
ProvCite: Provenance-based Data Citation

Yinjun Wu
University of Pennsylvania

wuyinjun@seas.upenn.edu

Abdussalam Alawini
University of Illinois at
Urbana-Champaign

alawini@illinois.edu

Daniel Deutch
Tel Aviv University

danielde@post.tau.ac.il

Tova Milo
Tel Aviv University

milo@cs.tau.ac.il

Susan Davidson
University of Pennsylvania

susan@seas.upenn.edu

ABSTRACT
As research products expand to include structured datasets,
the challenge arises of how to automatically generate cita-
tions to the results of arbitrary queries against such datasets.
Previous work explored this problem in the context of con-
junctive queries and views using a Rewriting-Based Model
(RBM). However, an increasing number of scientific queries
are aggregate, e.g. statistical summaries of the underlying
data, for which the RBM cannot be easily extended. In this
paper, we show how a Provenance-Based Model (PBM) can
be leveraged to 1) generate citations to conjunctive as well as
aggregate queries and views; 2) associate citations with indi-
vidual result tuples to enable arbitrary subsets of the result
set to be cited (fine-grained citations); and 3) be optimized
to return citations in acceptable time. Our implementation
of PBM in ProvCite shows that it not only handles a larger
class of queries and views than RBM, but can outperform it
when restricted to conjunctive views in some cases.
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1. INTRODUCTION
The notion of “research products” has expanded to in-

clude structured datasets, and there is growing interest within
both the digital library and computer science communities
to be able to cite information extracted by queries over these
datasets. Citations play a significant role in giving credit to
those responsible for the data, and enable the data to be
later found or reproduced. Much like a citation to tradi-
tional research products such as journal or conference pa-
pers, a citation to the result of a query over a structured
dataset should include snippets of information describing
the dataset (analogous to a title), who is responsible for the
dataset (e.g. the PI or contributors/curators of the data),
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as well as information about how to find the dataset (e.g.
the http address, database version, and query).

Several computational challenges must be addressed in de-
veloping a data citation system [11]. First, since the number
of possible queries over a database is very large, it is infeasi-
ble to associate a citation to each query. Instead, one should
be able to specify citations for a small number of frequent
queries and use them to automatically derive citations to
other “general” queries. Second, this must be done with an
acceptable time overhead, e.g. without adding significantly
to the query response time. Third, it is useful to allow the
user to select a subset of the query result for which a citation
should be generated, which we call “fine-grained” citations.
This need arises in many different scientific applications, in
particular neuro-imaging [32].

In prior work, we proposed a general framework to auto-
matically generate fine-grained citations for general queries
[6, 40]. The approach is based on a model of citation views [11,
22, 21]: Frequently posed queries are defined as views with
associated citations. A query against the database is rewrit-
ten in terms of these views, and the associated citations are
used to construct a citation for each tuple in the query re-
sult. Since a query may be rewritten by jointly using more
than one view, or there may be several alternate ways to
rewrite a query, the database owner may specify how cita-
tions are jointly or alternatively combined through policies.
The framework also allows for fine-grained citations: the ci-
tations for each tuple in the query result are then combined
to create a final citation for the specified subset of the result,
which is given as another policy. Policies give an interpre-
tation for the joint, alternate and combined use operators,
for example, taking the union, intersection or join of the
citations. In the remainder of the paper, we will call the
model used in [40] the Rewriting-Based Model (RBM) since
it extends query rewriting using views algorithms to work
at the tuple level.

A shortcoming of RBM, however, is that it addresses a
limited class of queries – (non-recursive) conjunctive queries
and conjunctive views – and cannot be used in applications
in which the queries and views involve aggregates (such as
SUM, MIN, AVG) or user-defined functions. However, there
is a growing number of biomedical applications which ex-
tract summaries from databases by issuing aggregate queries,
in which views involve aggregation. In these cases, the tech-
niques of [40] cannot be used.

One such example is Hetionet, a database that “encodes”
biology by integrating various types of biological informa-
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tion from different publicly available resources [30, 31]. As
data is copied from these source datasets, citation informa-
tion (generally in the form of traditional publication IDs)
is also copied and should be propagated to the results of
queries. The majority of queries against this database in-
volve aggregation to retrieve statistical information.

Another example, which requires both aggregate queries
and aggregate views, is GENCODE [29], an encyclopedia of
genes and gene variants whose goal is to identify all func-
tional elements in the human genome using annotations.
The gene annotation process involves a combination of au-
tomatic annotation, manual annotation, and experimental
validation. For genes that are manually annotated, infor-
mation is maintained about the responsible research groups.
Statistics are also provided for every gene – an aggregate
view over the genes – which has another type of citation giv-
ing credit to the creators of the aggregate view. Common
queries over GENCODE also involve aggregation. For in-
stance, one query computes statistics for every type of gene.

In this paper, we address the problem of automatically
generating fine-grained citations when both the queries and
views may involve aggregates. Although at first glance it
would appear that rewriting techniques for aggregate queries
[42, 39, 25, 17, 16] could be used, these techniques reason at
the schema level for the entire query result rather than at the
level of individual tuples, which is required for fine-grained
citations. Extending the implementation in [40] to use ideas
from query rewriting for aggregate queries is possible when
views are conjunctive, but is problematic when views involve
aggregation since aggregation blurs the connection between
tuples in the input relations and tuples in the result.

Instead, to support aggregation, we use the observation
pointed out in [11, 5] that there is a strong connection be-
tween data provenance and data citation – and the prove-
nance of aggregate queries is well understood. We therefore
adopt a Provenance-Based Model (PBM) that captures the
connections between a result tuple and tuple(s) in views.

Example. Recall that GENCODE is an encyclopedia of
information about genes and gene variants. Suppose that
one of the views defined by the DBA is Vgene, which counts
the number of genes for each gene type, but only retains
the gene types (groups) with more than 10 genes. This
corresponds to an aggregate query with a HAVING-clause in
SQL. Vgene has an associated citation query which describes
the citation for each tuple in the view.

Now suppose that a query Q counts the number of genes
whose gene ids are smaller than 50 for every gene type.
Then some tuples in the query result will appear in Vgene,
and therefore carry the associated citation; these are the
gene types with more than 10 genes and in which all gene
ids are smaller than 50. Other tuples in the query result
may not appear in Vgene, and would not therefore carry
the citation associated with Vgene; these are the gene types
which include some genes with ids 50 or greater or include
fewer than 10 genes.

Traditional query rewriting using views techniques would
therefore conclude that Vgene is not useful for Q. Further-
more, the RBM tuple-level techniques proposed in [40] could
not detect whether Vgene is useful for a given tuple in the
result of Q. However reasoning over the provenance of re-
sult and view tuples could determine this, and return the
citation for Vgene for result tuples as appropriate.

Approach. We develop a citation system called ProvCite,
which executes over a provenance-enabled relational database
system. As in [40], the DBA defines the citation views and
policies to be used. When a query is submitted, all po-
tential view mappings are computed, which represent how
views can potentially rewrite this query. The decision of
which views are valid, however, depends on the particular
result tuple, and for this the provenance of the result tuple
is compared with the provenance of view tuples. While the
user is presented with the query result and examines it to
determine the subset of interest, covering sets are calculated
from the valid views for every result tuple, representing al-
ternate rewritings in which sets of views are jointly used.
When the result subset is selected, the citation for the se-
lected query subset can be immediately generated.

Our initial fear in developing ProvCite was that, although
the approach is interesting since it develops a novel connec-
tion between citation and provenance, it would be unaccept-
ably slow since provenance expressions are typically very
large. Surprisingly, the results of this paper not only show
that PBM is feasible and extends results in [40] to aggregate
queries and views, but that our optimized computation al-
lows it to even outperform our previous RBM approach in
some cases.

Contributions of this paper include:

1. A framework formalizing the connection between data
provenance and data citation.

2. A semantics for generating citations to the results of
aggregate queries with general aggregate functions given
a set of either aggregate or conjunctive views using
provenance in the view and query instances.

3. An implementation of PBM called ProvCite, which au-
tomatically generates fine-grained citations for the re-
sults of general queries, where both the queries and
views may involve aggregates. The implementation
includes multiple dedicated optimizations.

4. An experimental study using both synthetic and real-
istic workloads, showing the efficiency of the approach
and the effectiveness of the developed optimizations.

The rest of this paper is organized as follows. Related
work is discussed in Section 2, and the running example and
preliminaries are given in Section 3. Details of the PBM and
its implementation in ProvCite are presented in Sections 4
and 5 respectively. Section 6 gives experimental results be-
fore concluding in Section 7.

2. RELATED WORK
Data citation. Principles for data citation have been pro-

posed within the digital library community[1, 24] and in-
clude: 1) identification and access to the cited data; 2) per-
sistence of the cited data; and 3) completeness of the ref-
erence [34, 38, 10, 2]. The community also recognized the
importance of citations to aggregate data [1], as have vari-
ous scientific communities [29, 31, 35]. More recently, data
citation has captured the attention of database researchers,
who formulated computational challenges [11, 21]. To ad-
dress these challenges, a model of citation views was defined
in [22] and implemented in [6, 40]. However, this work was
limited to conjunctive queries and views without addressing
aggregates.
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Query rewriting using views. Data citation is closely re-
lated to the problem of query rewriting using views. Rewrit-
ing relies on notions of containment and equivalence of queries
[28], and has been extensively studied in the context of con-
junctive queries [13, 15, 36, 3] as well as aggregate queries [18,
19]. Various algorithms have been designed to rewrite aggre-
gate queries. For example, [39, 25] provide algorithms for
determining whether a materialized view is usable for an-
swering an aggregate query by considering both conjunctive
and aggregate views. In [42], an algorithm is given to han-
dle nested subqueries and multidimensional aggregations in
queries and views. However, only standard aggregate func-
tions (e.g. SUM, COUNT) are considered in [42, 39, 25];
general aggregate functions (such as user defined aggregate
functions) cannot be used. The problem of general aggre-
gate functions is considered in [17], and [16] bridges the gap
between theory and practice by providing implementation
suggestions. However, to our knowledge, there is no work
which considers how to rewrite queries using general aggre-
gate views with having clauses.

Data Provenance. Data provenance identifies where a
piece of data came from and the process by which it ar-
rived in the database [12]. It has been used to track the
dependencies between inputs and outputs, detect errors in
complex workloads, and provide explanations for debugging
purposes. Various formulations of provenance have been
studied, such as why- and where-provenance [12], why-not-
provenance [14], and the provenance semirings framework
[27] (extended in e.g. [8, 41]). This framework has been used
to implement several practical provenance-enabled database
systems, such as ORCHESTRA [33] and GProM [9]. The
connection between data citation and provenance was dis-
cussed in [11] and explored but not formalized in [5]. This
paper develops those ideas further, provides an implemen-
tation based on a provenance-enabled database system, and
shows the feasibility of the approach.

3. PRELIMINARIES
In this section, we introduce the running example, review

the notions of citation views [22], view mapping and validity
of view mappings [40], and then show why the RBM of [40]
cannot be extended for aggregate views, motivating the need
for provenance.

3.1 Running example: GENCODE
We use a simplified schema from GENCODE as our run-

ning example. In this database, information is structured
hierarchically: each gene is associated with one or more tran-
scripts, and each transcript has one or more exons. Genes,
transcripts, and exons may all be annotated with tags, which
are created either by human experts or by programs. A sim-
plified schema is as follows:

Gene(GID, Name, Type)
Gene2tag(GID, annot) GID references Gene
Transcript(TID, Name, Type, GID) GID references Gene
Transcript2tag(TID, annot) TID references Transcript
Exon(EID, Level, TID), TID references Transcript
Exon2tag(EID, annot), EID references Exon

Relations Gene2tag, Transcript2tag and Exon2tag capture
the annotations (annot) for relation Gene, Transcript and
Exon respectively.

Citation views [22] define views of the database to which
citations have been specified. A citation view consists of a
view query, defining the subset of the data to which the ci-
tation is attached; a citation query, which retrieves required
citation information; and a citation function, which formats
the information retrieved by the citation query to provide
the final citation, e.g. in JSON, BibTex or RIS format.

Below we show several views for GENCODE, which are
expressed using S-Datalog [20], an extended version of Dat-
alog that allows aggregates:

λG.V1(G,Ty) : −Gene(G,N, Ty), G ≤ 2
V2(Ty,COUNT (G)) : −Gene(G,N, Ty), T y = ‘rRNA’
V3(T1, E,G1, L) : −Transcript(T1, N1, T y1, G1),

Exon(E,L, T2), T1 = T2, E ≤ 2
V4(G1, COUNT (T1)): −Transcript(T1, N1, T y1, G1),

Exon(E,L, T2), T1 = T2, L ≤ 2
V5(G1,MAX(L), COUNT (E))

: −Transcript(T1, N1, T y1, G1),
Exon(E,L, T2), T1 = T2

V6(G,COUNT (T )) : −Transcript(T,N, Ty,G), T ≤ 2

V1 and V3 are simple conjunctive queries. V1 is parameter-
ized by the gene id G, meaning that it defines a family of
views, one for each gene. Each view in this family consists
of a single tuple. In this way, each gene may have different
citation, giving credit to the person or program who anno-
tated that gene. In contrast, V3 is not parameterized, which
indicates that the same citation is shared across all the view
tuples. The other four views are aggregate views. Their
meaning is: for each binding of variables in the body, group
over the variables in the head (called grouping variables) and
apply the aggregate(s) to each group. Each aggregate func-
tion along with its arguments is called an aggregate term, in
which the arguments are called aggregate variables. Thus V2

could be translated into SQL as:

SELECT G.Type, COUNT(G.GID)
FROM Gene G
WHERE G.Type = ‘rRNA’
GROUP BY G.Type

which counts the number of ‘rRNA’ genes. Similarly, V4

counts the number of transcripts per gene which are associ-
ated with one exon whose level is no more than 2. V5 returns
the maximal level of exons and the count of exons for each
gene. V 6 counts the number of transcripts for each gene
whose transcript ids are no more than 2.

3.2 Query rewriting: View mappings
Given a (general) query Q and a set of views V, the RBM

implementation in [40] starts by building a set of view map-
pings M from V to Q. For each query tuple, RBM then
reasons about the validity of each view mapping in M and
constructs covering sets. Each covering set is a maximal,
non-redundant set of valid view mappings, i.e. sets for which
no other view mappings can be added to cover more sub-
goals and head variables in Q, nor can any be removed and
still cover the same subgoals and head variables in Q. The
citations associated with views in the covering sets are later
used to construct the final citations.

A view mapping M consists of a relation mapping, h and
variable mapping, φ (denoted M = (h, φ)). The former, h,
maps relational subgoals in a view V to relational subgoals
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with the same relation names in query Q, while the latter
variable mapping φ is an induced mapping by h.

Intuitively, for a query tuple t, view mapping M is valid
iff some portion of t appear in the instance of V under M .
The reasoning depends on examining the lambda variables,
the head variables and the predicates of views.

Example 1. Consider the following Conjunctive Query:

Q1(T,Gid): −Gene(Gid,Name, T ), Gid ≤ 3

There is a view mapping M11 = (h11, φ11) from V1 to Q1,
in which the relation mapping is h11 is {Gene(G,N, Ty)→
Gene(Gid,Name, T )} while the variable mapping φ11 is
{G → Gid,N → Name, Ty → T}. M11 is only valid for
query tuples with Gid ≤ 2, since those query tuples can
appear in the instance of V1(D) by satisfying predicate (G ≤
2); the head variables G (which is also a lambda variable)
and Ty in V1 are mapped to head variables Gid and T in Q1.
RBM determines validity by checking whether the portion of
a query tuple t “exists” under the view mapping in the view
instance, which is achieved by evaluating the satisfiability of
view predicates in the query instance. In this example, the
instance of Q1 along with the evaluation of the predicate
(Gid ≤ 2) (derived from the predicate of V1) for each query
tuple is shown in Table 6 (ignore the last column for now).
The truth value indicates whether or not the query tuple
exists in the view instance under the view mapping. For
instance, tq11 satisfies all the predicates in V1, i.e. (Gid ≤ 2)
since tq11 “exists” in the instance of V1(D) (i.e. tv11, under
the mapping M11); in contrast, tq13 is missing from V1(D).

For query tuples such that M11 is a valid view mapping,
a covering set can be constructed: {M11}. After the user
selects the query tuples of interest, the citation queries as-
sociated with V1 are executed and the citation function is
applied to construct formatted citations. (see the last but
one column in Table 6 for the citations for each query tuple.)

3.3 The need for provenance
We next illustrate why RBM fails for aggregate views,

motivating the need for provenance.

Example 2. Consider the following query which is con-
structed by adding one aggregate function to Q1:

Q2(T,COUNT (Gid)) : −Gene(Gid,Name, T ), Gid <= 3

Note that only V1 and V2 can provide candidate view map-
pings M12(= (h12, φ12)) and M22(= (h22, φ22)) for Q2 since
they include the same relational subgoals in the body. M12

and M22 have the same form, i.e,
h12(h22) = Gene(G, N, Ty) → Gene(Gid,Name, T ) and
φ12(φ22) = {G → Gid,N → Name, Ty → T}. Under the
two mappings, neither V1 nor V2 can be used to rewrite Q2

for an arbitrary database instance since V1 has one logically
stronger predicate than Q2, and we can find an instance D
for V2 such that the first three genes are not ‘rRNA’. In this
case, V2 and Q2 aggregate over different set of tuples from
the Gene relation.

Still, some query tuples may be computed using view tu-
ples of V1 and V2 given a database instance D, which cap-
tures the concept of fine-grained citation proposed in [40].
To illustrate, an instance D is given in Tables 1-3, and the
resulting instances of V1, V2 and Q2 are shown in Tables 4,
5 and 7 respectively (ignore the last column for now). Note

Table 1: Instance of relation Exon with provenance

EID Level TID prov
te1 1 1 1 e1
te2 2 3 2 e2
te3 3 2 2 e3
te4 4 2 2 e4

Table 2: Instance of relation Gene with provenance

GID Name Type prov
tg1 1 TF TEC g1
tg2 2 FH rRNA g2
tg3 3 RP1 rRNA g3
tg4 4 IYD rRNA g4
tg5 5 EPN mRNA g5

Table 3: Instance of relation Transcript with
provenance

TID Name Type GID prov
tt1 1 MB-203 TEC 1 r1
tt2 2 PC-203 rRNA 2 r2
tt3 4 HP-218 rRNA 2 r3

that the citations for each view tuple are also included in
the view instances (the column with the green background).

To follow the idea of checking the existence of a query tu-
ple in the view instance, a plausible approach is to extend
RBM to aggregate queries by employing a special built-in
function agg (the “array agg” function in PostgreSQL) to
collect the evaluations of the view predicates for every query
tuple before aggregation is applied. For example, the in-
stance of Q2 is shown in Table 7 along with the evaluation
results of view predicates collected by agg (see the third and
fourth columns). Note that, since two tuples are generated
before the aggregate function is applied for tuple tq22 (i.e.
tq12 and tq13 from Table 6), the evaluation of agg((Gid ≤ 2))
will result in a set of boolean values of size 2, which, intu-
itively, is derived by aggregating over tq12 and tq13 in Table
6. The existence of “false” indicates that before aggrega-
tion, one query tuple (i.e. tq13) was missing from the view
instance V1(D), thus V1 is not valid for tq22. In contrast,
for tq21 the evaluation of agg((Gid ≤ 2)) is only “true”,
meaning that V1 is valid.

However, simply checking the existence of query tuples in
the view instance for aggregate views is not enough. For ex-
ample, for query tuple tq22, although the evaluations of the
predicate Ty = ‘rRNA’ (from V2) does not include ”false”,
indicating that all the query tuples before aggregation exist
in the view instance, the aggregate result of tq22 (i.e. 2) does
not match that of tv21 (i.e. 3). The reason is that three tu-
ples tg2 − tg4 from relation Gene are used to construct tv21,
while tq22 is derived from only two of them (tg2− tg3). This
means that the reasoning should not only capture the ex-
istence of query tuples in the view instance but also the
exact matching of the aggregate results between query tu-
ples and view tuples. We therefore adopt an alternative
model, called the Provenance-Based Model (PBM), which
uses provenance.

4. PROVENANCE-BASED MODEL
We now present the model for determining valid view

mappings for each query tuple using provenance.

4.1 Basic concepts
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We start by introducing the basic concepts that will be
used in our model.

Granularity of queries and views. An essential step
in determining the validity of a view mapping M = (h, φ)
is to compare the schemas of Q and V , and detect whether
V keeps all necessary variables in its head. In particular,
if the aggregate view V has the set of grouping variables
{Y1, Y2, . . . , Ym}, then {φ(Y1), φ(Y2), . . . , φ(Ym)} should be
a superset of the grouping variables of Q, {X1, X2, . . . , Xk}.
If {φ(Y1), φ(Y2), . . . , φ(Ym)} = {X1, X2, . . . , Xk}, we say Q
has the same granularity as V .
Otherwise, if {φ(Y1), φ(Y2), . . . , φ(Ym)} ) {X1, X2, . . . , Xk},
we say V has finer granularity than Q.

How-provenance. We use the notion of how-provenance
introduced in [27]. It starts by annotating each base rela-
tion tuple with a unique provenance token, and propagates
those tokens along with the tuples to the query result. Each
tuple in the query result then has a how-provenance polyno-
mial expressed using + (alternate use) and ∗ (joint use) to
indicate how base relation tuples contribute to the query re-
sult. Each how-provenance polynomial is composed of multi-
ple how-provenance monomials which are joint-use terms ex-
pressed with ∗. For example, the provenance polynomial for
tuple tq22 in Q2(D) is g2+g3, which has two how-provenance
monomials (see Table 7). It means that two tuples from re-
lation Gene with how-provenance tokens g2 and g3, respec-
tively were used to create tq22. The ∗ operator is used if
there are multiple relational subgoals in the query body, in
which case base tuples are jointly used to create the result.

Table 4: V1(D) with how-provenance and citation

G Ty citation prov
tv11 1 TEC {Group: [‘Joe’]} g1
tv12 2 rRNA {Group: [‘Liu’]} g2

Table 5: V2(D) with how-provenance and citation

Ty COUNT(G) citation prov
tv21 rRNA 3 {Group: [‘Lee’]} g2 + g3 + g4

Table 6: Q1(D) with how-provenance

T Gid (G ≤ 2) citation prov
tq11 TEC 1 T Group:[‘Joe’] g1
tq12 rRNA 2 T Group:[‘Liu’] g2
tq13 rRNA 3 F g3

Table 7: Q2(D) with how-provenance

T
COUNT
(Gid)

agg
((G ≤ 2))

agg((Ty =
‘rRNA’))

prov

tq21 TEC 1 {T} {F} g1
tq22 rRNA 2 {T, F} {T, T} g2 + g3

Table 8: Q3(D) with how-provenance

G G’ prov
tq31 2 2 r2 ∗ r2 + r2 ∗ r3 + r3 ∗ r2 + r3 ∗ r3

To simplify reasoning over how-provenance polynomials,
[7] defines a normal form as follows: first, the provenance to-
kens in each how-provenance monomial preserves the same
order as the relational subgoals in the query body. Sec-
ond, the exponent of every provenance token is forced to
be 1. Third, the coefficient of every monomial in a how-
provenance polynomial is forced to be 1 by breaking the
monomials with coefficient greater than 1 into multiple how-

provenance monomials, each corresponding to an assign-
ment of the query atoms to database tuples.

Example 3. Consider the following query:

Q3(G,G′) : −Transcript(T,N, Ty,G), T >= 2, T y = Ty′,
T ranscript(T ′, N ′, T y′, G′), T ′ >= 2

The provenance-aware query result is shown in Table 8 us-
ing the instance of Transcript in Table 3. Note that the sec-
ond and the third monomials for the tuple tq31 are equivalent
but correspond to different assignments, hence written dif-
ferently (r2∗r3 vs r3∗r2). Further, the first how-provenance
monomial of tq31 is written as r2 ∗ r2 instead of the compact
form (r22). Furthermore, the coefficient of all the monomials
in the how-provenance polynomial of tq31 is 1 rather than
grouping them together.

For a query and a result tuple, [7] defines an isomorphism
between assignments and the how-provenance monomials in
a query. Borrowing these ideas, we define an isomorphism
between relational subgoals and how-provenance monomials
under an assignment γ, which relies on the normal form of
how-provenance monomials mentioned previously.

Definition 1. Isomorphism between how-provenance
monomials and subgoals. Given a conjunctive or aggre-
gate query Q with relational subgoals B1, B2, . . . , Bm, un-
der an assignment γ, base relation tuples tb1, tb2, . . . , tbm
are assigned to relational subgoals B1, B2, . . . , Bm respec-
tively to generate an output tuple, which can be written as
γ(Bi) = tbi(i = 1, 2, . . . ,m) [8]. If tuple tbi is associated
with how-provenance token hbi, then we say that under the
assignment γ there is an isomorphism F between each rela-
tional subgoal Bi and each provenance token hbi (call iso-
morphism under an assignment for short thereafter), which
can be written as: F (Bi|γ) = hbi and F−1(hbi|γ) = Bi.

Returning to Example 3, consider the second provenance
monomial r2 ∗ r3 and corresponding assignment γ in query
tuple tq31 of Table 8. Since tt2 and tt3 are associated with
how-provenance tokens r2 and r3 respectively, there should
be an isomorphism F under γ such that F (Transcript(T,N,
Ty,G)|γ) = r2 while F (Transcript(T ′, N ′, T y′, G′)|γ) = r3.

4.2 Validity conditions without aggregation
The validity conditions of view mappings include schema-

level conditions and a tuple-level condition, which are satis-
fied by a view mapping M iff it is valid for a given query
tuple. The validity conditions guarantee the same result as
the conditions in [40] (proof omitted).

Definition 2. Schema-level conditions. A view map-
ping M from a conjunctive view V to a conjunctive query Q
should satisfy the following conditions at the schema level if
it is valid for some query tuples:

1. There exists at least one head variable y ∈ Ȳ in V such
that φ(y) is a head variable in Q; and

2. All lambda variables in V are mapped to variables in
the body of Q.

Now suppose that head variables Y1, Y2, . . . , Yr from V
are mapped to head variables X1, X2, . . . , Xr from Q, which
implies that φ(Yi) = Xi (i = 1, 2, . . . , r). Then we say
that the head variables Xi(i = 1, 2, . . . , r) are covered under
M . Plus, a relational subgoal of Q is covered by M iff it is
involved in M .

742



Definition 3. Tuple-level condition. Let the how-pro-
venance polynomial of tq ∈ Q(D) (tv ∈ V (D)) include a
how-provenance monomial W (W ′) with corresponding as-
signment γ (γ′) and the isomorphism F (F ′) under γ (γ′.)

Given a tuple tq and a view mapping M = (h, φ) satisfying
the schema-level conditions above, if we can find a tuple tv
such that the following condition holds, then we say that M
is valid for the how-provenance monomial W in tq: For each
relational subgoal Ai in the view body that is involved in
the view mapping M and mapped to relational subgoal Bj

in the query body under M , then F (Bj |γ) = F ′(Ai|γ′).
Furthermore, we say that the how-provenance monomial

W ′ of tv is mapped to the how-provenance monomial W of
tq under view mapping M .

Example 4. Let us revisit Example 1. The instance of Q1

is shown in Table 6. We can show that M11 is a valid view
mapping for the query tuple tq11 and tq12: The schema-level
conditions are satisfied because the head variable Ty and G
(which is also the only lambda variable) in V1 are mapped
to the head variable T and Gid in Q1 respectively.

The tuple-level condition also holds for the two query tu-
ples. For example, for tq12 (and view tuple tv12), for its sin-
gle monomial, the assignment and isomorphism under the
assignment are γ (γ′) and F (F ′) respectively. Since under
the view mapping M11 = (h11, φ11), h11(Gene(G,N, Ty)) =
Gene(Gid,Name, T ), and F ′(Gene(G,N, Ty)|γ′) = g2 =
F (Gene(Gid,Name, T )|γ). So we say that M11 is a valid
view mapping for the how-provenance monomial g2 for query
tuple tq12. We can also prove that M11 is a valid view map-
ping for how-provenance monomial g1 in tuple tq11.

4.3 Validity conditions with aggregation
The validity conditions for view mappings are next ex-

tended to handle aggregate queries and views, using the fol-
lowing intuition: for a query tuple t, if 1) a set of view
tuples can be used to compute t by applying some aggregate
function(s) and 2) the view tuples and t are constructed by
the same multiset of tuples from the base relations (captured
by provenance), then the citation information of those view
tuples can be used to construct the citation of t.

We start by introducing requirements on the aggregate
functions before formalizing this intuition.

4.3.1 Aggregate function requirements
A view mapping M , which maps an aggregate view V to

an aggregate query Q, is valid for a query tuple only if the
aggregate functions of V and Q satisfy certain requirements;
in particular, [16] formalizes the notion of a well-formed ag-
gregate function. Loosely speaking, a well-formed aggregate
function can be characterized by some initial “mapper” func-
tion, followed by a “reduce” function, followed by a “final-
ize” function, which we will call a terminating function. It
is easy to see that some common aggregate functions such
as SUM,MIN, MAX, COUNT and AVG are well formed.

For example, the “mapper” function for AV G takes a set
of values, {d1, . . . , dk}, and maps each number di to a pair
(di, 1). The result of the reduce function is still a pair whose
first element represents the sum of the di’s and second ele-
ment represents the count (k). The “finalize” function di-
vides the first element by the second element. Similarly,
SUM maps each di to itself and takes the sum of all di’s in
the reduce step; “finalize” is the identity function.

Invertibility. A well-formed function is invertible iff its
terminating function is invertible. For example, SUM is
invertible whereas AV G is not. Invertibility is important
for determining the validity of view mappings when the view
has a finer granularity than the query, as illustrated below.

Example 5. Consider the following query:

Q5(COUNT (G)) : −Gene(G,N, Ty), T y = ‘rRNA’

By referencing Section 3.1, V2 computes a coarser-grained
aggregation result than Q5 does. Both share the same ag-
gregate function COUNT , which is invertible. This means
that we can take the sum of the aggregation results in V2 to
get the result of Q5 under the obvious view mapping M5.

However, if we replace COUNT with AV G for both Q5

and V2, the aggregation result in V2 will not be useful to
compute the aggregation result in Q5 under M5; the in-
termediate sum and count from V2 that were used in the
terminating function (divide) cannot be regained to use in
the further aggregation for Q5, since divide is not invertible.

Computation rules. A view may also be usable to com-
pute the aggregation results in the query without sharing the
same aggregate function with the query [16]. For example,
the result of an AV G function in the query can be computed
by dividing the result of SUM by the result of COUNT
from the view. In [17], an aggregate function β is said to
be computed from a set of aggregate functions α1, α2, . . . , αn

if there is a function g such that for any multiset of values
M : β(M) = g(α1(M), α2(M), . . . , αn(M)). It can be also
written as a computation rule: α1, α2, . . . , αn → β. For in-
stance, there is a computation rule from SUM and COUNT
to AV G, i.e. SUM,COUNT → AV G.

The authors in [16] and [17] consider aggregate function
requirements for potentially valid views to rewrite a query
by combining the properties mentioned above, which are
adapted below for data citation:

Definition 4. Aggregate function requirements Sup-
pose a query Q has an aggregate function α, which takes
a set of variables X as arguments. If M is valid for some
query tuples, the aggregate functions in V should satisfy the
following conditions under view mapping M = (h, φ):

1. V also has an aggregate function α with arguments Y ,
and φ(Y ) = X OR there exists some computation rule
β1, β2, . . . , βm → α and β1, β2, . . . , βm also appear in
the head of V , all of which take same set of variables
Y as arguments and φ(Y ) = X.

2. If V has finer granularity than Q, then the functions
α or β1, β2, . . . , βm must also be invertible.

In this case, we say that the aggregate term α(X) in Q is
covered under view mapping M .

4.3.2 Valid view mappings for aggregate queries
We can now formally provide conditions for valid view

mappings for aggregate queries, which are still composed of
schema-level conditions and a tuple-level condition.

Definition 5. Schema-level conditions for aggregate
queries. Given an aggregate query Q and a view mapping
M = (h, φ) from view V to Q. The schema-level conditions
are as follows:
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1. For grouping variables of Q, the following must hold:

(a) If V is a conjunctive view, then for every grouping
variable X of Q there is a head variable Y in V
such that φ(Y ) = X.

(b) If V is an aggregate view, then V must have the
same or finer granularity than Q under M .

2. There exists at least one aggregate term with aggregate
function α taking a set of variables X ′ as arguments
in the head of Q such that:

(a) If V is a conjunctive view, then there is a set of
head variables Y ′ in V such that φ(Y ′) = X ′.

(b) If V is an aggregate view, then Q and V should
satisfy the conditions in Definition 4.

Suppose the schema-level conditions are satisfied for a
view mapping M . M is a valid view mapping for some query
tuples iff the following tuple-level condition holds:

Definition 6. Tuple-level condition for aggregate
queries. Let t ∈ Q(D) with how-provenance polynomial
W . Furthermore, given a multiset {t1, t2, . . . , tp} ∈ V (D),
let ti(i = 1, 2, . . . , p) have a how-provenance polynomial
W ′i = W ′i1 +W ′i2 + · · ·+W ′iq . If for {t1, t2, . . . , tp} and t, the
following condition holds, then we say that M is valid for t
(not for a single how-provenance monomial): Every mono-
mial W ′ij in

∑p
i=1W

′
i can be mapped to some monomial in

W as a one-to-one function under M .

Example 6. Continuing Example 2, recall Q2, V2, and
view mapping M22 = (h22, φ22). In terms of schema-level
conditions, M22 is satisfied for all query tuples because 1)
V2 has the same granularity as Q2 under M22; and 2) the
aggregate term of V2, G, can be mapped to the aggregate
variable of Q2, Gid, which also shares the same aggregate
function COUNT and thus satisfies Def. 4.

However, the tuple-level condition does not hold for the
query tuple tq22. If we compare its provenance (i.e. W =
g2 +g3) to the provenance polynomial of the view tuple tv21
(i.e. W ′ = g2 +g3 +g4), the monomial mapping between W ′

and W is not a one-to-one function since g4 is missing from
the mapping. Note that if the predicate in Q2, Gid ≤ 3,
is relaxed to Gid ≤ 4 then the token g4 appears in W and
the monomial mapping between W ′ and W is one-to-one.
However, if the predicate is further relaxed to Gid ≤ 5, then
g5 is included in W and the tuple-level condition is again
violated since g5 is not in W ′. This reasoning is significantly
more complicated than that in Example 4 since the validity
of view mappings is determined by comparing entire how-
provenance polynomials between the query tuple and view
tuples instead of single how-provenance monomials.

Finally, as in [40], covering sets are computed which cover
as many aggregate terms and relational subgoals in the query
as possible using the fewest view mappings, i.e. that are
maximal and non-redundant.

Example 7. Again revisiting Example 2, if we omit the
predicates of V1 and V2 then M12 and M22 are valid for
both tq21 and tq22. There are two covering sets, {M12} and
{M22}, since both M12 and M22 cover the aggregate term
(COUNT (Gid)) and the subgoal Gene(Gid, Name, T ) of
Q2. The view mapping combination {M12,M22} is redun-
dant since it covers the same terms of Q2 as its subset {M12}
and {M22}.

5. IMPLEMENTATION
Generating provenance-based citations for aggregate queries

and views relies on ideas from query rewriting using views as
well as provenance. However, bringing those ideas from the-
ory into practice raises several engineering challenges. We
now discuss those challenges, starting by analyzing the al-
gorithmic complexity of ProvCite before moving to imple-
mentation details and optimizations used in our system. In
what follows, we assume that the underlying database sys-
tem is provenance-enabled.

5.1 Algorithmic complexity
An overview of our implementation is shown in Algorithm

1. We discuss the cost of each of these three steps in turn.

Algorithm 1: Overview of PBA

Input : a set of views: V = {V1, V2, ..., Vk}, user
query: Q, a Database instance D

Output: Covering sets for every query tuple in Q(D)
1 Preprocessing step: Return a set of all possible view

mappings M and the provenance of Q
2 Reasoning step: Under a view mapping M from V to
Q, determine the validity of M for each query tuple by
comparing the provenance between Q and V

3 Covering sets step: Calculate covering sets by
combining valid view mappings for each query tuple.

Preprocessing step. The major overhead is retrieving the
query provenance, which is determined by the underlying
provenance-enabled database.

Reasoning step. Let Npv be the total number of how-
provenance monomials in the view instance and Npq be the
total number of how-provenance monomials in the query in-
stance (this is also the number of tuples before aggregation).
Then the time to check the validity of a view mapping is
O(Npq +Npv) since every how-provenance monomial in the
view instance is compared to some how-provenance mono-
mial in the query instance. If there are m view mappings,
then the overall time complexity for this step is O(m∗Npq)+
O(m ∗ Npv). Suppose k is an upper bound on the number
of relational subgoals in the query or view body, and the
largest relation in the database has n tuples. Then the time
complexity becomes O(m ∗nk). Our experiments with real-
istic queries in Section 6, however, show that in practice the
performance is still acceptable since both Npq and Npv are
typically not very large (less than 1 million).

Covering set step. The time for this step depends on the
policies defined by the DBA on how to convert covering sets
into formatted citations (see [40]). In the worst case, the
number of coverings sets may be exponential in m and all
covering sets are used in a rewriting. However, an order of
magnitude speed-up can be achieved using the optimization
strategies described next (see experimental results in Section
6). In practice, we also believe that a “minimal cost” policy
will be used to generate concise citations rather than an
expensive “use all” policy, in which case the covering sets
are pruned, resulting in cost which is linear in m.

5.2 Optimization and implementation
Our worst case complexity analysis shows that it is chal-

lenging to generate fine-grained citations with acceptable
performance if implemented naively. We therefore use a
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number of optimizations in the last two steps. In the Rea-
soning step, the query provenance is indexed and the view
provenance is materialized. In the Covering sets step, cover-
ing sets are represented as bit arrays and the order in which
view mapping sets are combined is optimized using a clus-
tering algorithm called Affinity propagation [23]. We discuss
the details of these optimizations below, after introducing an
example to illustrate how ProvCite is implemented.

Example 8. Given the views V1 − V6 defined in Section
3.1, suppose the query is as follows:

Q(G,COUNT (T ),MAX(L), COUNT (E)) : −
Exon(E,L, T ′), T ranscript(T,N, Ty,G), T = T ′, E <= 3

In the pre-processing step, the provenance of the query is
retrieved. Using the instances of Exon, Gene and Transcript
shown in Tables 1-3, the instance of Q along with the how-
provenance polynomials is shown in Table 9.

Table 9: Q(D) with how-provenance polynomials

G COUNT(T) MAX(L) COUNT(E) prov
tq1 1 1 1 1 e1 ∗ r1
tq2 2 2 3 2

e2 ∗ r2
+e3 ∗ r2

Table 10: View mappings from V3 − V6 to Q

view
mapping

aggregate
terms covered

relational subgoals
covered

M3

(1000)
COUNT(T),MAX(L),
COUNT(E) (111)

Transcript(T, N, Ty, G),
Exon(E, L, T’) (11)

M4

(0100)
COUNT(T) (100)

Transcript(T, N, Ty, G),
Exon(E, L, T’) (11)

M5

(0010)
MAX(L), COUNT(E)

(011)
Transcript(T, N, Ty, G),

Exon(E, L, T’) (11)
M6

(0001)
COUNT(T) (100)

Transcript(T, N, Ty, G)
(01)

Next, all possible view mappings are constructed. We can
find four view mappings, M3 = (h3, φ3), M4 = (h4, φ4),
M5 = (h5, φ5) and M6 = (h6, φ6), under which V3 − V6

are mapped to Q respectively. M3 − M5 have the same
form, where h3 − h5 is {Transcript(T1, N1, T y1, G1) →
Transcript(T,N, Ty,G), Exon(E,L, T2)→ Exon(E,L, T ′)}
and φ3 − φ5 are the induced variable mappings. In con-
trast, M6 only maps the subgoal Transcript(T,N, Ty,G)
from V6 to Transcript(T,N, Ty,G) from Q. Note that all
the schema-level conditions are independent of the individ-
ual query tuples, and can be used to remove invalid view
mappings early. In this example, M3 −M6 all satisfy the
schema-level conditions, since under each mapping all the
grouping variables and at least one aggregate term of Q are
covered. Table 10 shows how each view mapping covers the
aggregate terms and relational subgoals of Q (ignore the bit
arrays for now).

In the Reasoning step, since V3 is a conjunctive view, the
validity of M3 for a query tuple tq only depends on the
existence of tq in V3(D) under mapping M3 (Section 3.2).
So we can simply retrieve the base relation tuple for each
provenance token appearing in the query to evaluate the
view predicates. For example, the validity of M3 can be
checked simply by examining the predicates of V3. Since
the first predicate in V3, T = T ′, is also in Q, every tuple
in the query instance must satisfy it. However, the second
predicate, E ≤ 2, can affect the existence of query tuples in
V3. Table 1 shows that only the tuples with how-provenance

Figure 1: Query provenance index for Q and how
to compute coordinate for e3 ∗ r2 from V4(D)

Table 11: V4(D) with how-provenance polynomials

G1 COUNT(T1) prov
tv41 1 1 e1 ∗ r1
tv42 3 1 e3 ∗ r2 + e4 ∗ r2

Table 12: V5(D) with how-provenance polynomials

G1 MAX(L) COUNT(E) prov
tv51 1 1 1 e1 ∗ r1
tv52 2 3 2

e2 ∗ r2 + e3 ∗ r2
+e4 ∗ r2

Table 13: V6(D) with how-provenance polynomials

G COUNT(T) prov
tv61 1 1 r1
tv62 2 1 r2

Table 14: Q(D) with valid view mappings and
covering sets (aggregate terms omitted)

G valid view mappings covering sets

tq1 1 M3,M4,M5,M6
{{M3}, {M4,M5}

, {M5,M6}}
tq2 2 M6 {{M6}}

tokens e1 and e2 satisfy E ≤ 2. Thus M3 is only valid for tq1,
whose how-provenance polynomial only includes e1. Note
that the implementation used here is different from RBM
since evaluating view predicates is achieved by referencing
the base relation tuples with the query provenance rather
than computing extra predicates in the query evaluation.

In contrast, since V4, V5 and V6 are aggregate views, we
need to compare their how-provenance expressions with the
how-provenance of the query to check the tuple-level con-
ditions. That can be naively implemented by scanning the
entire query provenance for every view mapping to build sat-
isfiable provenance mappings (Def. 6), which is expensive
when Npv, Npq and the number of view mappings m are
large. To reduce this cost, we index the query provenance.

Query provenance index optimization. In order
to avoid multiple scans over query provenance, we build an
index I for each token in the query provenance to indicate
which query tuples (represented by grouping variable val-
ues) and which provenance monomials the token is in. The
provenance index for Q is shown in Figure 1. For example,
referencing Table 9, note that token r2 is in the 0th and 1st

monomial in the query tuple tq2, which has value 2 for the
grouping variable G. So the index for r2 is r2 : {(2) : {0, 1}},
where (2) represents the tuple id while {0, 1} is the mono-
mial id set. For a how-provenance monomial in the view, e.g.
e3 ∗ r2 in tv42 (with grouping variable value 2), to determine
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whether it can be mapped to some query provenance mono-
mial, we can retrieve the index for e3 and r2 with grouping
variable value 2 respectively, i.e. {1} and {0, 1}, and take
the intersection, i.e. {1}. This indicates that e3 and r2
coexist in the 1st monomial of the query tuple with group-
ing variable value 2 (i.e. tq2). This derivation process is
highlighted in Figure 1.

We can further optimize the intersection operation by rep-
resenting the monomial ids with bit arrays, where the ith

bit is 0/1 iff a token is/isn’t in the ith monomial, and ap-
plying bit AND operations. This strategy only requires one
full scan over the query provenance to build an index for
all view mappings. Details on how to use the index to de-
termine whether provenance mappings from view tuples to
query tuple satisfy Def. 6 are presented in Algorithm 2.

Algorithm 2: Checking provenance mappings

Input : a view V , a query Q, a view mapping M from
V to Q, query tuple tq ∈ Q(D), query
provenance index I, a set of view tuples
Tv ⊆ V (D)

Output: Whether provenance mappings from Tv to tq
satisfy Def. 6

1 for tv ∈ Tv do
2 Retrieve the provenance monomial set P̄ of tv

Retrieve the grouping variable values (Gv) of Q
under mapping M

3 for each provenance monomial P ∈ P̄ do
4 for each provenance token p ∈ P do
5 if p is not in I OR Gv is not in the entry of

I for p then
6 return false
7 end
8 end
9 Perform intersection over the index for p with

grouping variable values Gv
10 if the intersection result is empty then
11 return false
12 end
13 end
14 end
15 return true

Materialization and parallelism optimization. To
further improve performance, the provenance of the aggre-
gate views along with the view content can be materialized
before the query arrives. The strategy with materialized
view provenance is called eager, whereas that without is
called lazy. The eager and lazy strategies are compared in
Section 6. We observe that reasoning about the validity of
view mappings is highly parallelizable since the reasoning
between different view mappings is independent. However,
since fully parallel computation in a single machine can in-
cur large memory consumption, ProvCite only processes five
view mappings at a time. Exploring how to fully develop our
system in a distributed environment is left for future work.

Using the instances and provenance expressions of V4 −
V6 presented in Tables 11-13, the valid view mappings for
every query tuple are presented in Table 14. Note that for
tuple tq2, although all of its how-provenance monomials exist
in the view tuple tv52, it does not include e4 ∗ r2 which is
used to construct tv52, violating the tuple-level condition.
Intuitively, since the value of the aggregate term may come
from this component of the monomial (e4 ∗ r2), tv52 should
not provide citation information for tq2.

Algorithm 3: Compute covering sets

Input : a set of valid view mappings M for query
tuple t ∈ Q(D), query Q

Output: a set of covering sets C
1 For each aggregate term of Q, derive a set of view

mappings covering it, which forms an array of view
mapping sets S.

2 Determine the order to compute the cross product of
every element in S

3 Initialize C as the first view mapping set s0 from S.
4 for each set s ∈ S − {s0} do
5 Initialize cross product result C′ = {}:
6 for each view mapping set M̄ ′ ∈ C do
7 for each view mapping M ∈ s do
8 get three bit arrays of M̄ ′ (M): b1 (b′1),

b2(b′2) and b3 (b′3)
9 construct new view mapping set M̄ ′′ based

on the bit OR operation result
bi ∨ b′i(i = 1, 2, 3) and put it into C′

10 end
11 end
12 Remove duplicates from C′

13 C = C′

14 end

Finally, valid view mappings are shown in Table 14 along
with the query instance, which are then used to compute
covering sets for each query tuple in the Covering sets step.

As we observed in [40], it is time-consuming to compute
all covering sets. We therefore use two new strategies to
achieve speed-up: 1) representing coverings sets using bit
arrays; and 2) applying clustering algorithms to avoid an
explosion of intermediate results. These lead to an order of
magnitude performance gain (see Section 6).

Bit array optimization. The computation of covering
sets involves merging valid view mappings and removing du-
plicates, which can be optimized using bit operations. For
example, for Q, the aggregate term COUNT (T ), MAX(L)
and COUNT (E) are covered by {M3,M4,M6} (denoted by
S1), {M3,M5} (denoted by S2) and {M3,M5} (denoted by
S3) respectively (see Table 10). We can encode the 0th−3rd

view mappings M3 −M6 as {0, 1, 2, 3}, the 0th − 2nd aggre-
gate terms (COUNT (T ), MAX(L) and COUNT (E)) as
{0, 1, 2}, and the 0th − 1st relational subgoals (Exon and
Transcript) as {0, 1}. In this manner, arbitrary view map-
ping combinations (and thus covering sets) can be repre-
sented using three bit arrays in which the ith bit is 1 (0) iff
the ith view mapping is included (missing), or the ith aggre-
gated term or relational subgoal is covered (not covered).
For example, M4 is the 1st view mapping, represented by
0100 (the leftmost bit is the 0th bit). M4 covers the 0th ag-
gregate term (COUNT (T )) and the 0th and 1st relational
subgoals, which are represented by bit arrays 100 and 11
respectively. The bit array representations for other view
mappings are listed in Table 10. To compute covering sets,
the view mapping combinations from the cross product of
{S1, S2, S3} (denoted by S1×S2×S3) are considered, which
are constructed by applying bit OR operations over the bit
arrays from those view mappings. For example, referenc-
ing Table 10, the covering set {M4,M5} can be constructed
by unioning bit arrays 0100 and 0010, and the aggregate
terms (relational subgoals resp.) jointly covered by them
are computed by unioning 100 and 011 (11 and 11 resp.).
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The pseudocode for computing covering sets using bit array
representations is presented in Algorithm 3.

Clustering algorithm optimization. Since cross prod-
uct (×) is commutative and associative, different orderings
of operands result in the same output but may incur different
overhead. For example, with S1×S2×S3, if S2×S3 is com-
puted first, the result is {M3,M5}, {M5,M5}, {M3,M3},
{M5,M3}. After removing obvious redundancy, the result
is {M3,M5}, {M5}, {M3}. Note that {M3,M5} is a du-
plicate compared to {M3} since 1) {M3,M5} and {M3}
cover the same set of aggregate terms and relational sub-
goals (checked by comparing the corresponding bit arrays);
and 2) {M3} is a subset of {M3,M5}. It is therefore safe
to remove {M3,M5} since in the final result, any view map-
ping combinations which include {M3,M5} will be a dupli-
cate compared to one that includes {M3} and thus won’t
be a covering set. So the intermediate result of S2 × S3 is
{{M3}, {M5}}, which is smaller than the result of the other
pairs. This is due to the high similarity between S2 and
S3 (actually S2 = S3). To find good orderings for comput-
ing the cross product such that the intermediate result is
minimized, clustering algorithms are applied so that view
mapping sets which are similar to each other can be clus-
tered and merged first (e.g. S2 and S3). In ProCite, the
affinity propagation clustering algorithm [23] is used since it
does not require a pre-specified number of clusters.

6. EXPERIMENTS
We start by describing the datasets and workloads used

before presenting the experimental results.

6.1 Experimental set-up
ProvCite was implemented in Java 8 using PostgreSQL

9.6.3 as the underlying DBMS. All experiments were con-
ducted on a Linux server with an Intel(R) Xeon(R) CPU
E5-2630 v4 @ 2.20GHz and 64GB of main memory. Al-
though there are provenance tools which support aggregate
queries for relational database systems, e.g. GProM [9], they
are overly complex for our purposes, and become a bottle-
neck for interactive computation. We therefore implemented
a provenance layer from scratch, which simply collects how-
provenance [27, 8] for each query tuple.
Datasets. Two realistic datasets were used in addition

to GENCODE: Hetionet1 and DBLP-NSF2[4]. Summary
information about the three datasets, including the number
of relations, average size per relation, and the size of the
largest relation is presented in Table 15.

We converted Hetionet, which is stored in Neo4j, into a
relational database3. DBLP-NSF integrates DBLP publica-
tion information with NSF award information to augment
traditional paper citations with funding information, and
was developed in [40].
Workloads. We test the performance of ProvCite using

both synthetic and realistic workloads. As mentioned earlier,
to retrieve the provenance of aggregate views we can use
either the eager or lazy strategy; we can also build an index
on query provenance. We measure the performance gains

1https://neo4j.het.io/browser/
2https://data.mendeley.com/datasets/ycnngyv5bd
3Available at https://github.com/thuwuyinjun/

Data_citation_provenance/files/2417454/hetionet_
postgresql.zip

using the eager strategy and index separately under both
workloads. The performance also depends on the policies
used; different policies can lead to different results, and can
generate either all or some of the covering sets. Due to space,
only the case where all the covering sets are generated is
presented here.

The purpose of using synthetic workloads is to determine
the key factors which influence performance. Extensive ex-
periments were performed in [40] measuring the total reason-
ing time to generate the covering sets (tcs) and the citation
generation time after covering sets are constructed. The ci-
tation generation time is not considered here since ProvCite
only changes how valid view mappings are determined during
covering sets construction process relative to the implemen-
tations of RBM. Since ProvCite relies on the query prove-
nance for reasoning, the query time over the provenance-
enabled database (tq) is also recorded. The total execution
time ttotal is measured as well, which is tq + tcs.

In [40], tcs primarily depends on: 1) the number of view
mappings (denoted Nv); 2) the total number of predicates
under the view mappings (denotedNp); and 3) the size of the
query instance before duplicates are removed (which is the
same as the total number of how-provenance monomials in
the query instanceNpq). The experiments measure the effect
of these metrics on tcs. The total number of how-provenance
monomials in the view instance on average (Npv) can in-
fluence performance according to the analysis in Section 5,
and its effect is also considered in the experiments. So for
the experiments for synthetic workloads, a query generator
is built, which can generate random aggregate queries over
GENECODE with Npq how-provenance monomials in total.
Given a query Q from this query generator, a view generator
can generate Nv views, each of which has Npv provenance
monomials in total and has exact one view mapping to Q.

The trade-offs between ProvCite and two implementations
of RBM proposed in [40], TLA and SSLA, are also measured.
As mentioned before, RBM can be extended to handle ag-
gregate queries when views are conjunctive views (but not
aggregate views). In this case, TLA, SSLA and ProvCite all
generate the same final, fine-grained citations.

In the realistic workloads, we use frequent queries against
the three databases, and build views to represent the por-
tions of data in the database associated with predefined ci-
tations. Both the synthetic and realistic views and queries
used are available in our Github repository4.

To represent the summary information provided by GEN-
CODE, we defined aggregate views to compute the total
number of transcripts per gene, and the total number of
exons per gene and per transcript. Two additional parame-
terized views are also defined to represent basic information
(e.g. ID, name and type) for each transcript and gene, re-
spectively. The realistic queries compute the total number
of exons (q1) and the total number of transcripts per type
of gene (q2) respectively.

For DBLP-NSF we use the realistic views defined in [40].
We also add aggregate views to reflect publicly available
statistics related to this database, such as the total number
of publications per faculty member5 and the total number
of grants per institution6. Some realistic aggregate queries

4https://github.com/thuwuyinjun/Data_citation_
provenance

5http://csrankings.org/
6https://dellweb.bfa.nsf.gov/awdlst2/default.asp
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are designed to represent other summary information, such
as the total number of publications per institution (q3) and
total amount of grants per state (q4).

Hetionet integrates information from various resources,
and includes information about genes, biological process,
drugs, etc. This information is stored in different relations
in the database. Of these, the biological process relation is
associated with citation information (i.e. related publica-
tion IDs). After consulting with the authors of Hetionet,
two views were defined. The first one is a parameterized
view showing the biological processes that a particular gene
is involved in. The second counts the total number of con-
nections between each biological process and corresponding
genes by joining several relations, such as the biological pro-
cess and gene relations. A typical query (q5) counts the
total number of connections between each biological process
and a certain drug via some genes.

Table 16 provides a summary of the notation mentioned
in this subsection.

6.2 Experimental results
We now report on results from the synthetic and realistic

workloads.

6.2.1 Synthetic workloads
We measured the impact of the provenance size of the

query and view instances on time performance (Exp1), and
the relative performance of ProvCite and two implementa-
tions of RBM, TLA and SSLA, while varying the view map-
ping number (Exp2) and the view predicate number (Exp3).

Exp1. This experiment measures how the total execu-
tion time (ttotal) is influenced by the total number of how-
provenance monomials in the query instance (Npq) as well as
in the view instance (Npv). We randomly generate an aggre-
gate query, and vary Npq by adding appropriate predicates.
A fixed number of aggregate views are also generated such
that there is exact one view mapping from each of them to
the query and the total number of view mappings is fixed at
20. In practice, the number of views that touch the query is
usually far smaller than the total number of views, so 20 is
a pretty large number. Both Npq and Npv are varied from
50K to 5M. The total time is measured for different (Npq,
Npv) pairs under the eager and lazy strategy with the query
provenance index, and the lazy strategy without the index.

Results. The results are shown using 3D surfaces in Fig-
ure 2a, with the eager strategy with index, lazy strategy
with index and pure lazy strategy shown in red, green and
yellow respectively. The query time tq is also recorded in
black. It shows that the query provenance index leads to
about 1.0x-1.8x speed-ups in most cases by comparing lazy
strategy with index and pure lazy strategy, while materializ-
ing view provenance results in about 1.1x-1.5x speed-ups by
comparing eager strategy and lazy strategy with index. The
combination of the index and eager strategy leads to up to
2x performance gains. The result also shows the scalability
of our approach since it takes less than 2 mins to process a
query instance with up to 5 million how-provenance mono-
mials and 20 views with up to 5 million how-provenance
monomials, which rarely happens in practice.

Exp2. The goal of this experiment is to compare the rela-
tive performance of ProvCite, TLA and SSLA while varying
the number of view mappings (Nv). Since TLA and SSLA
cannot handle aggregate views, only conjunctive views are

Table 15: Summary of datasets

Dataset name
relation

#
average tuple
# per relation

tuple # of
largest relation

GENECODE 7 600k 2000k
Hetionet 38 60k 500k

DBLP-NSF 17 600k 6000k

Table 16: Notation used in the experiments

Notation Meaning

tcs
total reasoning time to generate

the covering sets for all query tuples
tq query time over the database

ttotal total execution time
Nv total number of view mappings

Np
total number of predicates
under the view mappings

Npq
total number of how-provenance
monomials in the query instance

Npv
total number of how-provenance monomials

in the view instance on average

Table 17: Experimental results on realistic datasets

Query ttotal
(s)

(eager
+

index)

ttotal
(s)

(lazy
+

index)

ttotal
(s)

(lazy)

Npq Nv Np tq(s)

q1 11.05 12.93 11.89 1237k 1 0 5.09
q2 1.75 2.06 3.26 203k 2 0 0.69
q3 4.95 6.62 6.44 507k 2 0 2.92
q4 5.90 6.49 6.33 416k 1 0 2.80
q5 4.65 5.10 4.81 243k 3 0 2.32

used. In this case, the provenance of views is not necessary;
there is no difference between the eager and lazy strategy
and the query provenance index is not useful. However, the
two optimization strategies on covering set computation, i.e.
applying bit arrays and clustering algorithms, are useful and
are measured here. The query is a fixed aggregate query
with 1 million how-provenance monomials in its instance.
Nv is varied from 1 to 50 and there are no predicates or
lambda variables for each individual view.

Results. The experimental results are presented in Fig-
ure 2b, which shows the change of ttotal for ProvCide and
the number of covering sets (Ncs) as the number of view
mappings (Nv) increases, with and without using bit arrays
and clustering algorithm. TLA and SSLA have almost the
same performance as ProvCite, and are not shown. Figure
2b shows that when Nv is large, an exponential number of
covering sets are generated, leading to bad performance (see
blue line). Bit array computations and the use of clustering
leads to about a 5x and 2x speed-up respectively; an order of
magnitude performance gain is achieved by combining both.

Exp3. In this experiment, ProvCite is compared with
TLA and SSLA while varying the total number of predicates
(Np) in views. Similar to Exp2, the query is an aggregate
query which can generate about 1 million tuples. The num-
ber of view mappings is fixed at 10 and there are initially no
predicates. In each run, one more local predicate is added.
As shown in [40], increasing Np significantly influences the
query time and hence performance of TLA and SSLA since
the query is extended to evaluate the view predicates.

Results. The results are shown in Figure 2c. As the
number of predicates increases, ttotal = tcs + tq increases
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Figure 2: Experimental results for synthetic workloads

slowly for ProvCite. In contrast, TLA and SSLA are twice
as slow as ProvCite for large Np. To understand the reason
for this, the query time for TLA, SSLA and ProvCite is also
presented in this figure, showing that the increasing query
time becomes the major overhead for both TLA and SSLA.

Discussion. The experiments reveal that all four metrics,
Npq (the total number of how-provenance monomials in the
query instance), Npv (the total number of how-provenance
monomials in the view instance on average), Nv (the to-
tal number of view mappings), and Np (the total number
of predicates under the view mappings) can affect the to-
tal reasoning time tcs. In extreme cases, where the value
of the metric is very large, the performance of ProvCite is
bad especially if implemented naively. However, the per-
formance can be substantially improved using the bit array
and clustering optimization strategies. We therefore expect
ProvCite to have acceptable time performance for realistic
workloads, where the extreme cases rarely arise.

6.2.2 Realistic workloads
The experimental results for realistic workloads are pre-

sented in Table 17, which includes the total execution time
(ttotal) for three cases (lazy, lazy + index and eager + in-
dex), as well as the metrics that can potentially affect the
performance: the total number of how-provenance monomi-
als in the query instance (Npq), the total number of view
mappings (Nv), the total number of predicates in the views
under all the view mappings (Np) and the time to query the
provenance along with the instance. Except for q1, ttotal is
less than 10 seconds for all queries. Although Npq is more
than one million in q1, ttotal is only about 11-13 seconds
for the three strategies, which is acceptable considering the
large query instance. Note that the index does not always
help since it may take significant time to build the index for
query provenance (e.g. up to 3 seconds for q1) and its per-
formance gain is not significant in the case of small number
of view mappings.

However, as shown in Section 6.2.1, the index provides
scalability especially in the extreme cases. We also list
the query time over the provenance-enabled database in
the last column, which indicates that the reasoning time
(tcs = ttotal − tq) is almost the same as tq. Thus, while
users are browsing the query result, the system can gener-
ate covering sets for all query tuples in the background, and
instantly construct formatted citations upon tuple selection.

Discussion. The experimental results show that reason-
able time performance can be guaranteed in practice where

none of the crucial metrics become too large. Revisiting the
experimental results for synthetic workloads, when the total
number of how-provenance monomials in the query instance
(Npq) is about 1 million (as in q1), ttotal is about 1 min in
the case of large Npv and Nv values. However, since only
one view mapping appears for q1, the time shown for q1
is significantly smaller. It also indicates that the number
of view mappings should be small since views associate dif-
ferent parts of the database with citations and thus only a
small portion of them touch the query result. Performance
is therefore acceptable in practise.

7. CONCLUSIONS
We build on the connection to data provenance to develop

a model for data citation which is able to handle aggregate
queries and views. The model reasons about citations at the
level of tuples in the query result using provenance to en-
able citations to arbitrary subsets of the query result (fine-
grained citation). The Provenance-Based Model was im-
plemented in ProvCite, which runs on top of a provenance-
enabled RDBMS. Extensive experiments were conducted un-
der both synthetic and realistic workloads, and show that
ProvCite can not only handle a larger class of queries than
the Rewriting-Based Model [40] (which assumes conjunctive
queries and views), but is much faster in some cases.

Optimizations used in ProvCite include materializing view
provenance, building an index to speed up comparisons be-
tween the query and view provenance, using bit arrays, and
using clustering algorithm to determine the best order of
combining view mappings. Several of these are applicable in
other scenarios where the provenance from different queries
or views needs to be compared, such as fine-grained access
control [26] and linked brushing in data visualization [37].

In future work, we would like to explore how to insert
data citation into the larger citation ecosystem involving
bibliometrics. We would also like to explore how to com-
bine data citation with black-box computations, including
Machine Learning models.
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