Thus, rather than performing naive
brute-force enumeration, our sketch completion algorithm
combines enumerative search with Datalog-specific deduc-
tive reasoning to learn from failed synthesis attempts. As
explained in Section 4.1, the basic idea is to generate an
SMT encoding of all possible sketch completions and then
iteratively add blocking clauses to rule out incorrect Datalog
programs. In the remainder of this section, we discuss how
to generate the initial SMT encoding as well as the Analyze
procedure for generating useful blocking clauses.

Sketch encoding. Given a Datalog program sketch Ω, our
initial SMT encoding is constructed as follows: First, for
each hole ??i in the sketch, we introduce an integer variable
xi, and for every variable vj in the domain of some hole, we
introduce a unique integer constant denoted as Const(vj).
Then, our SMT encoding stipulates the following constraints
to enforce that the sketch completion is well-formed:

• Every hole must be instantiated: For each hole of the
form ??i ∈ {v1, . . . , vn}, we add a constraint

n∨
j=1

xi = Const(vj)

• Head variables must appear in the body. In a well-
formed Datalog program, every head variable must appear
in the body. Thus, for each head variable v, we add:∨

i

xi = Const(v) where v is in the domain of ??i

Since there is a one-to-one mapping between integer con-
stants in the SMT encoding and sketch variables, each model
of the SMT formula corresponds to a Datalog program.

Adding blocking clauses. Given a Datalog program P
that does not satisfy the examples (I,O), our top-level syn-
thesis procedure (Algorithm 1) invokes a function called An-
alyze to find useful blocking clauses to add to the SMT en-
coding. This procedure is summarized in Algorithm 3 and
is built on two key insights. The first key insight is that
the semantics of a Datalog program is unchanged under an
equality-preserving renaming of variables:

Theorem 1. Let P be a Datalog program over variables
X and let σ̂ be an injective substitution from X to another
set of variables Y . Then, we have P ' Pσ̂.

Proof. See Appendix A of the extended version [47].

To see how this theorem is useful, let σ be a model of
our SMT encoding. In other words, σ is a mapping from
holes in the Datalog sketch to variables V . Now, let σ̂ be an
injective renaming of variables in V . Then, using the above
theorem, we know that any other assignment σ′ = σσ̂ is also
guaranteed to result in an incorrect Datalog program.
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Based on this insight, we can generalize from the specific
assignment σ to a more general class of incorrect assign-
ments as follows: If a hole is not assigned to a head vari-
able, then it can be assigned to any variable in its domain
as long as it respects the equalities and disequalities in σ.
Concretely, given assignment σ, we generalize it as follows:

Generalize(σ) =
∧

xi∈dom(σ)

α(xi, σ), where

α(x, σ) =

{
x = σ(x) if σ(x) is a head variable∧
xj∈dom(σ) x ? xj otherwise

Here the binary operator ? is defined to be equality if σ
assigns both x and xj to the same value, and disequality
otherwise. Thus, rather than ruling out just the current as-
signment σ, we can instead use ¬Generalize(σ) as a much
more general blocking clause that rules out several equiva-
lent Datalog programs at the same time.

Example 7. Consider again the sketch from Section 2:

Admission(grad, ug, num) :- Univ(??1, ??2, v1),
Admit(v1, ??3, ??4), Univ(??5, ??6, ), Univ(??7, ??8, ).

??1, ??3, ??5, ??7∈{id1, id2, id3, uid1} ??4∈{num, count1}
??2, ??6, ??8 ∈ {grad, ug, name1, name2, name3}

Suppose the variable for ??i is xi and the assignment σ is:

x1 = id1 ∧ x2 = grad ∧ x3 = id1 ∧ x4 = num
∧ x5 = id1 ∧ x6 = ug ∧ x7 = id2 ∧ x8 = name1

Since grad, ug, and num occur in the head, Generalize(σ)
yields the following formula:

x2 = grad ∧ x4 = num ∧ x6 = ug
∧x1 6= x2 ∧ x1 = x3 ∧ x1 6= x4 ∧ x1 = x5

∧x1 6= x6 ∧ x1 6= x7 ∧ x1 6= x8 ∧ · · · ∧ x7 6= x8

(4)

The other key insight underlying our sketch completion
algorithm is that we can achieve even greater generalization
power using the concept of minimal distinguishing projec-
tions (MDP), defined as follows:

Definition 1. (MDP) We say that a set of attributes A
is a minimal distinguishing projection for Datalog program P
and input-output example (I,O) if (1) ΠA(O) 6= ΠA(P(I)),
and (2) for any A′ ⊂ A, we have ΠA′(O) = ΠA′(P(I)).

In other words, the first condition ensures that, by just
looking at attributes A, we can tell that program P does
not satisfy the examples. On the other hand, the second
condition ensures that A is minimal.

To see why minimal distinguishing projections are use-
ful for pruning a larger set of programs, recall that our
Generalize(σ) function from earlier retains a variable assign-
ment x 7→ v if v corresponds to a head variable. However,
if v does not correspond to an attribute in the MDP, then
we will still obtain an incorrect program even if we rename
x to something else; thus Generalize can drop the assign-
ments to head variables that are not in the MDP. Thus,
given an MDP ϕ, we can obtain an improved generalization
procedure Generalize(σ, ϕ) by using the following α(x, σ, ϕ)
function instead of α(x, σ) from earlier:

α(x, σ, ϕ) =

{
x = σ(x) if σ(x) ∈ ϕ∧
xj∈dom(σ) x ? xj otherwise

Because not all head variables correspond to an MDP
attribute, performing generalization this way allows us to
obtain a better blocking clause that rules out many more
Datalog programs in one iteration.

Algorithm 3 Analyzing outputs to prune search space

1: procedure Analyze(σ,O′,O)
Input: Model σ, actual output O′, expected output O
Output: Blocking clause φ

2: φ← true;
3: ∆←MDPSet(O′,O);
4: for each ϕ ∈ ∆ do
5: ψ ← true;
6: for each (xi, xj) ∈ dom(σ)× dom(σ) do
7: if σ(xi) = σ(xj) then ψ ← ψ ∧ xi = xj ;
8: else ψ ← ψ ∧ xi 6= xj ;

9: for each xi ∈ dom(σ) do
10: if σ(xi) ∈ ϕ then ψ ← ψ ∧ xi = σ(xi);

11: φ← φ ∧ ¬ψ;

12: return φ;

Example 8. Consider the same sketch and assignment
σ from Example 7, but now suppose we are given an MDP
ϕ = {num}. Then the function Generalize(σ, ϕ) yields the
following more general formula:

x4 = num ∧ x1 6= x2 ∧ x1 = x3 ∧ x1 6= x4 ∧ x1 = x5
∧x1 6= x6 ∧ x1 6= x7 ∧ x1 6= x8 ∧ · · · ∧ x7 6= x8

(5)

Note that (5) is more general (i.e., weaker) than (4) because
it drops the constraints x2 = grad and x6 = ug. There-
fore, the negation of (5) is a better blocking clause than the
negation of (4), since it rules out more programs in one step.

Based on this discussion, we now explain the full Analyze
procedure in Algorithm 3. This procedure takes as input a
model σ of the SMT encoding and the actual and expected
outputs O′,O. Then, at line 3, it invokes the MDPSet
procedure to obtain a set ∆ of minimal distinguishing pro-
jections and uses each MDP ϕ ∈ ∆ to generate a blocking
clause as discussed above (lines 6–10).

The MDPSet procedure is shown in Algorithm 4 and uses
a breadth-first search algorithm to compute the set of all
minimal distinguishing projections. Specifically, it initializes
a queueW with singleton projections {a} for each attribute
a in the output (lines 2 – 5). Then, it repeatedly dequeues
a projection L from W and checks if L is an MDP (lines
6 – 14). In particular, if L can distinguish outputs O′ and
O (line 14) and there is no existing projection L′′ in the
current MDP set ∆ such that L′′ ⊆ L, then L is an MDP. If
L cannot distinguish outputs O′ and O (line 8), we enqueue
all of its extensions L′ with one more attribute than L and
move on to the next projection in queue W.

Example 9. Let us continue with Example 8 to illus-
trate how to prune incorrect Datalog programs using mul-
tiple MDPs. Suppose we obtain the MDP set ∆ = {ϕ1, ϕ2},
where ϕ1 = {num} and ϕ2 = {grad, ug}. In addition to
Generalize(σ, ϕ1) (see formula (5) of Example 8), we also
compute Generalize(σ, ϕ2) as:

x2 = grad ∧ x6 = ug ∧ x1 6= x2 ∧ x1 = x3 ∧ x1 6= x4
∧x1 = x5 ∧ x1 6= x6 ∧ x1 6= x7 ∧ x1 6= x8 ∧ · · · ∧ x7 6= x8

By adding both blocking clauses ¬Generalize(σ, ϕ1) as well
as ¬Generalize(σ, ϕ2), we can prune even more incorrect
Datalog programs.

Theorem 2. Let φ be a blocking clause returned by the
call to Analyze at line 10 of Algorithm 1. If σ is a model
of ¬φ, then σ corresponds to an incorrect Datalog program.

Proof. See Appendix A of the extended version [47].
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Algorithm 4 Computing a set of MDPs

1: procedure MDPSet(O′,O)
Input: Actual output O′, expected output O
Output: A set of minimal distinguishing projections ∆

2: ∆← ∅; V ← ∅;
3: W ← EmptyQueue();
4: for each a ∈ Attributes(O′) do
5: W.Enqueue({a}); V ← V ∪ {{a}};
6: while ¬W.IsEmpty() do
7: L←W.Dequeue();
8: if ΠL(O′) = ΠL(O) then
9: for each a′ ∈ Attributes(O′) \ L do

10: L′ ← L ∪ {a′};
11: if L′ 6∈ V then
12: W.Enqueue(L′);
13: V ← V ∪ {L′};
14: else if @L′′ ∈ ∆. L′′ ⊆ L then ∆← ∆ ∪ {L};
15: return ∆;

5. IMPLEMENTATION
We have implemented the proposed technique as a new

tool called Dynamite. Internally, Dynamite uses the Z3
solver [16] for answering SMT queries and leverages the
Souffle framework [28] for evaluating Datalog programs. In
the remainder of this section, we discuss some extensions
over the synthesis algorithm described in Section 4.

Interactive mode. In Section 4, we presented our tech-
nique as returning a single program that is consistent with
an input-output example. However, in this non-interactive
mode, Dynamite does not guarantee the uniqueness of the
program consistent with the given example. To address this
potential usability issue, Dynamite can also be used in a so-
called interactive mode where Dynamite iteratively queries
the user for more examples in order to resolve ambiguities.
Specifically, when used in this interactive mode, Dynamite
first checks if there are multiple programs P,P ′ that are
consistent with the provided examples (I,O), and, if so,
Dynamite identifies a small differentiating input I′ such
that P and P ′ yield different outputs on I′. Then, Dyna-
mite asks the user to provide the corresponding output for
I′. More details on how we implement this interactive mode
can be found in Appendix B of the extended version [47].

Example 10. Suppose the source database contains two
relations Employee(name, deptId) and Department(id, dept-
Name), and we want to obtain the relation WorksIn(name,
deptName) by joining Employee and Department on dep-
tId=id and then applying projection. Suppose the user only
provides the input example Employee(Alice, 11), Depart-
ment(11, CS) and the output WorksIn(Alice, CS). Now Dy-
namite may return one of the following results:

(1) WorksIn(x, y) :- Employee(x, z), Department(z, y).
(2) WorksIn(x, y) :- Employee(x, z), Department(w, y).

Note that both Datalog programs are consistent with the given
input-output example, but only program (1) is the transfor-
mation the user wants. Since the program returned by Dy-
namite depends on the model sampled by the SMT solver,
it is possible that Dynamite returns the incorrect solution
(2) instead of the desired program (1). Using Dynamite
in the interactive mode solves this problem. In this mode,
Dynamite searches for an input that distinguishes the two
programs shown above. In this case, such a distinguishing

Table 1: Datasets used in the evaluation.

Name Size Description
Yelp 4.7GB Business and reviews from Yelp

IMDB 6.3GB Movie and crew info from IMDB
Mondial 3.7MB Geography information
DBLP 2.0GB Publication records from DBLP
MLB 0.9GB Pitch data of Major League Baseball

Airbnb 0.4GB Berlin Airbnb data
Patent 1.7GB Patent Litigation Data 1963-2015
Bike 2.7GB Bike trip data in Bay Area

Tencent 1.0GB User followers in Tencent Weibo
Retina 0.1GB Biological info of mouse retina
Movie 0.1GB Movie ratings from MovieLens
Soccer 0.2GB Transfer info of soccer players

input is Employee(Alice, 11), Employee(Bob, 12), Depart-
ment(11, CS), Department(12, EE), and Dynamite asks
the user to provide the corresponding output. Now, if the
user provides the output WorksIn(Alice, CS), WorksIn(Bob,
EE), only program (1) will be consistent and Dynamite suc-
cessfully eliminates the initial ambiguity.

Filtering operation. While the synthesis algorithm de-
scribed in Section 4 does not support data filtering during
migration, Dynamite allows the target database instance
to contain a subset of the data in the source instance. How-
ever, the filtering operations supported by Dynamite are
restricted to predicates that can be expressed as a conjunc-
tion of equalities. To see how Dynamite supports such fil-
tering operations, observe that if an extensional relation R
uses a constant c as the argument of attribute ai, this is the
same as filtering out tuples where the corresponding value is
not c. Based on this observation, Dynamite allows program
sketches where the domain of a hole can include constants
in addition to variables. These constants are drawn from
values in the output example, and the sketch completion al-
gorithm performs enumerative search over these constants.

Database instance construction. Dynamite builds the
target database instance from the output facts of the syn-
thesized Datalog program as described in Section 3.3. How-
ever, Dynamite performs one optimization to make large-
scale data migration practical: We leverage MongoDB [2]
to build indices on attributes that connect records to their
parents. This strategy allows Dynamite to quickly look up
the children of a given record and makes the construction of
the target database more efficient.

6. EVALUATION
To evaluate Dynamite, we perform experiments that are

designed to answer the following research questions:

RQ1 Can Dynamite successfully migrate real-world data
sets given a representative set of records, and how good
are the synthesized programs?

RQ2 How sensitive is the synthesizer to the number and
quality of examples?

RQ3 How helpful is Dynamite for users in practice, and
how do users choose between multiple correct answers?

RQ4 Is the proposed sketch completion algorithm signifi-
cantly more efficient than a simpler baseline?

RQ5 How does the proposed synthesis technique compare
against prior techniques?
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Table 2: Statistics of benchmarks. “R” stands for rela-
tional, “D” stands for document, and “G” stands for graph.

Benchmark
Source Schema Target Schema

Type #Recs #Attrs Type #Recs #Attrs

Yelp-1 D 11 58 R 8 32
IMDB-1 D 12 21 R 9 26
DBLP-1 D 37 42 R 9 35

Mondial-1 D 37 113 R 25 110
MLB-1 R 5 83 D 7 85

Airbnb-1 R 4 30 D 6 24
Patent-1 R 5 49 D 7 50
Bike-1 R 4 48 D 7 47

Tencent-1 G 2 8 R 1 3
Retina-1 G 2 17 R 2 13
Movie-1 G 5 18 R 5 21
Soccer-1 G 10 30 R 7 21

Tencent-2 G 2 8 D 1 3
Retina-2 G 2 17 D 2 15
Movie-2 G 5 18 D 4 14
Soccer-2 G 10 30 D 7 23
Yelp-2 D 11 58 G 4 31

IMDB-2 D 12 21 G 11 19
DBLP-2 D 37 42 G 17 28

Mondial-2 D 37 113 G 27 78
MLB-2 R 5 83 G 12 90

Airbnb-2 R 4 30 G 7 32
Patent-2 R 5 49 G 8 49
Bike-2 R 4 48 G 6 52
MLB-3 R 5 83 R 4 75

Airbnb-3 R 4 30 R 7 33
Patent-3 R 5 49 R 8 52
Bike-3 R 4 48 R 5 52

Average - 10.2 44.4 - 8.0 39.8

Benchmarks. To answer these research questions, we col-
lected 12 real-world database instances (see Table 1 for de-
tails) and created 28 benchmarks in total. Specifically, four
of these datasets (namely Yelp, IMDB, Mondial, and DBLP)
are taken from prior work [49], and the remaining eight are
taken from open dataset websites such as Kaggle [1]. For
the document-to-relational transformations, we used exactly
the same benchmarks as prior work [49]. For the remaining
cases (e.g., document-to-graph or graph-to-relational), we
used the source schemas in the original dataset but created
a suitable target schema ourselves. As summarized in Ta-
ble 2, our 28 benchmarks collectively cover a broad range of
migration scenarios between different types of databases.3

Experimental setup. All experiments are conducted on a
machine with Intel Xeon(R) E5-1620 v3 quad-core CPU and
32GB of physical memory, running the Ubuntu 18.04 OS.

6.1 Synthesis Results in Non-Interactive Mode
In this section, we evaluate RQ1 by using Dynamite to

migrate the datasets from Table 1 for the source and tar-
get schemas from Table 2. To perform this experiment, we
first constructed a representative set of input-output exam-
ples for each record in the source and target schemas. As
shown in Table 3, across all benchmarks, the average num-
ber of records in the input (resp. output) example is 2.6
(resp. 2.2). Given these examples, we then used Dyna-
mite to synthesize a migration script consistent with the
given examples and ran it on the real-world datasets from

3Schemas for all benchmarks are available at https://bit.
ly/schemas-dynamite.
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(d) Mondial-1
Figure 7: Sensitivity analysis.

Table 1.4 We now highlight the key take-away lessons from
this experiment whose results are summarized in Table 3.

Synthesis time. Even though the search space of possi-
ble Datalog programs is very large (5.1× 1039 on average),
Dynamite can find a Datalog program consistent with the
examples in an average of 7.3 seconds, with maximum syn-
thesis time being 87.9 seconds.

Statistics about synthesized programs. As shown in Ta-
ble 3, the average number of rules in the synthesized Data-
log program is 8.0, and each rule contains an average of 2.5
predicates in the rule body (after simplification).

Quality of synthesized programs. To evaluate the quality
of the synthesized programs, we compared the synthesized
Datalog programs against manually written ones (which we
believe to be optimal). As shown in the column labeled
“# Optim Rules” in Table 3, on average, 5.8 out of the
8 Datalog rules (72.5%) are syntactically identical to the
manually-written ones. In cases where the synthesized rule
differs from the manually-written one, we observed that the
synthesized program contains redundant body predicates.
In particular, if we quantify the distance between the two
programs in terms of additional predicates, we found that
the synthesized rules contain an average of 0.79 extra predi-
cates (shown in column labeled “Dist to Optim”). However,
note that, even in cases where the synthesized rule differs
syntactically from the manually-written rule, we confirmed
that the synthesized and manual rules produce the exact
same output for the given input relations in all cases.

Migration time and results. For all 28 benchmarks, we
confirmed that Dynamite is able to produce the intended
target database instance. As reported in the column labeled
“Migration time”, the average time taken by Dynamite to
convert the source instance to the target one is 12.7 minutes
for database instances containing 1.7 GB of data on average.

6.2 Sensitivity to Examples
To answer RQ2, we perform an experiment that measures

the sensitivity of Dynamite to the number and quality of
records in the provided input-output examples. To perform

4All input-output examples and synthesized programs are
available at https://bit.ly/benchmarks-dynamite.
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Table 3: Main results. Average search space size is calculated by geometric mean; all other averages are arithmetic mean.

Benchmark
Avg # Examples Search Synthesis

# Rules
# Preds # Optim Dist to Migration

Source Target Space Time (s) per Rule Rules Optim Time (s)
Yelp-1 4.7 3.9 4.8× 10120 6.0 8 1.8 7 0.38 328

IMDB-1 6.0 2.7 1.5× 1020 2.7 9 3.6 5 1.22 1153
DBLP-1 1.5 2.6 1.1× 1014 0.8 9 6.4 0 2.44 1060

Mondial-1 1.2 2.8 2.2× 1088 2.5 25 3.3 17 1.40 5
MLB-1 2.0 1.4 9.1× 1081 13.0 7 3.9 2 1.71 1020

Airbnb-1 4.0 2.5 1.7× 1038 2.0 6 2.7 4 1.33 286
Patent-1 2.6 2.3 1.4× 1049 3.0 7 2.4 5 1.14 553
Bike-1 2.3 2.0 3.1× 1047 2.0 7 2.0 5 0.71 2601

Tencent-1 1.5 1.0 1.3× 1012 0.2 1 4.0 0 3.00 65
Retina-1 1.5 1.5 3.1× 1019 0.8 2 2.0 2 0.00 9
Movie-1 3.6 2.2 5.2× 1011 2.9 5 2.8 3 1.00 1062
Soccer-1 1.9 2.0 2.9× 1011 0.5 7 1.0 7 0.00 15

Tencent-2 1.5 1.0 1.3× 1012 0.2 1 4.0 0 3.00 160
Retina-2 2.0 2.0 3.3× 1019 4.0 2 2.5 1 0.50 22
Movie-2 2.4 2.3 1.0× 1018 22.7 4 7.0 0 4.00 40
Soccer-2 2.5 2.1 6.9× 1022 87.9 7 4.4 4 1.71 311
Yelp-2 4.5 1.8 2.9× 1073 0.5 4 1.0 4 0.00 1160

IMDB-2 2.4 2.5 2.3× 1011 1.1 11 3.1 5 1.27 3409
DBLP-2 2.1 2.1 1.2× 104 3.6 17 1.8 16 0.06 1585

Mondial-2 1.0 2.1 8.2× 1024 30.8 27 1.9 26 0.04 7
MLB-2 2.2 1.9 3.3× 1084 2.6 12 1.3 10 0.25 785

Airbnb-2 2.8 2.7 1.4× 1028 0.9 7 1.3 7 0.00 664
Patent-2 2.0 2.1 3.9× 1051 1.0 8 1.4 6 0.38 786
Bike-2 2.3 2.5 7.3× 1047 0.4 6 1.8 4 0.83 3346
MLB-3 2.2 1.3 9.1× 1081 3.3 4 2.3 3 0.50 145

Airbnb-3 2.5 2.6 3.3× 1028 0.5 7 1.1 7 0.00 57
Patent-3 2.8 2.3 1.3× 1040 3.9 8 1.6 7 0.38 122
Bike-3 4.3 2.2 7.3× 1047 4.1 5 1.8 4 0.20 519

Average 2.6 2.2 5.1× 1039 7.3 8.0 2.5 5.8 0.79 760

this experiment, we first fix the number r of records in the
input example. Then, we randomly generate 100 examples
of size r and obtain the output example by running the
“golden” program (written manually) on the randomly gen-
erated input example. Then, for each size r ∈ [1, 8], we mea-
sure average running time across all 100 examples as well as
the percentage of examples for which Dynamite synthesizes
the correct program within 10 minutes.

The results of this experiment are summarized in Fig-
ure 7 for four representative benchmarks (the remaining 24
are provided in Appendix C of the extended version [47]).
Here, the x-axis shows the number of records r in the input
example, and the y-axis shows both (a) the average running
time in seconds for each r (the blue line with circles) and (b)
the % of correctly synthesized programs given r randomly-
generated records (the red line with squares).

Overall, this experiment shows that Dynamite is not par-
ticularly sensitive to the number and quality of examples
for 26 out of 28 benchmarks: it can synthesize the cor-
rect Datalog program in over 90% of the cases using 2 − 3
randomly-generated examples. Furthermore, synthesis time
grows roughly linearly for 24 out of 28 benchmarks. For 2
of the remaining benchmarks (namely, IMDB-1 and Movie-
2), synthesis time seems to grow exponentially in example
size; however, since Dynamite can already achieve a success
rate over 90% with just 2-3 examples, this growth in running
time is not a major concern. Finally, for the last 2 bench-
marks (namely, Retina-2 and Soccer-2), Dynamite does not
seem to scale beyond example size of 3. For these bench-
marks, Dynamite seems to generate complicated intermedi-
ate programs with complex join structure, which causes the
resulting output to be very large and causes MDP analy-

sis to become very time-consuming. However, this behavior
(which is triggered by randomly generated inputs) can be
prevented by choosing more representative examples that
allow Dynamite to generate better sketches.

6.3 User Study
To answer question RQ3, we conduct a small-scale user

study to evaluate whether Dynamite is helpful to users in
practice. To conduct this user study, we recruited 10 par-
ticipants (all of them graduate computer science students
with advanced programming skills) and asked them to solve
two of our benchmarks from Table 2, namely Tencent-1 and
Retina-1, with and without using Dynamite. In order to
avoid any potential bias, we randomly assigned users to solve
each benchmark either using Dynamite or without. For the
setting where users were not allowed to use Dynamite, they
were, however, permitted to use any programming language
and library of their choice, and they were also allowed to con-
sult search engines and on-line forums. In the setting where
the participants did use Dynamite, we instructed them to
use the tool in interactive mode (recall Section 5). Over-
all, exactly 5 randomly chosen participants solved Tencent-
1 and Retina-1 using Dynamite, and 5 users solved each
benchmark without Dynamite.

The results of this study are provided in Figure 8. Specif-
ically, Figure 8(a) shows the average time to solve the two
benchmarks with and without using Dynamite. As we can
see from this Figure, users are significantly more produc-
tive, namely by a factor of 6.2x on average, when migrating
data with the aid of Dynamite. Furthermore, as shown in
Figure 8(b), participants always generate the correct target
database instance when using Dynamite; however, they fail
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Figure 8: Results of user study.
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Figure 9: Comparing Dynamite to baseline and Mitra.

to do so in 50% of the cases when they write the program
manually. Upon further inspection, we found that the man-
ually written programs contain subtle bugs, such as failing
to introduce newlines or quotation marks. We believe these
results demonstrate that Dynamite can aid users, includ-
ing seasoned programmers, successfully and more efficiently
complete real-world data migration tasks.

6.4 Comparison with Synthesis Baseline
To answer RQ4, we compare Dynamite against a base-

line called Dynamite-Enum that uses enumerative search
instead of the sketch completion technique described in Sec-
tion 4.3. In particular, Dynamite-Enum uses the lazy enu-
meration algorithm based on SMT, but it does not use the
Analyze procedure for learning from failed synthesis at-
tempts. Specifically, whenever the SMT solver returns an
incorrect assignment σ, Dynamite-Enum just uses ¬σ as
a blocking clause. Thus, Dynamite-Enum essentially enu-
merates all possible sketch completions until it finds a Dat-
alog program that satisfies the input-output example.

Figure 9(a) shows the results of the comparison when us-
ing the manually-provided input-output examples from Sec-
tion 6.1. In particular, we plot the time in seconds that each
version takes to solve the first n benchmarks. As shown in
Figure 9(a), Dynamite can successfully solve all 28 bench-
marks whereas Dynamite-Enum can only solve 22 (78.6%)
within the one hour time limit. Furthermore, for the first
22 benchmarks that can be solved by both versions, Dy-
namite is 9.2x faster compared to Dynamite-Enum (1.8
vs 16.5 seconds). Hence, this experiment demonstrates the
practical advantages of our proposed sketch completion al-
gorithm compared to a simpler enumerative-search baseline.

6.5 Comparison with Other Tools
While there is no existing programming-by-example (PBE)

tool that supports the full diversity of source/target schemas
handled by Dynamite, we compare our approach against
two other tools, namely Mitra and Eirene, in two more
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Figure 10: Comparing Dynamite against Eirene.

specialized data migration scenarios. Specifically, Mitra [49]
is a PBE tool that automates document-to-relational trans-
formations, whereas Eirene [6] infers relational-to-relational
schema mappings from input-output examples.

Comparison with Mitra. Since Mitra uses a domain-
specific language that is customized for transforming tree-
structured data into a tabular representation, we compare
Dynamite against Mitra on the four data migration bench-
marks from [49] that involve conversion from a document
schema to a relational schema. The results of this compar-
ison are summarized in Figure 9(b), which shows synthesis
time for each tool for all four benchmarks. In terms of syn-
thesis time, Dynamite outperforms Mitra by roughly an
order of magnitude: in particular, Dynamite takes an aver-
age of 3 seconds to solve these benchmarks, whereas Mitra
needs 29.4 seconds. Furthermore, Mitra synthesizes 559
and 780 lines of JavaScript for Yelp and IMDB, and syn-
thesizes 134 and 432 lines of XSLT for DBLP and Mondial.
In contrast, Dynamite synthesizes 13 Datalog rules on av-
erage. These statistics suggest that the programs synthe-
sized by Dynamite are more easily readable compared to
the JavaScript and XSLT programs synthesized by Mitra.
Finally, if we compare Dynamite and Mitra in terms of
efficiency of the synthesized programs, we observe that Dy-
namite-generated programs are 1.1x faster.

Comparison with Eirene. Since Eirene specializes in
inferring relational-to-relational schema mappings, we com-
pare Dynamite against Eirene on the four relational-to-
relational benchmarks from Section 6.1 using the same input-
output examples. As shown in Figure 10(a), Dynamite
is, on average, 1.3x faster than Eirene in terms of syn-
thesis time. We also compare Dynamite with Eirene in
terms of the quality of inferred mappings using the same
“distance from optimal schema mapping metric” defined in
Section 6.1.5 As shown in Figure 10(b), the schema map-
pings synthesized by Dynamite are closer to the optimal
mappings than those synthesized by Eirene. In particular,
Eirene-synthesized rules have 4.5x more redundant body
predicates than the Dynamite-synthesized rules.

7. RELATED WORK
Schema mapping formalisms. There are several different
formalisms for expressing schema mappings, including visual
representations [39, 38], schema modification operators [15,
14], and declarative constraints [5, 4, 6, 20, 29, 12, 8]. Some
techniques require the user to express the schema mapping
visually by drawing arrows between attributes in the source

5To conduct this measurement, we manually wrote optimal
schema mappings in the formalism used by Eirene.
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and target schemas [39, 37]. In contrast, schema modifi-
cation operators express the schema mapping in a domain-
specific language [15, 14]. Another common approach is to
express the schema mapping using declarative specifications,
such as Global-Local-As-View (GLAV) constraints [5, 4, 6,
20]. Similar to this third category, we express the schema
mapping using a declarative, albeit executable, formalism.

Schema mapping inference. There is also a body of prior
work on automatically inferring schema mappings [33, 50,
7, 19, 37, 24, 25, 5, 6, 38]. Clio [37, 24] infers schema map-
pings for relational and XML schemas given a value corre-
spondence between atomic schema elements. Another line of
work [9, 36] uses model management operators such as Mod-
elGen [10] to translate schemas from one model to another.
In contrast, Dynamite takes examples as input, which are
potentially easier to construct for non-experts. There are
also several other schema mapping techniques that use ex-
amples. For instance, Eirene [5, 6] interactively solicits
examples to generate a GLAV specification. Eirene is re-
stricted to relational-to-relational mappings and does not
support data filtering, but their language can also express
mappings that are not expressible in the Datalog fragment
used in this work. Similarly, Bonifati et al. use example
tuples to infer possible schema mappings and interact with
the user via binary questions to refine the inferred map-
pings [11]. In contrast to Dynamite, [11] only focuses on
relational-to-relational mappings [5]. Finally,MWeaver [38]
provides a GUI to help users to interactively generate at-
tribute correspondences based on examples. MWeaver is
also restricted to relational-to-relational mappings and dis-
allows numerical attributes in the source database for per-
formance reasons. Furthermore, it requires the entire source
instance to perform mapping inference.

Program synthesis for data transformation. There has
been significant work on automating data transformations
using program synthesis [49, 23, 32, 27, 48, 45, 43, 44]. Many
techniques focus only on table or string transformations [23,
27, 45, 32, 43], whereas Hades [48] (resp. Mitra [49]) fo-
cuses on document-to-document (resp. document-to-table)
transformations. Our technique generalizes prior work by
automating transformations between many different types
of database schemas. Furthermore, as we demonstrate in
Section 6.5, this generality does not come at the cost of
practicality, and, in fact, performs faster synthesis.

Inductive logic programming. Our work is related to
inductive logic programming (ILP) where the goal is to syn-
thesize a logic program consistent with a set of examples
[34, 35, 40, 26, 30, 51, 18, 41]. Among ILP techniques,
our work is most similar to recent work on Datalog pro-
gram synthesis [3, 42]. In particular, Zaatar [3] encodes an
under-approximation of Datalog semantics using the the-
ory of arrays and reduces synthesis to SMT solving. How-
ever, this technique imposes an upper bound on the number
of clauses and atoms in the Datalog program. The Alps
tool [42] also performs Datalog program synthesis from ex-
amples but additionally requires meta-rule templates. In
contrast, our technique focuses on a recursion-free subset of
Datalog, but it does not require additional user input be-
yond examples and learns from failed synthesis attempts by
using the concept of minimal distinguishing projections.

Learning from conflicts in synthesis. Our method bears
similarities to recent work on conflict-driven learning in pro-

gram synthesis [22, 32, 46] where the goal is to learn useful
information from failed synthesis attempts. For example,
Neo [22] and Trinity [32] use component specifications to
perform root cause analysis and identify other programs that
also cannot satisfy the specification. Dynamite’s sketch
completion approach is based on a similar insight, but it
uses Datalog-specific techniques to perform inference. An-
other related work is Migrator [46], which automatically
synthesizes a new version of a SQL program given its old
version and a new relational schema. In contrast to Migra-
tor, our method addresses the problem of migrating data
rather than code and is not limited to relational schemas.
In addition, while Migrator also aims to learn from failed
synthesis attempts, it does so using testing as opposed to
MDP analysis for Datalog.

Universal and core solutions for data exchange. Our
work is related to the data exchange problem [20], where
the goal is to construct a target instance J given a source
instance I and a schema mapping Σ such that (I, J) |= Σ.
Since such a solution J is not unique, researchers have devel-
oped the concept of universal and core solutions to charac-
terize generality and compactness [20, 21]. In contrast, dur-
ing its data migration phase, Dynamite obtains a unique
target instance by executing the synthesized Datalog pro-
gram on the source instance. The target instance generated
by Dynamite is the least Herbrand model of the Datalog
rules and the source instance [13]. While the least Herbrand
model also characterizes generality and compactness of the
target instance, the relationship between the least Herbrand
model and the universal/core solution for data exchange re-
quires further theoretical investigation.

8. LIMITATIONS
Our approach has three limitations that we plan to ad-

dress in future work. First, our synthesis technique does
not provide any guarantees about the optimality of the syn-
thesized Datalog programs, either in terms of performance
or size. Second, we assume that the examples provided by
the user are always correct; thus, our method does not han-
dle any noise in the specification. Third, we assume that
we can compare string values for equality when inferring
the attribute mapping and obtain the proper matching us-
ing set containment. If the values are slightly changed, or
if there is a different matching heuristic between attributes,
our technique would not be able to synthesize the desired
program. However, this shortcoming can be overcome by
more sophisticated schema matching techniques [17, 31].

9. CONCLUSION
We have proposed a new PBE technique that can synthe-

size Datalog programs to automate data migration tasks.
We evaluated our tool, Dynamite, on 28 benchmarks that
involve migrating data between different types of database
schemas and showed that Dynamite can successfully au-
tomate the desired data migration task from small input-
output examples.
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