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ABSTRACT
Storage and memory systems for modern data analytics are heavily
layered, managing shared persistent data, cached data, and non-
shared execution data in separate systems such as a distributed file
system like HDFS, an in-memory file system like Alluxio, and a
computation framework like Spark. Such layering introduces signifi-
cant performance and management costs. In this paper we propose a
single system called Pangea that can manage all data—both interme-
diate and long-lived data, and their buffer/caching, data placement
optimization, and failure recovery—all in one monolithic distributed
storage system, without any layering. We present a detailed perfor-
mance evaluation of Pangea and show that its performance compares
favorably with several widely used layered systems such as Spark.
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1. INTRODUCTION
One of the defining characteristics of modern analytics systems

such as Spark [57], Hadoop [54], TensorFlow [7], Flink [9], and
others [6, 22] is that they tend to be heavily layered. For example,
consider Spark. It caches job input/output and execution data (for
shuffling and aggregation) in two separate memory pools: a storage
pool (that is, the RDD cache or DataFrame) and an execution pool.
These software components, in turn, are implemented on top of
the Java virtual machine (JVM), which constitutes its own software
layer. Since application output is transient and does not persist, such
data must be written to yet another layer, an external storage system
such as HDFS [14], or additionally cached in an external in-memory
system like Alluxio [39] or Ignite [2].
The Perils of Layering. Layering allows for simpler components
and facilitates mixing and matching of different systems that use
compatible interfaces. However, it also introduces significant costs
in terms of performance. Some important factors leading to high
costs are:
(1) Interfacing Overhead. Data needs to be repeatedly de-objectified
(serialized), copied, and objectified (de-serialized) as it is moved be-
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tween layers, which wastes CPU cycles and memory resources. For
this reason, we have found that an external cache (such as Alluxio
or Ignite) while important for persisting and sharing data across
applications, can incur a more than 50% overhead compared to
Spark without such a cache, when running the widely used machine
learning algorithm k-means.
(2) Data Placement Complexity. When job input data must be
stored at all layers, redundant copies of the same data object will
be maintained at each layer. Our observation is that in the k-means
workload, about 30% of total required memory for processing is
used for storing redundant input data.

In addition, layering can result in the same data object being
copied multiple times within the same layer. For example, at the
storage layer, HDFS replicates each data block for high availability.
At the application layer, each Spark application might load and
partition all of the objects in a dataset in a different way using
different partition sizes and partition schemes. In a layered system,
there is obviously a knowledge gap between storage and applications.
It may make more sense to bridge the knowledge gap by removing
the layers and allow the storage system to offer multiple partitionings
that can be used as replications for failure recovery and also re-used
at the application layer. We observe up to 20× speedup for TPC-H
queries using and re-using multiple partitionings in the storage layer.
(3) Un-Coordinated Resource Utilization. In addition, moving
seldom-accessed, in-RAM data to secondary storage (paging it out)
is a fundamental tool for dealing with large datasets. However, when
no single system component has a unified view of the system, it
is difficult to make good paging decisions: one component may
page out data when it needs more RAM, while there is a far less
important piece of data in another component that should have been
paged out. For example, although HDFS can utilize Linux OS’s
fadvise and madvise system calls [44] to specify file access
patterns for optimizing paging in OS buffer cache, it has no way to
influence allocation of memory resources within tools like Alluxio,
Ignite, and Spark. We find that when size of the working set exceeds
available memory, good paging decisions can achieve 1.8× to 5×
speedup compared with LRU, MRU, and DBMIN [21] policies for
the k-means workload.
Pangea: A Monolithic Distributed Storage Manager. The bene-
fits of layering—including more flexible, and interchangeable tools
and components—will outweigh the costs for many applications.
For example, if a distributed file system does not have the right
recovery model for a given application, one can (in theory) swap in
a new file system that addresses the problem. However, for applica-
tions that demand high performance, layering’s performance cost
compared to a monolithic architecture may be unacceptable.

Monolithic architectures are not new, and the perils of heavily
modular systems are well-understood; indeed, performance vs. flex-
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ibility concerns underlie the classical microkernel vs. macrokernel
operating system debate [15, 40, 47]. But in practice, for Big Data
analytics systems, the layered, modular approach has won out. Our
goal in this paper is to re-examine this debate in the context of dis-
tributed analytics. We seek to synthesize 30 years of ideas in storage
management and distributed analytics into a single system—which
we call Pangea1—and to examine how well that system competes
with layered alternatives. As we will show, Pangea compares favor-
ably with layered systems in terms of performance.

Pangea represents an important alternative in the distributed
analytics system design space. Developers of high-performance
distributed systems need not feel compelled to accept the costs
associated with layering, whether the goal is developing a high-
performance distributed machine learning platform such as Tensor-
Flow [7], a distributed version of a machine learning pipeline such
as scikit-learn [48], a Big Data computing platform such as our own
PlinyCompute [60], or high-performance distributed query or SQL
engine such as Impala [36]. If performance is key, a monolithic base
such as Pangea should be considered as an alternative to building
on a layered storage system, and also as an alternative to the all-too-
commonly-chosen option of developing a distributed storage system
from scratch to achieve the best performance.

Some of the key ideas embodied by Pangea are:
1. Different types of data should be managed simultaneously by
the storage system and different types of data should be handled
differently. Thus, we redefine the locality set abstraction in classical
relational systems [21] to enable the storage manager to simultane-
ously manage different data durability requirements, lifetimes, and
access patterns at runtime. We describe a paging strategy that uti-
lizes that information to optimize page replacement decisions based
on a dynamic priority model that utilizes the locality set abstraction.
2. Data placement and replication should be integrated within the
storage system. In distributed storage systems such as HDFS, data
are replicated for fault tolerance; data are then typically replicated
again at higher levels with different data placement schemes for
application-specific processing. In Pangea, data may be replicated
using different partitioning strategies, and then such information is
available to an external query optimizer so that a particular copy
will be chosen at runtime. Pushing this functionality into a single
monolithic system means that applications can share and re-use such
physical organizations, and it obviates the need to store even more
copies to facilitate recovery for node failures.
3. Computational services should be pushed into the storage system.
Thus, Pangea ships with a set of services that provide an application
designer with efficient implementations of batch processing oper-
ations such as sequential read/write, shuffle, broadcast, hash map
construction, hash aggregation, and so on. Moving these services in-
side of Pangea allows job input/output data and ephemeral execution
data buffered/cached all be managed within the same system. Those
services can also bridge the knowledge gap between storage and ap-
plications so that storage can understand various application-specific
performance implications for paging and data placement.

Our Contributions. Key contributions are:

• We describe the design and implementation of Pangea, a mono-
lithic distributed storage system, designed to avoid the problems
of heavily layered systems. Pangea is implemented as more than
20, 000 lines of C++ code.

• Pangea presents a novel storage design that consolidates data
that would typically be stored using multiple, redundant copies

1Pangea is used as the storage system of PlinyCompute [60].

within multiple layers into a locality set abstraction (redefined
based on DBMIN [21]) within a single layer. A locality set can
be aware of rich data semantics and use such information for
multiple purposes, such as replication and page eviction.

• We conduct a detailed performance evaluation and comparison of
Pangea to other related systems. For k-means, Pangea achieves
more than a six times speedup compared with layering-based
systems like Spark. For the TPC-H benchmark, Pangea achieves
up to a twenty times speedup compared with Spark. For various
Pangea services, Pangea achieves up to a fifty times speedup
compared with related systems.

2. RELATED WORK
Pangea is a monolithic system that encompasses many different

functionalities: a distributed file system, a memory management
system, and various distributed services. Many recent papers and
projects have examined these topics in the context of Big Data and
data analytics.

Distributed file systems (DFSs), such as the Google File Sys-
tem [30], the Hadoop Distributed File System [14], Microsoft Cos-
mos [19], and IBM GPFS-SNC [31] provide scalable and fault-
tolerant persistent file storage. Distributed Object Storage (DOS)
systems such as Amazon S3 [1], Google Cloud Storage [3], Mi-
crosoft Azure Cloud Storage [16], OpenStack Swift [12], Ceph [53]
also provide storage for persistent objects. These typically provide
simple operations such as select and aggregate which resem-
ble Pangea’s services, but as Pangea is meant to be a general-purpose
substrate for building distributed analytics systems, its operations
(shuffle, hash aggregation, join map construction, etc.) tend to be
more substantial.

Many existing systems include similar functionality to that offered
by Pangea, though as a monolithic framework, Pangea includes a
wider range of functionalities in a single system and subsumes these
narrower systems. For example, in-memory file systems such as
Alluxio [38, 39] can be deployed on top of DFS and DOS to allow
disk file blocks or objects to be cached in memory and accessible
to different upper-layer cluster computing systems. Ignite [2] can
store Spark data as SharedRDDs and cache it. The built-in memory
management in frameworks such as Spark (with RDD cache [57],
Datasets/DataFrames [5, 11], and extensions such as Deca [41]) is
responsible for loading and caching input data. Workload-aware
storage systems, such as BAD-FS [13], also include a subset of
Pangea’s functionalities. BAD-FS includes a job scheduler that
makes workload-specific decisions for consistency, caching, and
replication. Data for each workload is managed separately and most
of optimizations are for the cluster-to-cluster scenario in a wide-area
network.

Among its other components, Pangea includes a paging system.
There has been extensive work on page replacement algorithms such
as LRU-K [46], DBMIN [21], LRFU [37], MQ [59] and so on. As
we will describe in Sec. 3.2 in detail, Pangea borrows and extends
the idea of locality sets from DBMIN. Other algorithms and systems
mainly consider recency, reference distance, frequency, and lifetime,
which is effective when processing a single type of data as in a
traditional relational database buffer pool or RDD cache, but can
be less efficient for managing multiple types of data in Big Data
analytics, such as a large volume of intermediate data produced dur-
ing computations (for example, during hash aggregations and joins).
GreedyDual [18, 56] is a widely used cache replacement framework
which associates a numerical value reflecting the desirability of
keeping an object in cache. Objects are kept in cache or replaced
based on these numerical values. The independent reference model
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(IRM) [26] and its extensions [28, 29, 32, 55] can model cache ref-
erences to different pages in order to estimate the hit/miss ratio,
which is orthogonal with this work and can be applied to model and
evaluate our proposed approach in the future.

There has been work on understanding access patterns of applica-
tions and mapping them to the right storage layer. fadvise and
madvise allow users to specify file access patterns. Self-learning
storage systems such as ABLE [24,43] predict access patterns based
on generic file system traces.

Pangea also manages multiple partitionings and uses those for
distributed replication and failure recovery. Some efforts consider
data partitioning in object-oriented systems (CoHadoop [25] and
Hadoop++ [23]) and others in SQL-based systems (SCOPE [58],
SQLServer [8], DB2 [49], and so on). These mainly rely on stan-
dalone failure recovery mechanisms: replicating each block to sev-
eral nodes [14], using erasure codes to store parity blocks [51], and
so on. So each partitioning may incur additional redundancy in
terms of replicated blocks or parity blocks. C-Store [52] is a column
store for relational data that maintains K-safety; multiple projections
and join indexes for the same data are maintained, so that K sites
can fail and the system can still maintain transactional consistency.

3. OVERVIEW OF PANGEA
Pangea is designed to manage all data—both intermediate and

long-lived data, and their buffer/caching, and placement—in a mono-
lithic storage system. We begin by detailing the fundamental prob-
lem that makes devising a unified, “Swiss army knife” system dif-
ficult: the disparate data types with different properties that an
analytics system will encounter.

3.1 Disparate Data Types and Key Properties
In the context of buffer pool management and file caching, devis-

ing fair and efficient policies for allocating memory among multiple
competing datasets is always a difficult problem [17, 21]. Unfortu-
nately, the problem is even more difficult in the context of analytics
processing, due to the fact that there are more types of data that
the system may need to manage (consider the simple example of
k-means clustering, as illustrated in Fig. 1).

In analytics processing, data can be categorized into following:
(1) User data, which are the ultimate input and output of batch
processing applications. (2) Job data, which are short-lived inter-
mediate data resulting from transformation pipelines running over
user data. Then there is intermediate data that exists for a short time
within the transformations, as they are executed, which includes
(3) Shuffle data that are moved across workers (such as between
map workers and reduce workers in a MapReduce job) and (4) Hash
data that consist of a hash table and key-value pairs, as used in
hash-based aggregation and join operations. Other types of short-
lived intermediate data exist as well—those are generally termed
execution data. Key differences in those data types (and also in
different datasets of the same type) are in following properties:

Durability requirements. User data are read repeatedly by various
applications, so they need to be persisted immediately once created
(we call this a write-through requirement). However, job data
and execution data are transient, intermediate data that do not require
persistence. If transient data are being evicted from memory when
their lifetime hasn’t expired, they need to be spilled to disk (which
we call write-back). write-back data should generally have
a higher priority for being kept in memory than write-through
data, because evicting write-back data incurs additional I/O cost.
Data lifetimes. In iterative computations, the input data are needed
across multiple iterations. Shuffle data may span two job stages
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Figure 1: A k-means Example. Even a computation as simple
as k-means produces user data, intermediate job data, as well as
execution data (the local vector of centroids that must be shuffled,
for example).

(e.g. map and reduce), while aggregation data live as long as an
aggregation is being performed. Data that will not be accessed
should be evicted as soon as their lifetimes expire.
Current operations. Evicting data that have just been written
should be avoided if other things are equal, because such data tend
to be read soon. For example, in a query execution flow that consists
of multiple job stages, the input and output of a job stage may have
similar durability requirements, lifetime, access recency, and so on,
but the output is more likely to be accessed by next job stages than
the input.
Access patterns. Different operators and their associated data types
often exhibit disparate access patterns. For example, a map operator
processes each data element in the input dataset, so eviction of data
elements that haven’t yet been processed should be avoided. In
contrast, an aggregation operator needs to insert each element of
input data into a hash table, which is often randomly accessed, and
should have high priority to stay in memory.
Temporal recency. Datasets that have been accessed more recently
are more likely to be reused, e.g. recurring services [20, 33, 34].

3.2 The Locality Set Abstraction
In a layered system, data within a layer (e.g. a user file system,

or a memory pool in computing platform) tend to be relatively
homogeneous. For example, HDFS and Alluxio only store user
data for various applications; the Spark RDD cache stores user data
and job data only for the current application that is in processing;
the Spark execution memory pool only stores execution data for
the current application. Pangea’s task is more difficult, because it
manages all data within a single layer—data exhibiting different
access patterns, data sources, and lifetimes are present.

To facilitate management of disparate data types, we borrow
and update the locality set abstraction, which was first proposed
in DBMIN [21] as the query locality set model (QLSM) for buffer
management in classical relational systems. QLSM mainly defines
a set of access patterns; and for each access pattern, there is a
predefined eviction policy such as MRU, LRU, and so on, and also a
predefined algorithm to derive the desired size of locality set, where
a locality set is defined as the set of buffer pool pages for a file
instance. DBMIN’s buffer pool management strategy is based on
the desired size and eviction policy of each locality set. When the
size of a locality set is larger than its desired size, one or more pages
will be chosen and evicted based on the eviction policy associated
with this locality set.

While DBMIN’s locality set idea serves as a building block for
Pangea, DBMIN was first proposed more than 30 years ago for
transaction processing, at a time when modern analytics workloads
did not exist. As such, some of DBMIN’s basic assumptions need to
be updated. Most problematic is the implicit assumption in DBMIN
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Table 1: Some Locality Set Attributes.
Attribute Supported values

DurabilityType write-back, write-through
WritingPattern sequential-write, concurrent-write,

random-mutable-write
Location pinned, unpinned
ReadingPattern sequential-read, random-read
Lifetime lifetime-ended, alive
CurrentOperation read, write, read-and-write, none
AccessRecency sequence id for last access

that all locality sets correspond to persistent database tables. As such,
DBMIN does not consider durability requirements and assumes all
data should be persisted to disk—a fine assumption in transaction
processing, but not reasonable for modern analytics workloads that
frequently produce large volumes of transient intermediate data. DB-
MIN requires a maximum number of buffer pages (i.e. desired size)
on a per file-and-query basis to be known (or guessed) beforehand,
which is again not reasonable for intermediate datasets produced as
the result of running opaque user-defined functions on data, as is
standard in modern data analytics. If the total number of estimated
buffers exceeds available memory, new requests are blocked, which
is again unreasonable on modern analytics workloads.

Thus, we update some of the ideas in DBMIN. A Pangea locality
set is simply a set of pages (or blocks) associated with one dataset
that are used by an application in a uniform way and are distributed
across a cluster of nodes.

In Pangea, there is no hard partitioning of the buffer pool to the
different locality sets (which, for transient data created via UDFs,
would require solving difficult estimation problems, such as guess-
ing the size of the locality set). All Pangea locality sets share the
same buffer pool (see Sec. 5) and unified eviction policy (see Sec. 6).

In Pangea, all pages in one locality set must have the same size,
which can be configured when creating the locality set. Data organi-
zation in a page is flexible, and each page can represent a chunk of
relational data, or a container (e.g. vector, hash-map and so on) of
objects. Pages from a locality set may be stored on disk. However,
unlike DBMIN, it is not necessary for each page of a locality set to
have an image in an associated file. In Pangea, a locality set page
can reside in disk, in memory, or both, because transient data (job
data and execution data) are also stored in locality sets; such locality
sets may have had only a fraction (or none) of their pages on disk.

Depending on the application requirements, different locality
sets must be managed differently. To achieve this, unlike DBMIN,
Pangea locality sets are given a set of tags, or attributes, either by
an application or automatically by inference. The various attribute
categories and their supported values are listed in Table 1. The
attributes generally correspond to the key factors as identified in
Sec. 3.1.

In analytics processing, there are typically three writing patterns:
sequential-write where immutable (write-once) data is writ-
ten to a page sequentially; concurrent-write where multiple
concurrent data streams are written to one page (write-once), e.g.
to support creation of shuffle data; random-mutable-write
where data can be dynamically allocated, modified, and deallocated
in a page (write-many), e.g. to support aggregation, pipeline process-
ing, or join. There are two reading patterns: sequential-read
for data such as shuffle data; and random-read for data such as
hash data.
Determining attributes. Pangea provides various services to read
and write locality sets. In Pangea, attributes such as Reading-
Pattern, WritingPattern and CurrentOperation are
automatically determined at runtime through invocations of services,
since each service exhibits specific writing and reading patterns.
For example, the sequential read and write services exhibit the

sequential-read and the sequential-write pattern, re-
spectively. The shuffle service exhibits the concurrent-write
pattern, and the hash service exhibits both the random-mutable-
write and random-read patterns. Thus, when (for example)
an application associates the locality set with a sequential allocator
that provides the sequential write service, then WritingPattern
must be sequential-write and CurrentOperation must
be write; if an application associates the locality set with a sequen-
tial iterator that provides the sequential read service, then Read-
ingPattern must be sequential-read, and CurrentOp-
eration must be read.

Here are some examples of using Pangea locality sets.

//create a set
LocalitySet myData = createSet("data");
//add single object (sequential write)
myData.addObject(myObject);
//add a vector of objects (sequential write)
myData.addData(myVec);
//sequential read
vector<PageIteratorPtr> * iters =
myData.getPageIterators(numThreads);

for (int i = 0; i < iters->size(); i++) {
// to start worker threads to read pages
runWork(iters->at(i), myWorkFunc);

}
//create a set for storing shuffled data
LocalitySet shuffledData = createSet("shuffled");
//invoke shuffle service in one worker
while((PagePtr page = iter->next())) {
ObjectIteratorPtr objIter
= getObjectIterator(page);

while((RecordPtr record = objIter->next())) {
PartitionID partitionId =

hash(udfGetKey(record));
VirtualShuffleBufferPtr buffer = shuffledData.

getVirtualShuffleBuffer(workerId, partitionId);
buffer->addObject(record);

}
}

More code examples for using locality set and invocation of
services are presented in Sec. 7 and Sec. 8.
Heterogeneous replication. In a monolithic system like Pangea, a
locality set can have multiple replicas to do double-duty and facili-
tate both recovery and computational savings due to the ability to
provide multiple physical data organizations. Furthermore, replicas
in Pangea are visible and usable by all applications running on top
of Pangea. Applications or a data placement optimizer can apply
different partition schemes and page sizes to a locality set to gen-
erate new locality sets, and register those replicas with the same
replica group. This replica and partitioning information (along with
other useful attributes of the data) is stored in Pangea’s statistics
database and made available to all applications with appropriate
permissions that are running on top of Pangea for choosing a replica
for computation.

Details about data recovery using heterogeneous replicas are
described in Sec. 7.

3.3 System Architecture
The Pangea system has five components, which we describe at a

high level now and will be described in more detail subsequently.
(1) The distributed file system. In Pangea’s file system, a file

instance is associated with one locality set and consists of a sequence
of pages that are on-disk images of all, a portion of, or even no pages
from the associated locality set. Those pages can be distributed
across disks in multiple nodes.
(2) The buffer pool. Unlike other distributed storage systems, on

each node Pangea utilizes a unified buffer pool to manage both user
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data and execution data. The buffer pool manages most or all of
the RAM that is available to Pangea and the applications that are
running on top of Pangea, in the form of a large region of shared
memory. The idea is that applications rely on Pangea to collectively
manage RAM for them.
(3) The paging system. The paging system is responsible for

evicting pages from the buffer pool to make room for allocating new
pages. It maintains a dynamic priority model that orders locality sets
according to their durability requirements, lifetimes, access patterns,
access recency, and so on. For each locality set, a paging strategy is
automatically selected based on its access patterns. When Pangea
needs more RAM, it finds the locality set with the lowest priority
and uses its selected strategy to evict one or more victim pages from
the locality set. Details are described in Sec. 6.
(4) Distributed data placement system. Each locality set can have
multiple replicas which allow for both recovery and computational
efficiency. Each replica may have different physical properties, so
that the replica with the best physical organization can be selected
for a given computation. The data placement system manages the
partition, replication, and recovery of locality sets and is described
in Sec. 7.

(5) Distributed services. To realize the benefits of Pangea’s unified
storage architecture, applications need to entrust all of their datasets
(including user data, job data, shuffle data, aggregation data, and
so on) to Pangea. To facilitate this, Pangea provides services to the
applications that run on top of Pangea. The sequential read/write
service allows each of multiple threads to use a sequential allocator
to write to a separate page in a locality set. Each worker can then
use a provided concurrent page iterator to scan a subset of pages in
the locality set. The shuffle service allows multiple writers to write
to the same page using a concurrent allocator, so that multiple data
streams for the same shuffle partition can be combined into a single
locality set. The hash service allows a locality set to be allocated
as a key-value hash table, through a dynamic allocator. Details are
discussed in Sec. 8.
Deployment and Security Considerations. The Pangea distributed
system consists of one light-weight manager node responsible for
accepting user applications, maintaining statistics and etc., and many
worker nodes that run the functionalities of above five components.

For cloud deployment, Pangea ensures security by delegating
authority to remote processes through the use of public-key cryp-
tography. We require that the users must be assigned a valid public-
private key pair when deploying the cluster. Then the user must
submit the private key when bootstrapping the system. Under the
hood, in the initialization stage, the Pangea manager node relies
on this user-submitted private key to access workers for collecting
system information. A non-valid key will cause the whole system
to terminate.

4. THE DISTRIBUTED FILE SYSTEM
In keeping with our “no layering” mantra, to avoid redundant data

copying between a cache layer (e.g. Spark RDD, Alluxio) and a file
system layer (e.g. the HDFS or the OS file system), on each worker
node, a Pangea process contains a user-level file system which uses
the Pangea buffer pool (described in Sec. 5) to buffer reads and
writes. All reads/writes are implemented via direct I/O to bypass
the OS buffer cache.

In Pangea, a distributed file instance that is associated with one lo-
cality set is implemented using one Pangea data file and one Pangea
metadata file on each worker node. On each worker node, a Pangea
data file instance is chunked into fixed size pages. Depending on

load
pages

pull

14

Worker
Threads

Thread-safe
Circular 
Buffer

Computation
Process 1

GetSetPages: 
SetID = 3

Storage 
Threads

Storage
Process

Shared Memory Buffer Pool

Partitioned Pangea Files

PagePinned: PageID= 9,

Offset=…

PagePinned: PageID= 0,

Offset=…ID:0
ID:9

Data
Proxy

store meta
data of pinned
pages

direct
access

4

7No
Mo

re
Pa

ge

…

5

…

2

3

Scan
Service

6

Figure 2: Data scan: long living worker threads pull page meta data
from a circular buffer and access page data through shared memory.

user-selected settings, a Pangea data file instance can be automati-
cally distributed across multiple disk drives on its worker node. The
set of pages allocated to each disk drive can be mapped to a physical
disk file. The Pangea metadata file is simply a physical disk file
used to index each page’s location and offset.

A centralized Pangea manager shared by the distributed file sys-
tem and other distributed components manages locality set metadata
(such as database name, dataset name, page size, data attributes, par-
tition scheme, replica group and so on). Metadata for each page are
stored in the Pangea metadata files at each worker node. Compared
to HDFS (where locations are stored for each block at the name
node) the Pangea manager stores considerably less metadata.

When reading a page, Pangea first checks the buffer pool to see
whether the page is already cached in memory. If the page is not
present in the buffer pool, the page needs to be cached first. When
writing, depending upon a locality set’s DurabilityType, there
are two durability settings available: (1) write-through, where
each page, once written, will be cached and also persisted to disk;
and (2) write-back, so that a dirty page is first cached in the
buffer pool, and written to disk only if there is no free space in the
buffer pool and the page has been chosen to be evicted. User data
are often configured as write-through, while transient job data and
execution data are often configured as write-back.

5. THE BUFFER POOL
Separate buffering mechanisms partitioned across the various

software layers found in today’s analytics installations make it dif-
ficult for the various buffering softwares to coordinate and assign
resources in an optimal way. To sidestep this, Pangea caches all data
in one unified buffer pool that is used by all applications utilizing
Pangea.

On each node, Pangea uses the anonymous mmap system call
to allocate a large chunk of shared memory as a buffer pool in a
storage process. The computation process that has multiple worker
threads accessing the data concurrently is forked by Pangea and
given access to the shared memory.

Those computation threads coordinate read/write access to the
buffer pool with Pangea via a data proxy based on sockets, but the
actual data served are communicated via shared memory. In this
way, data written to a buffer pool page are visible to computations
immediately, without any copy and moving overhead. A significant
fraction of the typical serialization/deserialization overhead present
in current analytics systems can also be avoided for accessing local,
in-memory data.
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All information required to access and manage a buffered page,
such as the the page offset in shared memory, is communicated
through the network. We implement various message-based com-
munication protocols directly on top of TCP/IP for the computation
framework to exchange page location information with Pangea’s
storage facilities.

Taking sequential read, as shown in Fig. 2, as an example, the
data proxy in the computation process first sends a GetSetPages
message to the storage process. Then the storage process starts
multiple threads pinning the pages in the locality set to be scanned,
and the metadata (e.g. relative offset in the shared memory) for each
page that is pinned to the buffer pool is sent to the computation
process via socket. The data proxy then puts those metadata into a
circular buffer that is thread-safe, from which multiple computation
threads can fetch the meta data for a page at a time, and access that
page through shared memory for running computations.

Therefore, in the computation process, the threading model sup-
ported by Pangea, is quite different from the “waves of tasks” model
used in Spark and Hadoop where a task thread will be scheduled
for each block of data, and many such small tasks will execute
concurrently as a “wave”.

Instead, in applications and computation frameworks built on
Pangea, when executing a job stage, the computation process starts
multiple worker threads, which are long living and do not terminate
until all input data for the job stage have been executed. Then in a
loop, each worker thread pulls page metadata from the concurrent
circular buffer as described above.

Therefore, in Pangea, there is no need to consider the “all-or-
nothing” property of “wave”-based concurrent task execution, trying
to have all or none of the inputs for tasks in the same wave cached,
as proposed in memory caching system for data-intensive parallel
jobs such as PACMan [10].

To write output to a page, the data proxy sends a PinPage
message to the storage process, which then pins a page in the buffer
pool, and sends back the metadata of the page to the computation.

The buffer pool on each node uses a dynamic pool-based mem-
ory allocator to allocate pages with various sizes from the same
shared memory pool. Pangea supports two main pool-based mem-
ory allocators: the Memcached slab allocator [27] and the two-level
segregated fit (TLSF) memory allocator [42]. We use TLSF by de-
fault because it is more space-efficient for allocating variable-sized
pages from the shared memory.

A hash table is used to map the page identifier to the page’s
location in the buffer pool. Each page cached in the buffer pool can
be mapped to a page image in one locality set. Once the page must
be spilled, the page will be appended to the locality set’s associated
file instance.

As mentioned, each page has a pinned/unpinned flag. In
addition, each page has a dirty/clean flag to indicate whether
the page has been modified. Page reference counting is used to
support concurrent access. A service can pin an existing page in
a locality set for reading and writing. Once the page is cached in
the buffer pool, its flag is set to pinned, with its reference count
incremented.

Once the processing on a page has finished, the service unpins
the page and the reference count is decremented. When the buffer
pool has no free pages to allocate for an incoming pinning request,
the paging system will evict one or more unpinned pages and recycle
their memory. Before evicting an unpinned page that is marked as
“dirty” but is still within its locality set’s lifetime, we need to make
sure that all changes are written back to the Pangea’s file system
first. We describe paging in more detail in the next section.

6. DATA-AWARE PAGING SYSTEM
Given a page pinning request when there are no free pages in the

buffer pool, the paging system will select a locality set whose next
page-to-be-evicted has the lowest priority and ask that locality set to
evict one or more pages based on this locality set’s selected paging
strategy. Each locality set has its own paging policy, chosen to match
its attributes. Pangea selects MRU as the paging strategy for locality
sets labeled sequential-write, concurrent-write and
sequential-read, and LRU as the paging strategy for locality
sets labeled random-mutable-write and random-read.

The number of pages evicted from the selected locality set is
based on the CurrentOperation locality set attribute. If the
selected locality set is labeled write or read-and-write, then
a single victim page is selected, as evicting data that has just been
written should be avoided, as explained in Sec 3.1. For read-only
locality sets, 10% of the locality set is evicted, as we have found that
in Big Data analytics, read-only operations tend to be well-behaved,
with a lot of temporal locality. Once an application has not read
one page in a while, it is unlikely to use any pages from the set for
awhile, and a larger eviction is warranted.

The key question is how the priority of each locality set’s next
page-to-be-evicted’s priority is computed. Assuming for a moment
that each locality set has only pages that are alive (lifetime-
ended is false), we choose a locality set to be the victim locality
set if the next page-to-be-evicted from the locality set has the lowest
expected cost compared to the priority of the next page-to-be-evicted
from all other locality sets, within a given time horizon t.

There are two parts to this expected cost: the cost cw is the cost
to write out the page, and the cost cr to read it again, if necessary.
Then, the overall expected cost of evicting a page is:

cw + preuse × cr

where preuse is the probability of accessing the page within the next
t time ticks. That is, no matter what, we pay a cost for evicting the
page, and we may pay a cost associated with reading the page if it
is re-read at a later time.
cr can be estimated as cr = vr×wr where vr is the profiled time

to read the page from disk; wr represents the penalty associated
with the reading pattern of a locality set. Reading spilled data for the
sequential read pattern only requires reading the page to memory, so
wr = 1. But reading spilled data that has a random reading pattern
(random-read) incurs a higher cost (wr > 1), because reading
such data requires reconstruction of the hash map and re-aggregation
of the spilled data.
cw is determined by the locality set’s durability requirement and

can be computed as cw = d
vw

. vw the time to write the page to
disk (also collected via profiling) and d = 1 for the write-back
requirement, and d = 0 for write-through.
preuse, which is the probability that the page is reused in the next

t time ticks, is a bit more complicated to estimate. preuse for a page
is computed from the page’s λ value, where λ is the rate (per time
tick) at which the page is referenced. If we model the arrival time
of the next reference to each page as a Poisson point process [35],
then the probability that the page is referenced in the next t time
ticks is 1 − e−λt (this follows from the cumulative density of the
exponential distribution, which models the time-until-next arrival
for a Poisson point process).

There are a number of ways that λ for a page can be estimated. We
can collect the number of references n to the page in the last t′ time
ticks, and estimate the rate of references per time tick as λ ≈ n/t′.
This quantity is a bit difficult to deal with in practice, however. It
requires storing multiple references to each page, maintained over a
sliding time window.
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λ can also be estimated from the time since the last reference,
which is what we use in our Pangea implementation. If a page
was last referenced at time tick tref and the current time tick is
tnow, the number of references since the beginning of time can
be estimated as tnow/(tnow − tref ); dividing by tnow to get the
number of references per time tick gives λ ≈ 1/(tnow − tref ); that
is, λ is the inverse of the time-to-last reference of the page.2

Finally, note that the previous discussion assumes that lifetime-
ended is false for each locality set. If there are one or more locality
sets where lifetime-ended is true, these are always chosen
for eviction first, again according to the minimum expected cost of
evicting a page from the locality set.

A note on rate vs. probability. There is a strong relationship
between using preuse computed via an exponential distribution with
a time horizon of t = 1, and simply weighting a page’s read cost
cr by λ (the inverse of the time since last reference in the case of
Pangea). In fact, the latter is a linear approximation to the former.
If one approximates the exponential computation of preuse with a
linear function (a first-degree Taylor series approximation of the
exponential function about the point λ′ = 0), we have:

preuse = 1− e−λt ≈ 1− e−λ
′t + te−λ

′t(λ− λ′)

= 1− e0 + te0λ = tλ = λ

7. DATA PLACEMENT
Pangea’s monolithic architecture allows it to use replication to

perform double-duty: to provide for fault tolerance (as in HDFS),
and to provide for computational efficiency by allowing for multiple
physical data organizations.

Appropriate data partitioning (such as co-partitioning of related
data on the same join key) can avoid shuffling across the network,
and speed up operations such as joins by many times [25].

While systems such as Spark provide similar functionality, a
partitioned RDD in Spark is specific to computation and will be
discarded once an application runs to completion; it can not be
reused for future runs of applications. Although a Spark developer
could materialize the repartitioned dataset as a different HDFS
or Alluxio file, there are two shortcomings: (1) HDFS can not
recognize and utilize those files for failure recovery; (2) the process
of loading data into RDD cache is controlled by Spark task scheduler,
which is optimized for locality but doesn’t guarantee locality, thus a
repartition stage at runtime is still needed before performing a local
join that can be pipelined with other computations. As a result, a
Spark application often invokes repartition() to tune the split
size and then applies partitionBy() to tune the partitioning
scheme every time the application is executed.

In Pangea, such physical data organizations are persistent and can
be shared across applications. For example, a source set lineitem
can be partitioned into a target set lineitem_pt:

registerClass("LineItem.so");
LocalitySet myLineItems = getSet("lineitem");
LocalitySet myReplica =

createSet<LineItem>("lineitem_pt");
PartitionComp<String, Lineitem> partitionComp =

PartitionComp(getKeyUdf);
partitionSet (myLineitems, myReplica, partitionComp);

2The inverse of the page’s reference distance can also be seen as yet an-
other reasonable estimate for λ, as this effectively replaces tnow − tref
with the page’s last observed between-reference time as an estimate for the
expected time interval between page references. We choose the time since
last reference, however, as it requires only a single reference to be valid.

This code creates a partition computation that extracts a String-
valued key from each Lineitem and uses that key to partition the
set of myLineItems. Then, a user registers lineitem_pt as a
replica of lineitem using a registerReplica() API:

registerReplica( myLineItems, myReplica,
numPartitions, numNodes, partitionComp);

Now, any application that finds the partitioning useful can use
this new replica to perform computations.

Under the hood, the source set and the target set are placed in the
same replication group. By definition, each set in a replication group
contains exactly the same set of objects organized using a different
physical organization, and an application running on top of Pangea
can choose any appropriate set in the replication group, based on the
desired physical properties of the set. Registering multiple sets in a
replication group in this way has the added benefit of obviating the
need to store multiple copies of each object on different machines
in order to allow for failure recovery.

However, having the sets in a replication group do “double duty”
in this way requires some care. Because the various physical or-
ganizations are chosen for computational reasons (pre-partitioning
based upon a join key to make subsequent joins faster, for example)
all copies of an object may just happen to be stored on the same
machine. We call such objects “colliding” objects. Colliding objects
are a problem because if the machine holding the colliding objects
fails, the objects are lost.

In practice, however, the number of colliding objects is small. If
a transformation to a target set is random (hashing, for example),
then the expected number of colliding objects can be estimated as
n/k, for n objects and k worker nodes. In our experiments using
real partitioning schemes, the number of colliding objects is small.
When partitioning the TPC-H lineitem table that has 5.98 billion
Lineitem objects (about 79GB in size) using two partitioning
schemes onto ten Pangea worker nodes (on l_orderkey and l_-
partkey respectively), there are 53.39 million colliding objects
in total. When we partition the same Lineitem table to 20 nodes,
there are only 15 million colliding objects. When we further use 30
nodes for the same partitioning, we find no colliding objects.

Given that the number of colliding objects is relatively small, to
achieve a complete recovery of lost data, we identify and record all
colliding objects at partitioning time. Then those colliding objects
will be stored in a separate locality set, and replicated using an
approach similar to HDFS replication.

The recovery process first requires calculating the key range for
all lost partitions from the failed node. Then, to recover a particular
replica (referred to as the target replica), the system arbitrarily se-
lects another replica from the replication group (the source replica).
The system runs the target replica’s partitioner on the source replica
to extract the key for each object in the source replica. If a key
falls in the range of lost partitions, the key and associated object are
buffered and later dispatched to the location where the associated
key range in the target replica is being recovered. At the same time
that the source replica is being processed, all colliding objects from
the replication group whose instance in the target replica have been
placed on the failed node are recovered. These objects are recovered
by processing the special locality set used to store the colliding
objects from the replication group.

The strategy can be extended to handle concurrent r-node failures
by separately replicating any object of which the replicas are located
on fewer than r + 1 nodes. This requires significantly more disk
space (i.e. if partitioning is random, the expected ratio of such ob-

jects in k-node cluster is (1− k × (k − 1)× ...× (k − r)

kr+1
)). For-

tunately, since modern analytics frameworks are usually deployed
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on smaller clusters ranging in size from a few to a few dozen nodes,
concurrent multiple-node failures are the exception [6, 22].

8. SERVICES
Pangea provides a set of services to enable various types of local-

ity sets to be cached in one buffer on each worker node and their
attributes to be learned at runtime. We now describe a few of the
services offered by Pangea.
The Sequential Read/Write Service. This service allows one or
more threads on each worker node to read or write data to or from
a locality set. To write to a locality set sequentially, a worker first
needs to configure the locality set to use a sequential allocator to
allocate bytes from the page’s host memory sequentially for writing
byte-oriented data. If a page is fully written, the storage will unpin
the page and pin a new page in the locality set.

To scan a locality set using one or multiple threads on a worker
node, the application first needs to obtain a set of concurrent page
iterators from the locality set and dispatch each iterator to a thread,
using code like the following:

LocalitySet myInput = getSet(setId);
//if "write-back" is not specified here,
// "write-through" is used by default.
LocalitySet myOutput =

createSet(setName, "write-back");
//if "sequential" is not specified here, the dynamic
//secondary allocator will be used by default.
myOutput.setAllocationPolicy("sequential");
vector<PageIteratorPtr> * iters =

myInput.getPageIterators(numThreads);
for (int i = 0; i < iters->size(); i++) {
// to start worker threads
runWork(iters->at(i), myOutput, userfunc);

}

Then in each thread, we sequentially write to pages pinned in
myOutput:
while((PagePtr page = iter->getNext())) {

ObjectIteratorPtr objectIter
= createObjectIterator(page);

while((RecordPtr record = objIter->next())) {
myOutput.addObject(userfunc(record));

}
}

Virtual Shuffle Buffer/Shuffle Service. For shuffling, all data el-
ements dispatched to the same partition need to be grouped in the
same locality set, and we create one locality set for each partition.

It is important to allow multiple shuffle writing threads to write
data elements belonging to the same partition to one page concur-
rently, to reduce batch latency and memory footprint. Thus, we
use a secondary, small page allocator that first pins a page in the
partition’s locality set, then dynamically splits small pages (of sev-
eral megabytes) from a large page, and allocates small pages to
multiple threads. Once all small pages are fully written, the small
page allocator unpins this page and allocates a new page from the
buffer pool for splitting and allocating small pages.

To allow threads to access small pages transparently, we offer
a virtual shuffle buffer abstraction. Each shuffle writer allocates
one virtual shuffle buffer for each partition. A virtual shuffle buffer
contains a pointer to the small page allocator that is responsible for
the partition’s locality set, and also the offset in the small page that
is currently in use by its thread. Then, each partition’s locality set
can be read via the sequential read service.

An example of the user shuffle code has been described in Sec. 3.2.
Virtual Hash Buffer/Hash Service. Pangea’s hash service adopts
a dynamic partitioning approach, where each page contains an inde-

pendent hash table, as well as all of its associated key-value pairs.
We implement this by using C++ STL unordered-map along with
the Memcached slab allocator [45] to replace the STL default allo-
cator. The Memcached slab allocator uses the current page as its
memory pool, so all memory allocation is bounded to the memory
space hosting that page. Each page is a hash partition, and all hash
partitions are grouped into one locality set.

We start from K pages as K root partitions, all indexed by a
virtual hash buffer. When there is no free memory in one page,
we allocate a new page from the buffer pool and split a new child
hash partition from the partition in the page that has used up its
memory. We iterate using this process until there is no page that can
be allocated from the buffer pool to construct a new hash partition.
Then, when a page is full, the system needs to select a page, unpin
it, and spill it to disk as partial-aggregation results.

When all objects are inserted through the virtual hash buffer,
we re-aggregate those spilled partial aggregation results for each
partition. User code is as follows:

//by below API, "write-back" and "dynamic"
//allocation policy will be automatically inferred
VirtualHashBufferPtr<string, int> buffer
= createVirtualHashBuffer(myOutput);

while((RecordPtr record = myInput.next())) {
string key = udfGetKey(record);
int value = udfGetValue(record);
if( buffer->find(key) == nullptr ) {
buffer->insert(key, value);

} else {
buffer->set(key, value);

}
}

Pangea also provides other services such as join map service for
building a distributed hash table from shuffled data; and broadcast
map service, which broadcasts a locality set and constructs a hash
table from it on each node for implementing broadcast join. Due to
space limitation, we omit the details here.

9. EVALUATION
In this section, we evaluate Pangea. We test applications such

as k-means clustering and the TPC-H benchmark in a distributed
cluster, and perform a detailed performance analysis of various
Pangea services in a single node.

For the distributed benchmark, we use 11 to 31 AWS r4.2x large
instances, where each instance has eight cores, 61GB memory, and
a 200GB SSD disk. For running micro-benchmarks of various
services, we use one AWS m3.xlarge instance that has four CPU
cores, 15GB memory and two SSD instance store disks. On all
machines we install Ubuntu 16.04 and use Spark 2.3.0, Hadoop
2.7.6, Ignite 2.6.0, and Alluxio 1.7.1.

9.1 Distributed Benchmark
We have argued in the introduction that a monolithic system

such as Pangea should be considered as an option for building high-
performance data analysis tools. Flexibility may suffer, but the
performance may be excellent.

To investigate whether this claim is reasonable, we implement
two computations directly on top of Pangea and compare the perfor-
mance with a more conventional layered approach: implementing
the computation on top of Spark, which is itself using HDFS or
another storage system, all of which is running on top of the JVM.

The first benchmark is a simple k-means computation, which is a
widely used benchmark for evaluating the effect of storage, because
one of the main challenges in k-means is data locality: keeping as
much data in memory as possible [57].
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For the second benchmark, we actually implement a distributed
relational query processor on top of Pangea. This is particularly
interesting because we are implementing a reasonably complicated
tool on top of Pangea, which makes it possible to quantify the effort
of implementing such a tool as illustrated in Tab. 2, as well as the
performance benefit.

Table 2: Source Code Break-down for a Pangea-based Relational
Query Processor.

Component SLOC
Scan 35
Join 1545
Build broadcast hash map 161
Build partitioned hash map 270
Aggregate: local stage 117
Aggregate: final stage 465
Filter 55
Hash 69
Flatten 90
Pipeline 1746
QueryScheduling 1336
Total 5889
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Figure 3: Latency comparison for k-means with five iterations in
11-node cluster using 1-3 billion 10-dimension points (failed cases
are shown as gaps).

9.1.1 k-means Clustering
We develop a k-means implementation on Pangea that is similar to

the Spark MLlib implementation. We use double arrays to represent
points for Pangea and wrap a double array in a Hadoop object
as binary input for Spark to minimize (de)serialization overhead.
Each run starts with an initialization step that computes norms for
each point and samples initial centroids. This is followed by five
iterations of the computation.

For Pangea, we use one write-through locality set to store
input data, and use one write-back locality set to store the points
with norms for fast distance computation. For Spark, both datasets
are cached in memory as RDDs.

Spark runs in Yarn client mode and is tested in two different con-
figurations: Spark over HDFS, Spark using Alluxio as in-memory
storage, and Spark using the Ignite SharedRDD. For each test, we
tune Spark memory allocations for the Spark executor and the OS,
Alluxio, or Ignite for optimal performance. For other parameters,
we use the default values. Both Spark and Pangea use 256MB as
split/page size.

As shown in Fig. 3, Pangea facilitates k-means processing at up
to a 6× speedup compared with Spark. It appears that Pangea’s
monolithic design facilitates performance gains in several ways:
(1) Reduction in interfacing overhead, including overhead for
disk loading, (de)serialization, memory (de)allocation, memory
compaction for fragmentation, and memory copies. In Pangea, user

data is directly written to buffer pool pages, so when a dataset is
imported, a significant portion of it is already cached in the buffer
pool without any additional overhead. In Spark, if an external cache
like Alluxio or Ignite is not being used, data cannot be shared across
applications, which means user data has to be loaded from disk for
the initialization step. We find that processing 1 billion points, the
initialization step in Spark over HDFS takes 146 seconds, and each
of the following iterations only takes 14 seconds; while in Pangea,
for processing the same amount of points, the initialization step
only takes 43 seconds, and each iteration takes 11 seconds. This
shows how much more efficient Pangea is in moving the data to
the application the first time. Based on profiling results, Spark over
Ignite spends about 40% of time in memory compaction due to
fragmentation. De-fragmentation occurs because Ignite seems to
be primarily optimized for frequent random access and updates on
mutable data, and it enforces a 16KB hard page size limitation. In
addition, both Spark over Ignite and Alluxio spend a significant
portion of time in object deserialization.
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Figure 4: Memory usage (failed cases are shown as gaps).

(2) Removal of redundant data placement. Although using Al-
luxio as in-memory storage can avoid data loading overhead, double-
caching wastes memory resources. Therefore, we observe that when
processing 1 billion points using Spark over Alluxio, the initial-
ization step time is 96 seconds, which is 1.5× faster than Spark
over HDFS. However, the average latency of following iterations
is 37 seconds, which is 3× slower than Spark over HDFS due to
the fact that Spark has less working memory (we allocated 15GB
memory to Alluxio). Fig. 4 illustrates the memory required by the
various setups. The Pangea shared memory pool is configured to be
50GB on each worker node. The total of Spark executor memory
and Alluxio worker memory is also limited to 50GB. Ignite requires
configuring at least two additional memory sizes: the heap size for
each Ignite process (we use 5GB on each node), and the maximum
size of the off-heap memory region (we set to 30GB on each node
for one billion points). Ignite throws a segmentation fault when
processing 2 billion or more points.
(3) Better paging strategy. We compare various paging strategies
in Fig. 3. We implement three DBMIN algorithms using three
size estimation strategies. DBMIN-adaptive estimates locality set
size exactly following the algorithm in [21], while the reference
patterns are learned from Pangea-provided services. For DBMIN-1,
all locality set sizes are estimated as 1 page. DBMIN-1000 always
estimates the size as 1000 pages. Note that DBMIN blocks when
the total desired size of all locality sets exceeds available size, which
is the reason for the failures of DBMIN-adaptive and DBMIN-1000,
as shown in Fig. 3. We find that the data-aware paging strategy
significantly outperforms other paging strategies. As mentioned in
the implementation of k-means on both platforms, input data needs
to be first transformed into a new dataset that has norms associated,
which increases the size of working set. Thus, paging is required at
2 billion points.

9.1.2 TPC-H
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Our Pangea-based relational query processor and API required
around 6,000 lines of C++ code to implement eleven different mod-
ules, as illustrated in Tab. 2. While 6,000 lines may seem like a
fairly substantial effort, we have, in effect, implemented a high-
performance distributed query processing engine with that effort. In
addition, we developed around 600 lines of shell and python scripts
code for installing and running this computation framework.

We then implement nine different TPC-H benchmark queries on
top of our analytics engine. Most of those queries involve aggrega-
tion and join. We compare our implementation with an open source,
third-party TPC-H implementation3, which uses Scala and the Spark
DataFrame API.
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Figure 5: Spark vs. Pangea latency (unit: second) for TPC-H
queries in 11-node cluster using scale-100 data.
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Figure 6: Recovery latency (unit: second) for TPC-H scale-100
data in clusters with 10 to 30 worker nodes.

In Pangea, the lineitem source set is a randomly dispatched
set which has two replicas, partitioned by l_orderkey and l_-
partkey respectively; and the order set also has two repli-
cas, partitioned by o_orderkey and o_custkey respectively.
Among the nine TPC-H queries, Q04 and Q12 are running on the
lineitem set that is partitioned by l_orderkey and the or-
der set that is partitioned by o_orderkey; Q13 and Q22 are
running on the order set that is partitioned by o_custkey; Q14
and Q17 are running on the lineitem set that is partitioned by
l_partkey; and all other queries run on the source sets.

We generate 100GB of TPC-H data (Scale-100), then compare
the Pangea-based system with Spark over HDFS, and the results are
shown in Fig. 5. By using the heterogeneous replicas for the same
table, Pangea applications can achieve up to 20× speedup compared
with Spark using the DataFrame API. Note that there is nothing
analogous to pre-partitioning available to a Spark developer when
loading data from HDFS; all partitioning must be performed at query
time. Although a Spark developer could materialize the repartitioned
dataset as a different HDFS or Alluxio file, the process of loading
data into RDD cache is controlled by Spark task scheduler, which
doesn’t guarantee locality, thus repartition at runtime is still needed
to perform a local join. In addition, such manual replicas can not be
utilized by HDFS for failure recovery.

Among those queries, Q17 can achieve 20× speedup, mainly
because by selecting the replica of the lineitem set that is parti-
tioned by l_partkey, and the replica of the part set that is parti-
tioned by p_partkey, the inputs for the large-scale join in Q17 are
co-partitioned, the query scheduler recognizes this by comparing the
available partition schemes of both sets through the statistics
service also provided by Pangea, and pipelines the join operation at
each worker node without need to do a repartition.
3https://github.com/ssavvides/tpch-spark

Failure Recovery. As shown in Fig. 6, for the single-node failure
case, recovering the lineitem table (with 79GB of raw data) in a
ten-node cluster using Pangea’s heterogeneous replication only takes
five seconds’ time, with less than 9% of objects conflicting. The
ratio of conflicting objects declines significantly with the increase
in number of working nodes: 3% for 20 worker nodes, and zero for
30 worker nodes, as described in Sec. 7.

These results illustrate that Pangea’s heterogeneous replication
scheme is effective. Although using multiple replicas increase stor-
age size, it is a known and widely accepted cost for high availability.

9.2 Evaluation of Pangea Services
In this subsection, we provide some mico-benchmarks of the

various Pangea services.

9.2.1 Sequential Read/Write
This micro-benchmark consists of two tests: one for transient data

and one for persistent data. For both, we first write a varying number
of 80-byte character array objects to different storage locations, and
then we scan those objects; for each object we compute the sum of
all the bytes. We run the scanning process repeatedly for five times.
In the end, we delete all data.

0

100

200

300

400

500

600

700

50
(4G

B)
10

0
(8G

B)
15

0

(12
GB)

20
0

(16
GB)

25
0

(20
GB)

30
0

(24
GB)

Ti
m

e (
Se

co
nd

s)

Millions of Objects (Data Size)

Pangea read (write-back -2 disks)
Pangea write (write-back -2 disk)
Pangea read (write-back -1 disk)
Pangea write (write-back -1 disk)
Alluxio read
Alluxio write
OS VM deallocation
OS VM read
OS VM allocation

Figure 7: Sequential access for transient data.

Transient Data Test. For this test, we compare Pangea with OS
virtual memory (abbrev. OS VM) and Alluxio. For OS VM, we use
malloc() and free() for allocation/deallocation. For Alluxio,
we configure the worker memory size to be 14GB and develop a
Java client that uses a NIO ByteBuffer to efficiently write data
to Alluxio worker, which facilitates a 3× speedup compared with
using a JNI-based C++ client.

For Pangea, we use a write-back locality set as the data container,
so that a write request will return immediately once data is created
in the buffer pool.

Results are illustrated in Fig. 7. We observe that when the working
set fits in available memory (< 150 millions of objects in our case),
the performance of Pangea and OS VM are similar, and both are sig-
nificantly better than the Alluxio in-memory file system, presumably
because using Alluxio requires significant interfacing overhead.

When the working set size exceeds available memory, Pangea
can achieve a 5.4× to 7× speedup compared with OS VM, mainly
because Pangea increases I/O throughput by using 64MB buffer
pool page size and also reduces I/O volume through better paging
decisions. Specifically, there is only one locality set, for which
Pangea automatically chooses the MRU policy for its sequential
access pattern. The OS VM uses an LRU policy and other complex
techniques such as page stealing that will evict pages even when
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there is no paging demand. In the case of scanning 200 million
objects, for each iteration, the Pangea cache will incur 31.4 page-out
operations with 2009.6MB data written to disk on average. However
when relying on OS VM, by aggregating the page-out rate collected
from the sar -B command contained in linux sysstat utilities,
we see that for each scan iteration, the average size of data written
to disk by page-out operations is 5074.2MB (2.5× of Pangea).

We also observe that using Pangea 64MB page has a 2.45×
speedup compared with using OS VM 4KB page for writing.

Alluxio doesn’t support writing more data than its configured
memory size.

Finally, both Pangea and Alluxio are very efficient at removing
data. Because data are organized in large blocks in memory, we can
deallocate all data belonging to the same block at once. This cir-
cumvents the cost of individual object deallocation which accounts
for significant overhead, even in C++ applications.
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Figure 8: Sequential access for persistent data

Persistent Data Test. For this test, we use a write-through locality
set for Pangea, so that each page will be persisted to disk via direct
I/O immediately when it is fully written. We compare Pangea
with the OS filesystem and HDFS. For HDFS, we use the native
C++ client developed by Cloudera called libhdfs3 to avoid JNI
overhead and provide a fair comparison.

The results are illustrated in Fig. 8. After careful tuning, the
writing performance of the three systems is similar. However, for
average latency of one iteration of scan with simple computation,
Pangea outperforms the OS filesystem by a factor of 1.9× to 2.7×
and outperforms HDFS by 1.5× to 3.5×.

Through profiling, we find the performance gain when the work-
ing set fits in memory is mainly from the reduction in interfacing
overhead; the Pangea client writes to shared memory directly, and
those writes are flushed to the file system directly. Thus, we can
avoid the memory copy overhead between user space and kernel
space as required by the OS buffer cache and also avoid the memory
copy between client and server as required by HDFS.

When the working set size exceeds available memory size, I/O
becomes the performance bottleneck, and the Pangea data-aware

paging strategy can significantly reduce page swapping, which is
the root cause of the performance gain in this case.
Paging Strategy Comparison. The data-aware paging strategy
adopts MRU for sequential access pattern. The most recently used
unpinned page will be evicted from a victim locality set under
writing, and at most 10% of the most recently used unpinned pages
will be evicted from a victim locality set under reading.

We compare above strategy with MRU, LRU, and DBMIN for
sequential access. In our implementation, 10% of the most recently
used pages will be evicted at each eviction for MRU, and at most
10% of the least recently used pages will be evicted for LRU. Com-
pared with OS VM paging, Pangea does not use page stealing, which
means it will not evict pages when there is no paging demand. There
is only one locality set and it is repeatedly read after being written.
For such a loop-sequential pattern, the original DBMIN algorithm
suggests configuring the size of the locality set to be the set size.
For a set exceeding memory size, DBMIN will block. To avoid this,
we upper-bound the locality set size at the memory size.

Fig. 9 lists the comparison results for using one disk. The results
for using two disks are similar. For reading, the Pangea data-aware
policy, tuned DBMIN policy and MRU can achieve 1.6× to 2.5×
speedup compared with LRU. This is because in such a read-after-
write scenario—which is common in dataflow processing—LRU
tends to evict pages that will be read immediately after being evicted.
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Figure 9: Page replacement for sequential access.

The Pangea data-aware policy can achieve up to 50% perfor-
mance improvement compared with LRU and MRU, and up to 20%
compared with the tuned DBMIN algorithm. This is mainly because
with the knowledge about on-going operations (i.e. read or write),
Pangea can reduce the number of dirty pages to evict to minimize
expensive disk writing operations as compared with LRU and MRU;
and can evict more unused pages each time for reading, to better
overlap I/O operations with computation as compared to DBMIN.

From Fig. 9, we see that reading write-back data is slower than
the write-through data. That is because for the former case, transient
pages may be written back to disk in the reading phase, while for
the latter case, all pages are flushed to disk in the writing phase.

9.2.2 Shuffle
For this micro-benchmark, to provide an apples-to-apples compar-

ison (not JVM vs. C), we compare Pangea’s shuffle service to simu-
lated Spark shuffling written in C++. In Spark shuffling, each CPU
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core will have a separate spill file in the local file system for each
shuffle partition, so there will be numCores× numPartitions
files in total. For Pangea, all data belonging to the same partition
are written to one locality set, so there are at most numPartitions
spill files.

In our test setup, each worker generates small strings of about
10 bytes in length. For each string, a worker computes its partition
via a hash function. For reading shuffle data, each worker reads all
strings belonging to one partition, and for each string, the worker
scans each byte and adds up the byte value.

We use four workers to write to four partitions and four workers to
read from the four partitions. The performance results are illustrated
in Table. 3, which show that we can achieve 1.1× - 1.4× speedup
for shuffle writing and 2.2× - 27× speedup for shuffle reading.

When the working set fits in memory (when the per-thread data
size is smaller than 3500 MB), the performance gain of Pangea is
mainly from the reduction of memory allocation and copy overhead,
because in Pangea, the objects for shuffling are directly allocated
in a small page using a sequential allocator. However, for Spark
shuffling, data needs to be first allocated on heap (we use mal-
loc() for the C++ implementation) and then written to file (we
use fwrite() for the C++ implementation).

When the working set size exceeds memory (the per-thread data
size is larger than 3500 MB), the performance gain of Pangea is
mainly from significant reduction in I/O overhead that is brought by
a smaller number of files and better page replacement decisions.

Table 3: Shuffle data read and write latency with 4 writing/reading
workers (unit: seconds).

MB/thread C Spark shuffle Pangea (1 disk) Pangea (2 disks)
write read write read write read

500 21 5 15 <1 15 <1
1000 43 9 31 <1 31 <1
1500 65 13 47 <1 47 <1
2000 86 19 63 <1 63 <1
2500 107 23 80 <1 79 1
3000 129 27 94 <1 94 1
3500 152 36 115 10 114 6
4000 172 47 140 15 134 12
4500 194 55 157 20 155 14
5000 215 64 189 27 174 17
5500 237 70 216 32 196 26
6000 259 78 235 35 215 32
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Figure 10: Page replacement comparison for shuffle.

Fig. 10 shows the comparison results of different paging policy
for shuffle with one disk. The data-aware paging policy outperforms
LRU in reading by up to 3×. That is because in the reading process,
when using a data-aware policy, the first 223 pages are kept in the
buffer pool without being flushed and can be directly read by reading
workers. Thus the number of I/O operations is observed to be sig-
nificantly reduced. The Pangea data-aware policy also outperforms
LRU and MRU in writing speed by around 10%, and outperforms
the tuned DBMIN policy in reading speed by around 10%; that is
because by using the former policy, we can distinguish on-going

operations (read or write) through the locality set’s CurrentOp-
eration attribute and can optimize the number of pages to evict
for different operations.

9.2.3 Hash Aggregation
We aggregate varying numbers of randomly generated <string,

int> pairs, following the incise.org benchmark [4]. We compare
Pangea with an STL unordered_map and Redis 3.2.0, which is a well-
known high performance key-value store developed in C++ [50].
The results are illustrated in Tab. 4. We see that Pangea hashmap
outperforms STL unordered_map by up to 50×, and outperforms
Redis by up to 30×.

The Pangea hashmap is initialized to have 200 partitions. The
STL unordered_map starts to swap virtual memory when inserting
200 million keys; however the Pangea hashmap starts spilling to disk
only when inserting 300 million keys. That is mainly because the
memcached slab allocator that is used as a secondary data allocator
in Pangea has better memory utilization than the STL default alloca-
tor. Redis incurs significant latency because it adopts a client/server
architecture, and is inefficient for problems where the computation
can directly run on local data.

Table 4: Key-value pair aggregation (unit: seconds).
NumKeys STL unordered_map Pangea hashmap Redis

50,000,000 47 33 53
100,000,000 38 68 274
150,000,000 153 110 2069
200,000,000 7657 167 9103
250,000,000 16818 332 9887
300,000,000 >7 hours 2450 failed

Summary. The experiments show that using Pangea services can
bring up to a 6× speedup for k-means, and up to 20× speedup for
TPC-H. In addition, various micro-benchmarks demonstrate that
Pangea can provide high-performance sequential scan, sequential
write, shuffle, hash aggregation services, which are all important
building blocks for modern analytics.

10. CONCLUSIONS
There are multiple layers in modern data analytics systems for

managing shared persistent data, cached data, and non-shared ex-
ecution data. These layers are implemented by separate systems
such as HDFS, Alluxio, Ignite, and Spark. Such layering intro-
duces significant performance and management costs. Pangea is
designed and implemented to solve this problem through the lo-
cality set abstraction at a single layer. A locality set can be aware
of application semantics through services provided within Pangea,
and use this information for data placement, page eviction and so
on. The results show that Pangea is a promising alternative base
for building performance-critical applications and distributed data
analytics tools.
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