
Declarative Recursive Computation on an RDBMS

or, Why You Should Use a Database For Distributed Machine Learning

Dimitrije Jankov†, Shangyu Luo†, Binhang Yuan†,
Zhuhua Cai*, Jia Zou†, Chris Jermaine†, Zekai J. Gao†

Rice University †*
{dj16, sl45, by8, jiazou, cmj4, jacobgao}@rice.edu †

caizhua@gmail.com *

ABSTRACT
A number of popular systems, most notably Google’s TensorFlow,
have been implemented from the ground up to support machine
learning tasks. We consider how to make a very small set of changes
to a modern relational database management system (RDBMS) to
make it suitable for distributed learning computations. Changes
include adding better support for recursion, and optimization and
execution of very large compute plans. We also show that there
are key advantages to using an RDBMS as a machine learning plat-
form. In particular, learning based on a database management sys-
tem allows for trivial scaling to large data sets and especially large
models, where different computational units operate on different
parts of a model that may be too large to fit into RAM.

PVLDB Reference Format:
Dimitrije Jankov, Shangyu Luo, Binhang Yuan, Zhuhua Cai, Jia Zou, Chris
Jermaine, and Zekai J. Gao. Declarative Recursive Computation on an
RDBMS. PVLDB, 12(7): 822-835, 2019.
DOI: https://doi.org/10.14778/3317315.3317323

1. INTRODUCTION
Modern machine learning (ML) platforms such as TensorFlow

[10] have primarily been designed to support data parallelism, where
a set of almost-identical computations (such as the computation of a
gradient) are executed in parallel over a set of computational units.
The only difference among the computations is that each operates
over different training data (known as “batches”). After each com-
putation has finished, the local result is either loaded to a parameter
server (in the case of asynchronous data parallelism [46]) or the lo-
cal results are globally aggregated and used to update the model (in
the case of synchronous data parallelism [31]).

Unfortunately, data parallelism has its limits. For example, data
parallelism implicitly assumes that the model being learned (as well
as intermediate data produced when a batch is used to update the
model) can fit in the RAM of a computational unit (which may be
a server machine or a GPU). This is not always a reasonable as-
sumption, however. For example, a state-of-the-art NVIDIA Tesla
V100 Tensor Core GPU (a $10,000 data center GPU) has 32GB of

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 12, No. 7
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3317315.3317323

RAM. 32GB of RAM cannot store the matrix required for a fully-
connected layer to encode a vector containing entries from 200,000
categories into a vector of 50,000 neurons. Depending upon the
application, 50,000 neurons may not be a lot [48].

Handling such a model requires model parallelism—where the
statistical model being learned is not simply replicated at different
computational units, but is instead partitioned and operated over
in parallel, and is executed by a series of bulk-synchronous oper-
ations. As discussed in the related work section, existing systems
for distributed ML offer limited support for model parallelism.

Re-purposing relational technology for ML. We argue that model
parallelism can be implemented using relational technology. Dif-
ferent parts of the model can be stored in a set of tables, and the
computations on the partial model can often be expressed through
a few SQL queries. In fact, to a programmer, the model-parallel
SQL implementation of a learning algorithm looks no different than
the data parallel implementation. Relational database management
systems (RDBMSs) provide a declarative programming interface,
which means that the programmer (or automated algorithm gen-
erator, if a ML algorithm is automatically generated via automatic
differentiation) only needs to specify what he/she/it wants, but does
not need to write out how to compute it. The computations will be
automatically generated by the system, and then be optimized and
executed to match the data size, layout, and the compute hardware.
The code is the same whether the computation is run on a local ma-
chine or in a distributed environment. In contrast, systems such as
TensorFlow provide relatively weak forms of declarative-ness, as
each logical operation in a compute graph (such as a matrix mul-
tiply) must be specified and executed on some physical compute
unit, like a GPU.

Another benefit of using relational technology is that distributed
computations in RDBMSs have been studied for more than thirty
years, and are fast and robust. The query optimizer, shipped with
an RDBMS, is highly effective for optimizing distributed compu-
tations [20]. It is not an accident that competing distributed com-
pute platforms such as Spark [52] (which now promotes the use of
relational-style DataFrames [13] and DataSets [5] interfaces) are
beginning to look more like a parallel RDBMSs.

Challenges of adapting RDBMS technology for ML. However,
there are a couple of reasons that a modern RDBMS cannot be used
out-of-the-box as a platform for most large-scale ML algorithms.
Crucially, such systems lack sufficient support for recursion. In
deep learning it is necessary to “loop” through the layers of a deep
neural network, and then “loop” backwards through the network to
propagate errors. Such “looping” could be expressed declaratively
via recursive dependencies among tables, but RDBMS support for
recursion is typically limited (if it exists at all) to computing fixed-

822



points over sets such as transitive closures [11]. Not only that, but
there is the problem that the query plan for a typical deep-learning
computation may run to tens of thousands of operators, which no
existing RDBMS optimizer is going to be able to handle.

Our Contributions. Specific contributions are:

• We introduce multi-dimensional, array-like indices to databa-
se tables. When a set of tables share the similar computation
pattern, they can be compacted and replaced by a table with
multiple versions (indicated by its indices).

• We modify the query optimizer of a database to render it ca-
pable of handling very large query graphs. A query graph is
partitioned into a set of runnable frames, and the cost of oper-
ators and pipelining are considered. We formalize the graph-
cutting problem as an instance of the generalized quadratic
assignment problem [37].

• We implement our ideas on top of SimSQL [18], which is a
prototype distributed RDBMS that is specifically designed to
handle large-scale statistical computation.

• We test our implementations on two distributed deep learn-
ing problems (a feed-forward neural network and an imple-
mentation of Word2Vec [42, 41]) as well as distributed latent
Dirichlet allocation (LDA). We show that declarative Sim-
SQL codes scale to huge model sizes, past the model sizes
that TensorFlow can support, and that SimSQL can outper-
form TensorFlow on some models.

2. PARALLELISM IN ML
Because one of the key benefits of ML on an RDBMS is auto-

mated parallelism, we begin with a brief review of parallelism in
ML.

In the general case, when solving a ML problem, we are given a
data set T with elements tj . The goal is to learn a d-dimensional
vector (d ≥ 1) of model parameters Θ = (Θ(1), Θ(2), . . . ,Θ(d))
that minimize a loss function of the form

∑
j L(tj |Θ). To this

end, learning algorithms such as gradient descent perform a simple
update repeatedly until convergence:

Θi+1 ← Θi − F (Θi,T)

Here, F is the update function. Each update marks the end of a
processing epoch. Many learning algorithms are decomposable.
That is, if T has elements tj , the algorithm can be written as:

Θi+1 ← Θi −
∑
j

F (Θi, tj)

For example, consider gradient descent, the quintessential learning
algorithm. It is decomposable becauseF (Θi,T) =

∑
j ∇L(tj |Θi).

If it is possible to store Θi in the RAM of each machine, decom-
posable learning algorithms can be made data parallel. One can
broadcast Θi to each site, and then compute F (Θi, tj) for data tj
stored locally. All of these values are then aggregated using stan-
dard, distributed aggregation techniques.

However, data parallelism of this form is often ineffective. Let
Ti be a small sample of T selected to compute the ith gradient up-
date. For decomposable algorithms, F (Θi,T) ≈ |T|

|Ti|
F (Θi,Ti),

therefore in practice only a small subsample of the data are used
(for example, in the case of gradient descent, mini-batch gradient
descent [47] is typically used). Adding more machines can either
distribute this sample so that each machine gets a tiny amount of
data (which is typically not helpful because for very small data
sizes, the fixed costs associated with broadcasting Θi dominate) or

else use a larger sample. This is also not helpful because the esti-
mate to F (Θi,T) with a relatively small sample is already accurate
enough. The largest batches advocated in the literature consist of
around 10,000 samples [30].

One idea to overcome this is to use asynchronous data paral-
lelism [46], where recursion of the form Θi+1 ← Θi − F (Θi,T)
is no longer used. Rather, each site j is given a small sample
Tj of T; it requests the value Θcur , computes Θnew ← Θcur −
F (Θcur,Tj) and registers Θnew at a parameter server. All requests
for Θcur happen to obtain whatever the last value written was, lead-
ing to stochastic behavior. The problem is that data parallelism of
this form can be ineffective for large computations as most of the
computation is done using stale data [21].

An alternative is model parallelism. In model parallelism, the
idea is to stage F (Θi,T) (or F (Θi,Ti)) as a distributed computa-
tion without assuming that each site has access to all of Θi (or Ti).
There are many forms of model parallelism, but in the general case,
model parallelism is “distributed computing complete”. That is, it
is as hard as “solving” distributed computing.

The distributed key-value stores (known as parameter servers)
favored by most existing Big Data ML systems (such as Tensor-
Flow and Petuum [50]) make it difficult to build model parallel
computations, even “by hand”. In practice, an operation such as a
distributed matrix multiply on TensorFlow—a key building block
for model parallel computations—requires a series of machine- and
data-set- specific computational graphs to be constructed and exe-
cuted, where communication is facilitated by explicitly storing and
retrieving intermediate results from the key-value store. This is far
enough outside of norm of how TensorFlow is designed to be used
given that (at least at the time of this writing) no widely-used codes
for distributed matrix multiplication on top of the platform exist.

3. DEEP LEARNING ON AN RDBMS

3.1 A Simple Deep Learner
A deep neural network is a differentiable, non-linear function,

typically conceptualized as a directed graph. Each node in the
graph (often called a “neuron”) computes a continuous activation
function over its inputs (sigmoid, ReLU, etc.).

...

...

...

...

...

...

hidden layers

input
layer

output
layer

neuron 𝑖, layer 𝑙

Figure 1: Structure of a feed-forward neural network.

One of the simplest and most commonly used artificial neural
networks is a so-called feed-forward neural network [32]. Neurons
are organized into layers. Neurons in one layer are connected only
to neurons in the next layer, hence the name “feed-forward". Con-
sider the feed-forward network in Figure 1. To compute a func-
tion over an input (such as a text document or an image), the in-
put vector is fed into the first layer, and the output from that layer
is fed through one or more hidden layers, until the output layer
is reached. If the output of layer l − 1 (or “activation”) is repre-
sented as a vector al−1, then the output of layer l is computed as
al = σ (al−1Wl + bl) Here, bl and Wl are the the bias vector and
the weight matrix associated with the layer l, respectively, and σ(·)
is the activation function.

823



Learning. Learning is the process of customizing the weights for a
particular data set and task. Since learning is by far the most com-
putationally intensive part of using a deep network, and because the
various data structures (such as the Wl matrix) can be huge, this is
the part we would typically like to distribute across machines.

Two-pass mini-batch gradient descent is the most common learn-
ing method used with such networks. Each iteration takes as input
the current set of weight matrices {W(i)

1 ,W(i)
2 , ...} and bias vec-

tors {b(i)
1 , b(i)

2 , ...} and then outputs the next set of weight matrices
{W(i+1)

1 ,W(i+1)
2 , ...} and bias vectors {b(i+1)

1 , b(i+1)
2 , ...}. This

process is repeated until convergence.
In one iteration of the gradient descent, each batch of inputs goes

through two passes: the forward pass and the backward pass.

The forward pass. In the forward pass, at iteration i, a small subset
of the training data are randomly selected and stored in the matrix
X(i). The activation matrix for each of these data points, A1, is
computed as A(i)

1 = σ
(

X(i)W(i)
1 + B(i)

1

)
(here, let the bias ma-

trix B(i)
1 be the matrix formed by replicating the bias vector b(i)

1

n times, where n is the size of the mini-batch). Then, this activa-
tion is pushed through the network by repeatedly performing the
computation A(i)

l = σ
(

A(i)
l−1W(i)

l + B(i)
l

)
.

The backward pass. At the end of the forward pass, a loss (or
error function) comparing the predicted set of values to the actual
labels from the training data are computed. To update the weights
and biases using gradient descent, the errors are fed back through
the network, using the chain rule. Specifically, the errors back-
propagated from hidden layer l + 1 to layer l in the i-th backward
pass is computed as

E(i)
l =

(
E(i)

l+1

(
W(i)

l+1

)T)
� σ′

(
A(i)

l

)
,

where σ′(·) is the derivative of the activation function. After we
have obtained the errors (that serve as the gradients) for each layer,
we update the weights and biases:

W(i)
l = W(i−1)

l − α · A(i−1)
l−1 E(i−1)

l ,

b(i)
l = b(i−1)

l − α ·
∑
n

e(i−1)
l ,

where α is the learning rate, and el is the row vector of El.

3.2 A Mixed Imperative/Declarative Approach
Perhaps surprisingly, a model parallel version of the algorithm

is possible on top of an RDBMS. We assume that an RDBMS has
been lightly augmented to handle matrix and vector data types
as described in [39], and assume that the various matrices and vec-
tors have been “chunked”. The following database table stores the
chunk of W(ITER)

LAYER at the given row and column:

W (ITER, LAYER, ROW, COL, MAT)

MAT is of type matrix (1000, 1000) and stores one “chunk”
of W(ITER)

LAYER . A 105 × 105 matrix chunked in this way would have
104 entries in the table W, with one sub-matrix for each of the 100 =
105/103 possible ROW values combined with each of the 100 =
105/103 possible COL values.

Also, the activations A(ITER)
LAYER are chunked and stored as matrices

having 1000 columns in the following table:

A (ITER, LAYER, COL, ACT)

--First, issue a query that computes the errors
--being backpropagated from the top layer in
--the network.
SELECT 9, W.ROW, W.COL, A.ACT, E.ERR, W.MAT
BULK COLLECT INTO AEW
FROM A, W,
--Note: we are using cross-entropy loss
(SELECT A.COL,

crossentropyderiv(A.ACT, DO.VAL) AS ERR
FROM A, DATA_OUTPUT AS DO
WHERE A.LAYER=9) AS E

WHERE A.COL=W.ROW AND W.COL=E.COL
AND A.LAYER=8 AND W.LAYER=9
AND A.ITER=i AND W.ITER=i;

--Now, loop back through the layers in the network
for l = 9, ..., 2:
--Use the errors to compute the new weights
--connecting layer l to layer l + 1; add to
--result for learning iteration i + 1
SELECT i+1, l, ROW, COL,

MAT - matmul(t(ACT), ERR) * 0.00000001
BULK COLLECT INTO W
FROM AEW WHERE LAYER=l;

--Issue a new query that uses the errors from the
--previous layer to compute the errors in this
--layer. reluderiv takes the derivative of the
--activation.
SELECT l-1, W.ROW, W.COL, A.ACT, E.ERR, W.MAT
BULK COLLECT INTO AEW FROM A, W,
(SELECT ROW AS COL, SUM(matmul(ERR, t(MAT))

* reluderiv(ACT)) AS ERR
FROM AEW WHERE LAYER=l
GROUP BY ROW) AS E

WHERE A.COL=W.ROW AND W.COL=E.COL
AND A.LAYER=l-2 AND W.LAYER=l-1;
AND A.ITER=i AND W.ITER=i;

end for

--Update the first set of weights (on the inputs)
SELECT i+1, 1, ROW, COL,

MAT - matmul(t(ACT), ERR) * 0.00000001
BULK COLLECT INTO W
FROM AEW WHERE LAYER=1;

Figure 2: SQL code to implement the backward pass for iteration
i of a feed-forward deep network with eight hidden layers.

A final table AEW stores the values needed to compute W(ITER+1)
LAYER :

A(ITER)
LAYER-1 (as ACT), E(ITER)

LAYER (as ERR), and W(ITER)
LAYER (as MAT):

AEW (LAYER, ROW, COL, ACT, ERR, MAT)

ROW and COL again identify a particular matrix chunk. Given this,
a fully model parallel implementation of the backward pass can be
implemented using the SQL code in Figure 2. crossentropy-
deriv() and reluderiv() are user-defined functions imple-
menting the derivatives of cross-entropy and ReLU activation, re-
spectively. The model parallel backward-pass code is around twenty
lines long and could be generated by an auto-differentiation tool.

3.3 So, What’s the Catch?
In writing a loop, the SQL programmer used a database table to

pass state between iterations. In our example, this is done by utiliz-
ing the AEW table, which stores the error being back-propagated
through each of the connections from layer l + 1 to layer l in
the network, for each of the data points in the current learning
batch. If there are 100,000 neurons in two adjacent layers in a fully-
connected network and 1,000 data points in a batch, then there are
(100, 000)2 such connections for each of the 1,000 data points,
or 1013 values stored in all. Using single-precision floating point
value, a debilitating 40TB of data must be materialized.

824



Storing the set of per-connection errors is a very intuitive choice
as a way to communicate among loops iterations, especially since
the per-connection errors are subsequently aggregated in two ways
(one to compute the new weights at a layer, and one to compute
the new set of per-connection errors passed to the next layer). But
forcing the system to materialize this table can result in a very
inefficient computation. This could be implemented by pipelin-
ing the computation creating the new data for the AEW table di-
rectly into the two subsequent aggregations, but this possibility has
been lost when the programmer asked that the new data be BULK
COLLECTed into AEW.

Note that this is not merely a case of a poor choice on the part
of the programmer. In order to write a loop, state has to be passed
from one iteration to another, and it is this state that made it impos-
sible for the system to realize an ideal implementation. This is the
pitfall of imperative—rather than declarative—programming.

4. EXTENSIONS TO SQL
In this section, we consider a couple of extensions to SQL that

make it possible for a programmer (either a human or a deep learn-
ing tool chain) to declaratively specify recursive computations such
as back-propagation, without control flow.

4.1 The Extensions
We introduce these SQL extensions in the context of a classic in-

troductory programming problem: implementing Pascal’s triangle,
which recursively defines binomial coefficients. Specifically, the
goal is to build a matrix such that the entry in row i and column j
is
(
i
j

)
(or i choose j). The triangle is defined recursively so that for

any integers i ≥ 0 and j ∈ [1, i− 1],
(
i
j

)
=
(
i−1
j−1

)
+
(
i−1
j

)
:

i
0 1
1 1 1
2 1 2 1
3 1 3 3 1
4 1 4 6 4 1

0 1 2 3 4
j

Our extended SQL allows for multiple versions of a database table;
versions are accessed via array-style indices. For example, we can
define a database table storing the binomial coefficient

(
0
0

)
as:

CREATE TABLE pascalsTri[0][0] (val) AS
SELECT val FROM VALUES (1);

The table pascalsTri[0][0] can now be queried like any other
database table, and various versions of the tables can be defined re-
cursively. For example, we can define all of the cases where j = i
(the diagonal of the triangle) as:

CREATE TABLE pascalsTri[i:1...][i] (val) AS
SELECT * FROM pascalsTri[i-1][i-1];

And all of the cases where j = 0 as:

CREATE TABLE pascalsTri[i:1...][0] (val) AS
SELECT * FROM pascalsTri[i-1][0];

Finally, we can fill in the rest of the cells in the triangle via one
more recursive relationship:

CREATE TABLE pascalsTri[i:2...][j:1...i-1](val) AS
SELECT pt1.val + pt2.val AS val
FROM pascalsTri[i-1][j-1] AS pt1,

pascalsTri[i-1][j] AS pt2;

Note that this differs quite a bit from classical, recursive SQL,
where the goal is typically to compute a fix-point of a set. Here,

there is no fix-point computation. In fact, this particular recurrence
defines an infinite number of versions of the pascalsTri table.
Since there can be an infinite number of such tables, those tables
are materialized on-demand. A programmer can issue the query:

SELECT * FROM pascalsTri[56][23];

In which case the system will unwind the recursion, writing the
required computation as a single relational algebra statement. A
programmer may ask questions about multiple versions of a table
at the same time (without having each one be computed separately):

EXECUTE (
FOR j IN 0...50:
SELECT * FROM pascalsTri[50][j]);

By definition, all of the queries/statements within an EXECUTE
command are executed as part of the same query plan. Thus, this
would be compiled into a single relational algebra statement that
produces all 51 of the requested tables, under the constraint that
each of those 51 tables must be materialized (without such a con-
straint, the resulting physical execution plan may pipeline one or
more of those tables, so that they exist only ephemerally and can-
not be returned as a query result). If a programmer wished to ma-
terialize all of these tables so that they could be used subsequently
without re-computation, s/he could use:

EXECUTE (
FOR j IN 0...50:
MATERIALIZE pascalsTri[50][j]);

which materializes the tables for later use. Finally, we introduce
a multi-table UNION operator that merges multiple, recursively-
defined tables. This makes it possible to define recursive relation-
ships that span multiple tables. For example, a series of tables stor-
ing the various Fibonacci numbers (where Fib(i) = Fib(i− 1) +
Fib(i− 2) and Fib(1) = Fib(2) = 1) can be defined as:

CREATE TABLE Fibonacci[i:0...1] (val) AS
SELECT * FROM VALUES (1);

CREATE TABLE Fibonacci[i:2...] (val) AS
SELECT SUM (VAL) FROM UNION Fibonacci[i-2...i-1];

In general, UNION can be used to combine various subsets of re-
cursively defined tables. For example, one could refer to UNION
pascalsTri[i:0...50][0...i]which would flatten the first
51 rows of Pascal’s triangle into a single multiset.

4.2 Learning Using Recursive SQL
With our SQL extensions, we can rewrite the aforementioned

forward-backward passes to eliminate imperative control flow by
declaratively expressing the various dependencies among the acti-
vations, weights, and errors.

Forward pass. The forward pass is concerned with computing the
level of activation of the neurons at each layer. The activations
of all neurons in layer j at learning iteration i are given in table
A[i][j]. Activations are computed using the weighted sum of
the outputs of all of the neurons at the last level; the weighted
sums for the layer j at learning iteration i is given in the table
WI[i][j]. The dependencies making up the forward pass are
depicted in Figure 3. The corresponding SQL code is as follows.
The forward pass begins by loading the first layer of activations
with the input data:

CREATE TABLE A[i:0...][j:0](COL, ACT) AS
SELECT DI.COL, DI.VAL
FROM DATA_INPUT AS DI;

825



Figure 3: Dependencies in the forward pass through nine layers of
SQL-based NN learning.

Figure 4: Dependencies in the backward pass of SQL-based NN
learning.

We then send the activation across the links in the network:
CREATE TABLE WI[i:0...][j:1...9](COL, VAL) AS

SELECT W.COL, SUM(matmul(A.ACT, W.MAT))
FROM W[i][j] AS w, A[i][j-1] AS A
WHERE W.ROW = A.COL
GROUP BY W.COL;

Those links are then used to compute subsequent activations:

CREATE TABLE A[i:0...][j:1...8](COL, ACT) AS
SELECT WI.COL, relu(WI.VAL + B.VEC)
FROM WI[i][j] AS WI, B[i][j] AS B
WHERE WI.COL = B.COL;

And finally used to perform the prediction:

CREATE TABLE A[i:0...][j:9](COL, ACT) AS
SELECT WI.COL, softmax(WI.VAL + B.VEC)
FROM WI[i][j] AS WI, B[i][j] AS B
WHERE WI.COL = B.COL;

Backward pass. In the backward pass, the errors are pushed back-
ward through the network. The error being pushed through layer j
in learning iteration i are stored in the table E[i][j]. These er-
rors are used to update all of the network’s weights (the weights di-
rectly affecting layer j in learning iteration i are stored in W[i][j])
as well as biases (stored in B[i][j]). The recursive dependencies
making up the backward pass are shown in Figure 4. We begin the
SQL code for the backward pass with the initialization of the error:

CREATE TABLE E[i:0...][j:9](COL, ERR) AS
SELECT A.COL, crossentropyderiv(A.ACT, DO.VAL)
FROM A[i][j] AS A, DATA_OUTPUT AS DO;

At subsequent layers, the error is:

CREATE TABLE E[i:0...][j:1...8](COL, ERR) AS
SELECT W.ROW, SUM(matmul(E.ERR, t(W.MAT))

* reluderiv(A.ACT))
FROM A[i][j] AS A, E[i][j+1] AS E,

W[i][j+1] AS W
WHERE A.COL = W.ROW AND W.COL = E.COL
GROUP BY W.ROW;

Now we use the error to update the weights:

CREATE TABLE W[i:1...][j:1...9](ROW, COL, MAT) AS
SELECT W.ROW, W.COL,

W.MAT - matmul(t(A.ACT), E.ERR) * 0.00000001
FROM W[i-1][j] AS W, E[i-1][j] AS E,

A[i-1][j-1] AS A
WHERE A.COL = W.ROW AND W.COL = E.COL;

And the biases:
CREATE TABLE B[i:1...][j:1...9](COL, VEC) AS
SELECT B.COL,

B.VEC - reducebyrow(E.ERR) * 0.00000001
FROM B[i-1][j] AS B, E[i-1][j] AS E
WHERE B.COL = E.COL;

We now have a fully declarative implementation of neural net-
work learning.

5. EXECUTING RECURSIVE PLANS
The recursive specifications of the last section address the prob-

lem of how to succinctly and declaratively specify complicated re-
cursive computations. Yet the question remains: How can the very
large and complex computations associated with such specifica-
tions be compiled and executed by an RDBMS without significant
modification to the system?

5.1 Frame-Based Execution
Our idea for compiling and executing computations written re-

cursively in this fashion is to first compile the recursive compu-
tation into a single monolithic relational algebra DAG, and then
partition the computation into frames, or sub-plans. Those frames
are then optimized and executed independently, with intermediate
tables materialized to facilitate communication between frames.

Frame-based computation is attractive because if each frame is
small enough that an existing query optimizer and execution en-
gine can handle the frame, the RDBMS optimizer and engine need
not be modified in any way. Further, this iterative execution results
in an engine that resembles engines that perform re-optimization
during runtime [34], in the sense that frames are optimized and ex-
ecuted once all of their inputs have been materialized. Accurate
statistics can be collected on those inputs—specifically, the num-
ber of distinct attribute values can be collected using an algorithm
like Alon-Matias-Szegedy [12]—meaning that classical problems
associated with size estimation errors propagating through a query
plan can be avoided.

5.2 Heuristic vs. Full Unrolling
One could imagine two alternatives for implementing a frame-

based strategy. The first is to rely on a heuristic, such as choosing
the outer-most loop index, breaking the computation into frames
using that index, and so on. However, there are several problems
with this approach. First off, we are back to the problem described
in Section 3.3, where we are choosing to materialize tables in an
ad-hoc and potentially dangerous way (we may materialize a multi-
terabyte table). Second, we cannot control the size of the frame.

826



Too many operations in one frame can mean that the system is un-
able to optimize and execute that frame, while too few can mean a
poor physical plan with too much materialized data. Third, if we
allow the recursion to go up as well as down, or skip index values,
this will not work.

Instead, we opt for an approach that performs a full unrolling
of the recursive computation and turns it to a single, monolithic
computation, and then we define an optimization problem that at-
tempts to split the computation into frames so as to minimize the
likelihood of materializing a large number of tables.

5.3 Plan Unrolling
Our unrolling algorithm attempts to leverage an existing RDBMS

query compiler to transform an SQL query into an un-optimized
relational algebra (RA) plan. At a high level, the algorithm re-
cursively chases the original query’s dependencies. Whenever a
dependency is found, a lookup table (called the sub-plan lookup ta-
ble) is checked to see if the dependence had previously been com-
piled. If not, the recursive dependency is expanded. This proceeds
until table definitions are reached with no further un-compiled de-
pendencies. At this point, the recursion unwinds, and any remain-
ing dependencies are recursively expanded. Eventually, a directed,
acyclic graph of RA operations is produced.

All of this is best illustrated by continuing the Pascal’s triangle
example. Assume that a programmer asks for the following:

SELECT * FROM pascalsTri[3][2] (val);

The unrolling algorithm begins by analyzing the recursive SQL
table definitions, and determining which tables this query depends
on. Since this query is covered by the definition

CREATE TABLE pascalsTri[i:2...][j:1...i-1](val);

which depends upon pascalsTri[i-1][j-1] (evaluating to
pascalsTri[2][1]) and pascalsTri[i-1][j] (evalua-
tining to pascalsTri[2][2], we must determine the depen-
dencies for pascalsTri[2][1] and pascalsTri[2][2].
The latter is covered by the definition

CREATE TABLE pascalsTri[i:1...][i](val);

This definition in turn depends upon pascalsTri[i-1][i-1].
The expression evaluates to pascalsTri[1][1]which depends
upon pascalsTri[0][0]. Since pascalsTri[0][0] is de-
fined directly as:

SELECT val FROM VALUES (1);

the recursion bottoms out, and this query is compiled (using the
existing compiler) into an RA plan. The root of this RA is inserted
into the sub-plan lookup table, with key pascalsTri[0][0].

The recursion then unwinds to pascalsTri[1][1]. Since
all of this table’s dependencies are now covered, we are ready to
compile pascalsTri[1][1]’s SQL into RA. We textually re-
place pascalsTri[i-1][i-1] in the definition of CREATE
TABLE pascalsTri[i:1...][i](val)with the dummy ta-
ble pascalsTri_0_0 to obtain:
SELECT * FROM pascalsTri_0_0;

and then compile this into RA. The scan of pascalsTri_0_0 in
the resulting RA is replaced with a link from the root node of the
RA for pascalsTri[0][0] (obtained from the sub-plan lookup
table), and we now have a complete RA for pascalsTri[1][1],
which is also put into the sub-plan lookup table.

The recursion unwinds to pascalsTri[2][2], which like-
wise is obtained by compiling:

SELECT * FROM pascalsTri_1_1;

The scan of pascalsTri_1_1 in the resulting RA is replaced
with a link from the root of the RA for pascalsTri[1][1],
and we now have a complete plan for pascalsTri[2][2].

The recursion then unwinds to pascalsTri[3][2] which
depends upon both pascalsTri[2][2] (now present in the sub-
plan lookup table), and pascalsTri[2][1]. Since the latter is
not present in the lookup table, we must recursively chase its de-
pendencies. Once this recursion unwinds, we are ready to compile
the SQL for pascalsTri[3][2]:
SELECT pt1.val + pt2.val AS val
FROM pascalsTri_2_1 AS pt1,

pascalsTri_2_2 AS pt2;

Replacing the table scans in the resulting RA with links from the
RA plans for pascalsTri[2][2] and pascalsTri[2][1]
completes the compilation into a single, monolithic plan.

6. PLAN DECOMPOSITION
The algorithm of the previous section produces a monolithic plan.

We now consider the problem of computing the best cut of a very
large plan into a set of frames.

6.1 Intuition
The cost incurred when utilizing frames is twofold. First, it re-

stricts the ability of the system’s logical and physical optimizer to
find optimization opportunities. For example, if the logical plan
((R 1 S) 1 T ) is optimal but the input plan ((R 1 T ) 1 S) is
cut into frames f1 = (R 1 T ) and f2 = (f1 1 S), it is impossible
to realize this optimal plan. In practice, we address this by placing
a minimum size on frames as larger frames make it more likely that
high-quality join orderings will still be present in the frame.

More significant is the requirement that the contents of already-
executed frames be saved so that later frames may utilize them.
This can introduce significant I/O compared to a monolithic exe-
cution. Thus we may attempt to cut into frames to minimize the
number of bytes traveling over cut edges. Unfortunately, this is un-
reasonable as it is well-understood that estimation errors propagate
through a plan; in the upper reaches of a huge plan, it is going to be
impossible to estimate the number of bytes traveling over edges.

Instead, we find that spitting the plan into frames so as to reduce
the number of pipeline breakers induced is a reasonable goal. A
pipeline breaker occurs when the output of one operator must be
materialized to disk or transferred over the network, as opposed to
being directly communicated from operator to operator via CPU
cache, or, in the worst case, via RAM. An induced pipeline breaker
is one that would not have been present in an optimal physical plan
but was forced by the cut.

6.2 Quadratic Assignment Formulation
Given a query plan, it is unclear whether a cut that separates two

operators into different frames will induce a pipeline breaker. We
model this uncertainty using probability and seek to minimize the
expected number of pipeline breakers induced by the set of chosen
frames.

This is “probability” in the Bayesian rather than frequentist sense,
in that it represents a level of certainty or belief in the pipelineabil-
ity of various operators. For the ith and jth operators in the query
plan, let Nij be a random variable that takes the value 1 if operator
i is pipelined into operator j were the entire plan optimized and
executed as a unit, and 0 otherwise.

Let the query plan to be cut into frames be represented as a di-
rected graph having n vertices, represented as a binary matrix E,
where eij is one (that is, there is an edge from vertex i to vertex j)

827



if the output of operator i is directly consumed by operator j. eij
is zero otherwise. We would like to split the graph into m frames.
We define the split of a query plan to be a matrix X = (xij)n×n,
where each row would be one frame so that xij = 1 if operator i
is in a different frame from operator j (that is, they have been cut
apart) and 0 otherwise. Given this, the goal is to minimize:

cost(X) = E

 n∑
i=1

n∑
j=1

eijxijNij

 =

n∑
i=1

n∑
j=1

eijxijE [Nij ]

This computes the expected number of pipeline breakers induced,
as for us to induce a new pipeline breaker via the cut, (a) operator
j must consume the output from operator i, (b) operator i and j
must be separated by the cut, and (c) operator i should have been
pipelined into operator j in the optimal execution.

We can re-write the objective function by instead letting the ma-
trix X = (xij)n×m be an assignment matrix, where

∑
i xij = 1,

and each xij is either one or zero. Then, xij is one if operator i is
put into frame j and we have:

cost(X) =

 n∑
i=1

n∑
j=1

m∑
a=1

m∑
b=1

eijxiaxjbE [Nij ]

−
 n∑

i=1

n∑
j=1

m∑
a=1

eijxiaxjaE [Nij ]


Letting cijab = eijE [Nij ] − δabeijE [Nij ] = eijE [Nij ] (1 −

δab) where δab is the Kronecker delta function, we then have:

cost(X) =

n∑
i=1

n∑
j=1

m∑
a=1

m∑
b=1

cijabxiaxjb

The trivial solution to choosing X to minimize this cost function
is to put all or most operators in the same frame, but that would re-
sult in a query plan that is not split in a meaningful way. Therefore
we need to add a constraint on the upper bound of operators in each
frame: min ≤

∑
j xij ≤ max for some maximum frame size.

The resulting optimization problem is not novel: it is an instance
of the problem popularly known as the generalized quadratic as-
signment problem, or GQAP [37], where the goal is to map tasks
or machinery (in this case, the various operations we are executing)
into locations or facilities (in this case, the various frames). GQAP
generalizes the classical quadratic assignment problem by allow-
ing multiple tasks or pieces of machinery to be mapped into the
same location or facility (in the classical formulation, only one task
is allowed per facility). Unfortunately, both GQAP and classical
quadratic assignment are NP-hard, and inapproximable.

In our instance of the problem, we actually have one additional
constraint that is not expressible within the standard GQAP frame-
work. A simple minimization of the objective function could result
in a sequence of frames that may not be executable because they
contain circular dependencies. In order to ensure that we have no
circular dependencies, we have to make the intermediate value that
a frame uses available before it is executed. To do this, we take the
natural ordering of the frames to be meaningful, in the sense that
frame a is executed before frame b when a < b, and for each edge
eij in the computational graph, we introduce the constraint that for
a, b where xia = 1 and xjb = 1, it must be the case that a ≤ b.

6.3 Cost Model
So far, we have not discussed the precise nature of the vari-

ous Nij variables that control whether the output of operator i is
pipelined into operator j in a single, uncut, optimized and executed
version of the computation. Specifically, we need to compute the
value of E [Nij ] required by our GQAP instance. Since each Nij

is a binary variable, E [Nij ] is simply the probability thatNij eval-
uates to one. Let pij denote this probability. In keeping with our
Bayesian view, we define the various pij values as follows:

• If the output of operator i has one single consumer (operator
j) and operator j is a selection or an aggregation, then pij is
1. The reason for this is that in the system we are building on
(SimSQL [18]), it is always possible to pipeline into a selec-
tion or an aggregation. Selections are always pipelineable,
and in SimSQL, if operator j is an aggregation, then a cor-
responding pre-aggregation will be added to the end of the
pipeline executing operation j. This pre-aggregation main-
tains a hash table for each group encountered in the aggrega-
tion, and as new data are encountered, statistics for each data
object are added to the corresponding group. As long as the
number of groups is small and the summary statistics com-
pact, this can radically reduce the amount of data that needs
to be shuffled to implement the aggregation.

• If the output of operator i has one single consumer (operator
j) but operator j is not a selection or an aggregation, then
pij is estimated using past workloads. That is, based off of
workload history, we compute the fraction of the time that
operator i’s type of operation is pipelined into the type of
operator j’s operation, and use that for pij .

• In SimSQL, if operator i has multiple consumers, then the
output of operator i can be pipelined into only one of them
(the output will be saved to disk and then the other opera-
tors will be executed subsequently, reading the saved output).
Hence, if there are k consumers of operator i, and operator
j is a selection or an aggregation, then pij = 1

k
. Otherwise,

if, according to workload history, the traction of the time that
operator i’s type of operation is pipelined into the type of
operator j’s operation is f , then pij = f

k
.

6.4 Heuristic Solution
Generalized quadratic assignment is a very difficult problem [17].

Therefore, we turn to developing a heuristic solution that may work
for our application.

One simple idea is a greedy algorithm that builds frames, one
at a time. We treat the relational algebra computation as a graph,
labeling each edge with the associated pij value. The algorithm
starts from a source operator and adds operators to the frame itera-
tively until the frame size exceedsmin, always adding the operator
that directly depends on an operator in the current frame that would
yield the smallest increase in the cost of the whole frame (the in-
crease is the cost of the new edge cut, minus the cost of an edge
that is now internal to the frame). In order to ensure that we do not
build frames that have circular dependencies, when we add a new
operation oi to the frame where the edge oi from oj is present in the
graph but oj is not yet part of any frame, we add oj to the frame.
This may in turn trigger the recursive addition of new operators to
the frame.

An illustration of how the algorithm works is given in Figure
5(a). We begin with operation o1, adding operation o2. Then we
add o4 since it has a lower cost (the cost is 0−0.1 = −0.1) than o3

828



o
2

o
1

o
4

o
5

0.5

o
3

0.10.2

0.1

o
6

0.6

0.3

o
6

o
2

o
1

o
4

o
5

0.5

o
3

0.10.2

0.1

o
6

0.6

0.3

o
6

o
2

o
1

o
4

o
5

0.5

o
3

0.10.2

0.1

o
6

0.6

0.3

o
6

Start Step one Step two

o
k+4

o
k+5

o
k+6

0.1

o
k+3

0.6

0.3

o
k+2

0.6

o
k+4

o
k+5

o
k+6

0.1

o
k+3

0.6

0.3

o
k+2

0.6

o
k+2

o
k

o
k+5

0.5

o
k+4

0.2

0.5

o
k+1

o
k+3

0.2

o
k+2

o
k

o
k+5

0.5

o
k+4

0.2

0.5

o
k+1

o
k+3

0.2

o
k+2

o
k

o
k+5

0.5

o
k+4

0.2

0.5

o
k+1

o
k+3

0.2

(a) The greedy algorithm. The
values in red represent the
costs. The operators in green
are selected as part of the
frame. The operators in yellow
are under consideration.

(b) Greedy if the source opera-
tor is badly chosen. Adding the
source operator adds the rest of
the graph to the frame.

(c) Greedy where the upper
bound is set to max = 7.

(d) Trying three different
frame sizes. The middle frame
will be selected.

Figure 5: Greedily cutting a frame from a compute plan.

(cost is 0.5− 0.3 = 0.2). Since o4 requires that we have computed
o6, we add o6 and all of its un-added dependencies.

There are some problems with this algorithm. First, it is highly
dependent on the chosen starting point; choosing a bad start can
lead to a poor cut. Consider Figure 5(b). Operation ok+4 is near the
end of a very long computation. If we choose this operation to start
with, we will next add ok+5 which will cause the entire query plan
to be recursively added into the frame. This makes it impossible to
keep the number of operators in the frame below max.

We can remedy this by running the greedy algorithm repeat-
edly, starting with each possible operation. For each run, we begin
recording the frames (and associated costs) that were generated as
soon as the frame size exceeds min, stop recording (and growing)
the frames when its size meets or would exceed max. Out of all of
the frames generated from each possible starting point, we choose
the frame with the minimum cost. This is illustrated in Figure 5(d),
with a lower bound of three and an upper bound of five. In this
case, the frame of size four is chosen.

There is a natural concern that a high-cost edge may block the
discovery of an optimal cut. For example, we may be at operator
o1; we can choose to add operator o2 or operator o3 to the current
frame. Operator o3 has a higher cost; we choose to add o2. It may
be, however, that o3 has a very low-cost link to operator o4 that we
will not discover because we will never add o3. This can be han-
dled by adding a lookahead to the greedy algorithm. We have ex-
perimented with this a bit and found that in this particular domain,
a purely greedy algorithm seems to do as well as an algorithm with
a small lookahead.

7. EXPERIMENTS

7.1 Overview
In this section, we detail a set of experiments aimed at answering

the following questions:

Can the ideas described in this paper be used to re-purpose an
RDBMS so that it can be used to implement scalable, performant,
model parallel ML computations?

We implement the ideas in this paper on top of SimSQL, a research-
prototype, distributed database system [18]. SimSQL has a cost-
based optimizer, an assortment of implementations of the standard
relational operations, the ability to pipeline those operations and

make use of “interesting” physical data organizations. It also has
native matrix and vector support [39].

Our benchmarking considers distributed implementations of three
ML algorithms: (1) a multi-layer feed-forward neural network (FF-
NN), (2) the Word2Vec algorithm [41] for learning embeddings of
text into a high-dimensional space, and (3) a distributed, collapsed
Gibbs sampler for LDA [16] (a standard text mining model). All
are widely-used algorithms, and all are quite different. The FFNN
is chosen as an ideal case for an ML platform such as TensorFlow
that is built around GPU support, as it consists mostly of matrix
operations that run well on a GPU. Word2Vec is chosen because
it naturally requires a huge model. LDA is interesting because it
benefits the most from a model-parallel implementation.

For the first two neural learners, we compare our RDBMS im-
plementations with the data parallel feed-forward and Word2Vec
implementations that are shipped with TensorFlow. For the col-
lapsed LDA sampler, we compare with bespoke implementations
on top of TensorFlow and Spark.

Scope of Evaluation. We stress that this is not a “which system
is faster?” comparison. SimSQL is implemented in Java and runs
on top of Hadoop MapReduce, with the high latency that implies.
Hence a platform such as Tensorflow is likely to be considerably
faster than SimSQL, at least for learning smaller models (when
SimSQL’s high fixed costs dominate).

Rather than determining which system is faster, the specific goal
is to study whether an RDBMS-based, model-parallel learner may
be a viable alternative to a system such as TensorFlow, and whether
it has any obvious advantages.

Experimental Details. In all of our experiments, all implementa-
tions run the same algorithms over the same data. Thus, a configu-
ration that runs each iteration 50% faster than another configuration
will reach a given target loss value (or log-likelihood) 50% faster.
Hence, rather than reporting loss values (or log-likelihoods) we re-
port per-iteration running times.

All implementations are fully synchronous, for an apples-to-apples
comparison. We choose synchronous learning as there is strong ev-
idence that synchronous learning for large, dense problems is the
most efficient choice [21, 30].

There were two sets of FFNN experiments. In the first set, EC2
r5d.2xlarge CPU machines with 8 cores and 64GB of RAM
were used. In the second set, at various cost levels, we chose sets
of machines to achieve the best performance. For TensorFlow, this

829



was realized by GPU machines (CPU for parameters); for SimSQL,
both CPU and GPU machines achieved similar performance.

Word2Vec and LDA were run on clusters of Amazon EC2 m2.4-
xlarge CPU machines, each with eight cores and 68GB of RAM.
GPUs were not used as they are ineffective for these problems—
LDA is not a neural learning problem, and Word2Vec’s running
time (on TensorFlow) is dominated by parameter server requests,
rather than by computations.

7.2 Learning Algorithms
In this subsection, we describe the three different learning algo-

rithms used in the benchmarking.
(1) A Feed-Forward Neural Network. Our RDBMS-based im-
plementation has already been described extensively. We use the
data parallel, synchronous, feed-forward network implementation
that ships with TensorFlow as a comparison.

We use a Wikipedia dump of 4.86 million documents as the input
to the feed-forward learner. The goal is to learn how to predict the
year of the last edit to the article. There are 17 possible labels in
total. We pre-process the Wikipedia dump, representing each doc-
ument as a 60,000-dimensional feature vector, where each feature
corresponds to the number of times a particular unigram or bigram
appears in the document.

In most of our experiments, we use a size 10,000 batch, as recent
results have indicated that a relatively large batch of this size is a
reasonable choice for large-scale learning [30].

(2) Word2Vec. Word2Vec (W2V) is a two-layer neural network
used to generate word embeddings. We use skip-gram Word2Vec
as well as negative sampling, with 64 negative samples, and noise
contrastive estimation (NCE) loss. We train our Word2Vec model
using the same Wikipedia dump described above, embedding the 1
million most frequent tokens in the corpus. The input and output
layers in our experiments both have one million neurons. The neu-
rons of the input layer are connected to the neurons of an interme-
diate embedding layer, which are further connected to the neurons
of the output layer. Therefore, there are two weight matrices of size
106 × d, where d is the embedding dimensionality. The input doc-
ument is randomly selected and processed with a skip window size
of 1. On average, each batch has 1240 word pairs.

Our Word2Vec SQL implementation uses three recursive schemas.
For the weight matrices we use weights[i:0...][j:1...2]
with attributes tokenID and embedVec. By storing the embed-
ding of each token as a vector, we automatically have a model
parallel representation. embeds[i:0...][j:1...3] stores
the embedding vectors, where j = 1 gives the embeddings cor-
responding to input labels in a batch, j = 2 gives those corre-
sponding to out labels, and j = 3 gives the negative samples.
errors[i:0...][j:1...2] represents the delta updates to
be applied back to weights[i][j].

We compare our RDBMS implementation with the Word2Vec
implementation that ships with TensorFlow.

(3) Latent Dirichlet Allocation. LDA is a standard text mining
algorithm and collapsed Gibbs sampling is a standard learning al-
gorithm for LDA. The goal of learning LDA is to learn a set of
topics, which can identify the words that tend to co-occur with
one another. Collapsed LDA requires maintaining counts of (1)
the number of words assigned to each topic in a document, and (2)
the number of words assigned to each topic in the corpus. Work-
ers must repeatedly load a document, cycle through the words in
the document, re-assign them to topics, and update the two sets of
counts. In distributed LDA, since local updates change the global
topic counts—and these updates cannot be distributed globally in

an efficient manner—the effect of local updates is typically ignored
[49] until a synchronization step. In our LDA implementation, we
divide the input documents into ten subsets. All of the documents
in one subset are processed together. Later in a synchronized ag-
gregation, the number of words assigned to each topic is updated.

LDA is also learned over the Wikipedia dump. The dictionary
size is 60, 000.

In the RDBMS, LDA is implemented by grouping the documents
into ten partitions. The documents with docID/batchSize =
j are assigned to the partition j, and will be processed together.
The word-to-topic counts for each document are stored in the table
wordToTopic[i][j](docID,wordID,topicID,cnt),
and this table is updated in a per-iteration (i), per-partition (j)
manner. To refer the complete set of topic assignments at the be-
ginning of iteration i, we locally aggregate for the counts in the
table wordToTopic[i][j], and then use an UNION operation
to concatenate the aggregated tables. Lastly, a final aggregation is
called to get the total topic-word-counts for all documents.

We build an analogous implementation using Spark resilient dis-
tributed datasets (RDDs), as well as on top of TensorFlow. Ten-
sorFlow’s implementation is “lightly” model parallel, in that while
data is partitioned, requests to the parameter server pull only the
required portion of the model. The topic-word counts (ntw) are
stored on the parameter server as a matrix tensor. The topic labels
for all the words in one document are stored on the correspond-
ing worker locally in a Python dictionary and are refreshed after
each iteration. The topic sampling process loops over each word
in a document with tf.while_loop. Since each document is
of variable length, we store the sampled topics in a dynamic-sized
tf.TensorArray passed within the tf.while_loop. The
changes in sampled topics are updated to ntw on parameter server
via tf.scatter_add. After each partition of documents is pro-
cessed, barriers are added on each worker via tf.FIFOQueue for
synchronization purpose.

7.3 Results
Efficacy of Cutting Algorithm. We begin by examining the utility
of the cutting algorithm. Using ten CPU machines, we run FFNN
learning (40,000 hidden neurons, batch size 10,000), W2V learn-
ing (100-dimensional embedding) and LDA (1,000 topics), using
three different cutting algorithms. The first is the simple greedy
version of the GQAP solver, as described in Section 6.4. Second,
we use the full solver, but rather than taking a probabilistic view
of the problem (Section 6.3), we apply the idea of simply reducing
the number of edges across frames, as these correspond to tables
that must be materialized. We call this the “min-cut” cutter as it
treats all edges as being equi-weight. Finally, we evaluate the full
algorithm using the cost model of Section 6.3. We report the per-
iteration running time of the various options in Figure 6.

To examine the necessity of actually using a frame-based execu-
tion, we use ten machines to perform FFNN learning on a relatively
small learning task (10,000 hidden neurons, batch size 100). We
unroll 60 iterations of the learning and compare the per-iteration
running time using the full cutting algorithm along with the cost
model of Section 6.3 with a monolithic execution of the entire, un-
rolled plan. The resulting graph has 12,888 relational operators.
The monolithic execution failed during the second iteration. The
per-iteration running time of the frame-based execution is com-
pared with the running time of the first iteration (under monolithic
execution) in Figure 7.

Feed-Forward Networks. In the remainder of the experiments,
we use the full cutting algorithm with the optimized cost model,
along with the frame-based execution. On the FFNN learning prob-

830



Graph Cut Algorithm FFNN W2V LDA
Fully Optimized Cutter 17:46 16:43 06:25

Min-Cut Cutter 35:29 20:53 06:21
Greedy Cutter Fail 25:19 06:24

Figure 6: Per iteration running time using frames from various
cutting algorithms.

Graph Type FFNN per-iteration time
Whole Graph 05:53:29
Frame-Based 00:12:53

Figure 7: Comparing frame-based vs. monolithic (unrolled) plan
execution time.

lem, we evaluate both the RDBMS and TensorFlow with a variety
of cluster sizes (five, ten, and twenty machines) and a wide vari-
ety of hidden layer sizes—up to 160,000 neurons. Connecting two
such layers requires a matrix with 26 billion entries (102 GB). Per-
iteration execution times are given in Figure 8. “Fail” means that
the system crashed.

In addition, we ran a set of experiments where we attempted to
achieve the best performance at a $3-per-hour, $7-per-hour, and
$15-per-hour price point using Amazon AWS. For TensorFlow, at
$3, this was one p3.2xlarge GPU machine and one r5.4-
xlarge CPU machine; at $7, it was two p3.2xlarge GPU
machines and two r5.4xlarge CPU machines, and at $15, it
was four p3.2xlarge GPU machines and four r5.4xlarge
CPU machines. SimSQL did about the same using one, two or four
c5d.18 xlarge CPU machines (at $3, $7, and $15, respectively)
as it did using two, five or ten g3.4xlarge GPU machines. Per-
iteration execution times are given in Figure 9.

Word2Vec. We evaluate both the RDBMS and TensorFlow on a
variety of hidden layer sizes, using ten machines. Per-iteration ex-
ecution times are given in Figure 10.

LDA. We next evaluate the RDBMS, TensorFlow, and Spark on
LDA, using ten machines and a variety of different model sizes
(topic counts). Sub-step execution times are given in Figure 11.

Coding Complexity. To give the reader an idea of the relative com-
plexity of coding for these systems, in Figure 12 we give source-
line-of-code counts for each of the various implementations. Since
we implemented all codes from scratch on top of the RDBMS, we
had to build C++ implementations of user-defined functions nec-
essary for the various computations, such as crossEntropy-
Derivative. We give both SQL and C++ line counts for the
RDBMS implementation. TensorFlow also has similar C++ code
running under the hood.

7.4 Discussion
Graph cutting. SimSQL was unable to handle the 12,888 oper-

ators all together in the FFNN plan, resulting in a running time that
was around 28× longer than frame-based execution (see Figure 7).

Figure 6 shows that, especially for FFNN learning, the full cut-
ting algorithm and cost model is a necessity. To illustrate how the
frames generated from the weight-optimized cutter differ from the
min-cut version of the GQAP, we present Figure 13 which shows
the set of frames obtained using these two options to cut an un-
rolling of a single iteration of FFNN learning. In this graph, we
show the relational operators that accept input into each frame and
produce output from each frame. To represent the relational op-
erations we use π: projection, 1: join, f : map, Σ: aggregate,

FFNN
Hidden Layer Neurons RDBMS TensorFlow

Cluster with 5 workers
10000 05:39 01:36
20000 05:46 03:38
40000 08:30 09:02
80000 24:52 Fail
160000 Fail Fail

Cluster with 10 workers
10000 04:53 00:54
20000 05:32 02:00
40000 07:41 04:59
80000 17:46 Fail
160000 44:21 Fail

Cluster with 20 workers
10000 04:08 00:32
20000 05:40 01:12
40000 06:13 02:56
80000 12:55 Fail
160000 25:00 Fail

Figure 8: Average iteration time for FFNN learning, using various
CPU cluster and hidden layer sizes.

σ: selection. There are other operator types, but those never pro-
duce/process frame IO. Examining the plots, there are two obvious
differences. First, the min-cut produces fewer and larger frames,
as fewer frames mean fewer edges to cut. Second, in almost every
case, the weight-optimized cutter chooses to cut across the output
from operations that have multiple consumers. There are only very
few exceptions to this (the projection in Frame 1 whose output is
consumed by frame 10, and the aggregation in Frame 18 whose out-
put is consumed by Frame 19). This is desirable, as explained in
Section 6.3, with multiple consumers of an operation’s output, only
one can be pipelined, and the rest must be materialized. Hence it is
often costless to cut across such edges.

FFNN Learning. On the CPU clusters (Figure 8), the RDBMS was
slower than TensorFlow in most cases, but it scaled well, whereas
TensorFlow crashed (due to memory problems) on a problem size
of larger than 40,000 hidden neurons.

Micro-benchmarks showed that for the 40,000 hidden neuron
problem, all of the matrix operations required for an iteration of
FFNN learning took 6 minutes, 17 seconds on a single machine.
Assuming a perfect speedup, on five machines, learning should take
just 1:15 per iteration. However, the RDBMS took 8:30, and Ten-
sorFlow took 9:02. This shows that both systems incur significant
overhead, at least at such a large model size. SimSQL, in particu-
lar, requires a total of 61 seconds per FFNN iteration just starting
up and tearing down Hadoop jobs. As the system uses Hadoop,
each intermediate result that cannot be pipelined must be written to
disk, causing a significant amount of IO. A faster database could
likely lower this overhead significantly.

On a GPU (Figure 9) TensorFlow was very fast, but could not
scale past 10,000 neurons. The problem is that when using a GPU,
all data in the computational graph must fit on the GPU; Tensor-
Flow is not designed to use CPU RAM as a buffer for GPU mem-
ory. The result is that past 10,000 neurons (where one weight ma-
trix is 4.8GB), GPU memory is inadequate and the system fails.

Our GPU support in SimSQL did not provide much benefit, for
a few reasons. First, the AWS GPU machines do not have attached
storage, which means that moving to GPU machines leads to all

831



FFNN
Hidden Layer RDBMS RDBMS TensorFlow

Size (CPU) (GPU) (GPU)
$3 per hour budget

10000 04:50 06:25 00:24
20000 07:07 07:12 Fail
40000 11:52 11:48 Fail
80000 16:30 Fail Fail

160000 Fail Fail Fail
$7 per hour budget

10000 04:53 04:58 00:15
20000 05:54 06:08 Fail
40000 09:32 08:26 Fail
80000 12:03 17:50 Fail

160000 Fail Fail Fail
$15 per hour budget

10000 05:12 5:00 00:12
20000 05:36 06:30 Fail
40000 09:08 08:39 Fail
80000 12:24 12:20 Fail

160000 39:40 Fail Fail

Figure 9: Average iteration time for FFNN learning, maximizing
performance at a specific dollar cost.

Word2Vec
Embedding Dimensions RDBMS TensorFlow

100 00:16:43 (00:01:59) 00:08:03
1000 00:17:05 (00:01:53) 01:14:58

10000 00:29:18 (00:01:53) Fail

Figure 10: Per iteration running time for Word2Vec. The time in
parens (for the RDBMS) is the time required to execute the code
that generate each batch.

of the disk read/writes incurred by Hadoop happening over net-
work attached storage (compare with CPU hardware, which had a
fast, attached solid-state drive). Second, as discussed above, Sim-
SQL’s overhead beyond pure CPU time for matrix operations is
high enough that reducing the matrix time further using a GPU was
ineffective.

Word2Vec and LDA Learning. While FFNN learning plays to
TensorFlow’s strengths, the system was at a disadvantage for these
learning problems compared to an RDBMS. Both have very large
models. Word2Vec has two matrices of size 106×d for embedding
dimensionality d; for d = 104, this is 80GB in size. To imple-
ment negative sampling (which avoids updating all of the weights
in this matrix), we need to sample 64 negative words per word pair
to process a document (consisting of about 1240 word pairs) . Each
of these 79 thousands of samples per document generates a sepa-
rate request to the TensorFlow parameter server, where the param-
eter server extracts a column from a large weight matrix. These
requests are very expensive in TensorFlow, making it slow. In con-
trast, the RDBMS implementation simply joins the large weight
matrix (stored as a table of column vectors) with the 79 thousand
requested samples, which is fast.

A similar phenomenon happens in LDA learning. It is necessary
to store, on a parameter server, information about how all of the
words in all of the documents are assigned to topics. This informa-
tion must be requested during learning. Again, these requests are
very expensive. SimSQL handles these requests in bulk, via joins.

Collapsed LDA
Number of Topics RDBMS TensorFlow Spark

1000 00:06:25 00:05:06 00:00:39
5000 00:06:54 00:25:22 00:03:03

10000 00:07:05 00:52:35 00:06:39
50000 00:08:32 04:51:51 00:55:27
100000 00:09:58 Fail 01:42:35

Figure 11: Average sub-step runtime of collapsed LDA on 10 ma-
chines with varied numbers of topics. Format is HH:MM:SS.

FFNN Word2Vec LDA
RDBMS SQL 206 140 135
RDBMS C++ 324 334 641
RDBMS total 530 474 776
TensorFlow Python 331 196 227
Spark Java NA NA 424

Figure 12: Source lines of source code for each of the implemen-
tations.

8. RELATED WORK
Distributed learning systems. The parameter server architecture
[49, 38] was proposed to provide scalable, parallel training for ma-
chine learning models. A parameter server consists of two compo-
nents: a parameter server (or key-value store) and a set of workers
who repeatedly access and update the model parameters.

DistBelief [26] is a framework that targets on training large, deep
neural networks on a number of machines. It utilizes a parameter-
server-like architecture, where the model parallelism is enabled
by distributing the nodes of a neural network across different ma-
chines. While the efficacy of this architecture was tested on two op-
timization algorithms (Downpour SGD and Sandblaster L-BFGS),
it is unclear precisely what support DistBelief provides for declar-
ative or automated model parallelism; for example, the DistBelief
paper did not describe how the matrix-matrix multiplication needed
to compute activations is implemented if the two matrices are par-
titioned across a set of machines (as [26] implied).

Tensorflow [10, 9] utilizes a similar strategy. Although it pro-
vides some functions (e.g., tf.nn.embedding_lookup) that
allow parallel model updates (this function is used in Word2Vec),
support for more complex parallel model updates is limited. For
example, TensorFlow does not supply a distributed matrix-matrix
multiplication. We note that either of these system could supply
a distributed matrix multiplication as a library call—there is noth-
ing preventing the use of a tool such as ScaLAPACK [15] in either
system—but this is a very different approach than the sort of end-
to-end optimizable computations described in this paper.

Project Adam [23] applies a similar architecture for use in learn-
ing convolutional neural networks. The models are partitioned ver-
tically across a set of workers, where fully-connected layers and
the convolutional layers are separated. It is unclear that what sup-
port Project Adam supplies for computation over very large sets of
weights.

MXNet [22] is anther recent system that employs a parameter
server to train neural networks. The authors of MXNet claim the
system supports model parallelism. However, its model parallelism
support is similar to TensorFlow. Complex, model-parallel compu-
tations require using low-level APIs and manual management of
the computations and communications.

Petuum [50] is a framework that provides data parallelism and
(its authors claim) model parallelism support for large-scale ma-

832



Frame 0 (14 ops)

Frame 1 (27 ops)

Frame 2 (14 ops)

Frame 3 (27 ops)

Frame 4 (14 ops)

Frame 5 (14 ops) Frame 6 (14 ops)

Frame 7 (14 ops)

Frame 8 (14 ops)

Frame 9 (14 ops)

Frame 10 (13 ops)

Frame 11 (14 ops)

Frame 12 (28 ops)

Frame 13 (60 ops)

Frame 14 (39 ops)

Frame 15 (20 ops)

Frame 16 (20 ops)

Frame 17 (20 ops)

Frame 18 (189 ops)

Frame 19 (26 ops)

Projection

Scalar

Scalar

Projection

Scalar

Scalar

Projection

Scalar

Scalar

Projection

Scalar

Scalar

Projection

Scalar

Scalar

Projection

Scalar

Scalar

Projection

Scalar

Scalar

Projection

Scalar

Scalar

Projected

Scalar

Scalar

Scalar

Projected

Scalar

Scalar

Scalar

Aggregation

Scalar

Projection

Scalar

Scalar

Scalar

Projection

Scalar

Scalar

Scalar

Projection

Scalar

Scalar

Scalar

Aggregation

Scalar

Scalar

Projection

Scalar

Scalar

Projection

Scalar

Scalar

Projection

Scalar

Scalar

Projection

Scalar

Scalar

Aggregation Scalar

13 ops
27 ops

14 ops

14 ops 14 ops

28 ops

14 ops

14 ops14 ops
14 ops 60 ops

20 ops

20 ops

14 ops

27 ops 189 ops
26 ops

20 ops

39 ops

Weight-optimized

Frame 0 (12 ops)

Frame 1 (7 ops)

Frame 2 (16 ops)

Frame 3 (24 ops)

Frame 4 (24 ops)

Frame 5 (186 ops)

Frame 6 (11 ops)

Frame 7 (7 ops)

Frame 8 (96 ops)

Frame 9 (181 ops)

node_999998

Scalar

Scalar

Join

Selection

Join Scalar

Scalar

Projection

Scalar

Join

Selection

Join

Selection

Selection

Selection

Projection

Scalar

Projection Scalar

Scalar

Join

Selection

Projection Scalar

Projection

Scalar

Scalar

Projection

Scalar

Projection

Scalar

Projection

Scalar

Projection

Scalar

Projection

Scalar

Join

Join

Join

Selection

Scalar

Projection

Scalar

Join

Selection

Projection

Scalar

Projection

Scalar

Projection

Scalar

96 ops

7 ops

11 ops
24 ops

16 ops

7 ops

12 ops

24 ops

181 ops

186 ops

Min-cut

Figure 13: Frames created from one iteration of FFNN learning
using the min-cut and weight-optimized GQAP formulations.

chine learning. Follow-on work by Zhang [53] considered speed-
ing Pentuum for distributed training, using ideas such as sending
weights as soon as they are updated during backpropagation. It is
unclear, however, how Petuum could handle the large feed-forward
network tested in this paper.

There are several other systems providing model parallelism [36].
AMPNet [28] adds control flow to the execution graph, and sup-
ports dynamic control flow by introducing a well-defined interme-
diate representation. This framework proves to be efficacy for asyn-
chronous model-parallel training by the experiments. Coates et al.
[24] built a distributed system on a cluster of GPUs based on the
COTS HPC technology. This system achieved model parallelism
by carefully assigning the partial computations of the whole model
to each GPU, and utilized MPI for the communication.

We have built multi-dimensional-recursion implementation on
top of SimSQL [18], which is a distributed analytics database sys-

tem. The system supports linear algebra computations [39]. We ex-
tended SimSQL to enable multi-dimensional recursion, and mod-
ified its optimizer to make it feasible for large execution graphs.
SAP HANA [27] and Hyper [35, 44] are two in-memory database
systems that support both online transaction processing (OLTP) and
online analytical processing (OLAP). Some papers [40, 45] show
that relational database systems can provide effective support for
big data analytics and machine learning.

In addition to database systems, many dataflow systems have
been developed to support distributed, large-scale data analysis and
machine learning, such as Apache Spark [52], Apache SystemML
[29], Apache Flink [19], and so on. Both Spark and SystemML
provide native libraries for deep learning. Moreover, there is a
set of deep learning frameworks running on top of Spark, such as
Deeplearning4j [8] and BigDL [1].

Special-purpose deep learning tools. Theano [14] is a Python
library that facilitates computations on multi-dimensional arrays,
which provides an easy support for writing deep learning algo-
rithms. Caffe [33] is one of the earliest specialized frameworks
for deep learning, and mainly focusing on applications to computer
vision. Caffe2 [2] extends Caffe to provide a better support for
large-scale, distributed model training, as well as the support for
model learning on mobile devices. Torch [25] is a computational
framework in which users can interact with it with the language
Lua. Its Python version, PyTorch [7], applies dynamic computa-
tion graphs. Similar ideas are adopted by DyNet [43] and Chainer
[3] as well. The Microsoft Cognitive Toolkit (previously known
as CNTK) [51] is a toolkit that can help people use, or build their
own deep learning architectures. In addition, higher level APIs are
developed on top of those aforementioned frameworks to provide
more flexibility for programmers. For example, Keras [6] supports
TensorFlow and Theano as its backend, and Gluon [4] is run on
MXNet. Theano does support putting independent computations
on different GPUs, but it does not provide a complete framework
for developing general-purpose model parallel computations.

9. CONCLUSIONS AND FUTURE WORK
We have argued that a parallel/distributed RDBMS has promise

as a backend for large scale ML computations. We have considered
unrolling recursive computations into a monolithic compute plan,
which is broken into frames that are optimized and executed inde-
pendently. We have expressed the frame partitioning problem as an
instance of the GQAP.

We have shown that when implemented on top of an RDBMS,
these ideas result in ML computations that are model parallel—
that is, able to handle large and complex models that need to be
distributed across machines or compute units. We have shown
that model parallel, RDBMS-based ML computations scale well
compared to TensorFlow, and that for Word2Vec and LDA, the
RDBMS-based computations can be faster than TensorFlow. The
RDBMS was slower than TensorFlow for GPU-based implementa-
tions of neural networks, however. Though some of this discrep-
ancy was due to the fact that we implemented our ideas on top of
a research prototype, high-latency Java/Hadoop system, reducing
that gap is an attractive target for future work.

10. ACKNOWLEDGMENTS
Thanks to anonymous reviewers for their insightful feedbacks on

earlier versions of this paper. Work presented in this paper has been
supported by the DARPA MUSE program, award No. FA8750-14-
2-0270 and by the NSF under grant Nos. 1355998 and 1409543.

833



11. REFERENCES
[1] Bigdl.

https://bigdl-project.github.io/master/,
2017. Accessed Sep 1, 2018.

[2] Caffe2. https://caffe2.ai, 2017. Accessed Sep 1,
2018.

[3] Chainerj. https://chainer.org/, 2017. Accessed Sep
1, 2018.

[4] Gluon.
https://github.com/gluon-api/gluon-api,
2017. Accessed Sep 1, 2018.

[5] Introducing apache spark datasets.
https://databricks.com/blog/2016/01/04/
introducing-apache-spark-datasets.html,
2017. Accessed Sep 1, 2018.

[6] Keras. https://keras.io/, 2017. Accessed Sep 1,
2018.

[7] Pytorch. http://pytorch.org, 2017. Accessed Sep 1,
2018.

[8] Deeplearning4j. https://deeplearning4j.org/,
2018. Accessed Sep 1, 2018.

[9] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen,
C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin,
S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard,
Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg,
D. Mane, R. Monga, S. Moore, D. Murray, C. Olah,
M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar,
P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viegas,
O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and
X. Zheng. TensorFlow: Large-Scale Machine Learning on
Heterogeneous Distributed Systems. arXiv preprint
arXiv:1603.04467, 2016.

[10] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean,
M. Devin, S. Ghemawat, G. Irving, M. Isard, M. Kudlur,
J. Levenberg, R. Monga, S. Moore, D. G. Murray, B. Steiner,
P. Tucker, V. Vasudevan, P. Warden, M. Wicke, Y. Yu, and
X. Zheng. Tensorflow: A system for large-scale machine
learning. In OSDI, pages 265–283, 2016.

[11] A. V. Aho and J. D. Ullman. The universality of data retrieval
languages. In POPL, pages 110–119, 1979.

[12] N. Alon, Y. Matias, and M. Szegedy. The space complexity
of approximating the frequency moments. In STOC, pages
20–29, 1996.

[13] M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu, J. K.
Bradley, X. Meng, T. Kaftan, M. J. Franklin, A. Ghodsi, and
M. Zaharia. Spark sql: Relational data processing in spark.
SIGMOD, pages 1383–1394, 2015.

[14] J. Bergstra, F. Bastien, O. Breuleux, P. Lamblin, R. Pascanu,
O. Delalleau, G. Desjardins, D. Warde-Farley, I. J.
Goodfellow, A. Bergeron, and Y. Bengio. Theano: Deep
learning on gpus with python. In NIPS, 2011.

[15] L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo,
J. Demmel, I. Dhillon, J. Dongarra, S. Hammarling,
G. Henry, A. Petitet, et al. ScaLAPACK users’ guide,
volume 4. 1997.

[16] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet
allocation. In NIPS, 2003.

[17] R. Burkard, T. Bönniger, G. Katzakidis, and U. Derigs.
Assignment and Matching Problems: Solution Methods with
FORTRAN-Programs. Lecture Notes in Economics and
Mathematical Systems. 2013.

[18] Z. Cai, Z. Vagena, L. Perez, S. Arumugam, P. J. Haas, and
C. Jermaine. Simulation of database-valued markov chains
using simsql. In SIGMOD, pages 637–648, 2013.

[19] P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi,
and K. Tzoumas. Apache flinkTM: Stream and batch
processing in a single engine. IEEE Data Eng. Bull.,
38:28–38, 2015.

[20] S. Chaudhuri. An overview of query optimization in
relational systems. In PODS, pages 34–43, 1998.

[21] J. Chen, X. Pan, R. Monga, S. Bengio, and R. Jozefowicz.
Revisiting distributed synchronous sgd. arXiv preprint
arXiv:1604.00981, 2016.

[22] T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao,
B. Xu, C. Zhang, and Z. Zhang. MXNet: A Flexible and
Efficient Machine Learning Library for Heterogeneous
Distributed Systems. arXiv preprint arXiv:1512.01274, 2015.

[23] T. Chilimbi, Y. Suzue, J. Apacible, and K. Kalyanaraman.
Project adam: Building an efficient and scalable deep
learning training system. In OSDI, pages 571–582, 2014.

[24] A. Coates, B. Huval, T. Wang, D. J. Wu, B. Catanzaro, and
A. Y. Ng. Deep learning with cots hpc systems. In ICML,
2013.

[25] R. Collobert, K. Kavukcuoglu, and C. Farabet. Torch7: A
matlab-like environment for machine learning. In NIPS,
2011.

[26] J. Dean, G. S. Corrado, R. Monga, K. Chen, M. Devin, Q. V.
Le, M. Z. Mao, M. Ranzato, A. Senior, P. Tucker, K. Yang,
and A. Y. Ng. Large scale distributed deep networks. In
NIPS, pages 1223–1231, 2012.

[27] F. Färber, S. K. Cha, J. Primsch, C. Bornhövd, S. Sigg, and
W. Lehner. Sap hana database: Data management for modern
business applications. SIGMOD, 40(4):45–51, 2012.

[28] A. L. Gaunt, M. A. Johnson, M. Riechert, D. Tarlow,
R. Tomioka, D. Vytiniotis, and S. Webster. AMPNet:
Asynchronous Model-Parallel Training for Dynamic Neural
Networks. arXiv preprint arXiv:1705.09786, 2017.

[29] A. Ghoting, R. Krishnamurthy, E. Pednault, B. Reinwald,
V. Sindhwani, S. Tatikonda, Y. Tian, and S. Vaithyanathan.
SystemML: Declarative machine learning on mapreduce. In
ICDE, pages 231–242, 2011.

[30] P. Goyal, P. Dollár, R. Girshick, P. Noordhuis,
L. Wesolowski, A. Kyrola, A. Tulloch, Y. Jia, and K. He.
Accurate, large minibatch sgd: training imagenet in 1 hour.
arXiv preprint arXiv:1706.02677, 2017.

[31] W. D. Hillis and G. L. Steele, Jr. Data parallel algorithms.
CACM, 29(12):1170–1183, 1986.

[32] K. Hornik, M. Stinchcombe, and H. White. Multilayer
feedforward networks are universal approximators. Neural
Netw, 2(5):359–366, 1989.

[33] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long,
R. Girshick, S. Guadarrama, and T. Darrell. Caffe:
Convolutional architecture for fast feature embedding. In
MM, pages 675–678, 2014.

[34] N. Kabra and D. J. DeWitt. Efficient mid-query
re-optimization of sub-optimal query execution plans.
volume 27, pages 106–117, 1998.

[35] A. Kemper and T. Neumann. Hyper: A hybrid oltp&olap
main memory database system based on virtual memory
snapshots. In ICDE, pages 195–206, 2011.

[36] A. Krizhevsky. One weird trick for parallelizing
convolutional neural networks. arXiv preprint
arXiv:1404.5997, 2014.

834

https://bigdl-project.github.io/master/
https://caffe2.ai
https://chainer.org/
https://github.com/gluon-api/gluon-api
https://databricks.com/blog/2016/01/04/introducing-apache-spark-datasets.html
https://databricks.com/blog/2016/01/04/introducing-apache-spark-datasets.html
https://keras.io/
http://pytorch.org
https://deeplearning4j.org/


[37] C.-G. Lee and Z. Ma. The generalized quadratic assignment
problem. 2004.

[38] M. Li, D. G. Andersen, J. W. Park, A. J. Smola, A. Ahmed,
V. Josifovski, J. Long, E. J. Shekita, and B.-Y. Su. Scaling
distributed machine learning with the parameter server. In
OSDI, pages 583–598, 2014.

[39] S. Luo, Z. J. Gao, M. Gubanov, L. L. Perez, and C. Jermaine.
Scalable linear algebra on a relational database system. In
ICDE, pages 523–534, 2017.

[40] N. May, W. Lehner, S. H. P., N. Maheshwari, C. Müller,
S. Chowdhuri, and A. K. Goel. SAP HANA - from relational
OLAP database to big data infrastructure. In EDBT, pages
581–592, 2015.

[41] T. Mikolov, K. Chen, G. S. Corrado, and J. Dean. Efficient
estimation of word representations in vector space. CoRR,
abs/1301.3781, 2013.

[42] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and
J. Dean. Distributed representations of words and phrases
and their compositionality. In NIPS, pages 3111–3119. 2013.

[43] G. Neubig, C. Dyer, Y. Goldberg, A. Matthews, W. Ammar,
A. Anastasopoulos, M. Ballesteros, D. Chiang, D. Clothiaux,
T. Cohn, K. Duh, M. Faruqui, C. Gan, D. Garrette, Y. Ji,
L. Kong, A. Kuncoro, G. Kumar, C. Malaviya, P. Michel,
Y. Oda, M. Richardson, N. Saphra, S. Swayamdipta, and
P. Yin. DyNet: The Dynamic Neural Network Toolkit. arXiv
preprint arXiv:1701.03980, 2017.

[44] T. Neumann, T. Mühlbauer, and A. Kemper. Fast serializable
multi-version concurrency control for main-memory
database systems. In SIGMOD, pages 677–689, 2015.

[45] L. Passing, M. Then, N. Hubig, H. Lang, M. Schreier,
S. Günnemann, A. Kemper, and T. Neumann. SQL- and

operator-centric data analytics in relational main-memory
databases. In EDBT, pages 84–95, 2017.

[46] B. Recht, C. Re, S. Wright, and F. Niu. Hogwild: A lock-free
approach to parallelizing stochastic gradient descent. In
NIPS, pages 693–701, 2011.

[47] S. Ruder. An overview of gradient descent optimization
algorithms. arXiv preprint arXiv:1609.04747, 2016.

[48] N. Shazeer, A. Mirhoseini, K. Maziarz, A. Davis, Q. V. Le,
G. E. Hinton, and J. Dean. Outrageously large neural
networks: The sparsely-gated mixture-of-experts layer.
CoRR, abs/1701.06538, 2017.

[49] A. Smola and S. Narayanamurthy. An architecture for
parallel topic models. PVLDB, 3(1-2):703–710, 2010.

[50] E. P. Xing, Q. Ho, W. Dai, J. K. Kim, J. Wei, S. Lee,
X. Zheng, P. Xie, A. Kumar, and Y. Yu. Petuum: A new
platform for distributed machine learning on big data. KDD,
1(2):49–67, 2015.

[51] D. Yu, A. Eversole, M. Seltzer, K. Yao, O. Kuchaiev,
Y. Zhang, F. Seide, Z. Huang, B. Guenter, H. Wang,
J. Droppo, G. Zweig, C. Rossbach, J. Gao, A. Stolcke,
J. Currey, M. Slaney, G. Chen, A. Agarwal, C. Basoglu,
M. Padmilac, A. Kamenev, V. Ivanov, S. Cypher,
H. Parthasarathi, B. Mitra, B. Peng, and X. Huang. An
introduction to computational networks and the
computational network toolkit. Technical report, 2014.

[52] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and
I. Stoica. Spark: cluster computing with working sets. In
HotCloud, pages 1–10, 2010.

[53] H. Zhang, Z. Hu, J. Wei, P. Xie, G. Kim, Q. Ho, and E. Xing.
Poseidon: A system architecture for efficient gpu-based deep
learning on multiple machines. arXiv preprint
arXiv:1512.06216, 2015.

835


	introduction
	Parallelism in ML
	Deep Learning on an RDBMS
	A Simple Deep Learner
	A Mixed Imperative/Declarative Approach
	So, What's the Catch?

	Extensions to SQL
	The Extensions
	Learning Using Recursive SQL

	Executing Recursive Plans
	Frame-Based Execution
	Heuristic vs. Full Unrolling
	Plan Unrolling

	Plan Decomposition
	Intuition
	Quadratic Assignment Formulation
	Cost Model
	Heuristic Solution

	Experiments
	Overview
	Learning Algorithms
	Results
	Discussion

	Related Work
	Conclusions and Future Work
	Acknowledgments
	References

