
Cache-aware load balancing
of data center applications

Aaron Archer
Google

New York, New York
aarcher@google.com

Kevin Aydin
Google

New York, New York
kaydin@google.com

MohammadHossein Bateni
Google

New York, New York
bateni@google.com

Vahab Mirrokni
Google

New York, New York
mirrokni@google.com

Aaron Schild
UC Berkeley

Berkeley, California

aschild@berkeley.edu

Ray Yang
Google

New York, New York
rayy@google.com

ABSTRACT
Our deployment of cache-aware load balancing in the Google
web search backend reduced cache misses by ∼0.5x, con-
tributing to a double-digit percentage increase in the
throughput of our serving clusters by relieving a bottleneck.
This innovation has benefited all production workloads since
2015, serving billions of queries daily.

A load balancer forwards each query to one of several
identical serving replicas. The replica pulls each term’s post-
ings list into RAM from flash, either locally or over the net-
work. Flash bandwidth is a critical bottleneck, motivating
an application-directed RAM cache on each replica. Sending
the same term reliably to the same replica would increase
the chance it hits cache, and avoid polluting the other repli-
cas’ caches. However, most queries contain multiple terms
and we have to send the whole query to one replica, so it
is not possible to achieve a perfect partitioning of terms to
replicas.

We solve this via a voting scheme, whereby the load bal-
ancer conducts a weighted vote by the terms in each query,
and sends the query to the winning replica. We develop a
multi-stage scalable algorithm to learn these weights. We
first construct a large-scale term-query graph from logs and
apply a distributed balanced graph partitioning algorithm to
cluster each term to a preferred replica. This yields a good
but simplistic initial voting table, which we then iteratively
refine via cache simulation to capture feedback effects.
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1. INTRODUCTION
Multiple commercial web search engines such as Baidu,

Bing, Google, Yahoo, and Yandex now answer hundreds of
millions to billions of queries per day [29], retrieving results
from an index of many billions of documents. At this scale,
containing hardware costs is vital, so teams of software en-
gineers work for years to squeeze the maximum throughput
out of each cluster. Caching is one key to the overall per-
formance of the system. Although throughput is the focus
of this paper, better caching improves both throughput and
latency, so there is no tradeoff at play here.

We describe an innovation in the load balancing layer of
the Google web search backend that has been applied to all
production workloads since 2015. Our multi-phase approach
(i) builds a predictive model of the caches, learning its pa-
rameters from massive logs of search queries, (ii) does so by
employing a distributed balanced graph partitioning tool [6]
that is designed to solve an NP-hard problem (heuristically)
at scale, and (iii) iteratively optimizes the learned parame-
ters of the predictive model with the aid of the query logs
and a cache simulator. Our technique cut the miss rate of
the relevant caches by a factor of roughly 0.5x, contributing
to a double-digit percentage increase in the query through-
put of our web search backend (details in Section 7).

Our work is built around the following central observation.
In a distributed system that balances load across multiple
identical servers (aka replicas), it is not always optimal to
distribute the queries uniformly. If the replicas carry over
mutable state between requests—such as by maintaining a
data cache—then the decision of where to route a query
affects both its own processing cost and that of succeed-
ing queries, which infuses a complex feedback loop into the
load balancing problem. This distinguishes our setting from
most load balancing models, which assume the processing
cost of a request depends only on the request and (possibly)
the server that processes it, not on which other requests are
sent to that server. Although we may have no control over
the stream of requests seen by the load balancer, the bal-
ancer can exercise some control over the stream of requests
seen by each replica. The more homogenous the request
stream sent to a cache, the lower its miss rate tends to be.
If our load balancer can cluster the incoming query stream
such that the substream seen by each replica is more ho-
mogenous than the overall stream, then each replica should
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incur a lower cache miss rate than it would if it saw either
the full stream or a uniform random sample. Complicating
matters, our system actually has many distributed load bal-
ancers running simultaneously, each handling a uniform ran-
dom sample of the query stream. So we need a policy that
allows the load balancers to consistently split their query
streams into homogenous substreams, without communicat-
ing with each other. The main thrust of our paper is how
to accomplish this, using a method we call term-affinitized
replica selection (TARS).

An extreme version of this idea is hash-based partitioning,
already present in the literature on distributed hash tables
(Section 8), where requests are keys whose associated value
must be looked up and returned. A distributed RAM cache
is often used to minimize requests to bulk storage. Deter-
ministic routing of the requests via a hash of the key en-
sures perfect affinitization between keys and cache replicas.
Moreover, this method of affinitization allows multiple load
balancers to coordinate without communicating.

However, this paper focuses on web search retrieval, which
is the problem of querying an index to construct a list of all
documents that match a given query. Retrieval is much
harder to affinitize because each request contains multiple
keys that must be looked up together. Each term has an
associated postings list (PL), which is a list of the docids
of all documents containing that term. In retrieval, the PL
of each term in the query must be pulled into memory on
the same server and then processed. Partitioning based on
a hash of the query as a whole is ineffective for affinitizing
retrieval because the vast majority of queries hitting our
backend contain multiple terms and are unique within the
period of time it takes to turn over the cache.

Our approach affinitizes terms rather than queries. For
instance, all sports terms could be assigned to replica 0, and
all clothing terms could be assigned to replica 1. But then
which replica should we select for the query “tennis shoes”?
Our TARS method surmounts this difficulty by instituting
a weighted vote among the terms in the query (Section 2).

This paper is not about caching algorithms. TARS can be
used in conjunction with any reasonable caching algorithm.

We now explain the relevant details of how a query is pro-
cessed once it hits our web search backend. Barroso, Dean
and Hölzle [7] described a search engine architecture that
uses multiple clusters of servers scattered across the globe,
and provides horizontal scalability within each of these search
clusters via doc-sharding and replication. Our system shares
these elements, which we describe here for completeness.

Two sets of jobs cooperate to process the query: roots (aka
query brokers) and leaves (aka index servers). Most of the
computation is done at the leaves. The set of all documents
in the index and their PLs are partitioned into S pieces of
nearly equal size, each of which is called a shard (aka index
shard or doc shard). Each of these shards is replicated R
times. Each leaf job serves one replica of one shard, so there
are R · S leaves total. A leaf may also be called a serving
replica, leaf replica, or simply replica. When a query arrives
at a root, a load balancer selects one replica of each shard,
the root forwards the query to the S selected leaves, each
of these performs retrieval on its index shard and returns
results to the root, where the results are merged. Like the
leaves, the roots are replicated to handle the load, but unlike
the leaves, they are all identical.
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Figure 1: A replicated, doc-sharded search engine
architecture, with two roots, six leaves, and S =
3, R = 2. Here, root A fans out the query to replica
0 of each shard.

The aggregate size of all PLs in a shard is too much to
fit in RAM on one leaf, so our system stores most of them
on flash drives, pulling them into RAM when needed. The
flash could be accessed remotely over the network (as in
Figure 1), or mounted locally. The important aspect is that
the bandwidth of the communication link between flash and
RAM is limited, and is a critical bottleneck in our system.
This motivates the use of an application-directed cache to
hold these PLs in RAM on the leaf. The largest PLs are
pinned permanently in RAM, to avoid unacceptable latency
when pulling them into cache. See Figure 1.

Uniform sharding helps to balance the load across shards.
To balance the load across the replicas of each shard, one’s
first impulse is to use either round-robin, uniform random
selection, or deterministic selection based on query finger-
prints.1 As this paper will demonstrate, these approaches
are suboptimal for caching. Selection by query fingerprint
is the old method used by our system prior to this work, so
it is our main baseline for comparison.

2. TARS: AN OVERVIEW
We now describe our load balancing system, TARS. A dif-

ferent copy of this load balancer runs independently within
each root job. Whenever the root receives a new query to
fan out to the leaves, the load balancer selects one replica
of each shard. Since each root is identical and each shard is
treated independently, we focus for the rest of the paper on
a single root and just the R replicas of a single shard.

The overall goal of TARS is to cause the substream of
queries received by each leaf to be as homogenous as possi-
ble (thereby decreasing the PL cache miss rate), while still
balancing CPU utilization across the leaves. TARS consists
of three components that work together to achieve this goal.

1Here, fingerprint means a hash function that achieves
strong uniformity over its b-bit output range.
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The first component is a table of voting weights wrt that we
compute offline based on query logs, and load into mem-
ory on each root at startup. One should think of wrt as a
vote by term t against being sent to replica r. This vot-
ing table is static—it does not change during serving. The
second component is a set of dynamic multipliers µr, one
for each replica r. The role of these multipliers is to allow
TARS to shift load from one replica to another in real time
in response to CPU load. The third component is a voting
rule that combines the static voting table with the dynamic
multipliers to select a replica. We describe all three com-
ponents now, but the emphasis of this paper is on the first
component: how to compute the table of voting weights.

We start by describing the voting rule. Since the terms
pinned in RAM are never retrieved from flash, they do not
affect the flash IO bottleneck depicted in Figure 1, so we
exclude them from the vote. Therefore, we represent an
incoming query q mathematically as the set of terms in the
query whose PLs are stored on flash. When query q arrives
at the root, TARS first computes, for each replica r, the sum
of the voting weights over the terms in q:

vr(q) =
∑
t∈q

wrt . (1)

As with the pinned terms, any terms missing from the voting
table implicitly get zero weight. TARS then applies the
replica-specific dynamic multipliers and takes the min. That
is, it selects the replica

arg min
r
vr(q)µr. (2)

Thus, a high value of µr causes replica r to shed traffic.
In the event of a tie, we fall back to selecting among the
tied replicas using query fingerprints. The most common
scenario causing a tie is when all terms in q are either pinned
or missing from the table, making all votes zero.

Figure 2 depicts this process. Preferential voting has spe-
cialized the cache on replica 0 towards sports terms, and
replica 1 towards clothing terms. Colors denote each term’s
preferred replica. Both “dress” and “shoes” want the cloth-
ing replica, so replica 1 wins that query, but “tennis” and
“shoes” have a split preference. We imagine that “tennis”
has a stronger preference for replica 0 than “shoes” does for
replica 1, so replica 0 wins the query.
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root A
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dress shoes

replica 0 leaves replica 1 leaves
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Cache content:

dress
shoes

dresses

replica

selection

voting

weights

term

clustering
offline

query logs

tennis shoes dress shoes

Figure 2: TARS in action.

We want wrt to represent the expected number of cache
misses if we send term t to replica r. Then vr(q) is the total

expected cache page misses if we send query q to replica r.
Thus, TARS sends the query to the replica that minimizes
the expected number of cache page misses, if all of the µr are
equal. More generally, this lends a nice interpretation to the
ratio µr/µr̂ as being the maximum multiplicative increase
in expected cache miss cost that we are willing to accept in
order to shift a query away from replica r onto replica r̂, so
as to better balance the CPU load. Section 6 details how
the µr are maintained. Since this aspect of TARS is less
interesting than the voting weights, we ignore it from now
until Section 6 (i.e., we assume µr = 1 for each r). With
this simplification, the TARS voting rule (2) boils down to
selecting the replica

arg min
r
vr(q). (3)

Most of this paper focuses on how to train the table of
static voting weights wrt . Let PLt denote the PL for term
t, and let szt be the size of PLt measured in cache pages,
rounded up to the nearest integer (since a full page is the
smallest block we read from flash). Suppose that prt is our
offline stationary probability estimate that term t is in cache
on replica r. In order for wrt to represent the expected num-
ber of cache page misses, we should set

wrt = (1− prt )szt. (4)

This formula assumes that each PL is pulled into and evicted
from cache as a unit, which is true of our cache.

There is a circular dependency between the voting weights
wrt and the cache hit probabilities prt . If we change prt , we
want to update wrt via (4). But since the voting weights
determine which substream of the root’s query stream is
seen by each replica, they determine the state of the caches
and hence our estimates of prt . Section 4 solves this problem,
using an iterative method to converge to a fixed point of this
feedback loop, using query logs and a cache simulator.

But first, we must generate an initial voting table. We
do this using a distributed balanced graph partitioning tool
that our team had previously developed [6]. We apply it to
a large weighted bipartite graph between terms and queries,
derived from query logs. We give the intuition behind our
graph now, with full details in Section 3. It contains a node
for each term and each query in the logs, connecting each
term to each query containing it. Each edge has a cost, and
each term node has a mass (each query node has zero mass).
The costs and masses play very different roles. The edge cost
between query q and term t represents the expected number
of extra cache page misses incurred on PLt if query q is sent
to a replica other than the one preferred by term t. Mean-
while, the node mass on term t represents how many cache
pages PLt occupies on average (over time) in its preferred
cache. We assign zero mass to the queries because they do
not occupy space in the cache.

We then (approximately) solve an NP-hard balanced par-
titioning problem on this graph, aiming to minimize the to-
tal cost of edges cut, subject to balancing the term node
mass across the R replicas. This constraint corresponds to
the cache sizes being fixed and equal across all R replicas,
while the edge cut corresponds to the aggregate page miss
rate across all replicas. Each cluster in the partition identi-
fies terms that tend to be queried together.
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Definition 1. Given a partition of the set of all terms T
into R clusters T0, . . . , TR−1, the binary voting table asso-
ciated with this clustering is the one given by equation (4),
using prt = 1 if t ∈ Tr, and 0 otherwise.

This voting table encodes the incredibly naive assump-
tion that a term t always hits cache when it is sent to its
preferred replica, and always misses cache otherwise. Nev-
ertheless, even these initial voting weights turn out to be
incredibly effective. Moreover, the edge cut cost of a clus-
tering is a very reliable proxy for the cache miss rate induced
by the resulting binary voting table, as shown by Figure 3.
This plot shows 1000 different clusterings of the terms into
five replicas. The point with the smallest miss rate (second
from the left) corresponds to the clustering output by our
balanced partitioner. Starting with this clustering, we ran-
domly degrade it by varying amounts to create 999 other
clusterings with various cut costs, and evaluate the cache
miss rates of the corresponding binary voting tables. The
plot shows a clear, near-linear relation between cut size in
the graph and cache miss rate (details in Section 5.3).
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Figure 3: Cache miss rate vs. cut cost, as a fraction
of total edge cost in term-query graph.

Balanced graph partitioning is not only NP-hard (Sec-
tion 8), but also hard in practice, even on small graphs. The
voting table we derive from the clustering improves substan-
tially when we train on larger logs, and hence larger graphs.
Thus, we require a distributed optimization tool to conquer
the scale. Distributed graph computations are notoriously
difficult. Even the most basic graph computations, such
as connected components, become challenging for massive
graphs, even if they are trivial on graphs that fit in memory
(Section 8). The distributed balanced partitioning tool [6]
that we previously built to handle massive graphs is there-
fore a key ingredient in the success of our overall approach.

There is one glaring problem with TARS as we have de-
scribed it so far: although it should decrease the cache miss
cost per query, there is no reason to believe it should balance
the cache misses among the replicas. However, we argue in
Section 9 that the aggregate miss rate is usually the right
measure to address. This argument is easy when the flash
is remote (as depicted in Figure 1), because the flash access
cost is not borne directly by the leaf, so there is no need
to balance it across leaves. The argument is more subtle
when the flash is local to each replica, so we save that for
Section 9. Moreover, Section 7 shows empirically that we
reduce the tail of the leaf flash IO distribution even though
we don’t make an explicit effort to do so.

2.1 Our contributions
We evaluate the quality of a voting table by the aggre-

gate cache miss rate it induces on all replicas. We measure
this by running a query log through a cache simulator (or
through a loadtest on a production cluster). We do not con-
cern ourselves with the distribution of cache misses across
replicas (but see Section 9). The set of all possible voting
tables forms a complex landscape with many local minima.
Our main technical contribution consists of several ways of
exploring this landscape that have proven to be extraordi-
narily effective in practice (Table 3).

Our contributions include defining the problem of cache-
aware load balancing when each request has multiple lookup
keys, modeling it, and inventing TARS to solve it. Fur-
thermore, our experience with TARS in our production sys-
tem, re-confirmed by the detailed experimental study in Sec-
tion 5, can be summarized as follows:

• TARS already beats the baseline fingerprint method
(FPT) by a large margin, just by building a binary
voting table (Definition 1) from a random clustering
(RND). Thus, the TARS idea is already powerful even
with a dumb voting table (Table 3).

• For binary voting tables derived from term clustering,
the miss rate correlates strongly with the edge cut ob-
jective function. Thus, the cut objective and the qual-
ity of the optimization matter (Figure 3).

• Thus, using a balanced partitioning algorithm on the
term-query graph of Section 3.2—built from real search
query logs—would be expected to outperform RND.
Indeed it does, by a substantial margin (Table 3).

• Our simulation-based iterative refinement method (Sec-
tion 4) delivers substantial improvements, starting from
either RND or BP. However, method BP still beats
RND, even after refining both voting tables.

• Applying TARS to our production system reduced cache
misses by a∼0.5x factor, contributing to a double-digit
percentage increase in query throughput.

We organize the rest of this paper as follows. Section 3
shows how to initialize our voting table using balanced parti-
tioning on a term-query graph, and Section 4 explains how
to iteratively refine it via cache simulation. Section 5 de-
scribes extensive simulations using real query logs from our
production system. Section 6 describes how to maintain the
dynamic load balancing multipliers µr and Section 7 reports
results from our actual production system. Finally, Section 8
reviews related work, and Section 9 closes with a discussion
of future research directions.

3. TERM CLUSTERING VIA BALANCED
GRAPH PARTITIONING

This section uses clustering on a massive graph to gener-
ate a good table of term-replica voting weights wrt . First,
we describe a general template for generating a voting table
from any partitioning of the terms into R clusters. Next, we
describe the balanced graph partitioning optimization prob-
lem, and how to use it to model our weight-setting problem.
This part involves constructing a term-query graph from
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query logs collected from our production system, then ap-
plying a balanced partitioning algorithm to cluster it. We
then obtain a table of voting weights by applying the general
template to this clustering.

Since the general clustering-to-table template can be ap-
plied to any clustering, it raises the question of whether the
modeling in this section does any good. If we were to as-
sign each term uniformly at random to a cluster and build a
voting table out of that, would that table work just as well?
Our experiments (Section 5) reveal the answer is no.

3.1 Voting tables from clustering
Let T denote the set of terms we wish to put in our ta-

ble, and let {T0, . . . , TR−1} be a partition of T into R clus-
ters. We represent this clustering by a function C : T →
{0, 1, . . . , (R − 1)}, where C(t) = r iff t ∈ Tr. We want to
build a voting table that will serve to affinitize term t to its
preferred replica C(t), as defined by the clustering.

Suppose we estimate a priori the probability of a cache hit
as Pt when sending term t to its preferred replica C(t), and
as Nt when sending t to any of its non-preferred replicas.
Tying this back to our notation from Section 2, this means

prt =

{
Pt, if C(t) = r

Nt, o.w.,
(5)

so we set

wrt =

{
szt(1− Pt), if C(t) = r

szt(1−Nt), o.w.
(6)

This assumption seems ridiculous on its face, for at least two
reasons. First, because of the chicken-and-egg problem that
we raised in Section 2, where the voting table determines
the hit rates while at the same time we desire to let the hit
rates determine our table via equation (4). Second, because
we have no reason to believe that there should be symmetry
among the non-preferred replicas. In response, we point
to the famous words of the statistician George Box: “All
models are wrong but some are useful” [11]. In fact, we will
obtain much mileage out of the simplistic assumption that
Pt = 1 and Nt = 0 for all t ∈ T ; but for the time being, let
us assume only that Pt ≥ Nt.

3.2 Graph definition & balanced partitioning
We now define a graph, based on a query log and the

hit probabilities Pt, Nt assumed above for each term t. We
then define the balanced partitioning problem and relate it
to cache miss rates in our replica selection scheme. This will
justify the way we defined the graph.

Let us assign a unique ID to each query in our log, and
let I denote the collection of these IDs. Let qi denote the
query indexed by i, which we represent mathematically as
a subset of the terms represented in our web search index.
Let T = ∪i∈I qi denote the set of all terms that appear in at
least one query in the log. We construct a bipartite graph
where the nodes on the left side are the terms in T , the
nodes on the right side are the query IDs in I, and there
is an edge (t, i) between query ID i and each of the terms
t ∈ qi. Any query appearing multiple times in the log will
be represented a corresponding number of times on the right
side of the graph. We assign a mass mu to each node u and
a cost ce to each edge e as follows. We let mi = 0 for all
i ∈ I, and set mt := szt(Pt − Nt) for each t ∈ T . For each

edge e incident to t, we also set ce := szt(Pt−Nt). Figure 4
depicts a small piece of an example graph of this type.

V0

V1

t

tennis

dress

shoes

id:17

tennis
shoes

dress
shoes

node mass = szt(Pt − Nt)

node mass = 0szt(Pt −Nt)
q17=t,“dress”

Figure 4: Example term-query graph, showing one
node mass of each type and one edge cost. Terms T
are on the left and query IDs I are on the right. A
partition {V0, V1} is also depicted.

Now consider any graph (V,E) with node mass mu on
each node u ∈ V and edge cost ce on each edge e ∈ E. We
are also given a target number of clusters R and an imbal-
ance tolerance ε > 0. Consider a partition P of the node
set V into R clusters {V0, . . . , VR−1} such that the node
mass is roughly balanced among the clusters, i.e., m(Vj) :=∑
u∈Vj mu ≤ 1+ε

R

∑
u∈V mu =: 1+ε

R
m(V ), for each j. The

balanced partitioning problem asks us to produce the par-
tition that minimizes the cost of the edges cut, subject to
this balance constraint, where the cut cost is defined to be
c(δ(P)) :=

∑
e∈δ(P) ce, and δ(P) contains the edges whose

endpoints are in distinct clusters of P.
Now we relate the balanced partitioning problem to cache

miss rates under TARS. We explain three choices made in
graph construction: the query ID node masses, edge costs,
and term node masses, in that order.

Consider any partition P = {V0, . . . , VR−1} of T ∪ I into
R clusters, and project it onto T to produce a clustering
{T0, . . . , TR−1} of just the term nodes, where Tj = Vj ∩
T . Recall that the terms in cluster Tr will be affinitized to
replica r by the voting table derived from these term clusters
using the method described in Section 3.1. Because all query
ID nodes in the graph have node weight 0, they can move
freely from cluster to cluster without affecting the balance
constraint. This motivates the following definition.

Definition 2. A partition P is query-optimal if each
query id i ∈ I belongs to the cluster Vr that minimizes∑
t∈qi\Tr szt(Pt −Nt).

In other words, having fixed the clustering of the terms, each
query goes with the cluster that minimizes the cut. Thus, it
is trivial to convert any partition into a query-optimal one
without affecting the node mass balance constraint.

Theorem 1. Suppose partition P is query-optimal, and
query node i is in cluster Vr. When using the voting table
induced by P via (6), TARS routes query qi to replica r.
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Proof. We have

vr(qi) =
∑
t∈qi

wrt

=
∑

t∈qi∩Tr

szt(1− Pt) +
∑

t∈qi\Tr

szt(1−Nt)

=
∑
t∈qi

szt(1− Pt) +
∑

t∈qi\Tr

szt(Pt −Nt). (7)

Since P is query-optimal, r is the replica that minimizes this
last term, so it minimizes vr(qi), so TARS selects r.

This motivates setting the query node masses to zero.
Now, suppose that the queries received at the root are

drawn i.i.d. from the queries in our log (with multiplicity),
so every query that the root might see is represented by
a node on the right side of our graph. Under this query
arrival model, the expected cache page misses per query is
proportional to a constant plus c(δ(P)), under the assumed
hit rates Pt, Nt:

EI [cache page misses] =
1

|I|
∑

i∈I,t∈qi,
r=argminr v

r(qi)

szt(1− prt ) (8)

=
1

|I|
∑

i∈I,t∈qi

szt(1− Pt) +
1

|I|
∑

i∈I,t∈qi:
C(t)6=C(i)

szt(Pt −Nt).

The first term is a constant that doesn’t depend on the
clustering, and the second term is 1

|I| times the cut size.

Finally, we must explain the term node masses. Recall
that the R leaf replicas serving a given shard are all iden-
tical, and in particular their RAM cache has the same size.
Although the cache size does not appear explicitly in the
graph model, it is present implicitly. In particular, since the
query stream is assumed to be i.i.d., the cache hit rate for
term t on replica r is the same as its cache occupancy rate.
Therefore, the total cache space occupied on replica r is:∑

t∈T

sztp
r
t =

∑
t/∈Tr

sztNt +
∑
t∈Tr

sztPt

=
∑
t∈T

sztNt +
∑
t∈Tr

szt(Pt −Nt). (9)

The first term in (9) is a constant, while the second is m(Tr).
At steady state, every cache is always completely full. This
means that m(Tr) should be the same for every replica.

This entire discussion relied on the assumption that Pt
and Nt are the cache hit probabilities for term t on its pre-
ferred and non-preferred replicas, according to the cluster-
ing. This assumption puts the cart before the horse, in the
sense that the clustering determines the voting table, which
determines the prt . So there is no theorem here, only in-
tuition for why a balanced partition that minimizes the cut
constitutes a good clustering from which to build a voting ta-
ble. In Section 5, we demonstrate that a small-cut balanced
partition of the graph corresponding to Pt = 1, Nt = 0 for
all t ∈ T yields a voting table that substantially decreases
the cache miss rate compared to our baseline. Moreover,
we show that the cut cost is positively correlated with the
cache miss rate, so we would expect a clustering that does
better on the cut minimization objective will also lead to a
better voting table. To produce such a clustering, we apply
a distributed balanced partitioning algorithm that our team
developed earlier [6].

4. ITERATIVE REFINEMENT
The previous section gave a method for learning good

weights for the TARS voting table. We now show how to
use a cache simulator to improve those weights.

Given an initial table of weights wrt , we run a query log
through a simulator as described in Algorithm 1 (Section 5),
using TARS with voting weights wrt as the replica selection
policy. However, we record one additional bit of data. In
Algorithm 1, we record the number of cache page hits and
misses every time a term t is sent to a replica. For purposes
of iterative refinement, we additionally peek inside the cache
on each of the other replicas to see if that term would have
incurred a cache hit or miss. We then use all of this data
to compute an empirical cache hit probability prt for each
term t and replica r. Since we peek into cache r no matter
whether the term is actually sent to that replica or not, each
prt is a fraction whose denominator is the number of times
term t appears in the log.

We then compute new weights ŵrt = szt(1−prt ), as in (4),
and update our full set of weights to be a convex combination
of the old and new weights: wrt ← (1 − τ)wrt + τŵrt , where
τ ∈ (0, 1] is a step size parameter. We can iterate this
process as many times as we like on a set of training logs. For
each of these successive voting tables, we can then evaluate
the empirical cache miss rate on a separate set of validation
logs to detect overfitting.

5. EXPERIMENTS
We now describe a set of experiments to show the effi-

cacy of TARS, exploring different cache sizes, numbers of
replicas, and methods of building the voting table. All ex-
periments are performed using real query logs gathered from
our production web search backend. We evaluate cache miss
rates via simulation of the replica selection process and the
caches on each replica of a single shard.

This simulation approach offers several advantages over
running full-cluster loadtests. First, it allows us to exper-
iment with different cache sizes and different numbers of
replicas, instead of being restricted to the values in use by
our production system. Second, it allows a laser focus on the
aspects of the production system that are directly related
to this change, stripping away the many confounding fac-
tors that invariably add noise to experimental results in any
real system. Third, it is more computationally efficient by
many orders of magnitude. Were it even possible, running
all these experiments on the full cluster would be expensive.
During our development of TARS, we conducted extensive
experiments comparing our simulator with our production
clusters, and found close agreement between the two.

We identify a single run of the simulator by a 5-tuple of
parameters (L,EvP, S,R, x), where the symbols mean:

• L : query log to use (Section 5.1)

• EvP : cache eviction policy (always LFU)

• S : size of the cache on each replica (Section 5.2)

• R : number of replicas, ∈ {1 . . . 5}.

• x : the replica selection policy.

Section 5.1 describes the query logs L, and Section 5.2 de-
scribes how we choose cache sizes S. Whenever a new item
needs to be pulled into an already-full cache, the eviction
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policy tells which items should be removed to create the
necessary space. Although we state this as a parameter of
the simulator because any eviction policy could be used, in
all of the experiments that we report, we just use the LFU
policy, which evicts the item that has been least frequently
used since entering the cache. In our case, PLt was “used”
if the replica received a query containing term t. We also
tried LRU (least recently used), and the results were nearly
identical. Our production system uses a different eviction
policy, but also gives similar results.

The replica selection policy can either be FPT, or TARS
using some specific voting table.

Each of our simulations entails running a query log through
a root simulator and R leaf cache simulators. Starting with
empty caches at each replica, we run log L through the sim-
ulator once to warm up the caches, then run it through a
second time to actually count the cache page hits and misses
at each leaf. Algorithm 1 details this process.

Algorithm 1 Simulate(L,EvP, S,R, x)

Initialize empty cacher, r = 0, . . . , R− 1
for phase ∈ [warmup,measure] do

for q ∈ L do . iterate over queries in log
r ← x(q) . select replica via policy x
for t ∈ q do . iterate over terms in query

if t ∈ cacher then . t hits cache
Hit(cacher, t,EvP) . update EvP’s state
if phase = measure then

record szt page hits on cacher

else . t misses cache
. EvP evicts just enough PLs to insert PLt

EvictAndInsert(cacher, t,EvP)
if phase = measure then

record szt page misses on cacher

return page accesses & misses for each term t, replica r
. miss rate = misses / accesses

We evaluate the effectiveness of the policy x in these simu-
lation scenarios via its aggregate cache page miss rate, which
is defined to be the total page misses divided by total page
accesses recorded by the simulator in its measurement phase,
where both quantities are summed over all R replicas. For
this purpose, we ignore the cache miss rates on the individ-
ual replicas (but see Section 9).

In the next subsections, we first describe our query logs
via some revealing statistics (Section 5.1), then explore the
tradeoff between cache size and miss rate in order to select
an interesting set of cache sizes to use (Section 5.2). We
evaluate our balanced partitioning method for constructing
binary voting tables, comparing it to several alternatives
(Section 5.3), then report on iterative refinement, including
a crude investigation of the step size parameter, and quan-
tifying the resulting caching improvements (Section 5.4).
Finally, we examine the robustness of our cost tables by
training them on queries from one continent and testing on
another (Section 5.5).

One important point that runs throughout this analysis is
that all of our voting table methods improve as R increases,
whereas the baseline FPT method does not. This adds a
pleasant feature to our search clusters that did not exist be-
fore: adding replicas to keep pace with an increased serving
load automatically helps to alleviate the flash IO bottleneck.

5.1 Query logs
We collected 9 independent query logs, 3 each from Asia

(AS), Europe (EU), and North America (NA), meaning that
essentially all of the queries in the log originated from that
geographic region. We filtered out all terms that are pinned
in RAM in our production system, since these terms are ir-
relevant to the flash IO bottleneck. If the query becomes
empty after filtering, we discard it. We denote the result-
ing logs by {AS,EU,NA}-{train,valid,test}, and use them
as training, validation, and test sets, respectively. Table 1
summarizes these logs with some interesting statistics.

Table 1: Query log stats.
log L Q DQ

Q
N1
N

N1
TA

TP1
TP

TP
S5

AS-train 8.84M 91.2% 64.8% 12.4% .10% 3914
AS-valid 8.54M 91.4% 65.0% 12.6% .10% 3779
AS-test 8.54M 91.4% 65.0% 12.6% .10% 3779
EU-train 8.66M 91.4% 67.0% 16.0% .17% 2600
EU-valid 8.37M 91.5% 67.2% 16.2% .17% 2511
EU-test 8.40M 91.5% 67.2% 16.2% .17% 2520
NA-train 7.61M 91.4% 67.1% 16.0% .15% 1967
NA-valid 7.38M 91.5% 67.2% 16.2% .16% 1910
NA-test 7.42M 91.5% 67.2% 16.2% .16% 1919

In the table, Q and DQ denote the number of queries and
distinct queries (resp.), N the number of distinct terms, TA
the total number of term accesses (i.e., terms with multi-
plicity), and TP the total number of page accesses (i.e., TA
weighted by szt). The subscript “1” means that we restrict
the quantity to the set of terms N1 that appear exactly once
in the log, while S5 denotes the largest cache size that we
use with this log (Section 5.2).

Notice that only ∼9% of queries are repeats, while roughly
2/3 of the terms in each log appear only once. These are
indications of the heavy tail of the search term distribution.
The N1 terms that appear only once can never hope to hit
cache for any reasonable eviction policy. The bad news is
that these constitute 12-16% of the term accesses. The good
news is that these rare search terms tend to also have shorter
PLs, so although we expect TP1

TP
to be a lower bound on the

cache miss rate, at < 0.2%, this is a non-issue. With the
baseline policy, S = S5 yields a cache miss rate of 5% (by
construction in Section 5.2); since TP

S5
≥ 1910, our warmup

phase turns over the cache at least 95 times, which is a
thorough warmup by any measure. Although we sympathize
with the reader’s probable desire to know some other data
such as N and TA

Q
(the average number of terms per query),

we must withhold them for business reasons. These stats
may not be reflective of user queries for multiple reasons,
including filtering of pinned terms and filtering by caches
higher in the search stack.

5.2 Cache sizing
There is an inverse relationship between cache size and

miss rate: a larger cache results in fewer important PLs
being evicted, lowering their miss rates. For cache sizes
S spanning a wide range, we ran log NA-test through a
single replica and plotted the cache miss rates in Figure 5.
By inverting the function represented by this curve, we can
compute the cache size achieving any target miss rate M .

There is a sharp “knee” in the curve right around miss
rate 20%. The curves for AS and EU are similar. Thus, the
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Figure 5: Tradeoff between cache size and miss rate.

benefits of increasing the cache size are enormous until the
miss rate drops to around 20%, then they level off somewhat.

This suggests 20%, 15%, 10%, and 5% as sensible target
miss rates. For each log in {AS, EU, NA}-test, we build an
analogous curve. The cache size that causes LFU to achieve
a miss rate equal to M we denote by SM (L), or just SM if
L is understood. We use binary search to compute S20, S15,
S10, and S5. The resulting sizes appear in Table 2. In order
to avoid leaking details of our production system, we always
scale the cache sizes for each region so that S20 = 1.

Table 2: Larger caches show diminishing returns.
cache size S

region S20 S15 S10 S5

AS 1 2.05 3.73 6.94
EU 1 1.73 3.50 6.83
NA 1 2.61 5.04 9.25

5.3 Binary tables
We now arrive at the punchline: the effect of TARS on

cache miss rates, summarized in Table 3. Ignore the columns
marked “+IR”; we will return to those in Section 5.4.

Each row corresponds to a different log and a different
number of replicas. In all cases, we use our *-train log to
train our tables of voting weights, then run the cache sim-
ulation on the *-test log and report those results. We used
cache size S10 throughout.

The column marked FPT selects replicas via query finger-
print, which is our baseline method since that is what our
system used prior to our introduction of TARS.

The three columns marked “binary” are all cost tables
derived from the “wrong-but-useful” assumption that prt = 1
for term t’s preferred replica and 0 o.w. The RND column
corresponds to a random clustering: i.e., each term chooses
its preferred replica randomly. Actually, we performed ten
random clusterings, evaluated them all, and report the best
of the ten. However, there was not much variance among
these RND tables. For instance, for NA-5, the RND voting
tables gave miss rates ranging from 6.08% to 6.18%.

The column marked DC (for “diversified caching”) is an
adaptation of an algorithm suggested by Xu et al. [82]. They
study the problem of building different static caches for each
replica. They examine several variants of their algorithm,
and report the best performance for one they refer to as
D2 −DC, so this is the version we implemented. In their
setup, some terms t could have more than one preferred

replica. When building our voting table, we set prt = 1 for
each such r, and 0 for the others.

The column marked BP corresponds to our clustering
based on balanced partitioning of the term-query graph con-
structed from the training logs (Section 3). However, we
prune the voting tables to contain only the terms that ap-
pear at least 4 times in the training log, to reduce noise.

How do these compare to the best cache miss rate we could
possibly achieve? Let us compare two scenarios: using the
best possible TARS table with R replicas, or running all
queries through a single cache that is R times the size. In
general, resource pooling should always be better, so the
second miss rate should serve as a lower bound for the first,
and we display it in the table as column Unif (for “unified”
cache). For R = 2, BP is about halfway or more from FPT
to the lower bound.

Table 3: Cache miss rates in % show impact of
TARS. Uses cache size S10.

binary +IR
log-R FPT RND DC BP RND BP Unif
AS-2 10.39 8.56 7.80 6.75 8.16 6.63 4.58
AS-3 10.36 7.48 5.78 5.94 6.86 5.70 2.27
AS-4 10.35 6.91 5.46 4.85 6.07 4.08 1.24
AS-5 10.33 6.58 5.08 4.46 5.61 3.59 0.77
EU-2 10.12 8.18 8.43 7.54 7.91 7.44 4.92
EU-3 10.11 7.30 7.28 6.27 6.84 6.15 2.66
EU-4 10.15 6.78 6.70 5.77 6.12 5.35 1.62
EU-5 10.14 6.35 5.92 5.39 5.58 4.81 1.09
NA-2 10.00 7.96 7.61 6.66 7.70 6.59 4.30
NA-3 10.00 7.03 6.45 5.43 6.46 4.90 2.03
NA-4 9.97 6.51 5.61 4.37 5.64 3.77 1.09
NA-5 10.00 6.08 4.74 3.98 5.17 3.30 0.67

Several things jump out from this table. First, even the
“dumb” RND clustering is a good idea, compared to the
baseline FPT replica selection method. It is worth repeating
that this baseline is not just a straw man: it is the actual
method that our system always used in production, until
the TARS innovation. Second, the BP voting table reduces
cache misses by 25% to 35%, even with only 2 replicas. With
R = 5, the win soars to the [47%,60%] range.

We would like to know whether BP works well because
balanced graph partitioning is actually a good model, or if
it was just good luck. To discern, we start with the clus-
tering from our BP method, and create a sequence of de-
graded clusterings. For each degraded clustering, we choose
a parameter f ∈ [0, 1]. We flip a biased coin with heads
probability f for each term node t ∈ T . If heads, we reas-
sign t to a cluster chosen u.a.r. If tails, t remains with its
initial cluster. When f = 0, nothing changes, so we got the
same clustering that the BP gave. When f = 1, the original
clustering is ignored, so we get a uniform random cluster-
ing as in the RND column of Table 3. Intermediate values
of f interpolate between these extremes. We tried this for
f = 0, 0.001, 0.002, . . . , 0.999, built the corresponding voting
tables, and evaluated the cache miss rates. Figure 3 shows
a scatter plot, using NA-train to train the BP tables with
R = 5, and NA-test to evaluate the results. Although there
is some dispersion, the plot shows a nearly linear relation-
ship between the graph cut cost and the cache miss rate,
exactly as the theory predicted in equation (8).
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5.4 Iterative refinement
For our iterative refinement technique of Section 4, one

potentially important choice is the step size parameter τ .
We performed a somewhat crude experiment to guide our
choice there. Starting from the voting weights given by the
BP method for the NA logs and 3 replicas, we applied 30
rounds of the iterative refinement method. We then evalu-
ated the cache miss rate on both the training logs (Figure 6)
and the validation logs (Figure 7). The plots show the evo-
lution of the cache miss rate by iteration, for τ = 0.25, 0.5, 1.
The two plots are on the same scale, to aid comparison.
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Figure 6: IR, cache miss rate on NA-train.
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Figure 7: IR, cache miss rate on NA-valid.

Oddly, all three values of τ converge to the same miss
rate on NA-train. However, on NA-valid, τ = 0.25 and 0.5
converge to a better value than τ = 1. For τ = 0.5, the table
converged by around 10 iterations. Thus, for our iterative
refinement experiments (the “+IR” columns of Table 3), we
perform 20 iterations with τ = 0.5, just to be safe.

There are several take-home points from Table 3. First,
iterative refinement improves RND more than BP. However,
the starting point matters: even plain BP is better than
RND + IR. Also, the improvement from IR increases with
the number of replicas R.

5.5 Geographic generalization
When we first began work on TARS, we worried that

the term-query graph would cluster along language barriers.
What would happen if we trained the voting tables on EU
logs, and the balanced partitioner assigned all of the English
terms to replica 0, and all of the Chinese, Japanese, and Ko-
rean terms to replica 1? In our NA search clusters, the vast

bulk of the traffic would prefer replica 0, whereas in the AS
search clusters, the vast bulk would prefer replica 1. This
would eliminate the kind of cache specialization that TARS
is supposed to induce. Fortunately, this has not been our
experience in practice. One explanation is that the Jaccard
similarity of every pair of logs is greater than 1

2
(Table 4).

To illustrate this effect, we fixed R = 5 and used the BP
method to train 3 different voting tables, using {AS, EU,
NA}-train. We then evaluated them on each of the three
logs {AS, EU, NA}-test. Table 4 shows the results. As
expected, each region achieves its lowest miss rate using the
table trained on that region, with the exception of AS, which
actually improves slightly when using tables trained on NA.
Although we see degradations up to 1.16x, this still leaves
a substantial win, relative to FPT. The “Jaccard” columns
show the weighted Jaccard similarity between the vectors of
terms contained in the two given logs, where the weight of
each term t in log L is szt· (# occurrences of t in L).

Table 4: Cache miss rates if we serve using voting
tables trained with BP on a different continent.

train miss rate train Jaccard
test AS EU NA AS EU NA
AS 1x 1.157x 0.930x 0.957 0.528 0.610
EU 1.050x 1x 1.017x 0.511 0.956 0.734
NA 1.128x 1.161x 1x 0.588 0.722 0.961

6. LOAD-BALANCING MULTIPLIERS
So far we have mostly ignored the load-balancing multipli-

ers µr because we feel that the voting weights are the more
interesting part of TARS. For completeness, we now explain
the multipliers. For now, consider just a single root and the
R replicas of a single shard.

The root maintains a set of non-negative weights mr, one
for each replica r, and the multiplier µr that appears in
equation (2) is defined to be 1/mr. Every time one of the
replicas r sends a response to the root, it piggybacks a num-
ber ur representing its CPU utilization (or, if flash is local,
the max of CPU and flash IO utilization). The root then
updates mr via the following formula:

mr ← mr + β(ū− ur) (10)

where ū := 1
R

∑R−1
r=0 u

r is the average utilization over the R
replicas, and β > 0 is a tunable parameter. In other words,
the root increases the weight of replicas with below-average
load, and decreases it for replicas with above-average load.
The multipliers mr are normalized to sum to 1, and the
update equation (10) preserves this. For a query q where
vr(q) = 0 for each replica r (say, because no voting weights
exist for these terms), the load balancer fingerprints q, splits
up the fingerprint space into R contiguous segments propor-
tional to the mr, and routes q to the replica in whose seg-
ment its fingerprint falls. Since the fingerprinting function
is highly uniform, the mr can therefore be thought of as
probabilities, in this cache-oblivious vr(q) = 0 case.

In reality, there are multiple roots and multiple shards,
and each of the roots maintains its own multiplier for each
replica of each shard. These multipliers are able to stay
relatively in sync across the multiple roots because the serv-
ing QPS is high enough that each root talks to each leaf
relatively often, so its load estimate stays fresh.
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7. PRODUCTION EXPERIENCE
In the actual Google web search engine, we launched TARS

in four stages. First, the cache-oblivious dynamic load bal-
ancer (DLB) component, i.e., TARS with an empty vot-
ing table and hence no term affinity. This dramatically re-
duced the dispersion of the CPU load distribution, bringing
down tail latencies and thereby allowing the system to han-
dle 4% more QPS within the acceptible latency bound. As
expected, it had almost no impact on flash IO. Second, we
added binary voting tables (i.e., BP), which reduced ag-
gregate leaf flash IO by 26.5%, and leaf CPU usage by 1.5%
(explained by less CPU stalling while waiting for IO). Third,
we improved our probability estimates (not described in this
paper), reducing flash IO by an additional 2.3%. Finally, we
added iterative refinement (i.e., BP + IR), reducing flash IO
by an additional 6.0%.

Recall that the two main bottlenecks in our system were
CPU and flash IO. Overall, we reduced flash IO hy roughly a
factor of 0.675x, corresponding to a 1.48x increase in through-
put capacity on the flash IO bottleneck. Paired with unre-
lated changes that improved our CPU throughput, most of
this 1.48x increase translated directly to higher throughput
capacity for the overall web search backend.

Several comments are in order here. First, the DLB lowers
latency at constant QPS, and adding term affinity further
lowers the mean and tail latencies for flash reads. Thus, we
do not sacrifice latency to achieve this higher throughput.

Second, the load balancing weights and the voting weights
impose only trivial overheads on the roots. In terms of
RAM, each root has to maintain a 4B float mr

s for each
leaf (i.e., each replica r of each shard s). It also maintains
a single table of voting weights that it uses for all shards.
Sufficiently rare terms are excluded from the voting table, as
they would just add noise. That is why in our experiments
of Section 5, we limited the voting table to terms that ap-
peared at least 4 times in the training log, of which there
were roughly 4.5M. If we assume the average term string is
at most 10B long, then the voting table would take about
45MB to store the term strings (depending on the repre-
sentation), plus about 18MB per replica to store the voting
weights as 4B floats. This is a trivial portion of the overall
RAM available at our roots. In case RAM is tight, there are
compression schemes for the voting table that save a large
fraction of this RAM while imposing a small CPU overhead
to decompress it on lookup. Similarly, the CPU costs of up-
dating the multipliers mr

s via equation (10) and of looking
up the voting weights wrt are a miniscule fraction of the work
done by the root for each query.

Third, our flash optimizations target a particular cache
that is the biggest consumer of flash IO. On this cache, we
actually reduced cache misses by roughly a 0.5x factor, but
since there are other operations unaffected by our optimiza-
tion that also consume flash IO bandwidth, the overall re-
duction in flash IO was only the 0.675x stated above.

We performed some recent experiments on a live produc-
tion cluster to reproduce these results (Figures 8 and 9).
Since our system evolves rapidly, the results do not per-
fectly match the historical numbers cited above, but they
are close. Figure 8 shows the distribution of the leaf CPU
utilizations in three different scenarios: (i) even splitting by
fingerprint (i.e., FPT from Section 5) (ii) cache-oblivious
DLB (i.e., TARS with an empty voting table) (iii) TARS
using voting tables built via BP + IR.

Figure 8: CPU: FPT vs. DLB vs. TARS

Figure 9: Flash IO: FPT vs. DLB vs. TARS

The three humps in Figure 8 show these scenarios, left to
right. The x-axis shows time of day, and the y-axis shows
leaf CPU utilization on an arbitrary scale. Lines showing
the 50th, 90th, 95th and 99.9th percentile utilizations sup-
plement the heatmap. Each loadtest has two phases: nor-
mal and overload (the bump at the end, which should be
ignored). Figure 8 shows what we claimed above, that the
DLB excels at concentrating the utilization distribution, and
the addition of voting tables does not make it any worse.

Figure 9 shows the results of the same three loadtests, but
plots flash IO pages/sec instead of CPU. In each of the sce-
narios, we see a dip at the start of the loadtest, as the cache
warms up. As expected, the cache-oblivious load balancing
does nothing to decrease the flash IO, but TARS decreases it
dramatically, 26.8% in aggregate. Moreover, even the 99.9th
percentile leaf flash IO for TARS is about the same as the
median leaf flash IO without term affinity, and both the
mean and tail flash read latencies are significantly reduced.
In our current production configuration, our load balancing
weights µr are based only on CPU utilization. If the flash
were both local and acting as the bottleneck at each leaf,
then we would expect the load balancer to make the flash
IO distribution much more concentrated. Even so, the flash
IO distribution is slightly tighter with TARS than without.

8. RELATED WORK
Xu et al. [82] study a similar system to ours, namely a

replicated search engine architecture. They focus on de-
signing a different static cache for each replica, and do not
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mention a dynamic cache. Thus, they enforce cache spe-
cialization by fiat, whereas our approach is to induce cache
specialization in a dynamic cache via the replica selection
rule. Their algorithms are also completely different, and in
particular do not employ graph partitioning.

A pair of papers from Facebook describe a large-scale,
distributed hypergraph partitioner (Kabiljo et al. [30]) and
how to apply it to route HTTP requests from Facebook users
to compute clusters, so as to improve caching of objects
retrieved by those requests (Shalita et al. [68]). Their users
are analogous to our queries, and their objects are analogous
to our terms or PLs. One big difference is that they have a
known universe of users, whereas the universe of potential
search queries that we must handle is essentially unbounded.
Thus, they can get away with an explicit clustering of users,
but we must resort to clustering our queries indirectly via
our voting scheme. Their approach to balancing load is also
quite different: they use 21,000 clusters of users (many more
than their number of compute clusters), and shift entire user
clusters when necessary to balance load. Unlike us, their
graph does not explicitly model cache misses; instead they
rely on the structure of the social graph being correlated
with the objects they need to cache.

Although our system is doc-sharded, another option for
distributing the web index is term-sharding, wherein each
term stores its entire PL in one place, and the terms are par-
titioned among the machines. In the basic version, the root
collects PLs from each of the leaves that hold a term from the
query, then does the intersection. This puts great computa-
tional load on the root. Moffat et al. [48] suggest pipelining,
where the query is bounced from leaf to leaf, each performing
an intersection with the PLs it owns. In a follow-up, Moffat
et al. [47] use bin packing to balance workloads across the
leaves. Zhang and Suel [83] take this farther, by co-locating
terms that tend to be co-queried. They model the benefits of
co-locating terms, then map this heuristically and inexactly
to a balanced graph partitioning problem on the terms only,
which they solve with METIS [34]. Cambazoglu et al. [13]
refine this by modeling the problem as balanced hypergraph
partitioning, where the nodes are terms and the hyperedges
are queries from a log, although they admit that even with
their optimizations, term-sharding tends to be inferior to
doc-sharding. There is a superficial resemblance to our bi-
partite term-query graph (Section 3.2), since the hyperedges
can be transformed into query nodes. However, cut costs in
the hypergraph and corresponding bipartite graph are not
equivalent. In particular, it is essential to our modeling
that the cut costs induce each query node to select the same
replica in the partition that it would under TARS.

Caching is vital throughout the web search stack. In some
layers, it can be useful for caching policies to take costs
into account, not just access frequencies. Ozcan et al. [54]
consider caching 5 types of objects: documents, PLs, in-
tersections of PLs, relevance scores, and full query results.
They co-locate the root and leaf jobs so that these 5 object
types can share a single cache. They compute a gain :=
cost saving × frequency / size for each object, and fill this
static cache greedily (offline). Ozcan et al. [55] addresses
just query result caching. They examine static, dynamic,
and hybrid static-dynamic caching, considering several sim-
ple cache filling / eviction policies that take into account the
CPU and spinning disk cost of executing a query. Neither
of these works is directly relevant to ours, since they rely

on the gain parameters varying widely, whereas the cost per
page of retrieving a PL from flash is constant, so for us, gain
reduces to frequency. TARS could easily incorporate query
CPU costs, but these are difficult to predict. Moreover, Fig-
ure 8 suggests there is limited room for improvement.

In the early Internet, DNS servers were perhaps the only
big distributed serving systems. Traffic growth soon moti-
vated replication of web servers, FTP mirrors, and CDNs [18,
51]. Other server farms such as build farms [59, 66, 60, 38],
and render farms [19] as well as many cloud services [2, 25,
28, 44, 53] followed suit. Load balancing is a vital compo-
nent of these systems. Balancing can be static or adapt to
changes in traffic and/or replica failures [80]. It may be done
in hardware [43, 58, 22] or via software [63, 71].

Four types of web server replica selection were studied
in [14]: the decision is made by the client, the DNS server,
a central dispatcher, or by the replicas themselves [75, 70].
Several routing strategies have been studied when a cen-
tral authority is in charge of load balancing, which is typ-
ically the case for web servers and distributed databases.
Well-known methods in database systems include list par-
titioning (e.g., based on geography [15]), range partitioning
(e.g., based on time or zipcode), round-robin partitioning,
hashing-based partitioning and composite methods [56].

Certain applications (e.g., serving session-aware web con-
tent) benefit from consistently routing specific requests (of
the same HTTP session) to the same replica. This require-
ment, known as persistence or stickyness, is supported by
most commercial and free web servers [71, 10] or proxy
servers [63] today. Our TARS method is similar to per-
sistent load balancing, in that we aim to consistently route
repeated occurrences of the same term to the same replica.
However, the two applications differ because we route multi-
term queries as an atomic whole, but it is the terms inside
queries that are the keys whose values are to be cached.

Persistent load balancing was extended [45] to have guar-
antees on the maximum load. The proposed algorithm was
implemented in HAProxy [76] and deployed to Vimeo servers,
which reduced their maximum memcached server bandwidth
at peak hours by a factor of ∼8x [65].

Distributed hash tables (DHTs) store large numbers of
key-value pairs and many implementations use persistent
load balancing to optimize for fast access time. This has
found application in many peer-to-peer network architec-
tures [31, 67, 74, 84] as well as in fast implementation of dis-
tributed graph algorithms [6, 8, 35, 73, 64]. Stoica et al. [74]
propose a simple, scalable method (called “Chord”) for map-
ping keys to peers using O(logn) virtual nodes per real node
to achieve the desired load balance. Byers et al. [12] apply
the “power of two choices” paradigm [46] instead of the vir-
tual nodes to improve Chord’s performance [74]. Roughly
speaking, their solution shaves a factor of log n/ log logn
from the memory usage of the DHT. Karger and Ruhl [33]
propose two new load-balancing protocols: One fixes the
O(logn) space and bandwidth blow-up of Chord [74] while
maintaining its look-up and load-balance guarantees (im-
proving over [12]); the other protocol allows for range search-
ing. Bienkowski et al. [9] show how to maintain load balance
when peers join and leave arbitrarily. Their approach has
less “migration cost” than that of [33]. Goel et al. [24] empir-
ically study several consistent hashing strategies in DHTs.

Web caching is a prime application of DHTs [32, 27]. Soft-
ware packages such as memcached, ElastiCache, Redis and
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OpenStack’s Swift are deployed in many web applications
and cloud platforms [4, 52, 81, 21, 42]. Shen et al. [69] study
how to improve flash-based key-value cache systems such as
Facebook’s McDipper [41] and Twitter’s Fatcache [20] by
considering some of the details of flash drives, rather than
treating them just as fast storage. Distributed databases
also benefit from consistent hashing [37, 50, 16]. There
has been extensive study for hardware and software load-
balancing architectures and algorithms to manage cloud plat-
forms [1, 22, 58, 79, 26, 62, 43]. Some works, in particular,
focus on applications of consistent hashing [80, 49, 32].

Our TARS method relies on algorithms for the balanced
partitioning problem on graphs (Section 3.2) to partition
search terms into R clusters. Even for small instances and
R = 2, the problem is challenging to solve [3], as it captures
the graph bisection problem [23], known to be NP-hard to
approximate within a constant factor [17]. Sub-logarithmic
approximation algorithms exist [5], but are based on solv-
ing semidefinite programs (SDPs), which is impractical for
datasets of decent size. Under some assumptions, Stan-
ton [72] showed that achieving formal approximation guar-
antees is information theoretically impossible.

Given the hardness of this problem, there is a large body
of work on heuristics for (distributed) balanced graph parti-
tioning, including FENNEL [77], Spinner [40], METIS [34],
ja-be-ja [61], ParaMETIS [57], a method based on embed-
ding the graph on a line [6], and one based on label propa-
gation [78]. Various graph processing frameworks have been
proposed for distributed problems [39, 36]. Even simple
graph problems with linear-time (or sublinear) algorithms
are sometimes hard to solve for such large graphs. For ex-
ample, developing distributed algorithms for the seemingly
simple problem of computing connected components has at-
tracted a large body of research recently [64, 35, 73]. The
great progress in this area enabled our balanced partitioning
algorithm [6], which in turn greatly improved TARS.

9. FUTURE WORK
TARS is not particular to web search, so we hope to see

diverse applications. Any distributed system with the fol-
lowing attributes could benefit from our approach: (i) the re-
quest load is high enough that it must be distributed among
multiple serving replicas, (ii) each request contains one or
more lookup keys, and the replica must retrieve data be-
longing to each of these keys from a key-value store, and
(iii) each replica uses caching to avoid some lookups.

One big open question is to find an even better way to
train the voting tables. Although our methods achieved a
huge improvement for our web search backend, they are still
some distance from the lower bounds in Table 3, especially
for large R. In particular, we are keen to try reinforcement
learning approaches, but would first need to extend them
to deal with the feedback loop described in Section 2. In
this process, it would help if we could learn a concise and
fast-to-compute model of the cache, to avoid having to run
our computationally-intensive simulations.

In this paper, we focused only on the aggregate page miss
rate over all replicas. If the flash that stores the PLs is
remote from the serving replicas, as depicted in Figure 1,
this is clearly the quantity of interest. If the flash is located
locally on each replica, things become more complicated.
In that case, we care not only about minimizing the ag-
gregate cache miss rate, but also the maximum cache miss

rate among the R replicas. Even in this case, we argue that
our approach of minimizing the sum instead of the max is
a reasonable approach. This is because multiplication by
the replica weights µr provided by the feedback-based part
of the TARS approach (Section 2) guides us to shed load
on the queries that are predicted to be roughly as cheap on
another replica. So the full TARS mechanism can even out
imbalances that might exist if all multipliers µr were fixed
at 1. Figure 9 shows that TARS already improves the up-
per tail of the flash IO distribution, even in an environment
where the multipliers µr are being governed exclusively by
CPU. Presumably, it would do even better if the system were
flash-bound. That said, in a flash-bound system it might be
useful to train our voting tables in a fashion that tries ex-
plicitly to balance flash IO among replicas, since that would
allow the µr multipliers to stay closer to 1, thereby shifting
less traffic away from its terms’ preferred replicas.

Recall that TARS greedily chooses the replica minimizing
the expected number of immediate cache page misses, given
prt . Stepping back, one might reasonably ask why we need to
estimate these probabilities prt at all. Indeed, the presence
or absence of each term in the cache is known by the leaves,
so an alternative approach is for the roots to simply probe
all replicas to determine whether each term in the current
query is present in cache.

There are several drawbacks to this strategy, which made
it a non-starter for our system. First, this adds a substantial
communication overhead between roots and leaves. Instead
of sending just one RPC (per shard) in each direction, the
root must send an RPC to each of the R replicas and wait
for responses, which adds latency to the critical path. More
interesting is the fact that the caches need to be warmed
up before we would expect this replica selection method to
work well. How should we perform this warmup? Our best
method for doing that is to use our voting tables.

Lastly, it might be fruitful to consider not just static vot-
ing tables as we did in this work, but also dynamic voting
tables or other replica selection policies that update over
time, attempting to learn a model of the current contents of
each replica’s cache. This might allow us to implement an
approximation to the greedy replica selection that we just
discussed and shot down, by ridding ourselves of the need
to probe each replica on each query.
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