
DASH: Database Shadowing for Mobile DBMS

Youjip Won1 Sundoo Kim2 Juseong Yun2 Dam Quang Tuan2 Jiwon Seo2

1KAIST, Daejeon, Korea 2Hanyang University, Seoul, Korea

ywon@kaist.ac.kr {sksioi12|yjs05|damquangtuan|seojiwon}@hanyang.ac.kr

ABSTRACT
In this work, we propose Database Shadowing, or DASH,

which is a new crash recovery technique for SQLite DBMS.
DASH is a hybrid mixture of classical shadow paging and
logging. DASH addresses four major issues in the current
SQLite journal modes: the performance and write amplifi-
cation issues of the rollback mode and the storage space re-
quirement and tail latency issues of the WAL mode. DASH
exploits two unique characteristics of SQLite: the database
files are small and the transactions are entirely serialized.
DASH consists of three key ingredients Aggregate Update,
Atomic Exchange and Version Reset. Aggregate Update elim-
inates the redundant write overhead and the requirement to
maintain multiple snapshots both of which are inherent in
the out-of-place update. Atomic Exchange resolves the over-
head of updating the locations of individual database pages
exploiting order-preserving nature of the metadata update
operation in modern filesystem. Version Reset makes the
result of the Atomic Exchange durable without relying on
expensive filesystem journaling. The salient aspect of DASH
lies in its simplicity and compatibility with the legacy. DASH
does not require any modifications in the underlying filesys-
tem or the database organization. It requires only 451 LOC
to implement. In Cyclomatic Complexity score, which rep-
resents software complexity, DASH renders 33% lower (sim-
pler) mark than PERSIST and WAL modes of SQLite. We
implement DASH for SQLite on Android and extensively
evaluate it on widely used smartphone devices. DASH yields
4× performance gain over PERSIST mode (default journal-
ing mode). Compared to WAL mode (the fastest journaling
mode), DASH uses only 2.5% of the storage space on aver-
age. The transaction latency of DASH at 99.9% is one fourth
of that of WAL mode.

PVLDB Reference Format:
Youjip Won, Sundoo Kim, Juseong Yun, Dam Quang Tuan, Jiwon
Seo. Database Shadowing Revisited: From A Mobile Perspective.
PVLDB, 12(7): 793-806, 2019.
DOI: https://doi.org/10.14778/3317315.3317321

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 12, No. 7
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3317315.3317321

1. INTRODUCTION
Crash recovery is a vital part of DBMS design. Algorithms

for crash recovery range from naive full-file shadowing [15]
to the sophisticated ARIES protocol [38]. Most enterprise
DBMS’s, e.g., IBM DB2, Informix, Micrsoft SQL and Oracle
8, use ARIES or its variants for efficient concurrency control.

SQLite is one of the most widely used DBMS’s. It is
deployed on nearly all computing platform such as smart-
phones (e.g, Android, Tizen, Firefox, and iPhone [52]), dis-
tributed filesystems (e.g., Ceph [58] and Gluster filesys-
tem [1]), wearable devices (e.g., smart watch [4, 21]), and
automobiles [19, 55]. As a library-based embedded DBMS,
SQLite deliberately adopts a basic transaction management
and crash recovery scheme. SQLite executes the transac-
tions in a serial manner yielding no-steal/force buffer man-
agement. It uses page-granularity physical logging for crash
recovery. These two design choices make the SQLite trans-
actions suffer from excessive IO overhead; the insertion of a
single 100 Byte record in PERSIST mode with the FULL
SYNC option (the default option in Android Marshmal-
low) incurs five fdatasync() invocations [30] with 40 KB of
writes to the storage (Figure 1). Despite its popularity and
significance in all ranges of modern computing platforms, we
argue that SQLite has not received proper attention from
researchers and practitioners and leaves much to be desired
from an IO efficiency perspective.

The inefficiency of IO in SQLite transactions is caused
by the un-orchestrated interaction between SQLite and the
EXT4 file system. Many studies have addressed this issue [23,
27, 30, 40, 49]. Each of these works has its own drawback,
which bars itself from practical deployment in the com-
modity platform, e.g., space overhead [30], garbage collec-
tion overhead [27], overhead of redundant write [49] or non-
existent hardware platform [26, 40].

In this work, we propose a new crash recovery technique,
called Database Shadowing or DASH for short, for SQLite.
We observe that the modern mobile DBMS exhibits unique
characteristics. The mobile DBMS is very small (typically
less than 100 KB), accesses to the mobile DBMS are en-
tirely serialized, and consecutive transactions update many
pages in common. Furthermore, in many cases a DBMS is
exclusively opened by a dedicated application. These some-
what evident findings have profound implication in design-
ing a crash recovery routine for SQLite. State of art recovery
routines are mostly built upon the foundation that the data-
base file is large (a few hundred MB at least) and there are
multiple concurrent transactions with complicated depen-
dencies among them. Both of these characteristics make full

793

file shadowing and shadowing paging [32, 62] an infeasible
choice for crash recovery in modern DBMS design, the main
reason being the excessive space overhead, the overhead of
redundant writes and the overhead of maintaining depen-
dencies among the concurrent transactions.

Based upon our observation, we establish three principles
in designing a crash recovery scheme for SQLite. First, the
space overhead of maintaining an extra copy of a database
file is not substantial. Second, there are no concurrent trans-
actions. Third, the filesystem guarantees that the updated
filesystem metadata are made durable in the order in which
they are updated.

DASH maintains a shadow file for each database file. The
shadow file in DASH represents the preceding state of the
associated database file, i.e., the one before the the most
recent transaction was applied. DASH consists of three key
technical ingredients: Aggregate Update, Atomic Exchange
and Version Reset. In applying a transaction, DASH ag-
gregates the dirty pages updated by the most recent two
transactions and applies them to the shadow file as if they
are from a single transaction. We call this method Aggre-
gate Update. After an Aggregate Update, the DBMS atom-
ically switches the two files. Atomic Exchange guarantees
the atomicity of the set of rename()’s without explicitly en-
forcing the order in which the results of its rename()’s are
made durable. Atomic Exchange dispenses with expensive
order-preserving primitives such as fdatasync() by exploit-
ing the order-preserving aspect of the metadata operation
in modern filesystems [28, 35, 43, 53]. Version Reset guaran-
tees the durability of a transaction without invoking bulky
filesystem journaling.

Unlike full file shadowing, the database file and the shadow
file are not identical in DASH. They differ by those pages
updated by the most recently committed transaction. Un-
like shadow paging [39], DASH updates the database pages
in the shadow file in an in-place manner. In-place update of
DASH avoids the overhead of maintaining shadow copies of
the database pages in a database file [6, 27]. DASH can be
thought as file-granularity shadow paging. It is designed to
be free from the inherent drawbacks of full file shadowing
and shadow paging. DASH eliminates the redundant writes
overhead in full file shadowing with “Aggregate Update”,
mitigates the overhead of keeping track of the updated loca-
tions of the database pages in shadow paging with “Atomic
Exchange”, and minimizes the overhead of committing a
transaction with “Version Reset”. The contribution of Data-
base Shadowing can be summarized as follows.

• Aggregate Update, Atomic Exchange and Version Reset
collectively reinvent shadow paging and full file shadow-
ing into a new crash recovery scheme, called Database
Shadowing. This work demonstrates that Database Shad-
owing can be a very effective means of crash recovery in
the mobile context.

• Database Shadowing effectively relieves the order preserv-
ing overhead of rollback journaling of SQLite. Exploit-
ing the limited order-preserving nature of the filesystem,
Database Shadowing enforces the storage order of the
metadata update operations without calling fdatasync().

• DASH exhibits 5× and 30% performance improvement
against PERSIST mode (default) and a WAL mode (the
fastest mode) in SQLite, respectively. It uses as few as
two fdatasync() calls whereas PERSIST mode issues five

Table 1: Comparison of journal modes, �: very good, #:
good, ×: poor (PST: PERSIST mode, WAL: WAL mode,
DASH: SHADOW mode, Thput: transaction throughput,
Tlat: average transaction latency, TTlat: tail transaction la-
tency, Trcvy: recovery time)

mode Thput Tlat TTlat Trcvy IO Vol space

PST × # # # × �
WAL � # × × # ×
DASH � � � # � #

fdatasync() calls in a transaction. DASH uses only 2.5%
of the storage space of that of WAL mode. It reduces the
tail latency of an updated transaction at 99.9% by one
fourth against WAL mode.

The beauty of DASH is its simplicity. It is implemented
with only 451 LOC. DASH does not require any modifica-
tions in the underlying filesystem or the database organiza-
tion. It does not require any new hardware features, either.
The only significant change brought by DASH is its use of
a 256 bytes of unused space at the tail end of the data-
base header page in SQLite. Database Shadowing can be
immediately deployed on the commodity platform. Table 1
summarizes the comparison of Database Shadowing against
PERSIST mode and WAL mode journaling.

The remainder of the paper is organized as follows. Sec-
tion 2 explains background. Section 3 explains the charac-
teristics of SQLite. Section 4 provides an overview of DASH
and its key components. Section 5 explains the details of the
implementation. Section 6 explains the optimization tech-
nique for the exclusive connection. In section 7, we evaluate
DASH and compare it with the existing journaling modes of
SQLite. Section 8 summarizes the preceding works. Finally,
section 9 concludes the paper.

2. BACKGROUND

2.1 Synopsis
SQLite is a library-based DBMS. It accounts for more

than 70% of the IOs on the Android platform [23]. The An-
droid Runtime consists of essential libraries such as SQLite,
libc, and various media libraries. At its inception, Android
smartphones used yaffs and jffs to manage the FTL-
less Flash storage [29]. Recent smartphone products use a
generic filesystem such as EXT4 or F2FS to manage Flash
storage.

From a concurrency control and crash recovery viewpoint,
SQLite must handle similar issues as a distributed DBMS.
Each SQLite instance runs in a separate and exclusive ad-
dress space. In accessing the shared database, there is no
communication capability among the SQLite instances or
any coordinating entity. To control concurrent accesses, SQ-
Lite makes the result of a transaction globally visible after
the transaction completes by synchronizing the result of the
transaction to the database file. Multiple instances of SQLite
that share the same database file coordinate their concurrent
activities by storing and retrieving the state of the database
to and from storage.

SQLite is carefully designed not to rely on OS-specific
features other than essential system calls such as read(),
write() and fdatasync(). The highly portable, OS-inde-
pendent and filesyste-agnostic, design philosophy of SQLite

794

was successful in quickly making itself one of the most widely
deployed DBMSs. However, this design decision makes SQL-
ite subject to excessive IO behavior [23] and suboptimal per-
formance. For concurrency control, SQLite uses no-steal/force
buffer management with strict serial transaction execution.
For crash recovery, SQLite uses page granularity physical
logging.

2.2 Concurrency Control
SQLite executes the transactions in a serial fashion. A

process acquires an exclusive lock on the database file before
starting a transaction and releases the lock after the trans-
action completes. Due to this serial nature, SQLite transac-
tions are conflict-free with one another.

In SQLite, there can be up to three different copies of a
database page: one on the storage device, another in the page
cache, and a third one in the local buffer of the associated
process. SQLite writes the updated database pages back to
the database file when the transaction finishes – force. SQ-
Lite writes the updated database pages to the database file
only after the transaction finishes – no-steal. This execution
mode is often called Autocommit mode [51]. Due to the no-
steal/force mechanism, the database pages in the page cache
are guaranteed to be up-to-date.

SQLite maintains a version number at the header of the
database file. The version number is used to determine the
validity of the database pages in its local buffer. A database
page cached in the local buffer of a process becomes obso-
lete when another process updates it. Distributed systems
use sophisticated protocols to synchronize the cache con-
tents [47, 57]. SQLite does not have this luxury. An SQLite
instance is responsible for keeping the database pages in its
local buffer up-to-date by itself. SQLite increases the version
number by one after the database file has been updated as a
result of a transaction. The updated version number is writ-
ten to the file after the transaction finishes. Before starting
a transaction, the process reads the version number of the
database file from the disk and compares it to the version
of the database file in the local buffer. If the versions differ,
SQLite re-reads the database pages from the database file
before running a transaction.

2.3 Crash Recovery
SQLite provides two types of crash recovery modes: roll-

back journaling and WAL (write-ahead-logging). In crash
recovery, SQLite recovers the system with respect to the
state retrieved from storage. It assumes that all cached con-
tents are lost when the crash occurs.

In rollback journaling, SQLite maintains undo records in
a rollback journal file. For WAL mode journaling, SQLite
maintains redo records in a WAL file. Both the rollback
journal file and WAL file consist of a journal header and
a sequence of log records. The database page size is 512
×2l byte, l = 0, . . . , 7. The default and maximum page sizes
are 4 KB and 64 KB, respectively.

In rollback journal mode, a transaction is executed in
three phases: (i) writing the un-altered database pages to
the journal file (undo-logging); (ii) updating the database
pages and writing them back to the database file (database
update); (iii) resetting the journal file (log reset). SQLite re-
sets the journal file to denote that the transaction has suc-
cessfully committed. SQLite provides three journal modes

for rollback journaling: DELETE, TRUNCATE, and PER-
SIST.

The three rollback journal modes share the first two phases
(undo-logging and database update). In the undo-logging
phase, SQLite first records the undo logs; then, it updates
the journal header with the log count and the updated data-
base version number. Undo logging and header update are
interleaved with fdatasync(). This is to ensure that the up-
dated header page is made durable only after all log blocks
reach the storage surface or are made durable. At the end
of the logging phase, SQLite flushes the updated journal
header to the disk. In the database update phase, SQLite
modifies database pages and database header page. Then,
SQLite writes the modified pages back to the database file.

The three rollback journal modes differ in how they reset
the journal file. In DELETE mode, SQLite deletes the jour-
nal file; in TRUNCATE mode, SQLite truncates the journal
file; in PERSIST mode, SQLite fills the journal header with
0’s. While the difference in the three modes appears subtle,
the difference has critical implications for the transaction
performance [30]. In this work, we only address the details
of PERSIST mode. PERSIST mode is the default journal
mode in recent versions of the Android platform1 and the
fastest one among the three rollback journal modes [12].

In WAL mode, SQLite logs the updated database pages
to the WAL file. The logged pages are checkpointed when
the number of pages in the WAL file reaches a predefined
threshold2 or when the application terminates. After the
checkpoint, SQLite resets the WAL file so that the incoming
logs are placed from the beginning of the WAL file.

Assume that we insert a single 100 byte record. SQL-
ite updates two pages in the database file; the database
header page and the database node. Figure 1 illustrates the

 10

 15

 20

 25

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

L
B

A
 (

x
1

0
6
)

Time (msec)

.journal .db EXT4 journal

fd() dir fd() fd() fd() fd()

4 KB (JH) 4 KB (JH)8 KB (DB)

8 KB (JL)

12 KB (EXTJ)

Figure 1: Block trace when inserting a 100 Byte record
in SQLite (PERSIST mode). JH: journal header; JL: jour-
nal log; EXTJ: filesystem journal transaction; DB: database.
The dotted lines denote the invocation of fdatasync().

block trace when inserting a single database record in PER-
SIST mode. In the logging phase, SQLite writes the jour-
nal header, two log pages and the updated journal header
again, four pages in all. In the database update phase, SQ-
Lite write two pages to the database file. In the log reset
phase, SQLite writes the journal header page. Each of the
three phases is followed by the fdatsync() to make the re-
sult of the updates durable. There is one fdatasync() call
within the logging phase, which interleaves the log writes
and journal header write. There is another fdatasync() to
synchronize the directory that holds the journal file. Calling

1since Android 4.1.1
2The default is 1000 pages.

795

fdatasync() on the directory, the EXT4 filesystem com-
mits the journal transaction. An EXT4 journal transaction
consists of the journal header, one or more log pages and
the journal commit block. An EXT4 journal transaction is
at least 12 KB. In PERSIST mode, inserting a 100 Byte
record amplifies to 40 KB IO in total with five fdatasync()

calls (Figure 1) in total.
In WAL mode, SQLite appends the two pages to the WAL

file and calls fdatasync(). The application must reserve a
sufficiently large file to avoid frequent checkpoints. If we
assume 80 KB database file size, the associated WAL file in
its default size (4 MB) is 50× as large as the database file.

3. CHARACTERISTICS OF SQLITE DBMS
We examine the characteristics of SQLite DBMS usage.

We collected the statistics from thirteen smartphones, which
were used as the primary daily phone of the volunteers. The
lengths of the trace collection periods were 2-6 months start-
ing from Aug. 2014 across the devices. The volunteers con-
sisted of nine graduate students, three undergraduate stu-
dents and one software engineer, 40% of whom were females.
For the trace collection, we used Androtrace [31]. For our
block level IO analysis, we collected 16 million database
transactions across the smartphone devices. They were asso-
ciated with 846 database files and 211 applications. Previous
works that study the block level IO characteristics of SQL-
ite [23, 29, 40] only handle a few user applications such as
Twitter, Facebook, or Gmail. In our study, we find that the
system-initiated regular logging activities account for more
than 40% of the transactions. It is important to analyze the
IO characteristics of the system-initiated IO activities.

3.1 Database Size

 0

 50

 100

 150

 200

u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 u11 u12 u13

S
iz

e
 (

K
B

y
te

)

Figure 2: SQLite Database Sizes: The gray bar shows the
median size and the range bar on top of the gray bar shows
the 25% and 75% quantiles.

The first observation is that the database files are very
small; 80% of all database files in 13 smartphones are less
than 100 KB, and they account for 20% of the total database
size. In legacy DBMS for OLTP, a single database file size
reaches 800 GB [48]. On a cloud server, a single key-value
store reaches a few GB in size [61]. The smartphones that we
examined have as low as 16 GB of storage. The total size of
the database files that are smaller than 100 KB accounts for
0.3% of the storage capacity (16 GB). Figure 2 summarizes
the size of the database files.

3.2 Database Access
We observe three characteristics of SQLite database ac-

cesses. First, the SQLite transactions have a high duplica-
tion ratio. The duplication ratio of the transaction Tn is the
fraction of database pages updated by Tn that were updated

by Tn−1, i.e.,
|Tn∩Tn−1|
|Tn| . Figure 3 illustrates the duplication

ratio of the transactions for snet files info.db. We select
four users who use snet files info.db the most. For user

 0

 20

 40

 60

 80

 100

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
(X

<
x
)

(%
)

Duplication Ratio of a Transaction

snet_files_info.db

user 1
user 2
user 4
user 5

Figure 3: Cumulative percentage of transactions with cor-
responding duplication ratio in snet files info.db.

1, 80% of the transactions update the same database pages
as the preceding transaction. For user 4 and user 5, 90% of
the transactions share more than half of the database pages
with the preceding transaction. In the snet files info.db

database, the average duplication ratio of a transaction is
90%.

 0

 20

 40

 60

 80

 100

u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 u11 u12 u13
 0

 2

 4

 6

 8

 10

 12

%
 o

f
D

B
 T

ra
n

s
a

c
ti
o

n
s

D
B

 P
a

g
e

s
 i
n

 a
 T

x

most frequently accessed DB DB Pages

Figure 4: Fraction of transactions for the most frequently
accessed database and the average transaction size (in
pages)

Second, the database accesses are highly skewed and the
transaction sizes are small (Figure 4). We examine the most
frequently accessed database for each user and compute the
ratio of its transaction count to the total transaction count
used by all databases. In all cases, the database transac-
tions for the most frequently accessed database account for
more than 40% of the total database transactions. The most
frequently accessed databases include snet files info.db,
es0.db, accounts.db and savepoint.db. These databases
are updated by automatic system activities and not by the
user. On average, a transaction updates three to five data-
base pages. The transactions for the system security check,
snet file info.db are particularly significant [13, 25]. In
four devices, the transactions to snet files info.db ac-
count for 40% of the database transactions.

Third, on average, 24% of the database files are exclusively
used by dedicated applications.

4. DATABASE SHADOWING

4.1 Overview
Database Shadowing is designed for the following condi-

tions: (i) the database file is relatively small, so the space
overhead of maintaining a shadow copy of the database file is
not substantial, (ii) the transactions are strictly serialized so
that the DBMS does not have to maintain multiple versions
of a database page in memory to represent the dependen-
cies among the concurrent transactions and (iii) consecutive
transactions share a substantial number of database pages.

The idea of Database Shadowing is simple and straight-
forward. DASH defines a shadow file for each database file;
the roles of the shadow and database files switch on each
transaction commit. The database file contains the most re-
cent state written by the latest committed transaction Tn

796

(and all previous transactions); the shadow file contains the
state written by the previous transaction or Tn−1 (and the
previous ones). When one executes a new transaction Tn+1,
the updates are written to the shadow file with the updates
from Tn. It is called Aggregate Update. After Tn+1 commits,
the DBMS switches the database and shadow files so that
the newly designated database file represents the most re-
cent state of the database. It is called Atomic Exchange.
Figure 5 illustrates the concept of a transaction in DASH.

SQLite stores the version number at the header page of
the database file. Let us assume that the version number of
database file and shadow file are n − 1 and 0, respectively.
When a transaction successfully completes, the version num-
ber of the database file and the version number of the shadow
file are set to n and 0, respectively. At the beginning of a
new transaction Tn+1, the DBMS sets the version number
of the shadow file to n + 1, which signifies that Tn+1 is be-
ing executed. When executing transaction Tn+1, the DBMS
identifies the updated pages of preceding transaction Tn by
referring to the Global Page List (described in Section 4.2)
of the database file. The DBMS writes the pages updated
by Tn and Tn+1 to the shadow file. After that, the transac-
tion is committed by switching the two files and setting the
version number in the shadow file to 0. After the commit,
the version number of the database is n + 1. The version
numbers in the shadow and the database files are used to
check the consistency of the two files if a failure occurs.

Aggregate Update

DB

Tn Tn-1

SQLite

DnDn+1

SHD

Application

Tn

DB

SQLite

DnDn+1

SHD

Application

Atomic Exchange

SHD

SQLite

DnDn+1

DB

Application

Figure 5: Transaction in Database Shadowing: a Concept

DASH is a hybrid mixture of shadow paging, full file shad-
owing and logging [7, 39]. Most DBMS’s use logging [18]
rather than shadow paging. The overhead of maintaining
multiple versions for a database page makes the shadowing
paging a sub-optimal choice for crash recovery method. SQ-
Lite is free from this inherent overhead of shadow paging
because of the serial nature of the transaction execution.

A database page in DASH has two fixed locations: one in
the database file and the other in the shadow file. DASH
resembles shadow paging in that DASH updates the shadow
file and leaves the original database file intact when apply-
ing a transaction. DASH resembles logging for the following
reason. For a database file (or a shadow file), the location of
the database page is fixed and the database pages are over-
written with the updated content. In case of system crash,
DASH recovers the database as logging does; the recovery
module identifies the list of modified blocks, reads the un-
altered images of the associated database pages and reflects
them back to the original location.

The shadow file in Database Shadowing plays a differ-
ent role from the shadow file in full file shadowing. Full
file shadowing applies each transaction to both database file
and shadow file to maintain the shadow file as an identical
copy of the associated database file. Database Shadowing
applies the transaction only to the shadow file and applies

two consecutive transactions in an aggregate manner. The
redundant updates in full file shadowing is mostly relieved
in DASH.

Multi-Version Concurrency Control (MVCC) maintains
multiple versions of the updated database page in a data-
base file [6]. In multi-version concurrency control, the DBMS
maintains the lifespan of the individual versions of the data-
base pages so that the incoming read request is directed to
the correct version of the associated page. Multi-version con-
currency control needs to maintain the complex dependen-
cies among the transactions for recovery. Like multi-version
concurrency control, Database Shadowing maintains the two
most recent versions of the database page. Unlike multi-
version concurrency control, Database Shadowing does not
maintain the complex dependency among the concurrent
transactions, since the transactions are completely serial-
ized.

4.2 Aggregate Update
Aggregate Update is the crux of Database Shadowing.

By applying two consecutive transactions at a time to the
shadow file, the DBMS can make the shadow file represent
the most recent state of the database file without much over-
head. In Aggregate Update, the DBMS reads the database
pages that need to be updated by the incoming transaction,
modifies them, aggregates them with the updated pages as-
sociated with the most recently committed transaction and
writes them together to the shadow file.

Tn

(a) Single Transaction

Tn-1,Tn

(b) Aggregate Update

Figure 6: Applying a Transaction

Let DB and SHD be the database and the associated
shadow database, respectively. DB0 is the initial state of
the database. Let T0, T1, T2, . . . , Tn be the history of trans-
action executions where Ti(i = 0, 1, . . .) is the ith transac-
tion. DBi+1 denotes the state of the database after Ti has
been applied. Applying transaction Ti corresponds to stor-
ing the database pages modified by Ti to the database file,
which changes the state of the database from Di to Di+1

(Figure 6a). The state of database that can be obtained
from a sequence of transactions can be formulated as fol-
lows; DBi−k −−−−−−−→

Ti−k,...,Ti

DBi+1.

The shadow database represents the preceding state of
the associated database, DBn; SHDn ≡ DBn−1. Let Tn−1

and Tn be the most recently committed transaction and the
incoming one, respectively. Applying Tn to Dn is equivalent
to applying Tn−1 and Tn to SHDn (Figure 6b). After Ag-
gregate Update, the shadow file represents Dn+1. Figure 7
illustrates an example Aggregate Update that updates the
pages indexed in the B+-tree. Transactions Ti and Ti+1 up-
date {P1, P2, P6} and {P1, P7}, respectively. In Aggregate
Update, the DBMS writes {P1, P2, P6, P7} to the shadow
file.

We introduce Global Page List to address the situation
where two consecutive transactions are associated with dif-
ferent processes. If the following transaction is associated
with a different process from the preceding one, the pro-
cess that issues the following transaction cannot determine
the updated pages associated with the preceding transaction

797

Ti , Ti+1

P1

P2 P3 P4

P5 P6

P2 P3 P4

P5 P6 P7

P1

{P1 , P2 , P6 , P7 }

Ti = {P1 , P2 , P6 }

Ti+1 = {P1 , P7 }

: updated database page

P7

Figure 7: Aggregate Update

since they reside in different address space. For transaction
Tn, the DBMS records the page ID’s updated by Tn in the
Global Page List. We locate Global Page List at the tail end
of the database header page. The database header page is
4 KB, of which only 100 bytes at the beginning is used to
store the database metadata; the remainder is left unused.
We use this unused space for storing Global Page List. When
a transaction starts, the DBMS examines the Global Page
List in the header page of the database file and reads the
associated pages if they do not exist in the local buffer or if
the database pages in the local buffer are obsolete. SQLite
reads and writes the database header page at the beginning
and end of the transaction, respectively. The reading and
writing of the Global Page List are piggybacked on the ex-
isting operations. Maintaining the Global Page List does not
incur any additional storage space or IO.

Let us provide an example (Figure 8). Assume that Pro-
cess 1 and Process 2 update the same database file. Process
1 updates p1 and p2. Process 2 updates p1 and p3. p1 is the
header page of the database file. When Process 1 finishes
its transaction, the Global Page List on the disk contains p1
and p2. When Process 2 starts the transaction, it first reads
the database header page and identifies the dirty pages cre-
ated by the previous transaction, which are p1 and p2, in
the Global Page List. Process 2 reads p1 and p2 into its user
space from the disk. If p1 and p2 are in the page cache (in
most cases they will be), reading them from the disk will
not cause any disk IO. Process 2, then, updates p1 and p3.
SQLite updates the header page in its local buffer so that
the Global Page List contains {p1, p3}. Finally, it writes p1,
p2 and p3 to the shadow file. After Aggregate Update, the
Global Page List in the database header contains p1 and p3.

Aggregate Update simultaneously commits multiple (two)
transactions as in group commit [14, 17] or compound trans-
action [54]. However, Aggregate Update should be distin-
guished from these techniques. Group commit and com-
pound transaction were developed to improve transaction
throughput. Aggregate Update is developed to make the
shadow file represent the most recent state of database with-
out updating both the database file and shadow file. Aggre-
gate Update is not for improving transaction throughput.
Group commit and compound transaction trade transaction
latency and durability, respectively, for transaction through-
put. Unlike group commit and compound transaction, Ag-
gregate Update guarantees the durability of the transaction
and improves transaction latency over the existing journal-
ing modes of SQLite.

Aggregate Update writes a transaction’s update twice to
a shadow database: the first time after it commits and the
second time after the next transaction commits. The over-
head of redundant update in Aggregate Update may not be

as substantial as it appears compared to when the individ-
ual transactions are separately committed, for two reasons.
First, the consecutive transactions exhibit strong temporal
locality, i.e. |TnTn+1| � |Tn| + |Tn+1|. Second, the flush
overhead accounts for the dominant fraction of the transac-
tion commit and is relatively insensitive to the number of
database pages that are flushed.

4.3 Atomic Exchange
Atomic Exchange switches the shadow file and database

file atomically with respect to a system failure. Atomic Ex-
change exchanges the hard links of the associated direc-
tory entries. We implement Atomic Exchange with three
rename() calls [2]. rename(char* old, char* new) atomi-
cally changes the name of the hard link from old to new.
Figure 9 illustrates the pseudo code for Atomic Exchange.
The Atomic Exchange operation appears trivial. However,
the rationale behind it deserves elaboration.

The simplest method to implement Atomic Exchange is
to use the recently proposed renameat2()3 [34]. Although it
simplifies the implementation, renameat2() fails to satisfy
a design constraint of SQLite: Database Shadowing should
be OS-independent and filesystem-agnostic so that it can
be backward-compatible with any existing SQLite versions.
The renameat2() is only available in recent versions of Linux
and not available in other OS’s, e.g., FreeBSD and iOS.

For the atomicity of Atomic Exchange, the results of re-
name() calls must be made durable in the order in which
they are invoked. Otherwise the recovery routine cannot
identify the state of the system at the time of the crash
and cannot recover the system to the one that satisfies the
atomicity. In Figure 9, rename(db, shd) is called after re-

name(shd, tmp). If the system crashes while the result of
rename(shd, tmp) is in flight and the result of rename(db,
shd) has become durable, then we lose the contents of the
shadow file.

Modern filesystems do not guarantee the order in which
the results of the set of operations are made durable [9, 60].
The application explicitly calls fdatasync() when it needs
to enforce the order in which the results of the update oper-
ations are made durable. For example, in the logging phase
of a PERSIST mode transaction, SQLite calls fdatasync()

after it completes writing the log blocks and before it writes
the updated journal header to the log file. This step is to en-
sure that the updated journal header is made durable only
after the log blocks have become durable. The fdatasync()

is one of the most expensive system calls [30]. It blocks the
caller and exposes the caller to a raw Flash cell program-
ming delay. Fortunately, modern filesystems are not entirely
orderless; for metadata operations, modern filesystems do
preserve the order in which the results of the operations are
made durable [35, 43, 53]. The directory entry is filesystem
metadata. Exploiting the limited order-preserving nature of
modern filesystems, the proposed Atomic Exchange does not
invoke any costly fdatasync() and yet guarantees that the
results of rename()’s are made durable in order.

The correctness can be shown as follows. The files that
are subject to the rename() calls can be either in the same
directory or in different directories. In both cases, the results
of rename()’s are guaranteed to be made durable in order. In
the first case (a same directory), the first rename() operation
acquires an exclusive lock for the directory entry. When the

3available since Linux kernel 3.16

798

Page Cache

DB

P1,P2 p1

p2 p3

p1 p2

DB

Begin Tx Begin TxCommit Tx

Tx1 (Process 1) Tx2 (Process 2)

Page Cache

DB

P1,P2 P1,P2 P1,P3p1 p1

p2 p3

p1 p2

Page Cache

p2 p3

p1

Update({p1, p3})Update({p1, p2}) CommitEnd Tx End Tx

p1

p2

p1

p2

p2

Time

p3 p1

p2

p3

p3

p1

p1 p2 p3p3

DB

Page Cache

p1 p2

p1

p3p2

GPL

Page Cache

Process Process Process Process Process Process

p1

p1

p3p2

Page Cache

DBDB

p1 p1

p2
P1,P2

p1

p2
P1,P2 P1,P3P1,P3

Figure 8: Aggregate Update and Global Page List; p1: database header page; GPL: Global Page List; p2,p3: database pages

void Atomic_Exchange(char* shd, char* db) {

char *tmp="tmpfile" ;

rename(shd, tmp);

rename(db, shd);

rename(tmp, db);

}

Figure 9: Pseudo code for Atomic Exchange

two consecutive rename() operations update the same direc-
tory block, the consecutive rename calls update the direc-
tory block serially. The result of the rename()’s operations
are guaranteed to be made durable in order. Now consider
the second case, i.e., rename() calls updating different direc-
tory blocks. The rename() calls are guaranteed to be made
durable in order in journaling filesystems such as EXT4 or
log-structured filesystems such as F2FS. In those filesystems,
the metadata are updated in the order that they are issued.
In journaling filesystems or log-structured filesystems an ap-
plication inserts the updated metadata blocks to the journal
transaction or to the log as they are updated. The jour-
naling filesystem commits the filesystem journal transaction
atomically. The log-structured filesystem commits the logs
in memory in FIFO order in an atomic manner. Due to this
nature, Atomic Exchange guarantees that the results of the
rename operations are made durable in order [60].

The recovery algorithm is as follows. If the crash occurs
during the Atomic Exchange, the filesystem falls into one
of three states: there are (i) a.db and a.shd, (ii) a.db and
tmp, or (iii) tmp and a.shd. In case (i), there is nothing to
be done. In case (ii), the crash has occurred after the re-
sults of the first rename() were made durable. The recovery
routine replays Atomic Exchange starting from the second
rename(). In case (iii), the crash has occurred after the re-
sults of the first and second rename() calls became durable.
The recovery routine replays the last rename() for recovery.
In all cases, the filesystem is recovered to contain a.shd and
a.db. The atomicity is well preserved.

The atomicity of each rename(), the order-preserving na-
ture of the sequence of rename() calls, and the associated
recovery module collectively and successfully guarantee the
atomicity of Atomic Exchange.

5. IMPLEMENTATION

5.1 A Transaction in Database Shadowing
When the shadow file does not exist, SQLite creates one

by cloning the database file. This happens when the data-

fdatasync()

Version

Update
Aggregate

Update

Atomic

Exchange

Version

Reset

Time
F

F

F F

Figure 10: A transaction in Database Shadowing

base file is first created, when the journal mode is changed
to Database Shadowing from other modes, or when the re-
covery routine removes the shadow file. The shadow file has
the same Global Page List value as the database file. If the
shadow file is successfully cloned, the version number in its
header is initialized to 0 and the Global Page List is empty. If
Global Page List in the shadow file is empty, it indicates that
the database file and the shadow file are identical. When the
Global Page List in the shadow file is empty, SQLite applies
the transaction to the database file instead of performing
Aggregate Update to the shadow file.

A transaction in Database Shadowing consists of three
phases; (i) Version Update, (ii) Aggregate Update and Atomic
Exchange, and (iii) Version Reset. Figure 10 schematically
illustrates these phases. We discussed the details of the Ag-
gregate Update and Atomic Exchange in Section 4. In this
section, we will discuss Version Update and Version Reset,
which play a critical role for the atomicity and durability of
a transaction in Database Shadowing.

Version Update and Version Reset are employed to denote
that a transaction has begun and finished, respectively. The
first phase of a transaction is “Version Update”. Its objec-
tive is to denote that the transaction is now in-flight. There
are three main tasks in this phase: (i) check whether the
preceding transaction has successfully committed, (ii) check
whether the local copies of the database pages are up-to-
date and (iii) update the version number of the shadow file.
In Database Shadowing, the version number is used for two
objectives, (i) to determine whether the preceding transac-
tion has successfully finished and (ii) to determine whether
the local copy of the database pages are up-to-date.

First, SQLite reads the version number of the shadow file
and checks whether it is zero. If so, SQLite concludes that
the preceding transaction has successfully finished. Other-
wise, it runs the recovery routine. Second, it examines whether
the version number of the database file in its local buffer
matches the version number of the database file on disk. If
they do not match, SQLite re-reads the database pages that
must be modified from the disk. Third, SQLite increases

799

the version number extracted from the database file by 1
and writes the updated version number to the shadow file
along with the associated Global Page List.

Second, SQLite applies an Aggregate Update to the shadow
file and performs Atomic Exchange.

The third phase of the transaction is “Version Reset”. In
this phase, SQLite sets the version number of the shadow
file to zero and updates the associated header block of the
shadow file. The objective of Version Reset is to guarantee
the durability of a transaction and denote that the transac-
tion has successfully finished. Version Reset is equivalent to
writing a commit block to storage in a logging-based crash
recovery scheme. Algorithm 1 illustrates the detailed steps
of executing a transaction in Database Shadowing.

Algorithm 1: Transaction in DASH
1 function Apply(Tn, a.db)
2 Version Update(a.shd) ;
3 fdatasync(a.shd) ;
4 Aggregate Update() ;
5 fdatasync(a.shd) ;
6 Atomic Exchange(a.shd, a.db) ;
7 Version Reset(a.shd) ;
8 fdatasync(a.shd) ;
9 return ;

10 end

In two places, DASH must enforce the order in which the
results of the updates are made durable. First, we must en-
sure that the updated version number is made durable at
the shadow file before any result of the Aggregate Update is
made durable. Otherwise, the database may be recovered to
an inconsistent state after an unexpected system failure. To
do this, SQLite calls fdatasync() (Line 3 in Algorithm 1).
Assume that the system crashes after some of the updated
pages by Aggregate Update are partially committed to the
shadow file while the header page with the updated version
number is still in-flight. In the recovery phase, the DBMS
recovery module will mistakenly conclude that the preceding
transaction was successfully completed. The DBMS contin-
ues to execute and applies Aggregate Update to the corrupt
shadow database. The transaction in Database Shadowing
leads the database file in an inconsistent state.

Second, between Aggregate Update and Atomic Exchange,
we must ensure that Atomic Exchange only begins after the
results of Aggregate Update are made durable. To do this,
SQLite calls fdatasync() after Aggregate Update (Line 5
in Algorithm 1). Therefore, the recovery module knows that
the result of Aggregate Update has been made durable if
it finds that either Atomic Exchange or Version Reset has
finished. By same token, because of fdatasync() after Ag-
gregate Update, the results of Atomic Exchange and Version
Reset can be made durable out-of-order and yet the crash
recovery routine determines if the Aggregate Update has fin-
ished successfully. The details of the crash recovery will be
explained in section 5.3. As the last step of the transaction,
we call fdatasync() to make the result of Version Reset
durable. There are three fdatasync()’s in a transaction in
Database Shadowing. The first two (Line 3 and Line 5) are
to control the order in which the associated blocks are made
durable. The third one (Line 8) is to ensure the durability
of a transaction.

5.2 The Role of Version Reset
Version Reset is designed to minimize the IO overhead

associated with guaranteeing the durability of a transaction.
It should deserve an elaboration. In Database Shadowing,
writing the commit mark of a transaction is equivalent to
make the result of Atomic Exchange durable.

The easiest way to make the result of Atomic Exchange
durable is to call fsync(a.shd). By calling fsync(a.shd)

immediately after Atomic Exchange, the DBMS can make
the directory entries updated by Atomic Exchange durable.
Under this mechanism, the DBMS compares the version
numbers of the database file and the shadow file and de-
termines whether the transaction has successfully finished or
not. If the version number of the database file is greater than
the version number of the shadow file by one, the DBMS
concludes that the preceding transaction has successfully
finished. Otherwise, the DBMS concludes that the preced-
ing transaction was incomplete. However, fsync() is one of
the most expensive system calls. It triggers bulky filesystem
journaling. It leaves the caller under a number of context
switches and makes the caller wait for two flush operations:
one before writing the commit block and one after writing
the commit block of the filesystem journal transaction [60].
In addition, compound journaling of EXT4 may create un-
expected dependencies between irrelevant requests and may
leave the caller under anomalous delay [54].

To address the overhead of fsync(), we develop an indi-
rect and more efficient route, ”Version-Reset,” to mark the
successful completion of the database transaction. Version
Reset sets the version number of the shadow file to zero. It
updates a single block, the header block, of the shadow file.
With Version Reset, it suffices to flush the single block to
mark the successful completion of the database transaction;
the DBMS calls fdatasync() to make the result of Version
Reset durable. Version Reset dispenses with the expensive
filesystem journaling (fsync()) in guaranteeing the durabil-
ity of a transaction.

When using Version Reset to commit a transaction, the re-
covery routine of Database Shadowing examines the version
number of the shadow file (or database file) if it is 0. If it is 0,
the DBMS knows that the preceding transaction has finished
successfully. For correctness, we show that Database Shad-
owing guarantees the durability of the Atomic Exchange
with Version Reset. First, assume that the crash recovery
routine finds that the version number of the shadow file is 0.
Then, the crash has occurred either before Version Update
began or after Version Reset has successfully finished. Thus,
the results of the Aggregate update and Atomic Exchange
have been made durable. The durability of a transaction
is preserved. Second, assume that the crash recovery rou-
tine finds that the version number of the database file is
0. The following has occurred at the time of crash: Atomic
Exchange has swapped the hard links of the database file
and the shadow file, and Version Reset has set the version
of the newly designated shadow file (old database file) to
zero. Both of these have happened in memory. After that,
Database Shadowing calls fdatasync() (Line 8, Algorithm
1). fdatasync() flushes the header block of the newly desig-
nated shadow file. The crash has occurred while the updated
directory blocks associated with Atomic Exchange are still
in-flight. The recovery module finds that the version num-
ber of the database file is zero since the updated hard links
are lost. In this case, the recovery routine performs Atomic

800

Exchange again to redo the transaction. The durability of a
transaction is preserved.

5.3 Crash Recovery
The recovery module acquires an exclusive lock on the

database and shadow files before starting a recovery. When
a number of SQLite instances run the recovery routine on the
same database file simultaneously, the first one that acquires
the exclusive lock performs the recovery. The other ones find
that the database file is in a consistent state.

We represent the state of the database with a pair of ver-
sion numbers on the disk : the version numbers of the data-
base file and shadow file. The state space consists of four
states : S = {< n, 0 >,< n, n+1 >,< n+1, n >,< 0, n >},
where the first and second values are the version numbers of
the database and shadow file, respectively. Figure 11 illus-
trates the state transition diagram to execute a transaction.
Initially, the state is at < n, 0 >. After the transaction com-
pletes the state becomes < n + 1, 0 >. The version number
of the shadow file is 0 before the beginning and after the end
of a transaction.

Let us describe the state transition in detail. The initial
state is < n, 0 >. After Version Update, the state changes
to < n, n+ 1 >. If the results of Atomic Exchange and Ver-
sion Reset are made durable in order, the state of database
changes to < n+1, n > (the result of Atomic Exchange) and
subsequently to < n + 1, 0 > (the result of Version Reset).
If they are made durable out of order, the state of database
first changes to < 0, n + 1 > and < n + 1, 0 >.

Creating a shadow file is crafted to imitate the process of
executing a normal transaction in Database Shadowing. In
this way, when a crash occurs while a shadow file is created,
the recovery routine can apply the same recovery procedure
as if the crash happened during the normal transaction ex-
ecution. Assume that the database file is first created. The
version number and Global Page List of the database file are
initialized to one and empty, respectively. Then, the DBMS
populates the database pages at the database file and creates
the empty shadow file. The version number of the shadow
file is initialized to two as if Version Update is applied; at the
same time, the Global Page List in its header is initialized
to empty. Once this completes, the database pages in the
database file are copied to the shadow file. After the copy
completes, we set the version number in the shadow file to
zero as if Version Reset is applied. Creating a shadow file
now completes. We do not need to apply Atomic Exchange
in creating the shadow file because the database file and the
shadow file have identical database pages.

AggU
<n,n+1> <0,n+1><n+1,n><n,0>

AtX

AtX

VerR
Start

VerR

VerR : Version ResetAggU : Aggregate Update AtX : Atomic Exchange

Figure 11: Transitions of Transaction States. The pair rep-
resents <version number of the database file, version num-
ber of the shadow file>

When the crash occurs, the DBMS will be in one of the
four states. Aggregate Update is a critical step that deter-
mines the recovery action. If Aggregate Update has not suc-
cessfully finished, the recovery module undoes the transac-

tion. The recovery module removes the corrupt shadow file
and reconstructs the shadow file to be identical to the data-
base file. If Aggregate Update has successfully finished, the
recovery module replays the remaining steps, which are ei-
ther Atomic Exchange or Version Reset, to finish the trans-
action. The recovery procedure associated with each data-
base state is as follows.

• < n, 0 >: The system has crashed while the database is
in a consistent state. There is nothing to be done.

• < n, n+1 >: The system has crashed after Version Update
has finished and before Aggregate Update completes. This
includes the case that a crash happens when the shadow
file is initially being created. For both cases the recovery
routine reconstructs the shadow file from the database
file. We expedite the reconstruction process using partial
reconstruction, which is explained below. (undo)

• < n+1, n >: The system has crashed after the Atomic Ex-
change has finished. The recovery module performs Ver-
sion Reset to finish the transaction. (redo)

• < 0, n + 1 >: The system has crashed after the Version
Reset has finished. The recovery module performs Atomic
Exchange to finish the transaction. (redo)

We develop partial reconstruction to make the shadow
file identical to the database file without copying the entire
database file. The recovery module uses partial reconstruc-
tion when it finds that the database is in state < n, n+ 1 >.
In partial reconstruction, the recovery module examines the
Global Page Lists of the database file and shadow file. The
page ID’s in these two Global Page Lists represent all pages
where the two files differ. SQLite copies the associated data-
base pages from the database file to the shadow file. Note
that in the special case when the state is < 1, 2 >, that
is, the crash occurs during the initial creation of the shadow
file, we copy the entire database pages in the database file to
the shadow file. After these blocks are made durable, SQLite
updates the version number of the shadow file to 0.

When the system crashes again during undo or redo, the
recovery module recovers as if the crash has occurred during
the normal transaction execution. When the system crashes
during partial reconstruction, the recovery module will find
the DBMS at < n, n + 1 >. Then, it performs the par-
tial reconstruction again. In logging-based crash recovery,
DBMS uses separate routines, e.g., CLR(compensation log
record) [38] or revoke [16], to handle crashes that occur
during the log-replay. Unlike logging-based crash recovery,
Database Shadowing does not require a separate crash re-
covery routine.

5.4 Implementation Complexity
We emphasize the simplicity and portability when design-

ing DASH. DASH does not require an additional library
other than the ones being used by stock SQLite. DASH re-
quires 424 LOCs to implement the entire functionality in-
cluding the recovery. For comparison, PERSIST mode re-
quires 618 LOCs and WAL requires 581 LOCs to implement.
By adding DASH, the size of the SQLite binary increases
by 5KB from 621KB to 626KB. We measure the complexity
of DASH with Cyclomatic Complexity [36]. The complex-
ity score of DASH is 115, which is 33% lower than that of
PERSIST (177) and that of WAL (172).

801

6. EXCLUSIVE CONNECTION
If the database file is exclusively used by a dedicated ap-

plication, i.e., an Exclusive Connection, the database pages
in the local buffer are guaranteed to be up-to-date and the
transaction execution in Database Shadowing can be signif-
icantly simplified. In Exclusive Connection, it is unneces-
sary to check if the preceding transaction has successfully
finished every time when a transaction starts. Instead, SQ-
Lite suffices to check whether the preceding connection has
successfully closed when it opens a database connection. In
DASH, when SQLite closes the database connection, SQ-
Lite zero-fills the entire database header (100 byte) of the
shadow file. We call it Header Reset. Note that Version Re-
set sets the version number (4 byte) of the shadow file to
zero. When SQLite opens a database connection, it exam-
ines whether the header of the shadow file has been reset
properly. If the preceding connection has not been properly
closed, the recovery routine examines the state of the data-
base at the time of crash and performs appropriate recovery
action. In Exclusive Connection, we also eliminate checking
if the data blocks at the local buffer always are up-to-date
when the transaction starts.

In Database Shadowing, the recovery module determines
the state of the DB solely based upon the version numbers
of the database file and shadow file. In Exclusive Connec-
tion, the header of the shadow file is also used to determine
the state of the DB. The fdatasync() that follows the Ver-
sion Update (line 3 at Algorithm 1) is used to ensure that
both database file and shadow file are consistent when the
recovery module encounters < n, 0 >. In Exclusive Connec-
tion, we eliminate this fdatasync(). Instead, SQLite exam-
ines the header of the shadow file to determine the consis-
tency of the database file and shadow file when it encounters
< n, 0 >. If the state is < n, 0 > with the preceding con-
nection being properly closed, SQLite determines that both
files are in a consistent state. If the state is < n, 0 > and
the preceding connection has not been properly closed, SQ-
Lite determines that the Aggregate Update may have not
been successfully finished. Taking the pessimistic measure,
SQLite removes the existing shadow file and creates a new
shadow file via cloning the database file.

We finish the section with a brief analysis on Database
Shadowing. Assume that a transaction updates n database
node pages. PERSIST mode in SQLite is full of redundan-
cies. In each transaction, it writes all updated database
pages twice (once in the database file and once in the jour-
nal file) and the header page of the rollback journal file
three times. In addition, it calls fdatasync() to flush the
directory block. In all, total 2n + 8 pages are written with
five fdatasync() calls. Database Shadowing is free from up-
dating the journal header. It exploits the order-preserving
aspect of the filesystem and is relieved from the excessive
fdatasync() calls. Assuming 50% duplication ratio in con-
secutive transactions, Database Shadowing writes 1.5n+1
blocks in a transaction with two or three fdatasync() calls.

7. EXPERIMENT
We implemented Database Shadowing in SQLite [52]. We

added two journaling modes: SHADOW and SHADOW-X
for Database Shadowing and Database Shadowing with Ex-
clusive Connection, respectively. We rebuild the Android
platform of Galaxy S7 Edge with our modified SQLite (An-

fdatasync()

Version

Update
Aggregate

Update

Atomic

Exchange

Version

Reset

Time
F

F

F F

Figure 12: A transaction in the Exclusive Connection

droid Marshmallow, Linux Kernel 3.18) [3]. We use Mo-
bibench to generate the workload [23]. In Mobibench, we
perform the database transaction 10,000 times in each ex-
periment. We vary the number of operations in a transaction
from 1 to 20. The record size is 100 byte [23]. We do not
create any index. We compare the performance of four jour-
nal modes: PERSIST, WAL, SHADOW and SHADOW-X.
When there are multiple operations in a transaction, each
operation is applied to different tables in the database file.

7.1 IO Volume

8

24

40

0 2 4 6

LB
A
(x
1
0
7
)

Time(msec)

.db-shadow

fd() fd() fd()

4 4 4

(a) SHADOW

40

42

44

46

3 4

LB
A
(x
1
0

7
)

Time(msec)

.db-shadow

fd()

4 4 4

fd()

(b) SHADOW-X

Figure 13: Block Level IO: Inserting 100 byte record to the
SQLite database (Unit: KB)

We observe the block-level IO patterns in SHADOW and
SHADOW-X when we insert a single 100 byte record into a
database table. The result is shown in Figure 13. In SHADOW
mode, 12 KB of data are written to disk in total with three
fdatasync() calls (denoted as fd() in the figure). In SHADOW-
X mode, SQLite makes two fdatasync() calls. In PERSIST
mode, inserting a single 100 byte record incurs 40 KB IO
with five flush operations (see Figure 1). Database Shadow-
ing reduces IO volume by a factor of four and flush opera-
tions by a factor of three.

 0

 20

 40

 60

 80

PWS X PWS X PWS X PWS X PWS X PWS X PWS X PWS X PWS X

T1 T3 T5

IO
 v

o
lu

m
e

(K
B

y
te

)

Ext4 Data Ext4 Journal

DELUPDINSDELUPDINSDELUPDINS

Figure 14: IO volume per transaction under differ-
ent journal modes: P:PERSIST; W:WAL; S:SHADOW;
X:SHADOW-X

Figure 14 compares the average IO volume per database
transaction in four journal modes; we generate 10,000 trans-
actions. For the comparison we run transactions with 1, 3,
and 5 operations per transaction (denoted as T1, T3, T5).
SHADOW mode reduces the IO volume per transaction by
as much as 1/3 compared to PERSIST mode (T1 case).

802

7.2 Transaction Throughput

0

200

400

600

800

INS UPD DEL INS UPD DEL INS UPD DEL

T
h
ro
u
g
h
p
u
t(
T
x
/S
e
c
)

PERSIST WAL SHADOW SHADOW-X

T5T3T1
Figure 15: Transaction throughput for the four journal
modes, (INS:Insert, UPD:Update, DEL:Delete)

We compare the transaction throughput in four transac-
tion modes: PERSIST, WAL, SHADOW, and SHADOW-X.
For the comparison we run transactions with 1, 3, and 5 op-
erations per transaction (denoted as T1, T3 and T5). The
number of operations in a transaction is selected based on
the fact that a single SQLite transaction in mobile appli-
cations updates on average three database tables [12]. We
executed 10,000 transactions for the evaluation with a data-
base record size of 100 bytes. A transaction performs the in-
sertion, deletion, and update. The insert operation appends
the new record at the end of the database file. The update
and delete operations randomly select the record.

Figure 15 shows the transaction throughput in different
journal modes. For insert transactions, SHADOW mode has
at least twice the throughput of PERSIST mode in T1,
T3, and T5. Compared to WAL mode, the SHADOW mode
shows a similar throughput. and SHADOW-X performs 25%
better. This performance improvement is attributed to the
reduced flush operations (fdatasync()) in a transaction from
three in SHADOW mode to two in SHADOW-X.

7.3 Transaction Latency

 0

20

40

60

80

100

 0 2 4 6 8 10 12

 P
(X

<
x
)

(%
)

 Latency (msec)

PERSIST
WAL
SHADOW
SHADOW-X

(a) insert

 0

20

40

60

80

100

 0 2 4 6 8 10 12

 P
(X

<
x
)

(%
)

 Latency (msec)

PERSIST
WAL
SHADOW
SHADOW-X

(b) update

Figure 16: Cumulative percentage of transaction latency.
Each transaction contains three operations.

We evaluate transaction latencies in four journaling modes.
for insert and update transactions. Figure 16 shows the CDF
of the transaction latencies under four journal modes. Table
2 illustrates the average and tail latencies of the database
transactions under four journal modes. The performance
trends remain similar when we vary the numbers of oper-
ations in a transaction.

For the average latency, both SHADOW mode and WAL
mode exhibit the best behavior. The average latency in SHA-
DOW-X mode is approximately 20% smaller than that of
SHADOW mode. PERSIST mode exhibits the worst behav-
ior in average latency. For insert operations, the average
transaction latency in SHADOW mode is 40% that of PER-
SIST mode.

Table 2: Quartile statistics: inserting and updating three
pages (OP: operation; PER: Persist; SHD: Shadow; SHD-X:
Shadow-exclusive)

OP Insert (msec) Update (msec)

Mode Avg. Med. 99.9% Avg. Med. 99.9%
PER 5.2 5.1 10.6 5.3 5.3 10.0
WAL 2.4 2.3 10.1 2.1 1.8 36.9
SHD 2.2 2.1 5.9 2.4 2.3 6.9

SHD-X 1.7 1.6 5.5 2.0 1.9 6.3

SHADOW mode excels in tail behavior. Its tail latency at
99.9% is 60% that of PERSIST mode. The tail latency of
an update transaction in SHADOW mode at 99.9% is one
fourth that of WAL mode. The poor tail latency of WAL
mode is due to the checkpoint overhead. Before starting a
transaction in WAL mode, SQLite first checkpoints the data-
base pages in WAL file if the number of log pages reaches
the predefined threshold. Since SQLite is fundamentally a
library-based DBMS, it is inevitable that SQLite handles
the checkpoint in the foreground. The transactions in SQ-
Lite occasionally can be exposed to excessive delay when
SQLite must first checkpoint the logs to the database file
before starting a transaction. The tail latency is governed
by the number of database pages that are checkpointed. In
SQLite, an insert transaction appends the new record at
the end of the database file. Since a single database page
accommodates multiple database records, a number of in-
sert transactions update the same database page. Append-
only nature of the insert operation makes a large fraction
of log pages in WAL file invalid. Thus, only a small frac-
tion of the log pages are checkpointed to the database file.
Update transaction has different characteristics. In update
workload, SQLite randomly selects the database records to
be updated. Update transaction renders much fewer invalid
log pages in the WAL file. In WAL mode, an update trans-
action is subject to much longer tail latency than an insert
transaction, 36.9 msec (update) vs. 10.1 msec (insert) as in
Table 2. To reduce the tail latency of a transaction, we can
limit the number of database pages that a WAL file can
hold, e.g., from 1,000 to 250 pages. However, it will increase
the average transaction latency due to more frequent check-
point. We like to leave the detailed analysis on the effect of
the WAL file size over the transaction latency to the sepa-
rate context.

7.4 Recovery Overhead
We examine the latency for crash recovery. We vary the

number of updated pages in a transaction from one page
to twenty pages. In this experiment, we assume that the
duplication ratio of a transaction is 50%.

 0
 3
 6
 9

 12
 15

1 5 10 15 20

R
e

c
o

v
e

ry
 T

im
e

 (
m

s
e

c
)

(# of the updated pages) / Tx

PERSIST SHADOW WAL

Figure 17: Recovery time: average, minimum and maxi-
mum

803

Figure 17 shows the average, minimum, and maximum re-
covery times for the three journal modes. PERSIST mode
yields the best recovery time in all cases. SHADOW mode
performs nearly as good as PERSIST mode. For larger trans-
action sizes, PERSIST mode exhibits slightly shorter re-
covery latency than DASH. WAL mode exhibits the worst
recovery overhead among the three journal modes. For a
transaction with five records, the recovery time in SHADOW
mode is 1/3 of that in WAL mode. In our experiment, we
assume that the system crashes when the WAL file is ap-
proximately 50% full (500 pages).

In PERSIST mode, the worst-case recovery time is 2×
of the average recovery time. Undoing a transaction may in-
volve not only recovering the old image of the database pages
but also shrinking the database file. Shrinking a file updates
the inode table and block bitmap. Due to the overhead of
journaling the updated metadata, the recovery latency can
increase substantially.

7.5 Overhead of Aggregate Update

0
100
200
300
400
500

0 0.1 0.3 0.5 0.7 0.9 1

T
P

u
t
(T

x
 /
 S

e
c
)

Duplication ratio

T3 T5 T10

 0
 1
 2
 3
 4
 5

0 0.1 0.3 0.5 0.7 0.9 1

L
a

te
n

c
y
 (

m
s
e

c
)

Duplication ratio

T3 T5 T10

Figure 18: Overhead of Aggregate Update (TPut:
Throughput, Tn: transaction with n insert operations)

We examine the overhead of Aggregate Update. We vary
the number of operations in a transaction, N = 3, 5, 10 and
the “duplication ratio” varies from 0.0 to 1.0.

The transaction throughput decreases by 5% when ap-
proximately half of the database pages are duplicated in
comparision with when a transaction is applied in the non-
aggregated manner (Figure 18). When a transaction has ten
operations, the transaction latency increases by 8% when the
duplication ratio is 0%, i.e. the transaction does not share
anything compared to when the duplication ratio is 100%.

The result of this experiment provides an important ground
for Database Shadowing. In Database Shadowing, every trans-
action is executed twice. This experiment shows that the
redundancy caused by the Aggregate Update does not have
significant performance overhead. Even when the consecu-
tive transactions do not share any pages, the performance
overhead of Aggregate Update is less than 8% against when
the individual transactions are executed separately.

8. RELATED WORK
There are three main approaches to improve the excessive

IO behavior of SQLite. The first approach modifies SQLite
or the underlying filesystem, while physical page granularity
logging of SQLite remains intact. Jeong et al. [23] proposed
optimization techniques in the Android IO stack, such as
using fdatasync() instead of fsync(), polling-based IO in-
stead of interrupt-driven IO, and F2FS instead of EXT4. Lue
et al. proposed to maintain the journal file in DRAM [33].
Shen et al. [49] proposed to use the EXT4 Data journaling
mode to improve transaction throughput. Kim et al. [27]
proposed to use Multi-version B-trees and achieved 70%

throughput gain against WAL mode. Lee et al. [30] pro-
posed to use direct IO and asynchronous commit for SQL-
ite transactions. They achieved 5× performance against the
WAL mode. [50] proposed to perform LSM tree for SQLite
for better transaction performance. Despite the significant
performance benefit, both [27, 30] have major limitations
for practical deployment. [27] requires a modification on the
database organization of SQLite and can render excessive
tail latency due to the garbage collection overhead. [30] does
not guarantee the durability of individual transactions and
requires a modification of the underlying Linux kernel.

The second approach proposes to use byte-addressable
NVRAM as a logging device. The works in this category
develop various byte-granularity logging schemes for SQL-
ite [26, 40, 42]. Oh et al. [40] use record-level logging and
Kim et al. [26] use physical differential logging for SQLite.
Both of these works are physical logging techniques. Lee et
al. [42] propose a transaction-level logical logging technique
for SQLite. All these works [26, 40, 42] are different from
the other NVRAM-based logging techniques [5, 8, 22, 56].
The NVRAM based logging schemes for SQLite specifically
address the issues in page-granularity physical logging with
no-steal/force buffer management scheme, whereas the oth-
ers address the issues in ARIES-style physio-logical logging
for an enterprise DBMS.

The third category of works propose to use a transac-
tional filesystem that frees SQLite DBMS from explicit log-
ging. They include transactional Flash storage, e.g., X-FTL
[24]and transactional filesystems such as SHARE [41], ANViL
[59], and CFS [37]. These works require new hardware in-
terfaces or new system calls and substantial changes in the
existing SSD firmware or in the filesystem.

Database Shadowing distinguishes itself from the afore-
mentioned works in that it does not rely on any new hard-
ware, new OS primitives or any changes in the DBMS orga-
nization while effectively addressing the significant issues in
SQLite journaling.

Shadow paging [32, 62] which has not been well accepted
in the DBMS community manifests itself as a filesystem
technique, e.g. COW-based filesystem [20, 44, 45, 46] and
version-based metadata management in the filesystem [10,
11]. This is because the filesystem does not allow concurrent
transactions and therefore maintaining the multiple versions
of a file page does not entail substantial overhead.

9. CONCLUSION
In this work, we identify a few unique characteristics in

SQLite workload and develop a new crash recovery scheme,
Database Shadowing which exploits the characteristics of
the SQLite DBMS. Aggregate Update, Atomic Exchange
and Version Reset collectively make Database Shadowing
an effective crash recovery technique for SQLite. When the
database file is small and database transactions are serial-
ized, Database Shadowing well addresses the issues in SQL-
ite such as transaction throughput, average and tail laten-
cies of the transaction, recovery time, IO volume and storage
space requirements for journaling.

Acknowledgement: We like to thank anonymous re-
viewers for their valuable feedback. Special thanks go to Lei
Chen for his invaluable help in preparing the final manuscript
of this work. This work is in part funded by Basic Research
Lab Program (NRF-2017R1A4A1015498) and Expert Lab
Program (IITP-2018-0-00549).

804

10. REFERENCES

[1] An introduction to gluster architecture.
http://docs.gluster.org.

[2] Rename system call. http:
//man7.org/linux/man-pages/man2/rename.2.html.

[3] Samsung galaxy s7 edge specification. http://www.
samsung.com/in/smartphones/galaxy-s7/hardware/.

[4] Samsung gear s3.
http://www.samsung.com/global/galaxy/gear-s3/.

[5] J. Arulraj, A. Pavlo, and S. R. Dulloor. Let’s talk
about storage & recovery methods for non-volatile
memory database systems. In Proc. of ACM SIGMOD
2015, pages 707–722. ACM, 2015.

[6] P. A. Bernstein and N. Goodman. Multiversion
concurrency control-theory and algorithms. ACM
Trans. Database Syst., 8(4):465–483, Dec. 1983.

[7] P. A. Bernstein, V. Hadzilacos, and N. Goodman.
Concurrency Control and Recovery in Database
Systems. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 1987.

[8] A. Chatzistergiou, M. Cintra, and S. D. Viglas.
REWIND: Recovery write-ahead system for
in-memory non-volatile data-structures. PVLDB,
8(5):497–508, 2015.

[9] V. Chidambaram, T. S. Pillai, A. C. Arpaci-Dusseau,
and R. H. Arpaci-Dusseau. Optimistic Crash
Consistency. In Proc. of ACM SOSP 2013,
Farmington, PA, USA, Nov 2013.

[10] J. Condit, E. B. Nightingale, C. Frost, E. Ipek, B. Lee,
D. Burger, and D. Coetzee. Better i/o through
byte-addressable, persistent memory. In Proc. of the
ACM SIGOPS 22nd symposium on Operating systems
principles, pages 133–146. ACM, 2009.

[11] A. Craig, G. Soules, J. Goodson, and G. Strunk.
Metadata Efficiency in Versioning File Systems. In
Proc. of USENIX FAST 2003, San Francisco, CA,
USA, 2003.

[12] T. Q. Dam, S. Cheon, and Y. Won. On the io
characteristics of the sqlite transactions. In Proc. of
IEEE MOBILESoft 2016, pages 214–224, 2016.

[13] developer.android.com. Safetynet.
https://developer.android.com/training/

safetynet/verify-apps.

[14] D. J. DeWitt, R. H. Katz, F. Olken, L. D. Shapiro,
M. R. Stonebraker, and D. A. Wood. Implementation
techniques for main memory database systems. In
Proc. of ACM SIGMOD 1984, pages 1–8, New York,
NY, USA, 1984.

[15] A. G. Fraser. Integrity of a Mass Storage Filing
System. The Computer Journal, 12(1):1–5, 1969.

[16] D. Fryer, M. Qin, J. Sun, K. W. Lee, A. D. Brown,
and A. Goel. Checking the integrity of transactional
mechanisms. ACM Transactions on Storage (TOS),
10(4):17, 2014.

[17] D. Gawlick and D. Kinkade. Varieties of concurrency
control in IMS/VS fast path. IEEE Database Eng.
Bull., 8(2):3–10, 1985.

[18] T. Haerder and A. Reuter. Principles of
transaction-oriented database recovery. ACM
Computing Surveys (CSUR), 15(4):287–317, 1983.

[19] I. Heuner. Persistent subsystem.
https://at.project.genivi.org.

[20] D. Hitz, J. Lau, and M. A. Malcolm. File system
design for an nfs file server appliance. In Proc. of
USENIX winter 1994, volume 94, 1994.

[21] https://wearos.google.com/. Anrdoid wear.
http://www.android.com/wear/.

[22] J. Huang, K. Schwan, and M. K. Qureshi.
NVRAM-aware logging in transaction systems.
PVLDB, 8(4):389–400, 2014.

[23] S. Jeong, K. Lee, S. Lee, S. Son, and Y. Won. I/O
Stack Optimization for Smartphones. In Proc. of
USENIX ATC 2013, Berkeley, CA, USA, 2013.

[24] W.-H. Kang, S.-W. Lee, B. Moon, G.-H. Oh, and
C. Min. X-FTL: transactional ftl for sqlite databases.
In Proc. of ACM SIGMOD 2013, pages 97–108. ACM,
2013.

[25] T. Kim, H. Ha, S. Choi, J. Jung, and B.-G. Chun.
Breaking ad-hoc runtime integrity protection
mechanisms in android financial apps. In Proc. of
ACM ASIACCS 2017, pages 179–192, 2017.

[26] W.-H. Kim, J. Kim, W. Baek, B. Nam, and Y. Won.
NVWAL: Exploiting nvram in write-ahead logging. In
Proc. of ACM ASPLOS 2016, volume 50, pages
385–398, New York, NY, USA, Mar. 2016.

[27] W.-H. Kim, B. Nam, D. Park, and Y. Won. Resolving
journaling of journal anomaly in Android I/O:
Multi-version B-tree with lazy split. In Proc. of
USENIX FAST 2014, Santa Clara, CA, USA, 2014.

[28] C. Lee, D. Sim, J. Hwang, and S. Cho. F2fs: A new file
system for flash storage. In Proc. of USENIX FAST
2015), pages 273–286, Santa Clara, CA, USA, 2015.

[29] K. Lee and Y. Won. Smart layers and dumb result: Io
characterization of an android-based smartphone. In
Proc. of ACM EMSOFT 2012, pages 23–32. ACM,
2012.

[30] W. Lee, K. Lee, H. Son, W.-H. Kim, B. Nam, and
Y. Won. WALDIO: Eliminating the filesystem
journaling in resolving the journaling of journal
anomaly. In Proc. of USENIX ATC 2015, Santa
Clara, CA, USA, 2015.

[31] E. Lim, S. Lee, and Y. Won. Androtrace: Framework
for tracing and analyzing ios on android. In Proc. of
ACM INFLOW 2015, pages 3:1–3:8, New York, NY,
USA, 2015.

[32] R. A. Lorie. Physical integrity in a large segmented
database. ACM Transactions on Database Systems
(TODS), 2(1):91–104, 1977.

[33] H. Luo, L. Tian, and H. Jiang. qNVRAM: quasi
non-volatile ram for low overhead persistency
enforcement in smartphones. In Proc. of USENIX
HotStorage 2014, Philadelphia, PA, USA, 2014.

[34] lwn.net. Exchanging two files.
https://lwn.net/Articles/569134/.

[35] A. Mathur, M. Cao, S. Bhattacharya, A. Dilger,
A. Tomas, and L. Vivier. The new ext4 filesystem:
current status and future plans. In Proc. of the Linux
symposium 2007, pages 21–33, 2007.

[36] T. J. McCabe. A complexity measure. IEEE
Transactions on software Engineering, (4):308–320,
1976.

805

http://docs.gluster.org
http://man7.org/linux/man-pages/man2/rename.2.html
http://man7.org/linux/man-pages/man2/rename.2.html
http://www.samsung.com/in/smartphones/galaxy-s7/hardware/
http://www.samsung.com/in/smartphones/galaxy-s7/hardware/
http://www.samsung.com/global/galaxy/gear-s3/
https://developer.android.com/training/safetynet/verify-apps
https://developer.android.com/training/safetynet/verify-apps
https://at.project.genivi.org
http://www.android.com/wear/
https://lwn.net/Articles/569134/

[37] C. Min and W.-H. Kang. Lightweight application-level
crash consistency on transactional flash storage. In
Proc. of USENIX ATC 2015, pages 221–234, 2015.

[38] C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, and
P. Schwarz. ARIES: a transaction recovery method
supporting fine-granularity locking and partial
rollbacks using write-ahead logging. ACM
Transactions on Database Systems (TODS),
17(1):94–162, 1992.

[39] D. S. Munro, R. C. Connor, R. Morrison, S. Scheuerl,
and D. W. Stemple. Concurrent shadow paging in the
Flask architecture. pages 16–42, 1995.

[40] G. Oh, S. Kim, S.-W. Lee, and B. Moon. SQLite
optimization with phase change memory for mobile
applications. PVLDB, 8(12):1454–1465, 2015.

[41] G. Oh, C. Seo, R. Mayuram, Y.-S. Kee, and S.-W.
Lee. Share interface in flash storage for relational and
nosql databases. In Proc. of ACM SIGMOD 2016,
pages 343–354, New York, NY, USA, 2016.

[42] J.-H. Park, G. Oh, and S. W. Lee. Sql statement
logging for making sqlite truly lite. PVLDB,
11(4):513–525, 2017.

[43] O. Rodeh, J. Bacik, and C. Mason. Btrfs: The linux
b-tree filesystem. ACM Trans. on Storage (TOS),
9(3):9, 2013.

[44] O. Rodeh, J. Bacik, and C. Mason. Btrfs: The linux
b-tree filesystem. ACM Transactions on Storage
(TOS), 9(3):9, 2013.

[45] O. Rodeh and A. Teperman. zFS-a scalable
distributed file system using object disks. In Proc. of
IEEE MSST 2003, pages 207–218, 2003.

[46] M. Rosenblum and J. K. Ousterhout. The design and
implementation of a log-structured file system. ACM
Transactions on Computer Systems (TOCS),
10(1):26–52, 1992.

[47] M. Satyanarayanan, J. J. Kistler, P. Kumar, M. E.
Okasaki, E. H. Siegel, and D. C. Steere. Coda: A
highly available file system for a distributed
workstation environment. IEEE Transactions on
computers, 39(4):447–459, 1990.

[48] Scalzo. Oracle DBA Guide to Data Warehousing and
Star Schemas. Prentice Hall Professional Technical
Reference, 2003.

[49] K. Shen, S. Park, and M. Zhu. Journaling of journal is
(almost) free. In Proc. of USENIX FAST 2014, Santa
Clara, CA, USA, 2014.

[50] Y. Shi, Z. Shen, and Z. Shao. Sqlitekv: An efficient
lsm-tree-based sqlite-like database engine for mobile
devices. In Proc. of IEEE ASP-DAC 2018, pages
28–33. IEEE, 2018.

[51] SQLite.org. Transaction control at the sql level.
https://www.sqlite.org/lockingv3.html.

[52] SQLite.org. Well-known users of sqlite.
https://www.sqlite.org/famous.html.

[53] A. Sweeney, D. Doucette, W. Hu, C. Anderson,
M. Nishimoto, and G. Peck. Scalability in the xfs file
system. In Proc. of USENIX ATC 1996, volume 15,
1996.

[54] S. C. Tweedie. Journaling the linux ext2fs filesystem.
In Proc.of The Fourth Annual Linux Expo, Durham,
NC, USA, May 1998.

[55] G. Vukov, M. Kovačević, B. Kovačević, and
T. Maruna. One solution of event data recorder in car
on android operating system. In Proc. of IEEE
TELFOR 2016, pages 1–4, 2016.

[56] T. Wang and R. Johnson. Scalable logging through
emerging non-volatile memory. PVLDB,
7(10):865–876, 2014.

[57] W. Weber and A. Gupta. Analysis of Cache
Invalidation Patterns in Multiprocessors. In Proc. of
ACM ASPLOS 1989, pages 243–256, New York, NY,
USA, 1989.

[58] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. Long,
and C. Maltzahn. Ceph: A scalable, high-performance
distributed file system. In Proc. of USENIX OSDI
2006, pages 307–320, Seattle, WA, USA, 2006.

[59] Z. Weiss, S. Subramanian, S. Sundararaman,
N. Talagala, A. Arpaci-Dusseau, and
R. Arpaci-Dusseau. ANViL: advanced virtualization
for modern non-volatile memory devices. In Proc. of
USENIX FAST 2015, pages 111–118, Santa clara, CA,
USA, 2015.

[60] Y. Won, J. Jung, G. Choi, J. Oh, S. Son, J. Hwang,
and S. Cho. Barrier-enabled IO stack for flash storage.
In Proc. of USENIX FAST 2018, pages 211–226,
Oakland, CA, 2018.

[61] S. Xu, S. Lee, S.-W. Jun, M. Liu, J. Hicks, and
Arvind. Bluecache: A scalable distributed flash-based
key-value store. PVLDB, 10(4):301–312, 2016.

[62] T. Ylönen. Concurrent Shadow Paging: A new
direction for database research. 1992.

806

https://www.sqlite.org/lockingv3.html
https://www.sqlite.org/famous.html

	Introduction
	Background
	Synopsis
	Concurrency Control
	Crash Recovery

	Characteristics of SQLite DBMS
	Database Size
	Database Access

	Database Shadowing
	Overview
	Aggregate Update
	Atomic Exchange

	Implementation
	A Transaction in Database Shadowing
	The Role of Version Reset
	Crash Recovery
	Implementation Complexity

	Exclusive Connection
	Experiment
	IO Volume
	Transaction Throughput
	Transaction Latency
	Recovery Overhead
	Overhead of Aggregate Update

	Related Work
	Conclusion
	References

