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ABSTRACT
Data plays an important role in applications, analytic processes,
and many aspects of human activity. As data grows in size and
complexity, we are met with an imperative need for tools that pro-
mote understanding and explanations over data-related operations.
Data management research on explanations has focused on the as-
sumption that data resides in a single dataset, under one common
schema. But the reality of today’s data is that it is frequently un-
integrated, coming from different sources with different schemas.
When different datasets provide different answers to semantically
similar questions, understanding the reasons for the discrepancies
is challenging and cannot be handled by the existing single-dataset
solutions.

In this paper, we propose explain3D, a framework for explain-
ing the disagreements across disjoint datasets (3D). Explain3D fo-
cuses on identifying the reasons for the differences in the results
of two semantically similar queries operating on two datasets with
potentially different schemas. Our framework leverages the queries
to perform a semantic mapping across the relevant parts of their
provenance; discrepancies in this mapping point to causes of the
queries’ differences. Exploiting the queries gives explain3D an edge
over traditional schema matching and record linkage techniques,
which are query-agnostic. Our work makes the following contri-
butions: (1) We formalize the problem of deriving optimal expla-
nations for the differences of the results of semantically similar
queries over disjoint datasets. Our optimization problem consid-
ers two types of explanations, provenance-based and value-based,
defined over an evidence mapping, which makes our solution inter-
pretable. (2) We design a 3-stage framework for solving the opti-
mal explanation problem. (3) We develop a smart-partitioning op-
timizer that improves the efficiency of the framework by orders of
magnitude. (4) We experiment with real-world and synthetic data
to demonstrate that explain3D can derive precise explanations effi-
ciently, and is superior to alternative methods based on integration
techniques and single-dataset explanation frameworks.
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1. INTRODUCTION
Data drives modern applications, analytic processes, and busi-

ness decisions, heavily influencing many aspects of human activ-
ity: from product recommendations and friend connections, to au-
tonomous vehicle decisions and election campaign strategies. Un-
derstanding data and the results of processes that operate on data
becomes critical in promoting trust in data-driven decisions and in
facilitating debugging and repair of errors [52]. Even within the rel-
atively simple setting of relational data and queries, the explosive
data sizes, source heterogeneity, and issues of poor data quality
make providing explanations a challenging problem.

Existing data management solutions that aim to provide expla-
nations for query results [44, 45, 56] have an important limitation:
They focus on a single dataset, where data conforms to a single
common schema. However, modern data rarely conforms to this in-
tegrated ideal. More often than not, datasets evolve separately, un-
der different schemas, and even datasets from trustworthy sources
frequently end up diverging, both in format and content, causing
headaches to downstream applications and users. For example,
Open Data [40], released by governments and organizations, is typ-
ically of high quality, publicly available, and freely used and dis-
tributed. Such datasets may be related and overlapping, but their
separate production and evolution lead to disagreements that can
cause confusion to users and incorrect analyses.

EXAMPLE 1 (ACADEMIC DATA DISAGREEMENT). We col-
lect two publicly-available academic datasets: the UMass-Amherst
dataset on undergraduate programs1, and the National Center for
Education Statistics (NCES) dataset2. Both data sources are rep-
utable and contain high-quality information. Nevertheless, query-
ing both datasets for the number of undergraduate degree programs
at UMass Amherst yields vastly different answers.

UMass-Amherst data (DUMass) NCES data (DNCES)

Schema: Major(Major, Degree, School) School(ID, Univ name, City, Url)
Stats(ID, Program, bach degr)

Query: Q1 : SELECT COUNT(Major) Q2 :SELECT SUM(bach degr)
FROM Major; FROM School, Stats

WHERE Name = ‘UMass-Amherst’
AND School.ID=Stats.ID;

Answer: 113 90

Existing explanation solutions can only be applied with respect
to one of these datasets at a time, by asking questions such as “Why
is the result of Q1 (resp. Q2) high (resp. low)?” But these would
not provide meaningful explanations in this case, as each tuple con-
tributes the same to the aggregate of Q1, and prioritizing tuples
with low bach degr in the provenance of Q2 would be arbitrary,
not grounded on the actual differences with Q1.
1https://www.umass.edu/gateway/academics/undergraduate
2https://nces.ed.gov: A open dataset presented in simplified schema.
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SQL query Q1:
SELECT COUNT(program)
FROM D1;
Dataset D1:
Program Degree

Accounting B.S.
CS B.A.
CS B.S.
ECE B.S.
EE B.S.
Management B.A.
Design B.A.

(a) Q1(D1) = 7

SQL query Q2:
SELECT COUNT(Major)
FROM D2 WHERE Univ=‘A’;
Dataset D2:
Univ Major

A Accounting
A CSE
A ECE
A EE
A Management
A Design
B Art

(b) Q2(D2) = 6

SQL query Q3:
SELECT SUM(Num bach)
FROM D3;
Dataset D3:
College Num bach

Business 2
Engineering 2
Computer Science 1

(c) Q3(D3) = 5

SQL query Q4:
SELECT SUM(Num major)
FROM D4;
Dataset D4:
Campus Num major

South campus 1
North campus 2
East campus 1

(d) Q4(D4) = 4

Figure 1: Four queries, operating on disjoint datasets, for answering the question: How many undergraduate degree programs are provided by Univer-
sity A? However, all queries yield different answers: Q1(D1) = 7, Q2(D2) = 6, Q3(D3) = 5, and Q4(D4) = 4.

Example 1 illustrates the predicament of dealing with disagree-
ments in disjoint datasets and how single-dataset explanation frame-
works fall short. Attempting to use data cleaning [10, 36, 42] and
data fusion [9, 21] techniques towards this problem meets similar
challenges. These techniques attempt to reconcile the datasets, but
are agnostic to the queries of interest, which may very well be con-
tributors to the discrepancy. Ultimately, our goal is not to recon-
cile the differences between two datasets and consolidate them, but
rather to explain the reasons of disagreement between two queries
on those datasets, whose results are expected to be the same.

In this paper, we introduce explain3D,3 a framework for deriv-
ing interpretable explanations for the disagreement in the results of
two semantically similar queries.4 Explain3D leverages the queries
in coordination with existing schema matching and entity reso-
lution methods to derive a semantic mapping across the relevant
parts of the queries’ provenance. It processes this initial mapping
to find optimal provenance-based (mismatched tuples) and value-
based (mismatched values) explanations and summarizes these ex-
planations to increase understandability. For the disagreement in
Example 1, explain3D finds that (1) several tuples in DUMass (such
as majors “Equine Management” and “Turfgrass Management”) do
not correspond to tuples in DNCES, and (2) there is a mismatch of
contributions for some tuples—for example, “Computer Science”
is counted twice in Q1 for the distinct B.S. and B.A. degrees, but
“Computer Science” has bach degr=1 in DNCES. Explain3D fur-
ther analyzes the common properties of the derived explanations
to summarize them as: (1) There is a large portion of mismatches
for majors with Degree=“Associate degree” in DUMass; (2) There
are majors with multiple degree types in DUMass, counted multiple
times by Q1, for which bach degr=1 in DNCES.

Explain3D addresses the following challenges:
Different schemas. Data sources often adopt different schemas and
may thus store their data with different granularities. For example,
in Example 1, DUMass lists each degree program as an individual
tuple whereas DNCES stores an aggregate of the degrees in each
program in the attribute bach degr. Such differences significantly
increase the difficulty in determining the mapping relationship be-
tween tuples in different datasets.

Missing data mapping. Data mapping or tuple mapping is essen-
tial in deriving the explanations. However, existing record link-
age and entity resolution techniques [5, 37] typically target map-
ping entities within the same dataset or datasets with highly similar

3Pronounced “explained”
4In the context of our work, semantic similarity is subjectively de-
termined by human raters, and assumed as part of the input. This
is analogous to the standards of semantic similarity in the natural
language processing literature [19].

schemas. In contrast, in our setting, we can leverage the queries
to provide us both with the relevant provenance, and clues of the
matching attributes.

Distinct queries. Two queries meant to retrieve the same informa-
tion across two datasets with different schemas are bound to be
structurally different. Differences in the queries are confounded
with differences in the data and schemas, obscuring the causes of
discrepancies and making deriving explanations more challenging.

We make the following contributions.
• We introduce the necessary modeling abstractions and formalize
the problem of deriving optimal explanations for the disagreements
between the results of two semantically similar queries over two
disjoint datasets. We identify explanations as one of two types:
provenance-based (indicating mismatched tuples between the two
datasets) and value-based (indicating incorrect values in particular
tuples). These explanations are defined over an evidence mapping,
which is an explanation of the explanations themselves, making our
method interpretable. (Section 2)
• We introduce explain3D as a 3-stage framework for solving our
optimal explanation problem. The first stage leverages the queries
and standard schema matching and record linkage methods to de-
rive an initial mapping between the relevant provenance data. The
second stage, which is the core of our approach, models the opti-
mization problem as a mixed integer linear program (MILP) and
produces a refined evidence mapping. This mapping, informed by
the queries and the datasets, pinpoints the discrepancies between
the two datasets. The third stage relies on standard methods to an-
alyze the common properties of the discrepancies and summarize
the explanations. (Section 3)
• We propose a smart-partitioning optimizer that breaks the opti-
mization problem of explain3D’s second stage into smaller compo-
nents, which can be solved separately, increasing the efficiency and
scalability of our framework. (Section 4)
• We perform extensive experimental evaluation of explain3D using
real-world and synthetic data, comparing it with a state-of-the-art
single-dataset explanation framework, state-of-the art entity resolu-
tion approaches, and multiple baselines. Our evaluation shows that
explain3D is superior in explanation accuracy compared to the alter-
natives, and the smart-partitioning optimizer is robust to multiple
parameter settings and increases efficiency by orders of magnitude
with little to no loss of accuracy. (Section 5)

2. EXPLANATIONS FOR DISJOINT DATA
In this section, we use a running example inspired by Example 1

to introduce our concepts and abstractions for modeling explana-
tions for disagreements in disjoint datasets.
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EXAMPLE 2. Figure 1 displays four semantically similar queries
that answer the question “How many undergraduate programs are
provided by University A?” The queries compute the same thing
semantically, but they operate on different datasets, with different
schemas: D1 lists the undergraduate programs at University A and
Q1 counts them; D2 lists the majors at multiple universities and
Q2 selects the ones from University A and counts them; D3 lists
the number of bachelor degrees per college at University A and Q3

sums them;D4 lists the number of majors per campus at University
A and Q4 sums them. While all four queries are correct semanti-
cally, they ultimately yield different results.

Manually, one can easily contrastQ1 andQ2. The Program and
Major attributes are a direct match, and each program in D1 cor-
responds to a major in D2 and vice versa, through a one-to-one
mapping: ‘Accounting’ to ‘Accounting’, ‘CS’ to ‘CSE’, ‘ECE’ to
‘ECE’, etc. This reveals that computer science is counted twice
in Q1, for the B.S. and B.A. degrees, but only once in Q2, which
explains the difference in their results. Moreover, the mapping of
tuples between the two datasets is an interpretable explanation (ev-
idence) of the explanation itself.

The correspondence between Q1 and Q3 is a little less straight-
forward, because the data is stored at different granularities (list
of programs vs aggregates per college). However, the queries are
still comparable. The Program attribute semantically maps to the
College attribute in a containment relationship: each program typ-
ically corresponds to a college—Accounting and Management are
part of the Business School, ECE and EE are part of the College
of Engineering, and CS is part of the College of Computer Science.
This mapping reveals that (1) CS is counted twice in Q1, for the
B.S. and B.A. degrees, but D3 only lists one bachelor degree in the
CS College, and (2) the Design program is missing from D3.

While we can reason about the differences of Q1, Q2, and Q3,
we cannot compare them with Q4 because the Campus attribute
does not meaningfully correspond in a direct or containment rela-
tionship with the other datasets.

This example highlights several concepts: (1) attribute matches
and their implications to (2) comparability of queries, (3) expla-
nations as mismatched tuples or mismatched values, and (4) evi-
dence mappings that support the derived explanations. We proceed
to formalize these concepts and define the problem of deriving ex-
planations for disagreements in the results of semantically similar
queries over disjoint datasets.

2.1 Problem input: Queries, data, and matches
In this paper, we focus on queries of the general relational al-

gebra form Q = πoσC(X), where X can be a single relation or
an arbitrary query, allowing joins, unions, and subqueries; C also
allows any operators, except UDFs. We restrict the projection, o,
to be either a set of attributes, o = A ⊆ attr(X), or one of the
five main SQL aggregate functions (SUM, COUNT, AVERAGE,
MAX, MIN), o = aggr(Ai), Ai ∈ attr(X). Compared to prior
work on explanations over a single database [13, 45, 49, 56], which
mostly focus on flattened queries in select-project-join (SPJ) and
select-project-join-aggregate (SPJA) format, our framework sup-
ports a wider range of queries.

As Example 2 showed, some queries are not comparable (Q1

and Q4). Reasoning about these cases would require external in-
formation, not derivable by standard matching and linking meth-
ods. We cannot derive explanations for these cases—this appears
impossible without external information—and we focus on compa-
rable queries. As Example 2 highlighted, comparability is deter-
mined by semantic mappings that match attributes of the queries.
We formalize these attribute matches below.

Notation Description

Q = Πoσc(R) A query over relation R in database D.
Mattr(Q1, Q2) = (AiφAj) Attribute matches.
Mtuple = {(ti, tj , p), ...} Tuple matches.
P (A1, ..., Ak, I) or P The provenance relation of query Q.
T Canonical tuples of query Q.
t.I The impact of a tuple t.
E = (∆, δ|M∗tuple) Explanations and their evidence.
∆ = {t, ...} ∈ E Provenance-based explanations.
δ = {t.I 7→ t.I∗} ∈ E Value-based explanations.
M∗tuple ⊆Mtuple Evidence of a set of explanations.

Figure 2: Summary of notations.

DEFINITION 2.1 (ATTRIBUTE MATCHES). Given two queries
Q1 over relation R1 and Q2 over relation R2, we represent the
semantic mapping among their attributes as attribute matches, de-
noted with the matching functionMattr:

Mattr(Q1, Q2) = (AiφAj)

where Ai, Aj are sets of categorical attributes in R1 and R2, re-
spectively, and φ ∈ {≡,v,w} is the semantic relation between
two sets of attributes [26].

In our definition of matching attributes, we borrow the notion of
the semantic relation φ from prior work [26]. A set of attributes
Ai can be semantically equivalent to Aj (Ai ≡ Aj), correspond-
ing to a one-to-one mapping between instantiations of Ai and Aj ,
less general than Aj (Ai v Aj), corresponding to a many-to-
one mapping, or more general than Aj (Ai w Aj), correspond-
ing to one-to-many mapping. Note that semantic equivalence does
not imply a condition on cardinality and two semantically equiv-
alent sets of attributes may in fact have arbitrary overlap. For
example, the sets Ai = (address, city, state, zip) in R1 and
Aj = (address) in R2 can be semantically equivalent (Ai ≡
Aj). In our running example, Mattr(Q1, Q2) = (program) ≡
(major), and Mattr(Q1, Q3) = (program) v (college). The
attribute matches can be derived from standard schema matching
techniques [2, 6, 26, 57]. Deriving these matches is not a focus in
our work, and we treat them as part of our input.

One can consolidate or separate matches over sets of attributes,
e.g., (zip, city) v (county) becomes (zip) v (county) and (city) v
(county). Our framework applies to both cases. From here on, for
ease of exposition, we will assume that the attribute matches are
on a single attribute from each relation, and we will simply denote
them withMtuple when the queries are clear from the context.

If there exists at least one attribute match between two queries,
we can derive explanations for their differences (comparable queries);
otherwise, the queries are not comparable (Q1 and Q4).

DEFINITION 2.2 (COMPARABLE QUERIES). Two queriesQ1

over relation R1 and Q2 over relation R2 are comparable if and
only ifMattr(Q1, Q2) 6= ∅.

We focus on comparable queries in this work, and from here on
we will assume that the queries we discuss are comparable. To de-
rive explanations for query disagreements, we need to analyze the
contents of the two datasets and reason about their correspondence.
We do not need to do so for the entire datasets, but rather for the
parts that contribute to the queries (provenance). For example, in
Q2 only the tuples inD3 with Univ=‘A’ are part of the provenance.
To facilitate exposition, we derive a provenance relation.

DEFINITION 2.3 (PROVENANCE RELATION). Given a query
Q = πoσc(R) over relation R(A1, . . . ), we derive a provenance
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relation P (A1, . . . , I) as follows: For each tuple t ∈ σc(R), we
create a tuple t′ = (t, I) in P, where t′.I = Πo′(t), with o′ = 1 if
Q is a non-aggregate query, and o′ = o otherwise. The impact of a
tuple measures its statistical contribution to the result of query Q.

In our running example, the provenance relation of Q1 has 7
tuples (same as D1), each with impact 1; the provenance relation
of Q3 has 3 tuples (same as D3), with impacts 2, 2, and 1, same as
the corresponding values of the Num bach attribute.

Given two queries, the tuples of their provenance relations can
be associated through mappings such as the ones described in Ex-
ample 2. We formalize the tuple mapping below.

DEFINITION 2.4 (TUPLE MAPPING). Given relationsR1 and
R2, the tuple mapping betweenR1 andR2 is a set of tuple matches:

Mtuple = {(ti, tj , p), ...}

where ti ∈ R1 and tj ∈ R2 are two tuples, and p ∈ (0, 1] is
the probability that tuple ti and tuple tj correspond to the same or
associated (with respect to containment) entities.

In Example 2, a possible tuple mapping between Q1 and Q2

can be (omitting superfluous attributes for simplicity) Mtuple =
{(Accounting, Accounting, 1.0), (CS, CSE, 0.9), (ECE, ECE, 1.0),
(EE, EE, 1.0), (Management, Management, 1.0), (Design, Design,
1.0)}. Deriving such matches can be done with traditional record
linkage techniques [5, 8, 16, 20, 54]. We use such techniques as
blackbox components in our framework to derive an initial tuple
mapping. This initial mapping is typically crude, with many possi-
ble tuple matches of varied probabilities, and it needs to be refined
into the correct mappingM∗tuple. This refinement is a core part of
our framework, which we will discuss in Section 3.

2.2 Problem output: The explanations
Example 2 highlighted the two generic types of explanations we

derive: (1) provenance-based explanations, indicating mismatched
tuples between the two datasets, and (2) value-based explanations,
indicating incorrect values or contributions for particular tuples.
We formalize these explanations below.

DEFINITION 2.5 (EXPLANATIONS). Given two queries Q1

andQ2 and their provenance relations P1 and P2, the explanations
of their differences include two generic types:

• A provenance-based explanation is a tuple t ∈ P1 (resp. t ∈
P2) such that t does not map to a t′ ∈ P2 (resp. t′ ∈ P1). We
use ∆ to denote a set of provenance-based explanations.

• A value-based explanation specifies an impact value change,
t.I 7→ t.I∗, for a tuple t ∈ P1 ∪ P2, meaning that t should
have impact t.I∗ rather than t.I . We use δ to denote a set of
value-based explanations.

Example 2 highlights a provenance-based explanation for the
disagreement of Q1 and Q3 (the Design program is missing from
D3), and a value-based explanation (D3 only lists one bachelor de-
gree in the CS College, when it should be two). The derived expla-
nations are tightly coupled with the tuple mapping. In comparing
Q2 and Q3, a mapping that matches CSE with the Computer Sci-
ence College, will produce different explanations than a mapping
that matches CSE to the College of Engineering. Typically, the ini-
tial mappings (Mtuple) derived from standard entity resolution and
linkage techniques are probabilistic, and would assign the two pos-
sible matches for CSE with two distinct probabilities. Our goal is
to discover the right mappingM∗tuple, leading to the correct (opti-
mal) set of explanations; we call this refined mapping the evidence

mapping (or evidence for short). The evidence mapping is a subset
of the initial mapping (M∗tuple ⊆ Mtuple), and needs to conform
to certain properties discussed in Section 3.

The final product of our framework is a set of explanations and
their evidence, reported as E = (∆, δ|M∗tuple). The evidence
M∗tuple is an explanation of the explanations themselves, making
our result fully interpretable.

2.3 Optimal explanations for 3D
We now define the problem of deriving optimal explanations for

disagreements in disjoint data, which we will refer to as EXP-3D.

PROBLEM 1 (THE EXP-3D PROBLEM). Given two queriesQ1

and Q2 with provenance relations P1 and P2, respectively, and a
set of initial tuple matchesMtuple, our goal is derive a set of ex-
planations, E = (∆, δ|M∗tuple) that maximize the probability:

Pr(E|P1, P2,Mtuple)

More informally, we are looking for the set of explanations and
their evidence mapping that are the most likely, given the queries’
provenance and the initial probabilistic tuple mapping. In our run-
ning example, suppose that the initial mapping for Q2 and Q3 as-
signs two possible matches for CSE, Computer Science and Engi-
neering, each with some probability. This indicates two possible
cases forM∗tuple, mapping CSE to Computer Science in one case
and Engineering in the other. The former choice results in a sin-
gle provenance-based explanation (the tuple with major=‘Design’
in D2 does not have a match in D3). The latter choice, results
in the same explanation and, in addition, that the tuple with Col-
lege=‘Computer Science’ in D3 does not have a match in D2, and
that the Num bach value of the Engineering tuple in D3 is wrong.
Clearly, the former choice is better. Intuitively, a particular tuple
mapping identifies specific discrepancies, which we map to expla-
nations, and fewer discrepancies are typically preferred.

In Section 3.1, we analyze the calculation of the objective func-
tion of Problem 1, and reduce it to a simpler scoring function that
is both tractable and theoretically-grounded. In Section 3.2, we
describe a framework for deriving the explanations and evidence
mapping through a translation to Mixed Integer Linear Programs
(MILP). Then, in Section 3, we describe a smart-partitioning opti-
mizer that improves the efficiency of our basic approach by several
orders of magnitude.

3. DERIVING EXPLANATIONS
In this section, we present explain3D, a 3-stage framework that

solves Problem 1. The first stage (Section 3.1) refines the prove-
nance data into a canonical form that is easier to analyze. With data
in this canonical form, we define essential properties for evidence
mappings and explanations, and use them to simplify the objec-
tive function of Problem 1. The second stage (Section 3.2), which
is the core of our approach, models the optimization problem as
a mixed integer linear program (MILP) and produces a refined evi-
dence mapping and the corresponding explanations. The third stage
(Section 3.3) relies on standard methods to analyze the common
properties of the discrepancies and summarize the explanations.

3.1 Stage 1: Canonicalization and Simplification
The provenance relation P1 of Q1 has two tuples for the CS pro-

gram, one for the B.S. and one for the B.A. degree. The degree
information is not relevant to the comparison with Q2, and it is not
part of the mapping betweenQ1 andQ2. Thus the two CS tuples in
P1 are indistinguishable with respect their role in the disagreement
between Q1 and Q2. This indicates that the provenance relation
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contains redundancy. We consolidate redundant tuples and their
impact through canonicalization. Canonicalization groups tuples
with the same values for the matching attributes and sums their im-
pacts. Canonicalization does not change the provenance relations
of queries that require a strict one-to-one mapping (queries with
AVG/MAX/MIN aggregation). The canonical relation of Q1 has 6
tuples (instead of 7 in P1), and CS is represented by a single tuple
with impact 2 (Figure 3a).

DEFINITION 3.1 (CANONICAL RELATION). Given a prove-
nance relation P of a query Q, and attribute matchesMattr , the
canonical relation T of P is derived with the query:

T = πA,I(AGSUM(I)(P ))

Where A is a set of matching attributes that appear in Mattr;
AGSUM(I) is the Group By operation over attributes A with aggre-
gate function SUM on the impact attribute I .

EXAMPLE 3. Figure 3 shows the canonical relations ofQ1 and
Q2 based on the attribute matchesMattr = (program ≡ major).
The canonical relation of Q1 is constructed with the query:
SELECT program, COUNT(I) AS I FROM P1 GROUP BY program

Canonicalization simplifies the datasets without losing informa-
tion necessary for the reasoning on disagreements. It further allows
us to identify and formalize essential properties for explanations
and evidence mapping, which we analyze next.

Explanation properties
Completeness. Explanations define refinements on the canonical
relations. A provenance-based explanation indicates the removal
of tuples, and a value-based explanation modifies a tuple’s impact.
Our goal is to identify a set of explanations that is complete: if
one performs all the refinements defined by the explanations, the
queries would return the same result. We evaluate completeness
through the properties of valid mapping and equal impact. In the
following, we denote T ∗1 = δ(T1 \∆) and T ∗2 = δ(T2 \∆) as the
refined tuples of the canonical relations.

Mapping validity. The attribute matches (Mattr) between two
queries imply the cardinality of the tuple matches between the two
canonical relations. If two attributes have an equivalence match,
e.g., program ≡ major, then the canonical relations should have a
one-to-one mapping of their tuples. Thus, in Figure 3, each tuple
in T1 should map to one tuple in T2. If it is a less general match,
e.g., program v college, then the mapping should be many-to-one
(many programs map to one college). We can never have many-to-
many mappings.

Initial tuple mapping, however, typically do not conform to the
required cardinality, as they frequently assign several probabilistic
matches for each tuple. For example, the CSE major in Q2 may be
mapped to two colleges inQ3, Engineering and Computer Science,
which violates the many-to-one cardinality requirement for two re-
lations. Our goal is to produce a refined mapping M∗tuple that
conforms to the cardinality requirements of the attribute matches
M∗tuple; we call such a mapping valid.

DEFINITION 3.2 (VALID MAPPING). Given attribute matches
Mattr = (AiφAj), and two sets of refined tuples, T ∗1 and T ∗2 , the
mappingM∗tuple is valid if and only if the following are true:
• If Ai v Aj , then ∀t ∈ T ∗1 , |{t|(t, t′, p) ∈M∗tuple}| ≤ 1

• If Ai w Aj , then ∀t ∈ T ∗2 , |{t|(t′, t, p) ∈M∗tuple}| ≤ 1

• If Ai ≡ Aj , then both the above conditions hold.

rowID Program I

p1 Accounting 1
p2 CS 2
p3 ECE 1
p4 EE 1
p5 Management 1
p6 Design 1

(a) T1: Canonical relation for Q1

rowID Major I

m1 Accounting 1
m2 CSE 1
m3 ECE 1
m4 EE 1
m5 Management 1
m6 Design 1

(b) T2: Canonical relation for Q2

Figure 3: Canonical relations for queries Q1 and Q2 of Figure 1. I
denotes the impact of the tuples.

Impact equality. Tuples of the canonical relations and their map-
ping form a bipartite graph. In a valid mapping, where the matches
can only be one-to-one, one-to-many, or many-to-one, the graph
separates into connected components. Each component contains
the tuples that correspond to each other semantically. When the
two query results agree, the total impact on each side of the bipar-
tite graph is the same within each connected component. Thus, our
goal is to find a set of explanations, such that the refined canonical
relations T ∗1 and T ∗2 demonstrate such impact equality.

DEFINITION 3.3 (IMPACT EQUALITY). Given canonical re-
lations T ∗1 and T ∗2 , and a bipartite graphG formed by a valid map-
pingM∗tuple between T ∗1 and T ∗2 , the impact equality property is
satisfied if and only if for all connected components (T ′1, T

′
2) of G:∑

t∈T ′1

(t.I) =
∑
t∈T ′2

(t.I)

DEFINITION 3.4 (COMPLETE EXPLANATIONS). A set of ex-
planations E = (∆, δ|M∗tuple) over canonical relations T1 and
T2 is complete ifM∗tuple is a valid mapping and T ∗1 = δ(T1 \∆)
and T ∗2 = δ(T2 \∆) satisfy the impact equality property.

Explanation problem revisited
The objective function of Problem 1 maximizes the probability
Pr(E|P1, P2,Mtuple). This probability can be equally and more
efficiently computed over the canonical relations, which are a (loss-
less, for the purposes of this problem) summary of the provenance
relations: Pr(E|P1, P2,Mtuple) = Pr(E|T1, T2,Mtuple).

From Bayesian inference, this is proportional to the product of
three probabilities:

Pr(E|T1, T2,Mtuple)

∝ Pr(T1, T2|E)Pr(Mtuple|T1, T2, E)Pr(E) (1)

We next consider each of the three probabilities separately.
Pr(T1,T2|E). Assuming that tuples are independent, we have:

Pr(T1, T2|E) =
∏

t∈T1∪T2

Pr(t|E) (2)

We use α and β to denote the a priori probabilities that t ∈ T1∩T2

and that t has correct impact t.I , respectively. Intuitively, α, β ∈
(0.5, 1], as a tuple is more likely to be covered by both queries and
have correct impact than not.5 We then compute the probabilities
of the different cases of t’s inclusion in a set of explanations E as:

Pr(t|t /∈ ∆, t /∈ δ) = αβ; Pr(t|t /∈ ∆, t ∈ δ) = α(1− β);

Pr(t|t ∈ ∆, t /∈ δ) = 1− α;Pr(t|t ∈ ∆, t ∈ δ) = 0. (3)

Pr(T1, T2|E) is then derived from Equations (2)-(3). Larger ∆
and δ lead to lower probabilities, thus the computation prioritizes
smaller provenance- and value-based explanations.
5For simplicity, we assume the same α and β for all tuples, but our
framework can handle different values across tuples.
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Pr(Mtuple|T1,T2,E).Assuming independence in tuple matches:

Pr(Mtuple|T1, T2, E) =
∏

m∈Mtuple

Pr(m|T1, T2, E) (4)

In addition, for a tuple match m = (ti, tj , p), the probability
that tuples ti and tj match is p, thus:

Pr(m|m ∈Mtuple∗, ti, tj ∈ T1 ∪ T2) = p;

Pr(m|m /∈Mtuple∗, ti, tj ∈ T1 ∪ T2) = 1− p;
Pr(m|ti, tj 6∈ T1 ∪ T2) = 0. (5)

Pr(Mtuple|T1, T2, E) is then derived from Equations (4)-(5).
The probability computation prioritizes tuple matches with higher

probabilities in the evidence mapping.

Pr(E). In this paper, we simply set the prior probability of a set of
explanations E, based on whether it is complete (Definition 3.4).
If E is complete, then Pr(E) = 1; otherwise, Pr(E) = 0. These
priors force our framework to only consider explanations that re-
solve all disagreements.

We can then compute the objective function from Equation (1).
In practice, to improve efficiency we calculate and later optimize
the probability in the logarithmic space:

log(Pr(E|T1, T2,Mtuple)) ∝
log(Pr(T1, T2|E)) + log(Pr(Mtuple|T1, T2, E)). (6)

Through a reduction from the Exact Cover problem6, we can
prove that Problem 1 is NP-complete [53].

THEOREM 3.5. EXP-3D (Problem 1) is NP-complete.

3.2 Stage 2: MILP transformation
In this section, we show how stage 2 of explain3D transforms the

EXP-3D problem into a mixed integer linear program (MILP). This
transformation allows explain3D to use modern constrained opti-
mization solvers to derive the optimal explanations. Later, in Sec-
tion 4, we show how to optimize computation in this stage, through
a smart-partitioning optimizer.

To translate an instance of the EXP-3D problem into a MILP
problem, we first convert tuples, their tuple matches, and the as-
sociated explanations into linear constraints; we then express the
explanation completeness properties, using linear constraints; we
complete the translation process by formalizing a linear expression
for the probability of the explanations.

Expressing explanations
To express the explanations, we first introduce a binary variable
for each tuple ti ∈ T1 ∪ T2 and a binary variable for each tuple
match (ti, tj , p); we then translate the changes suggested by the
explanations into linear constraints.

Tuple: Given a tuple ti = (ti.A1, ..., I), there are two types of ex-
planations that may be associated with this tuple: (1) a provenance-
based explanation (ti ∈ ∆); (2) a value-based explanation (ti ∈ δ).
We use a binary variable xi to indicate whether tuple ti is included
in an provenance-based explanation; To express the value-based ex-
planation, we use a integer variable t.I∗ for tuple t’s refined impact
and a binary variable yi representing whether the tuple’s refined

6The Exact Cover problem is one of Karp’s 21 NP-complete prob-
lems [30].

impact is the same as its original impact (yi = 1) or not (yi = 0).
The binary variable yi should satisfy the following constraint.

yi = (t.I∗ = t.I) (7)

When xi = 1, the tuple ti ∈ ∆ is selected as a provenance-based
explanation; when xi = 0, the tuple ti remains in the canonical
relation and its impact is set to t.I∗.

Based on the binary variables and Equation (3), we express the
probability of the explanations being associated with tuple ti as:

log(Pr(ti)) = xi ⊗ a+ (1− xi)⊗ ((1− yi)⊗ b+ yi ⊗ c)

In the above expression, ⊗ represents regular multiplication; we
prefer to use ⊗ to indicate that it is the semi-module multiplication
by scalars; a = log(1−α), b = log(α)+log(β), and c = log(α)+
log(1−β) as three constant values. Note that the above Equation is
quadratic due to the underlined expression: Pi = (1−xi)⊗ ((1−
yi) ⊗ b + yi ⊗ c). We linearize Pi, with the help of two constant
numbers L and U as follows [3].

Pi ≥ L⊗ (1− xi)
Pi ≤ U ⊗ (1− xi)
Pi ≥ (1− yi)⊗ b+ yi ⊗ c− U ⊗ xi
Pi ≤ (1− yi)⊗ b+ yi ⊗ c− L⊗ xi
log(Pr(ti)) = xi ⊗ p1 + Pi (8)

The constant number L (or H) cannot be greater than the lower
bound (or smaller than the upper bound) of Pi.

Tuple Match: Given a tuple match m = (ti, tj , p), we use a
binary variable zi,j to express whether it is a true match: When
zi,j = 1, we include it in the evidence mapping. The probability of
this match is computed as follows.

zi,j ≤ (1− xi); zi,j ≤ (1− xj)
log(Pr(m)) = zi,j ⊗ log(p) + (1− zi,j)⊗ log(1− p) (9)

Where xi and xj are the binary variables associated with ti and tj ,
respectively.

Expressing explanation completeness
We use the explanation variables to express the mapping validity
and impact equality properties as linear constraints.

Valid Mapping: As required by Definition 3.2, the refined tuple
matchesM∗tuple should follow the valid mapping property, which
essentially restricts the degree for some of the tuples to be less than
or equal to 1. If ti is such a tuple, then we add the constraints:∑

(ti,tj ,p)∈M

zi,j ≤ 1 (10)

Equal Impact: Valid mappings between the canonical tuples T1

and T2 can never have many-to-many cardinality. Therefore, in the
bipartite graph between T1 and T2 under a valid mapping, at least
one of T1 or T2 is guaranteed to have only tuples with maximum
degree of 1. This observation allows us to simplify the specification
of the connected components in the bipartite graph and the corre-
sponding impact calculations. Suppose that all tuples in T1 have
maximum degree 1. Then the set of connected components is:

S = {(η(tj), tj ,M)|tj ∈ T2}

where η(tj) is the set of T1 tuples that are adjacent to tj ∈ T2.
Consider one connected component (η(tj), tj ,M) ∈ S, the total
impact of T1 in the component is Il =

∑
ti∈η(tj) zi,j ⊗ ti.I

∗; and
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Algorithm 1: The basic solution
Input : Two sets of canonical tuples (T1, T2) and acquired tuple

matches (Mtuple)
Output: A set of explanations

1 milp vars,milp cond, prob expr ← ∅;
2 foreach tuple t in T1 ∪ T2 do
3 milp vars← milp vars ∪ DefineTupleVariables(t);
4 milp cond← milp cond ∪ TupleImpactCondition(t);
5 prob expr ← prob expr ∪ TupleProbability(t);

6 foreach mapping m inM do
7 milp vars← milp vars ∪ DefineMappingVariables(m);
8 prob expr ← prob expr ∪MappingProbability(m);

9 milp cond← milp cond ∪ FormConditions(milp vars);
10 milp← FormMILP(milp cond, prob expr);
11 solved vars← SolveMILP(milp);
12 E ← DecodeVariables(solved vars);
13 return E;

the total impact of T2 tuples is Ir = tj .I
∗. Here, we linearize the

quadratic equation Il using the same method as Equation (8).

Ii ≤ U ⊗ zi,j
Ii ≥ L⊗ zi,j
Ii ≤ ti.I∗ − L⊗ (1− zi,j)
Ii ≥ ti.I∗ − U ⊗ (1− zi,j) (11)

Where Ii = zi,j ⊗ ti.I
∗ is an element in Il; L and U are two

constants that cannot be greater than the lower bound (or smaller
than the upper bound) of a tuple’s impact.

Finally, the equal impact property requires:∑
ti∈η(tj)

Ii = Il (12)

Formalizing the objective function
The EXP-3D problem aims to derive a set of complete explana-
tions such that the probability of the explanations is maximized.
The MILP formulation creates variables for all provenance-based
(tuples) and all value-based (impact) explanations. Our objective
function can be formulated as a linear expression over the explana-
tion variables in a fashion similar to the constraints of the explana-
tion properties:

log(Pr(E|T ,M)) =
∑
t∈T

log(Pr(t)) +
∑
m∈M

log(Pr(m)) (13)

Where T = T1 ∪ T2,M =Mtuple; log(Pr(t)) and log(Pr(m))
are formulated by Equation (8) and Equation (9) respectively.

The algorithm
Algorithm 1 provides the pseudocode implementing the MILP trans-
formation described in this section. The algorithm first iterates over
all tuples in the input to define variables, construct constraints, and
express the tuple probabilities in Lines 3-5. The algorithm then
iterates over all the tuple matches and formalizes the probability
expression in Line 8 according to Equation (9). Next, the algo-
rithm constructs constraints for the completeness requirement, as
in Equations (10)-(12), by a FormConditions function (Line 9).
With the variables and constraints, the algorithm completes the
MILP problem formulation and calls a MILP solver to get a solu-
tion (Line 10-11). We derive the final explanations from the MILP
solution by including an explanation or evidence (tuple match) if
the solve value of the corresponding binary variable is 1 (Line 12).

3.3 Stage 3: Summarization
The product of stage 2 of explain3D is a set of explanations and

their evidence mapping. But when the discrepancies between two
datasets are extensive, the derived explanations could involve a
large number of tuples and values. Reviewing such explanations
can be tedious. Stage 3 of our framework is tasked with sum-
marizing and abstracting the explanations to reduce their size and
increase their understandability. As in Example 1, we may use
Degree=“Associate degree” in DUMass to summarize the common
patterns of the derived explanations, which is easier to understand
than presenting the explanations individually.

Different summarization methods are possible. Explain3D marks
tuples associated with explanations as a “target” and then uses ex-
isting techniques, such as Data Auditor [27] and Data X-Ray [50]
to identify common patterns for the target tuples. Alternatively,
“target” tuples could be treated as examples by QBE (Query-By-
Example) techniques [17,23,43,46], which can then generate SQL
queries that precisely describe them. Developing novel summa-
rization methods is not a focus of our work in this paper, and thus
stage 3 relies on existing tools. Detailed stage 2 explanations are
still available through explain3D, for users who prefer to peruse the
more precise and detailed causes of the disagreement.

4. PARTITIONING OPTIMIZATION
A critical problem with stage 2 of the explain3D framework is

that it does not scale for problems with a large number of tuples
and tuple matches. The problem is that the generated MILP grows
to sizes that can stump even state-of-art solvers. To improve the
efficiency of the basic algorithm, we can split the bipartite graph
G = (T1, T2,Mtuple) into its maximal connected components
and solve the problem in each component separately. This method
requires linear time, O(|T1| + |T2| +Mtuple), to derive the con-
nected components and it does not sacrifice the accuracy. However,
it fails to achieve any efficiency or scalability guarantees, as in the
worst case, G may be connected.

Inspired by the connected components approach, we propose a
method to divide the original problem into a collection of sub-
problems with bounded sizes such that each sub-problem is guaran-
teed to be small enough to solve. Our partitioning method is based
on the Graph Partitioning Problem (GPP) [11, 31, 34, 41], which
aims to minimize the total weight of the edge cuts7.

PROBLEM 2 (THE GRAPH PARTITIONING PROBLEM).
Given a number k ∈ N>1, a bipartite graphG = (T1, T2,Mtuple)
formed by tuples and their matches, and an upper bound Lmax for
the maximum partition size, we seek a partition Π of T1 ∪ T2 with
disjoint collections of tuples Π = {(T1,1, T2,1), ..., (T1,k, T2,k)}
such that:

• T1,1 ∪ ... ∪ T1,k = T1 and T2,1 ∪ ... ∪ T2,k = T2;

• |T1,i|+ |T2,j | ≤ Lmax;

• EdgeCutSum(Π) =
∑

(ti,tj)∈E w(ti, tj) is minimized.
WhereE = {(ti, tj), ...} denotes the set of edges across partitions;
w(ti, tj) denotes the weight of edge (ti, tj); |T1,i|+|T2,j | ≤ Lmax
is the balancing constraint over the maximum size of one partition.

In our setting, a naı̈ve way to assign the edge weights is by us-
ing the tuple matches’ probabilities: w(ti, tj) = p. However, this
setting is ill-suited for our problem: According to our objective
function (Problem 1), cutting a high probability tuple match tends
to hurt our objective value much more than cutting multiple lower
7Edge cuts refer to edges across partitions.
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Algorithm 2: The pre-partitioning algorithm
Input : A bipartite graph G = (T1, T2,Mtuple) and

thresholds θl, θh, R
Output: A simplified graph Gc = (C1, C2,Mc)

1 C1, C2,Mc ← ∅;
2 foreach tuple t in T1 ∪ T2 do
3 if t.isVisited then
4 continue

5 (T ′1, T
′
2)← FindHighProbTuplesDFS(t, G, θh);

6 (C′1, C
′
2)←MergeTuples(T ′1, T ′2);

7 (C1, C2)← UpdateMergedTuples(C′1, C
′
2);

8 foreach mapping (ti, tj , p) inMtuple do
9 (C′i, C

′
j)← FindMergedTuples(C1, C2, ti, tj );

10 Mc ← UpdateEdgeWeight(C′i, C
′
j , p, R)

11 return Gc = (C1, C2,Mc);

probability tuple matches with equal or even higher total probabili-
ties. For example, let us assume that we cut a tuple match, with 0.9
probability, that is part of the optimal explanation (M∗tuple). The
objective value, Pr(E), would drop by 9 times8 as the probability
of this tuple match, Pr(m|m ∈ M∗tuple), would change from 0.9
to 0.1. This objective value loss is significantly higher than cutting
two tuple matches with lower individual (0.6 each) but higher to-
tal probabilities (1.2 in total). The latter case would only lead to a
objective value drop by 2.25 times. Based on this observation, we
prioritize cutting tuple matches with lower probabilities and avoid
cutting tuple matches with high probabilities. We achieve this by
adjusting the edge weight assignments as below:

w(ti, tj) =


p ·R, if p ≥ θh;

p/R, if p ≤ θl;
p, otherwise.

Where R ∈ (1,∞) is a constant for rewarding (or penalizing)
high probability (or low probability) tuple matches and 0 ≤ θl <
θh ≤ 1 are two thresholds specifying low and high probability tu-
ple matches. In this paper, we set θl = 0.1, θh = 0.9, R = 100.

Existing graph partitioners, e.g., METIS [41] and hMETIS [31],
can be used directly to derive the sub-problems, but they are not ef-
ficient when R is large. To further optimize partitioning efficiency,
we employ a pre-partitioning step that combines tuples connected
by high probability tuple matches. This pre-partitioning step can
also be considered as an extra coarsening level on top of the multi-
level graph partitioning algorithms [32, 33]. Empirically, this step
achieves 200× partition time speedup over graphs with 10K tuples
without compromising optimality.

Algorithm 2 presents the pseudocode of the pre-partitioning step.
The algorithm iterates over tuples in the bipartite graph in arbitrary
order and attempts to merge tuples that are connected by high prob-
ability tuple matches as much as possible (Lines 2-7). It then iter-
ates over the remaining tuple matches and updates the edge weights
of the merged tuples accordingly (Lines 8-10). This algorithm has
linear time complexity: O(|T1|+ |T2|+ |Mtuple|).

Finally, Algorithm 3 presents our smart-partitioning method. This
algorithm first leverages the pre-partitioning algorithm (Algorithm 2)
to generate a much smaller graph (Line 1); it then partitions the
smaller graph (Line 2) with a standard graph partitioner; it finally
produces the final partitioning Π according to the tuples’ assigned
partitions (Lines 3-6).

8This is based on the assumption that the probabilities of other tu-
ples and tuples matches are not impacted.

Algorithm 3: The smart-partitioning algorithm
Input : A bipartite graph G = (T1, T2,Mtuple), thresholds

θl, θh, R, the number of partitions k, and the maximum
partition size Lmax

Output: A partition Π

1 Gc ← PrePartition(G, θl, θh, R);
2 Πc ← GraphPartitioner(Gc, k, Lmax);
3 Π← InitializeKEmptyPartitions(k) ;
4 foreach (C′1, C

′
2) in Gc do

5 idx← Πc(C′1, C
′
2) ;

6 Π[idx]← AddTuples(C′1, C
′
2);

7 return Π;

5. EXPERIMENTAL EVALUATION
In this section, we evaluate the effectiveness and efficiency of ex-

plain3D using both real-world and synthetic data. In particular, we
first compare explain3D with several alternative algorithms over two
categories of real-world data (Section 5.2); then, we evaluate the
performance and benefit of the smart-partitioning optimization over
a series of synthetic datasets with diverse properties (Section 5.3).

5.1 Experimental setup
All experiments were performed on 4×2.77 GHz machines with

32GB RAM running IBM CPLEX [29] as the MILP solver on Ma-
cOS version 10.11.6.

5.1.1 Datasets, queries, and gold standards
We first describe the real-world data used in our evaluation; we

describe our synthetic data experiments in Section 5.3.
Academic datasets. We collect three publicly available academic

datasets, the UMass-Amherst dataset on undergraduate programs
and the National Center for Education Statistics (NCES) dataset,
described in Example 1, and the the OSU dataset on undergrad-
uate programs9. We create two pairs of datasets for compar-
isons: (1) UMass-Amherst vs. NCES, described in Example 1,
and (2) OSU vs. NCES, described in the table below. We evaluate
all alternative algorithms with queries that compute the number
of undergraduate programs at UMass Amherst (or OSU, respec-
tively) on each pair of data.

OSU data (DOSU) NCES data (DNCES)
Major(Major, Degree, Campus, School(ID, Univ name, City, Url)
School) Stats(ID, Program, bach degr)
Q1 : Q2 :
SELECT COUNT(Major) SELECT SUM(bach degr)
FROM Major; FROM School, Stats

WHERE Name = ‘OSU’
AND School.ID=Stats.ID;

Gold Standard: We manually create the gold standard for the ex-
planations and the evidence mapping on both pairs of data. The
datasets, queries, and gold standards are publicly available10. Fig-
ure 4 shows the detailed statistics of the academic datasets.

IMDb Datasets. We retrieve the IMDb data11, and use it to create
a pair of disjoint datasets, as two views with different schemas
over the original data. To simulate the real-world disagreements
over disjoint data, we choose a schema design for the first view
such that a certain portion of data is lost during the data migra-
tion process.12 We further introduce ∼5% random errors to both

9http://undergrad.osu.edu/majors-and-academics/majors
10https://bitbucket.org/xlwang/explain3d
11https://datasets.imdbws.com/
12In DIMDb1, a movie is associated with a single country and genre.
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views with the BART system [1]. We create 10 query templates
(listed below), mapped over each view, covering a wide range of
query types, including joins, subqueries, non-aggregates, and 5
different aggregate functions. We create 10 instantiations of each
template, by selecting a random value for year∈ [1970, 2003] for
templatesQ1–Q9, and a random value for genre inQ10, resulting
in a total of 100 different queries.

IMDb View 1 (DIMDb1)

Movie (movie id, title, release year, genre, country, runtimes, gross,
budget)

Actor (actor id, firstname, lastname, gender, dob)
Director (director id, firstname, lastname, gender, dob)
MovieDirector (movie id, director id) MovieActor (movie id, actor id)

IMDb View 2 (DIMDb2)

Movie (m id, title, release year) MovieInfo (m id, info type, info)
Person (p id, name, gender, dob) MoviePerson (m id, p id)

Query templates

Q1 Return actors who were cast in short movies released in 〈year〉.
Q2 Return movies directed by someone born in 〈year〉.
Q3 Return the number of comedy movies released in 〈year〉.
Q4 Return the number of movies released in the US in 〈year〉.
Q5 Return the total gross value for movies released in 〈year〉.
Q6 Return the maximum gross value for movies released in 〈year〉.
Q7 Return the longest movie released in 〈year〉.
Q8 Return the average gross value for movies released in 〈year〉.
Q9 Return the average runtime for movies released in 〈year〉.
Q10 Return actresses who have not starred in any 〈genre〉 movies.

Gold Standard: While creating the two disjoint views, we keep
track of the data lost in the first view and record the random er-
rors introduced by BART; these are the optimal explanations of
the query disagreements. The optimal evidence mapping can also
be easily acquired through the mapping between the views and
the original dataset. The detailed statistics of the IMDb datasets
are shown in Figure 4.

5.1.2 Attribute matches and tuple mapping
Attribute Matches. The attribute matches (Mattr) for the two
real-world datasets are shown in Figure 5.
Tuple Mapping. In evaluation, we use a similarity-to-probability
method [24,55] to collect the initial tuple mapping (Mtuple). This
similarity-to-probability method is a two-step process that gener-
ates the tuple matches probabilities from their similarity values:
(1) it first divides the tuple matches into k continuous buckets over
the similarity values; (2) in each bucket, it calculates the probabil-
ity of tuple matches by the ratio of true matches within the current
bucket. The true matches can be acquired by labeling a subset of
data, or by a known gold standard.

To generate the similarity values, we use token-wise Jaccard sim-
ilarity for String attributes:

sim(ti.A, tj .A) =
|ti.A ∩ tj .A|
|ti.A ∪ tj .A|

We use normalized Euclidean distance on numeric attributes:
sim(ti.A, tj .A) =

1

1 + |ti.A− tj .A|2

We finally combine the similarity values over multiple attributes
by taking their mean value:

sim(ti, tj) =

∑
A∈Mattr

sim(ti.A, tj .A)

|Mattr|

After computing the pair-wise similarity for tuples in the canon-
ical relations, we generate the initial tuple matches and their prob-
abilities with the above similarity-to-probability method. In par-
ticular, we divide the tuple matches into 50 buckets and we use the

Academic datasets
# of undergrad majors # of undergrad majors

UMass NCES OSU NCES
N/|P |/|T | 113/113/95 239K/81/81 282/282/206 239K/153/153
|Mtuple| 169 607
|M∗tuple| 71 140
|E| → |ES | 64→ 11 127→ 16

IMDb datasets
Q1 Q2 Q3 Q4 Q5

|P | (IMDb1/IMDb2) 1.3K/4.6K 2.8K/3.8K 1.6K/3.1K 2.7K/6.2K 8.9K/9.0K
|Mtuple| 0.6M 0.8M 51K 0.3M 1.1M
|M∗tuple| 1271 2768 1601 2756 4231
|E| → |ES | 3.4K 33 1.1K 23 1.5K 28 3.4K 38 5.5K 43

Q6 Q7 Q8 Q9 Q10

|P | (IMDb1/IMDb2) 5.8K/5.9K 10.9K/10.9K 3.4K/3.5K 4.8K/4.9K 11.5K/14.4K
|Mtuple| 0.5M 2.2M 0.2M 0.4M 1.3M
|M∗tuple| 5353 6259 2365 3147 5959
|E| → |ES | 1.3K 19 21.1K 86 2.5K 33 3.9K 40 13.4K 75

Figure 4: Dataset statistics. N , |P |, |T | are the original data size, the
provenance relation size, and the canonical relation size, respectively;
the size of the initial tuple mapping is |Mtuple|; the sizes of the opti-
mal evidence mapping and the optimal explanations are |M∗tuple| and
|E|, respectively. |ES | is the size of the explanations after summarizing
them with Data X-Ray [50,51]. N forDIMDb1 andDIMDb2 are 3.7M and
6.8M tuples, respectively, for all IMDb queries. In the IMDb datasets,
we show the average numbers over 10 instantiations of each query; |P |,
|T | in these datasets are the same, so we report only one.

UMass vs. NCES OSU vs. NCES

(Major.Major) v (Stats.Program) (Major.Major) v (Stats.Program)

IMDb View 1 vs. IMDb View 2

(Movie.title, Movie.release year) ≡ (Movie.title, Movie.release year)
(Actor.firstname, Actor.lastname, ≡ (Person.name, Person.gender,
Actor.gender, Actor.dob) Person.dob)
(Director.firstname, Director.lastname, ≡ (Person.name, Person.gender,
Director.gender, Director.dob) Person.dob)

Figure 5: Attribute matches for the real-world datasets.

evidence mapping in the gold standard to label a sample of matches
and produce the probabilities of the buckets. The sizes of the initial
tuple matches for each of the datasets are shown in Figure 4.

5.1.3 Algorithms
We compare our framework, explain3D, against FORMALEXP,

an approach that focuses on explanations in the single dataset set-
ting, RSWOOSH, a state-of-the-art record linkage system, and three
additional baseline methods. We describe all the algorithms below.

FORMALEXP: FORMALEXP explains surprising outcomes of ag-
gregate queries in a single database [45]. To apply FORMALEXP
in disjoint datasets, we first compare the results of the queries and
then ask FORMALEXP to explain why the query result is high (or
low) on each individual dataset. Tuples that are included by the de-
rived explanations are considered provenance-based explanations.
FORMALEXP returns the Top-k explanations, and requires k as an
input. In our experiments, we set k = 15, denoted by FORMAL-
EXP-Top15, as it achieves the highest overall accuracy.

RSWOOSH: RSWOOSH [5] is an entity resolution technique that
produces deterministic tuple matches. For RSWOOSH, we treat all
derived tuple matches as the evidence mapping since their proba-
bilities are all equal to 1.0. We include tuples that do not have a
match in this evidence mapping as provenance-based explanations,
and tuples with unequal impacts as value-based explanations. Here

787



Precision Recall F-measure

0.2
0.4
0.6
0.8
1.0

A
cc

ur
ac

y
Exp3D 
Greedy 
Threshold-0.9

Rswoosh 
ExactCover 
FormalExp-Top15
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(b) NCES vs. UMass Evidence Accuracy.

Method NCES/UMass (sec)

FORMALEXP-Top15 0.052
RSWOOSH 0.273

THRESHOLD-0.9 0.276
GREEDY 0.280

EXACTCOVER 0.272
EXPLAIN3D 0.322

(c) NCES vs. UMass Execution Time.
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(d) NCES vs. OSU Explanation Accuracy.
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(e) NCES vs. OSU Evidence Accuracy.

Method NCES/OSU (sec)

FORMALEXP-Top15 0.064
RSWOOSH 0.541

THRESHOLD-0.9 0.581
GREEDY 0.573

EXACTCOVER 0.562
EXPLAIN3D 0.729

(f) NCES vs. OSU Execution Time.

Figure 6: Accuracy and efficiency comparison over Academic datasets. EXPLAIN3D achieves much higher accuracy than the other methods.
THRESHOLD obtains high precision but low recall in the derived evidence. FORMALEXP does not provide any tuple matches in the evidence.
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Figure 7: Accuracy and efficiency comparison over IMDb datasets. EXPLAIN3D achieves near perfect accuracy. RSWOOSH and EXPLAIN3D without
the smart-partitioning optimization fails to produce any results for queries with more than 10K tuples in 1hr.

we use the Jaccard similarity metric to compare string attributes,
using 0.75 as the default threshold value.13

THRESHOLD: THRESHOLD is a simple baseline that refines the
initial probabilistic tuple matches by a fixed threshold. It uses the
derived evidence mapping to derive explanations, in the same man-
ner as RSWOOSH. In our experiment, we set a threshold of 0.9 and
denote it as THRESHOLD-0.9.

GREEDY: GREEDY is a baseline that implements explain3D’s ob-
jective function (Definition 1), but builds the evidence mapping in a
greedy fashion (whereas explain3D derives it by solving constrained
optimization problems). Initialized with an empty evidence map-
ping, GREEDY prioritizes tuple matches with higher probabilities
and includes into the evidence the match with highest probability
that does not violate the valid mapping restriction (Definition 3.2)
and improves the objective value. After examining all initial tuple
matches, GREEDY finalizes the evidence mapping and creates the
explanations in the same way as RSWOOSH and THRESHOLD.

EXACTCOVER: We create a final baseline by adapting the inte-
ger programming solution of the Exact Cover problem to solve the
EXP-3D problem as follows: we map tuples in one provenance re-
lation as elements, and tuples in the other provenance relation as
sets; an element is covered by a set if there exists an initial tu-
ple mapping between their corresponding tuples. We further adapt

13We have also conducted experiments using Jaro similarity, but its
performance is strictly inferior to Jaccard similarity in all experi-
ments, so we don’t report it in the graphs.

the objective function of the Exact Cover problem from a decision
problem to a optimization problem, where we want to find a collec-
tion of sets such that the total number of covered sets and elements
is maximized.
EXPLAIN3D: Our proposed system, explain3D, expresses and op-
timizes the problem as linear constraints and solves the constructed
MILP problem(s) through a MILP solver (Section 3, Section 4).

5.1.4 Metrics
Explanation accuracy: We evaluate the explanation accuracy of

the algorithms using precision, recall, and F-measure. We cal-
culate precision as the fraction of true explanations over derived
explanations, and recall as the fraction of true explanations over
the gold standard; F-measure is the harmonic mean of precision
and recall ( 2∗precision∗recall

precision+recall
).

Evidence accuracy: We also evaluate the evidence mapping ac-
curacy with the same metrics. Similarly, we calculate the preci-
sion as the fraction of true tuple matches over the refined tuple
matches, and recall as the fraction of true matches over the gold
standard; F-measure as the harmonic mean of precision and recall.

Execution time: We evaluate the efficiency of all alternative algo-
rithms through their total execution times, including the time for
generating initial tuple matches.

5.2 Real-world datasets
We evaluate all the algorithms (Section 5.1.3) on both the Aca-

demic and IMDb datasets. Figures 6a, 6d, and 7a demonstrate the

788



precision, recall, and F-measure of the derived explanations; Fig-
ures 6b, 6e, and 7b demonstrate the precision, recall, and F-measure
of derived evidence mapping; Figures 6c, 6f, and 7c demonstrate
the total execution time.

Single-dataset explanations. Our evaluation with FORMALEXP
examines whether single-dataset explanation solutions could ad-
dress explanations across different datasets. This method does not
generate an evidence mapping, and the derived explanations focus
on why a query result is high or low, rather than why it is higher
or lower than the other corresponding query. The why-high/why-
low explanation question is a best-effort adaptation of this solution
to our problem setting, but it is not a good enough proxy of the
correspondence information encoded in the queries. As a result,
the f-measure of FORMALEXP-Top15 is low, indicating that it is
ill-suited for this problem setting.
Record-linkage approaches. Record-linkage methods do not gen-
erate explanations as a goal, but the tuple mappings they produce
can be used as an evidence mapping and then mapped to expla-
nations. RSWOOSH and THRESHOLD-0.9 produce evidence map-
pings with very high precision because they employ thresholds in
refining the mappings (thus maintaining the most likely ones). How-
ever, their recall is low because they eliminate correct mappings
that happen to have low probabilities. As these techniques miss
many correct mappings, they include a large number of tuples in
the explanations, thus resulting in low explanation precision.

Since RSWOOSH and THRESHOLD-0.9 employ thresholds in re-
fining the mappings, they perform better when the initial mappings
are of better quality, as is the case for the IMDb datasets. Their
performance drops significantly in the Academic datasets. Through
manual analysis, we noted that the initial tuple mappings in the aca-
demic data misses or has low probabilities for a significant portion
of true matches. For example, the true tuple mapping, (“Foodser-
vice Systems Administration”, “Food Business Management”) is
absent from the initial mapping. Such cases are common in the
academic datasets, but uncommon in the IMDb data because movie
titles, persons’ names, and other attributes are less ambiguous. Fur-
ther, our view generation and error injection only contributed rela-
tively small perturbations, making matches easier to identify with
higher accuracy.

GREEDY is also a record linkage approach, but uses our objec-
tive function instead of a strict threshold; thus, it is able to identify
a larger portion of true mappings and has a higher recall. How-
ever, it may easily reach a local maximum, which results in lower
precision and recall on the evidence mapping and further hurts the
explanation accuracy. GREEDY is also impacted by the initial map-
ping quality, but is a bit more robust to it compared to RSWOOSH.

Ultimately, record linkage methods also are oblivious to the cor-
respondence implied by the input queries. Failing to leverage this
information, their effectiveness remains relatively low (below 0.8
f-measure), even in the most favorable data settings.
EXPLAIN3D. Our experiments demonstrate that our framework is
highly accurate, with respect to both explanations and evidence
mappings. Its superior performance compared to the other two cat-
egories of approaches is due to two main reasons. First, its ob-
jective function is cognizant of the query associations, in that it
does not only focus on maximizing the quality of the matched tu-
ples, but also seeks to minimize the unmatched tuples. As a result,
it produces smaller explanations and identifies more correct map-
pings. As an example of the distinction from record linkage, con-
sider two datasets of two tuples: A,B andA′,B′. Suppose that the
initial probabilistic tuple mapping is {(A,A′, 0.8), (B,B′, 0.8),
(A,B′, 0.9), and (B,A′, 0.5)}. Typical record linkage methods
would select (A,B′) as the single match, because it maximizes the

probability of the matched tuples. In contrast, EXPLAIN3D will
derive the correct true mappings, (A,A′) and (B,B′), because it
considers explanation optimality by avoiding un-matched tuples.
Second, record linkage methods often consider unmatched values
as a very negative signal for matching a pair of tuples. In contrast,
EXPLAIN3D does not weigh these mismatches as negatively, as it
considers them as possible value-based explanations. As a result,
EXPLAIN3D is more robust to variations in the quality of the ini-
tial tuple mapping. Nevertheless, the quality of the initial mapping
does play a role, thus EXPLAIN3D performs better on the IMDb
data than the academic datasets. However, in all cases, its accuracy
is superior to the other methods.

Finally, while Exact Cover relates to EXP-3D through the NP-
completeness reduction, it performs badly in all settings. This is
expected since the Exact Cover problem does not consider tuple im-
pacts, and does not refine the quality of the initial tuple mappings.

Efficiency. We show the total execution time of all methods in
Figures 6c, 6f, and 7c. All methods are very efficient, with under
a second runtimes. THRESHOLD, GREEDY, RSWOOSH, EXACT-
COVER, and EXPLAIN3D rely on the same procedure to derive the
input tuple matches, which takes more than 98% of their total ex-
ecution time. EXACTCOVER scales better than the unoptimized
version of EXPLAIN3D, because it has simpler problem settings.
Figure 7c also demonstrates the effect of partitioning on the IMDb
data. Partitioning allows EXPLAIN3D to scale effectively, without
impact on its accuracy (Figures 7a and 7b).

5.3 Synthetic datasets
To stress-test EXPLAIN3D and evaluate its smart-partitioning op-

timization, we create a synthetic data generator to produce datasets
and queries with diverse properties. In the synthetic data generator,
we use the same schema and queries for every pair of datasets:

Dataset 1 Dataset 2

Table(id, match attr, val) Table(id, match attr, val)
(match attr) ≡ (match attr)

Q1 : Q2 :
SELECT SUM(val) FROM Table; SELECT SUM(val) FROM Table;

Based on the above schema, we follow three steps to produce a
pair of datasets with the specified properties: (1) We first create n
tuples with random attribute values and add them to both datasets.
(2) We then randomly drop d percent of tuples, with uniform prob-
ability across tuples. (3) We randomly select d percent of tuples,
again with uniform probability, and corrupt the tuples’ “val” at-
tribute. To generate random values in the “match attr” attribute, we
first create a vocabulary containing v > 5 random words and then
generate phrases, each of which consists of 5 random words from
the vocabulary, as the attribute values; To generate random values
in the “val” attribute, we randomly select an integer in the range
of [1, 10]. The optimal explanations include tuples we dropped or
corrupted in the steps (2) and (3); the optimal evidence can be eas-
ily derived from step (1). In this experiment, we study the per-
formance of smart-partitioning by dynamically changing the num-
ber of partitions (k ∈ N>1, Definition 2) using a fixed batch size:
k = d |T1|+|T2|

batch size
e.

We evaluate EXPLAIN3D on three different settings: (1) the basic
algorithm without the smart-partitioning optimization (NOOPT),
(2) the optimized algorithm with batch size 100 (BATCH-100), and
(3) the optimized algorithm with batch size 1000 (BATCH-1000).
Figure 8 demonstrates the performance of NOOPT, BATCH-100,
and BATCH-1000 over diverse parameter settings.
Adjusting number of tuples (n): We first adjust the number of
tuples (n) in the synthetic datasets from 100 to 100K with fixed
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Figure 8: Efficiency performance of NOOPT, BATCH-100, and BATCH-1000 over synthetic datasets with diverse properties. Note that we only
evaluate the solve time instead of the total execution time since the all methods share the same initial tuple matches generation time.

difference ratio d = 0.2 and vocabulary size v = 1K. As shown
in Figure 8a, NOOPT performs well for problems with fewer tuples
as the problem can be efficiently solved by a single MILP problem.
However, its execution time grows quadratically, if not exponen-
tially, with increasing data size. BATCH-100 and BATCH-1000
solve multiple MILP problems with bounded sizes, thus their solve
time grows linearly with increasing number of tuples. Meanwhile,
BATCH-1000 is significantly more efficient than BATCH-100 as
BATCH-100 requires longer time to initialize and solve each in-
dividual sub-problems. With the smart-partitioning optimization,
BATCH-1000 is more than 20× faster than NOOPT on problems
with 100K tuples.

Adjusting difference ratio (d): We next adjust the difference ra-
tio (d) from 0.1 to 0.5 while keeping the other parameters fixed:
n = 1K, v = 1K. As expected, all three methods require longer
time for problems with lower difference ratio. This is because with
higher difference ratio, there will be fewer tuples remaining in the
datasets. Again, BATCH-1000 is much more efficient than BATCH-
100 and NOOPT.

Adjusting vocabulary size (v): Finally, we adjust the vocabulary
size (v) from 100 to 10K and keep n = 1K, d = 0.2. In the
synthetic data generator, we generate the value of the “match attr”
attribute by randomly selecting 5 words from the vocabulary. Thus
the probability that two tuples share at least one common word
increases with lower vocabulary sizes. In other words, there will
be many more initial tuple matches when we set v = 100 than
v = 10K. As shown in Figure 8c, BATCH-100 is 15× faster than
NOOPT and even outperforms BATCH-1000 when v = 100. This
is because the number of tuple matches in each sub-problem also
affects the problem’s overall complexity. Thus, we need to divide
the problem into smaller partitions when there is a larger number
of initial tuple matches. With increasing vocabulary size (and de-
creasing number of tuple matches), BATCH-1000 starts to outper-
form the other two methods. When we increase the vocabulary size
to a large enough number, e.g., v = 10K, NOOPT, BATCH-1000,
BATCH-100 start to perform similarly.

In all experiments on the synthetic datasets, NOOPT, BATCH-
100, and BATCH-1000 achieve near perfect accuracy in the derived
explanations and evidence mapping.

6. RELATED WORK
In this paper, we study the problem of explaining the disagree-

ments in the results of semantically similar queries over disjoint
datasets. While there is a growing body of work in data man-
agement research on deriving explanations, existing work focuses
on one dataset at a time, and cannot address disagreements across
datasets with potentially different schemas. Explain3D is, to the
best of our knowledge, the first framework of its kind, that handles
disagreements across disjoint datasets.

Data management research on explanations has focused on the
assumption that data resides in a single dataset. The Scorpion sys-
tem [56] finds predicates on the input data as explanations for a
labeled set of outlier points in an aggregate query over a single
relation. Roy and Suciu [45] extended explanations with a for-
mal framework that handles complex SQL queries and database
schemas involving multiple relations and functional dependencies.
This explanation tool does not require any preparation for the data
and derives the explanations as a set of conjunctive predicates. Roy,
Orr and Suciu [44] further extend their work to provide richer and
more insightful explanations on datasets with prepared candidate
explanations derived by domain experts.

Other explanation work investigates the absence of answers from
a query result [14, 47, 49]; these systems provide why-not explana-
tions and sometimes modification suggestions to the queries. Work
on provenance and causality [12, 25, 39] focuses on identifying
the tuples that contribute to a query, and quantify their contribu-
tions. Finally, application-specific explanations focus on a partic-
ular domain, such as performance of MapReduce jobs [35], item
rating [15, 48], and auditing and security [4, 22].

To compare two semantically similar queries and the correspond-
ing databases, explain3D leverages existing schema matching tech-
niques [7,18,28,38] to derive the correspondence among attributes
in two semantically correlated schemas. Existing schema match-
ing solutions leverage a wide variety of techniques, from heuris-
tics [18], to rules [38], to learning-based approaches [7, 28].

Another essential input for explain3D is the initial tuple matches
(or the tuple mapping). We may acquire such initial tuple matches
by leveraging existing entity resolution (or record linkage) tech-
niques [5, 8, 16, 20, 54]. More specifically, explain3D treats existing
entity resolution approaches as blackboxes and uses them to derive
the matches and include them as part of the input.

7. SUMMARY OF CONTRIBUTIONS
In this paper, we presented an effective and scalable framework,

explain3D, that derives explanations for the disagreements between
the results of two semantically similar queries over two disjoint
datasets. Our work formalized several important concepts and es-
sential properties that explanations should satisfy. Explain3D uses a
novel formalization and models explanations as two generic types,
provenance-based explanations and value-based explanations, and
evaluates the quality of explanations through a probabilistic model.
The core stage of explain3D is a translation of the explanation prob-
lem into a mixed integer linear program, allowing the use of mod-
ern constrained solvers to address it. Our work further introduced
a smart-partitioning optimization that allows explain3D to scale to
large data sizes. To the best of our knowledge, explain3D is the first
explanation framework that can address disagreeing query results
across disjoint datasets.
Acknowledgements: This material is based upon work supported
by the NSF under grants CCF-1763423 and IIS-1453543.
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