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ABSTRACT
Snapshot semantics is widely used for evaluating queries over tem-
poral data: temporal relations are seen as sequences of snapshot re-
lations, and queries are evaluated at each snapshot. In this work, we
demonstrate that current approaches for snapshot semantics over
interval-timestamped multiset relations are subject to two bugs re-
garding snapshot aggregation and bag difference. We introduce a
novel temporal data model based on K-relations that overcomes
these bugs and prove it to correctly encode snapshot semantics.
Furthermore, we present an efficient implementation of our model
as a database middleware and demonstrate experimentally that our
approach is competitive with native implementations.
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1. INTRODUCTION
Recently, there is renewed interest in temporal databases fueled

by the fact that abundant storage has made long term archival of
historical data feasible. This has led to the incorporation of tem-
poral features into the SQL:2011 standard [28] which defines an
encoding of temporal data associating each tuple with a validity pe-
riod. We refer to such relations as SQL period relations. Note that
SQL period relations use multiset semantics. Period relations are
supported by many DBMSs, e.g., PostgreSQL [35], Teradata [45],
Oracle [31], IBM DB2 [36], and MS SQLServer [30]. However,
none of these systems, with the partial exception of Teradata, sup-
ports snapshot semantics, an important class of temporal queries.
Given a temporal database, a non-temporal queryQ interpreted un-
der snapshot semantics returns a temporal relation that assigns to
each point in time the result of evaluating Q over the snapshot of
the database at this point in time. This fundamental property of
snapshot semantics is known as snapshot-reducibility [29, 43].

Example 1.1 (Snapshot Aggregation). Consider the SQL period
relation works in Figure 1a that records factory workers, their
skills, and when they are on duty. The validity period of a tuple is
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works
name skill period
Ann SP [03, 10)
Joe NS [08, 16)
Sam SP [08, 16)
Ann SP [18, 20)

assign
mach skill period
M1 SP [03, 12)
M2 SP [06, 14)
M3 NS [03, 16)

(a) Input period relations
Qonduty

cnt period
0 [00, 03)
1 [03, 08)
2 [08, 10)
1 [10, 16)
0 [16, 18)
1 [18, 20)
0 [20, 24)

(b) Snapshot aggregation

Qskillreq

skill period
SP [06, 08)
SP [10, 12)
NS [03, 08)

(c) Snapshot difference

Figure 1: Snapshot semantics query evaluation – highlighted tu-
ples are erroneously omitted by approaches that exhibit the aggre-
gation gap (AG) and bag difference (BD) bugs.

stored in the temporal attribute period. To simplify examples, we
restrict the time domain to the hours of 2018-01-01 represented as
integers 00 to 23. The company requires that at least one (special-
ized) SP worker is in the factory at any given time. This is checked
by evaluating the following query under snapshot semantics.

Qonduty: SELECT count(*) AS cnt FROM works
WHERE skill = ’SP’

Evaluated under snapshot semantics, a query returns a snapshot
(time-varying) result that records when the result is valid, i.e.,
Qonduty returns the number of SP workers that are on duty at any
given point of time. The result is shown in Figure 1b. For instance,
at 08:00am two SP workers (Ann and Joe) are on duty. The query
exposes several safety violations, e.g., no SP worker is on duty be-
tween 00 and 03.

In the example above, safety violations correspond to gaps, i.e.,
periods of time where the aggregation’s input is empty. As we
will demonstrate, all approaches for snapshot semantics that we are
aware of do not return results for gaps (tuples marked in red) and,
therefore, violate snapshot-reducibility. Teradata [45, p.149] for in-
stance, realized the importance of reporting results for gaps, but in
contrast to snapshot-reducibility provides gaps in the presence of
grouping, while omitting them otherwise. As a consequence, in
our example these approaches fail to identify safety violations. We
refer to this type of error as the aggregation gap bug (AG bug).

Similar to the case of aggregation, we also identify a common
error related to snapshot bag difference (EXCEPT ALL).
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Example 1.2 (Snapshot Bag Difference). Consider again Figure 1.
Relation assign records machines (mach) that need to be as-
signed to workers with a specific skill over a specific period of time.
For instance, the third tuple records that machine M3 requires a
non-specialized (NS) worker for the time period [03, 16). To de-
termine which skill sets are missing during which time period, we
evaluate the following query under snapshot semantics:

Qskillreq: SELECT skill FROM assign
EXCEPT ALL
SELECT skill FROM works

The result in Figure 1c indicates that one more SP worker is re-
quired during the periods [06, 08) and [10, 12).

Many approaches treat bag difference as a NOT EXISTS sub-
query, and therefore do not return a tuple t from the left input if
this tuple exists in the right input (independent of their multiplic-
ity). For instance, the two tuples for the SP workers (highlighted in
red) are not returned, since there exists an SP worker at each snap-
shot in the works relation. This violates snapshot-reducibility. We
refer to this type of error as the bag difference bug (BD bug).

The interval-based representation of temporal relations creates
an additional problem: the encoding of a temporal query result is
typically not unique. For instance, tuple (Ann,SP , [03, 10)) from
the works relation in Figure 1 can equivalently be represented as
two tuples (Ann,SP , [03, 08)) and (Ann,SP , [08, 10)). We refer
to a method that determines how temporal data and snapshot query
results are grouped into intervals as an interval-based representa-
tion system. A unique and predictable representation of temporal
data is a desirable property, because equivalent relational algebra
expressions should not lead to syntactically different result rela-
tions. This problem can be addressed by using a representation sys-
tem that associates a unique encoding with each temporal database.
Furthermore, overlap between multiple periods associated with a
tuple and unnecessary splits of periods complicate the interpreta-
tion of data and, thus, should be avoided if possible. Given these
limitations and the lack of implementations for snapshot seman-
tics queries over bag relations, users currently resort to manually
implementing such queries in SQL which is time-consuming and
error-prone [40].

We address the above limitations of previous approaches for
snapshot semantics and develop a framework based on the fol-
lowing desiderata: (i) support for set and multiset relations,
(ii) snapshot-reducibility for all operations, and (iii) a unique
interval-based encoding of temporal relations. Previous works
on sequenced semantics [7, 16, 18] also aim to support snapshot-
reducibility. However, these approaches focus on change preser-
vation (i.e., preserve intervals from the input of a query), whereas
we instead focus on a unique encoding. We address these desider-
ata using a three-level approach. Note that we focus on data with
a single time dimension, but are oblivious to whether this is trans-
action time or valid time. First, we introduce an abstract model
that supports both sets and multisets, and by definition is snapshot-
reducible. This model, however, uses a verbose encoding of tem-
poral data and, thus, is not practical. Afterwards, we develop a
more compact logical model as a representation system, where the
complete temporal history of all equivalent tuples from the abstract
model is stored in an annotation attached to one tuple. The abstract
and the logical models leverage the theory of K-relations, which
are a general class of annotated relations that cover both set and
multiset relations. For our implementation, we use SQL over pe-
riod relations to ensure compatibility with SQL:2011 and existing
DBMSs. We prove the equivalence between the three layers (i.e.,
the abstract model, the logical model and the implementation) and

show that the logical model determines a unique interval-encoding
for the implementation and a correct rewriting scheme for queries
over this encoding.

Our main technical contributions are:
• Abstract model: We introduce snapshot K-relations as a

generalization of snapshot set and multiset relations. These
relations are by definition snapshot-reducible.
• Logical model: We define an interval-based representation,

termed periodK-relations, and prove that these relations are
a compact and unique representation system for snapshot se-
mantics over snapshot K-relations. We show this for the full
relational algebra plus aggregation (RAagg).
• We achieve a unique encoding of temporal data as period K-

relations by generalizing set-based coalescing [10].
• We demonstrate that the multiset version of period K-

relations can be encoded as SQL period relations, a common
interval-based model in DBMSs, and how to translate queries
with snapshot semantics over period K-relations into SQL.
• We implement our approach as a database middleware and

present optimizations that eliminate redundant coalescing
steps. We demonstrate experimentally that we do not need
to sacrifice performance to achieve correctness.

2. RELATED WORK
Temporal Query Languages. There is a long history of re-

search on temporal query languages [6, 23]. Many temporal
query languages including TSQL2 [39, 41], ATSQL2 (Applied
TSQL2) [8], IXSQL [29], ATSQL [9], and SQL/TP [47] support
snapshot semantics. In this paper, we provide a general framework
that can be used to correctly implement snapshot semantics over
period set and multiset relations for any language.

Interval-based Approaches for Snapshot Semantics. In the
following, we discuss interval-based approaches for snapshot se-
mantics. Table 1 shows for each approach whether it supports
multisets, whether it is free of the aggregation gap and bag dif-
ference bugs, and whether its interval-based encoding of a snap-
shot query result is unique. An N/A indicates that the approach
does not support the operation for which this type of bug can occur
or the semantics of this operation is not defined precisely enough
to judge its correctness. Note that while temporal query languages
may be defined to apply snapshot semantics and, thus, by definition
are snapshot-reducible, (the specification of) their implementation
might fail to be snapshot-reducible. In the following discussion of
the temporal query languages in Table 1, we refer to their semantics
as provided in the referenced publication(s).

Interval preservation (ATSQL) [9, Def. 2.10] is a representation
system for SQL period relations (multisets) that tries to preserve
the intervals associated with input tuples, i.e., fragments of all in-
tervals (including duplicates) associated with the input tuples “sur-
vive” in the output. Interval preservation is snapshot-reducible for
multiset semantics for positive relational algebra [37] (selection,
projection, join, and union), but exhibits the aggregation gap and
bag difference bug. Moreover, the period encoding of a query re-
sult is not unique as it depends both on the query and the input
representation. Teradata [45] is a commercial DBMS that supports
snapshot operators using ATSQL’s statement modifiers. The im-
plementation is based on query rewriting [2] and does not support
difference. Teradata’s implementation exhibits the aggregation gap
bug. Since the application of coalescing is optional, the encoding of
snapshot relations as period relations is not unique. Change preser-
vation [18, Def. 3.4] determines the interval boundaries of a query
result tuple t based on the maximal interval for which there is no
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Table 1: Interval-based approaches for snapshot semantics.

Approach M
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Interval preservation [9] (ATSQL) X × × ×
Teradata [45] X × N/A ×1

Change preservation [16, 18] × × N/A ×
TSQL2 [39, 41, 43] × N/A N/A X
ATSQL2 [8] X N/A × ×
TimeDB [44] (ATSQL2) X N/A × ×
SQL/Temporal [42] X × × ×
SQL/TP [47]2 X X X ×
Our approach X X X X

change in the input, i.e., sequenced semantics. To track changes, it
employs the lineage provenance model in [16] and the PI-CS model
in [18]. The approach uses timestamp adjustment in combination
with traditional database operators, but does not provide a unique
encoding, exhibits the AG bug, and only supports set semantics.
Our work solves the AG bug. Furthermore, we provide a unique
encoding and support bag semantics in addition to set semantics.
TSQL2 [39, 41, 43] implicitly applies coalescing [10] to produce a
unique representation. Thus, it only supports set semantics, and
it does not support aggregation. Snodgrass et al. [42] present a
validtime extension of SQL/Temporal and an algebra with snapshot
semantics. The algebra supports multisets, but exhibits both the
aggregation gap and bag difference bug. Since intervals from the
input are preserved where possible, the interval representation of a
snapshot relation is not unique. TimeDB [44] is an implementation
of ATSQL2 [8]. It uses a semantics for bag difference and intersec-
tion that is not snapshot-reducible (see [44, pp. 63]). Our approach
is the first that supports set and multiset relations, is resilient against
the two bugs, and specifies a unique interval-encoding.

Non-snapshot Temporal Approaches. Non-snapshot temporal
query languages, such as IXSQL [29] and SQL/TP [47], do not ex-
plicitly support snapshot semantics. Nevertheless, we review these
languages here since they allow to express queries with snapshot
semantics. SQL/TP [47] introduces a point-wise semantics for tem-
poral queries [12, 46], where time is handled as a regular attribute.
Intervals are used as an efficient encoding of time points, and a
normalization operation is used to split intervals. The language
supports multisets and a mechanism to manually produce snapshot
semantics. However, snapshot semantics queries are specified as
the union of non-temporal queries over snapshots. Even if such
subqueries are grouped together for adjacent time points where the
non-temporal query’s result is constant this still results in a large
number of subqueries to be executed. Even worse, the number of
subqueries that is required is data dependent. Also, the interval-
based encoding is not unique, since time points are grouped into
intervals depending on query syntax and encoding of the input.
While this has no effect on the semantics since SQL/TP queries
cannot distinguish between different interval-based encodings of a
temporal database, it might be confusing to users that observe dif-
ferent query results for equivalent queries/inputs.

Implementations of Temporal Operators. A large body of
work has focused on the implementation of individual tempo-
ral algebra operators, such as joins [11, 17, 33] and aggrega-
tion [5, 32, 34]. Some exceptions supporting multiple operators

1Optionally, coalescing (NORMALIZE ON in Teradata) can be ap-
plied to get a unique encoding at the cost of loosing multiplicities.
2Snapshot semantics can be expressed, but this is inefficient.

are [13,18,26]. These approaches introduce efficient evaluation al-
gorithms for a particular semantics of a temporal algebra operator.
Our approach can utilize efficient operator implementations as long
as (i) their semantics is compatible with our interval-based encod-
ing of snapshot query results and (ii) they are snapshot-reducible.

Coalescing. Coalescing produces a unique representation of a
set semantics temporal database. Böhlen et al. [10] study opti-
mizations for coalescing that eliminate unnecessary coalescing op-
erations. Zhou et al. [48] and [1] use analytical functions to ef-
ficiently implement coalescing in SQL. We generalize coalescing
to K-relations to define a unique encoding of interval-based tem-
poral relations, including multiset relations. Similar to [10] which
removes redundant coalescing steps, we remove unnecessary K-
coalescing steps and, similar to [48], we use OLAP functions for
an efficient implementation.

Temporality in Annotated Databases. Kostiley et al. [27] is
to the best of our knowledge the only previous approach that uses
semiring annotations to express temporality. The authors define a
semiring whose elements are sets of time points. This approach is
limited to set semantics, and no interval-based encoding was pre-
sented. The LIVE system [15] combines provenance and uncer-
tainty annotations with versioning. The system uses interval times-
tamps, and query semantics is based on snapshot-reducibility [15,
Def. 2]. However, computing the intervals associated with a query
result requires provenance to be maintained for every query result.

3. SOLUTION OVERVIEW
In this section, we give an overview of our three-level frame-

work, which is illustrated in Figure 2.

Abstract model – SnapshotK-relations. As an abstract model
we use snapshot relations which map time points to snapshots.
Queries over such relations are evaluated over each snapshot, which
trivially satisfies snapshot-reducibility. To support both sets and
multisets, we introduce snapshotK-relations [21], which are snap-
shot relations where each snapshot is aK-relation. In aK-relation,
each tuple is annotated with an element from a domain K. For
example, relations annotated with elements from the semiring N
(natural numbers) correspond to multiset semantics. The result of
a snapshot queryQ over a snapshotK-relation is the result of eval-
uating Q over the K-relation at each time point.

Example 3.1 (Abstract Model). Figure 2 (bottom) shows the snap-
shots at times 00, 08, and 18 of an encoding of the running exam-
ple as snapshot N-relations. Each snapshot is an N-relation where
tuples are annotated with their multiplicity (shown with shaded
background). For instance, the snapshot at time 08 has three tu-
ples, each with multiplicity 1. The result of query Qonduty is shown
on the bottom right. Every snapshot in the result is computed by
running Qonduty over the corresponding snapshot in the input. For
instance, at time 08 there are two SP workers, i.e., cnt = 2.

Logical Model – Period K-relations. We introduce period K-
relations as a logical model, which merges equivalent tuples over
all snapshots from the abstract model into one tuple. In a period
K-relation, every tuple is annotated with a temporal K-element
that is a unique interval-based representation for all time points
of the merged tuples from the abstract model. We define a class
of semirings called period semirings whose elements are tempo-
ral K-elements. Specifically, for any semiring K we can con-
struct a period semiring KT whose annotations are temporal K-
elements. For instance, NT is the period semiring correspond-
ing to semiring N (multisets). We define necessary conditions for
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SQL period relations

name skill period
Ann SP [03, 10)

Joe NS [08, 16)

Sam SP [08, 16)

Ann SP [18, 20)

cnt period
0 [00, 03)

1 [03, 08)

2 [08, 10)

1 [10, 16)

0 [16, 18)

1 [18, 20)

0 [20, 24)

REWR(Qonduty)

PERIODENC−1 PERIODENC PERIODENC−1 PERIODENC

L
og

ic
al

Period K-relations
name skill NT
Ann SP {[03, 10) 7→ 1, [18, 20) 7→ 1}
Sam SP {[08, 16) 7→ 1}
Joe NS {[08, 16) 7→ 1}

cnt NT
0 {[00, 03) 7→ 1, [16, 18) 7→ 1, [20, 24) 7→ 1}
1 {[03, 08) 7→ 1, [10, 16) 7→ 1, [18, 20) 7→ 1}
2 {[08, 10) 7→ 1}

Qonduty

τ00, . . . , τ23 ENCN τ00, . . . , τ23 ENCN

A
bs

tr
ac

t

Snapshot K-relations00 7→ name skill N
. . .
08 7→ name skill N

Ann SP 1
Joe NS 1
Sam SP 1

. . .
18 7→ name skill N
. . . Ann SP 1

00 7→ cnt N
0 1

. . .
08 7→ cnt N

2 1

. . .
18 7→ cnt N
. . . 1 1

. . .

Qonduty

. . .
Qonduty

. . .

Figure 2: Overview of our approach. Our abstract model is snapshot K-relations and nontemporal queries over snapshots (snapshot seman-
tics). Our logical model is period K-relations and queries corresponding to the abstract model’s snapshot queries. Our implementation uses
SQL period relations and rewritten non-temporal queries implementing the other model’s snapshot queries. Each model is associated with
transformations to the other models which commute with queries (modulo the rewriting REWR when mapping to the implementation).

an interval-based model to correctly encode snapshot K-relations
and prove that period K-relations fullfil these conditions. Specif-
ically, we call an interval-based model a representation system iff
the encoding of every snapshot K-relation R is (i) unique and (ii)
snapshot-equivalent toR. Furthermore, (iii) queries over encodings
are snapshot-reducible.

Example 3.2 (Logical Model). Figure 2 (middle) shows an encod-
ing of the running example as periodK-relations. For instance, all
tuples (Ann, SP ) from the abstract model are merged into one tu-
ple in the logical model with annotation {[03, 10) 7→ 1, [18, 20) 7→
1}, because at each time point during [03, 10) and [18, 20) a tuple
(Ann, SP ) with multiplicity 1 exists. In Section 4.2, we will in-
troduce a mapping ENCN from snapshot N to NT -relations and the
time slice operator τT which restores the snapshot at time T .

Implementation – SQL Period Relations. To ensure compat-
ibility with the SQL standard, we use SQL period relations in our
implementation and translate snapshot semantics queries into SQL
queries over these period relations. For this we define an encoding
of NT -relations as SQL period relations (PERIODENC) together
with a rewriting scheme for queries (REWR).

Example 3.3 (Implementation). Consider the SQL period relations
shown on the top of Figure 2. Each interval-annotation pair of a
temporal N-element in the logical model is encoded as a separate
tuple in the implementation. For instance, the annotation of tuple
(Ann, SP ) from the logical model is encoded as two tuples, each
of which records one of the two intervals from this annotation

We present an implementation of our framework as a database
middleware that exposes snapshot semantics as a new language
feature in SQL and rewrites snapshot queries into SQL queries over
SQL period relations. That is, we directly evaluate snapshot queries
over data stored natively as period relations.

4. SNAPSHOT K-RELATIONS
We first review background on the semiring annotation frame-

work (K-relations). Afterwards, we define snapshot K-relations
as our abstract model and snapshot semantics for this model. Im-
portantly, queries over snapshotK-relations are snapshot-reducible
by construction. Finally, we state requirements for a logical model
to be a representation system for this abstract model.

4.1 K-relations
In a K-relation [21], every tuple is annotated with an element

from a domain K of a commutative semiring K. A structure
(K,+K , ·K , 0K , 1K) over a set K with binary operations +K and
·K is a commutative semiring iff (i) addition and multiplication are
commutative, associative, and have a neutral element (0K and 1K ,
respectively); (ii) multiplication distributes over addition; and (iii)
multiplication with zero returns zero. Abusing notation, we will
use K to denote both a semiring structure as well as its domain.

Consider a universal countable domain U of values. An n-ary
K-relation R over U is a (total) function that maps tuples (ele-
ments from Un) to elements fromK with the convention that tuples
mapped to 0K are not in the relation. Furthermore, we require that
R(t) 6= 0K only holds for finitely many t. Two semirings are of
particular interest to us: The semiring (B,∨,∧, false, true) with
elements true and false using ∨ as addition and ∧ as multiplication
corresponds to set semantics. The semiring (N,+, ·, 0, 1) of natu-
ral numbers with standard arithmetics corresponds to multisets.

The operators of the positive relational algebra [37] (RA+) over
K-relations are defined by applying the +K and ·K operations of
the semiring K to input annotations. Intuitively, the +K and ·K
operations of the semiring correspond to the alternative and con-
junctive use of tuples, respectively. For instance, if an output tuple
t is produced by joining two input tuples annotated with k and k′,
then the tuple t is annotated with k ·K k′. Below we provide the
standard definition of RA+ over K-relations [21]. For a tuple t,
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we use t.A to denote the projection of t on a list of projection ex-
pressions A and t[R] to denote the projection of t on the attributes
of relation R. For a condition θ and tuple t, θ(t) denotes a function
that returns 1K if t |= θ and 0K otherwise.

Definition 4.1 (RA+ over K-relations). Let K be a semiring, R,
S denote K-relations, t, u denote tuples of appropriate arity, and
k ∈ K. RA+ on K-relations is defined as:

σθ(R)(t) = R(t) · θ(t) (selection)

ΠA(R)(t) =
∑

u:u.A=t
R(u) (projection)

(R ./ S)(t) = R(t[R]) · S(t[S]) (join)

(R ∪ S)(t) = R(t) + S(t) (union)

We will make use of homomorphisms, functions from the do-
main of a semiring K1 to the domain of a semiring K2 that com-
mute with the semiring operations. Since RA+ over K-relations
is defined in terms of these operations, it follows that semiring ho-
momorphisms commute with queries, as was proven in [21].

Definition 4.2 (Homomorphism). A mapping h : K1 → K2 is
called a homomorphism iff for all k, k′ ∈ K1:

h(0K1) = 0K2 h(1K1) = 1K2

h(k +K1 k
′) = h(k) +K2 h(k′) h(k ·K1 k

′) = h(k) ·K2 h(k′)

Example 4.1. Consider the N-relations shown below which are
non-temporal versions of our running example. Query Q =
Πmach( works ./ assign) returns machines for which there are
workers with the right skill to operate the machine. Under multiset
semantics we expect M1 to occur in the result of Q with multiplic-
ity 8 since (M1, SP ) joins with (Pete, SP ) and with (Bob, SP ).
Evaluating the query in N yields the expected result by multiplying
the annotations of these join partners. Given the N result of the
query, we can compute the result of the query under set semantics
by applying a homomorphism h which maps all non-zero annota-
tions to true and 0 to false. For example, for result (M1) we get
h(8) = true, i.e., this tuple is in the result under set semantics.

works
name skill N
Pete SP 1
Bob SP 1
Alice NS 1

assign
mach skill N
M1 SP 4
M2 NS 5

Result
A N

M1 1 · 4 + 1 · 4 = 8
M2 5 · 1 = 5

4.2 Snapshot K-relations
We now formally define snapshot K-relations, snapshot seman-

tics over such relations, and then define representation systems. We
assume a totally ordered and finite domain T of time points and use
≤T to denote its order. Tmin and Tmax denote the minimal and
maximal (exclusive) time point in T according to ≤T, respectively.
We use T + 1 to denote the successor of T ∈ T according to ≤T.

A snapshot K-relation over a relation schema R is a function
T→RK,R, whereRK,R is the set of allK-relations with schema
R. Snapshot K-databases are defined analog. We use DBT,K to
denote the set of all snapshot K-databases for time domain T.

Definition 4.3 (Snapshot K-relation). Let K be a commutative
semiring and R a relation schema. A snapshot K-relation R is
a function R : T→RK,R.

For instance, a snapshot N-relation is shown in Figure 2 (bot-
tom). Given a snapshot K-relation, we use the timeslice opera-
tor [24] to access its state (snapshot) at a time point T :

τT (R) = R(T )

The evaluation of a query Q over a snapshot database (set of
snapshot relations) D under snapshot semantics returns a snapshot

relation Q(D) that is constructed as follows: for each time point
T ∈ T we have Q(D)(T ) = Q(D(T )). Thus, snapshot tem-
poral queries over snapshot K-relations behave like queries over
K-relations for each snapshot, i.e., their semantics is uniquely de-
termined by the semantics of queries over K-relations.

Definition 4.4 (Snapshot Semantics). Let D be a snapshot K-
database and Q be a query. The result Q(D) of Q over D is a
snapshot K-relation that is defined point-wise as follows:

∀T ∈ T : Q(D)(T ) = Q(τT (D))

For example, consider the snapshot N-relation shown at the bot-
tom of Figure 2 and the evaluation of Qonduty under snapshot se-
mantics as also shown in this figure. Observe how the query re-
sult is computed by evaluating Qonduty over each snapshot indi-
vidually using multiset (N) query semantics. Furthermore, since
τT (Q(R)) = Q(R)(T ), per the above definition, the timeslice
operator commutes with queries: τT (Q(R)) = Q(τT (R)). This
property is snapshot-reducibility.

4.3 Representation Systems
To compactly encode snapshot K-relations, we study represen-

tation systems that consist of a set of representations E , a func-
tion ENC : E → DBT,K which associates an encoding in E with
the snapshot K-database it represents, and a timeslice operator τT
which extracts the snapshot at time T from an encoding. If ENC
is injective, then we use ENC−1(D) to denote the unique encod-
ing associated with D. We use τ to denote the timeslice over both
snapshot databases and representations. It will be clear from the
input which operator τ refers to. For such a representation system,
we consider two encodings D1 and D2 from E to be snapshot-
equivalent [22] (written asD1 ∼ D2) if they encode the same snap-
shot K-database. Note that this is the case if they encode the same
snapshots, i.e., iff for all T ∈ T we have τT (D1) = τT (D2). For a
representation system to behave correctly, the following conditions
have to be met: 1) uniqueness: for each snapshot K-database D
there exists a unique element from E representing D; 2) snapshot-
reducibility: the timeslice operator commutes with queries; and 3)
snapshot-preservation: the encoding function ENC preserves the
snapshots of the input.

Definition 4.5 (Representation System). We call a triple
(E , ENC, τ) a representation system for snapshot K-databases
with regard to a class of queries C iff for every snapshot database
D, encodings E, E′ ∈ E , time point T , and query Q ∈ C we have

1. ENC(E) = ENC(E′)⇒ E = E′ (uniqness)

2. τT (Q(E)) = Q(τT (E)) (snapshot-reducibility)

3. ENC(E) = D ⇒ τT (E) = τT (D) (snapshot-preservation)

5. TEMPORAL K-ELEMENTS
We now introduce temporal K-elements that are the annotations

we use to define our logical model (representation system). Tem-
poral K-elements record, using an interval-based encoding, how
the K-annotation of a tuple in a snapshot K-relation changes over
time. We introduce a unique normal form for temporalK-elements
based on a generalization of coalescing [10].

5.1 Defining Temporal K-elements
To define temporal K-elements, we need to introduce some

background on intervals. Given the time domain T and its asso-
ciated total order ≤T, an interval I = [Tb, Te) is a pair of time
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points from T, where Tb <T Te. Interval I represents the set of
contiguous time points {T | T ∈ T ∧ Tb ≤T T <T Te}. For
an interval I = [Tb, Te) we use I+ to denote Tb and I− to de-
note Te. We use I, I ′, I1, . . . to represent intervals. We define
a relation adj(I1, I2) that contains all interval pairs that are ad-
jacent: adj(I1, I2) ⇔ (I1

− = I2
+) ∨ (I2

− = I1
+). We will

implicitly understand set operations, such as t ∈ I or I1 ⊆ I2,
to be interpreted over the set of points represented by an interval.
Furthermore, I ∩ I ′ denotes the interval that covers precisely the
intersection of the sets of time points defined by I and I ′ and I ∪I ′
denotes their union (only well-defined if I ∩ I ′ 6= ∅ or adj(I, I ′)).
For convenience, we define I∪I ′ = ∅ iff I∩I ′ = ∅∧¬adj(I, I ′).
We use I to denote the set of all intervals over T.

Definition 5.1 (Temporal K-elements). Given a semiring K, a
temporal K-element T is a function I → K. We use TEK to
denote the set of all such temporal elements for K.

We represent temporal K-elements as sets of input-output pairs.
Intervals that are not explicitly mentioned are mapped to 0K .

Example 5.1. Reconsider our running example with T =
{00, . . . , 23}. The history of the annotation of tuple t =
(Ann,SP) from the works relation is as shown in Figure 2 (mid-
dle). For sake of the example, we change the multiplicity of this
tuple to 3 during [03, 09) and 2 during [18, 20). This informa-
tion is encoded as the temporal N-element T1 = {[03, 09) 7→
3, [18, 20) 7→ 2}.

Note that a temporal K-element T may map overlapping in-
tervals to non-zero elements of K. We assign the following se-
mantics to overlap: the annotation at a time point T recorded
by T is the sum of the annotations assigned to intervals contain-
ing T . For instance, the annotation at time 04 for the N-element
T = {[00, 05) 7→ 2, [04, 05) 7→ 1} would be 2 + 1 = 3. To ex-
tract the annotation valid at time T from a temporal K-element T ,
we define a timeslice operator for temporalK-elements as follows:

τT (T ) =
∑
T∈I

T (I) (timeslice operator)

Given two temporal K-elements T1 and T2, we would like to
know if they represent the same history of annotations. For that,
we define snapshot-equivalence (∼) for temporal K-elements:

T1 ∼ T2 ⇔ ∀T ∈ T : τT (T1) = τT (T2) (snapshot-equivalence)

5.2 A Normal Form Based on K-Coalescing
The encoding of the annotation history of a tuple as a temporal

K-element is typically not unique.

Example 5.2. Reconsider the temporal N-element T1 from Exam-
ple 5.1. Recall that we omit intervals that are mapped to 0. The
N-elements shown below are snapshot-equivalent to T1.

T2 = {[03, 09) 7→ 1, [03, 06) 7→ 2, [06, 09) 7→ 2, [18, 19) 7→ 2}

T3 = {[03, 05) 7→ 3, [05, 09) 7→ 3, [18, 19) 7→ 2}

To be able to build a representation system based on temporal
K-elements we need a unique way to encode the annotation his-
tory of a tuple as a temporal K-element (condition 1 of Defini-
tion 4.5). That is, we need to define a normal form that is unique
for snapshot-equivalent temporalK-elements. To this end, we gen-
eralize coalescing, which was defined for temporal databases with
set semantics in [10, 38]. The generalized form, which we call K-
coalescing, coincides with standard coalescing for semiring B (set
semantics) and, for any semiring K, yields a unique encoding.

sal period
50k [1, 13)

30k [3, 13)

30k [3, 10)

40k [11, 13)

T50k = {[1, 13) 7→ 1}

T30k = {[3, 10) 7→ 1, [3, 13) 7→ 1}

T40k = {[11, 13) 7→ 1}

Figure 3: Example period multiset relation S and temporal N-
elements encoding the history of tuples.

K-coalescing creates maximal intervals of contiguous time
points with the same annotation. The output is a temporal K-
element such that (a) no two intervals mapped to a non-zero ele-
ment overlap and (b) adjacent intervals assigned to non-zero ele-
ments are guaranteed to be mapped to different annotations. To
determine such intervals, we define annotation changepoints, time
points T where the annotation of a temporal K-element differs
from the annotation at T − 1, i.e., τT (T ) 6= τT−1(T ). It will
be convenient to also consider Tmin as an annotation changepoint.

Definition 5.2 (Annotation Changepoint). Given a temporal K-
element T , a time point T is called a changepoint in T if one of the
following conditions holds:

• T = Tmin (smallest time point)

• τT−1(T ) 6= τT (T ) (change of annotation)

We use CP (T ) to denote the set of all annotation changepoints for
T . Furthermore, we define CPI(T ) to be the set of all intervals
that consist of consecutive change points:

CPI(T ) = {[Tb, Te) | Tb <T Te ∧ Tb ∈ CP (T ) ∧
(Te ∈ CP (T ) ∨ Te = Tmax) ∧
6 ∃T ′ ∈ CP (T ) : Tb <T T

′ <T Te}

In Definition 5.2, CPI(T ) computes maximal intervals such
that the annotation assigned by T to each point in such an interval
is constant. In the coalesced representation of T only such intervals
are mapped to non-zero annotations.

Definition 5.3 (K-Coalesce). Let T be a temporal K-element. We
define K-coalescing CK as a function TEK → TEK :

CK(T )(I) =

{
τI+(T ) if I ∈ CPI(T )

0K otherwise

We use TECK to denote all normalized temporal K-elements, i.e.,
elements T for which CK(T ′) = T for some T ′.

Example 5.3. Consider the SQL period relation shown in Figure 3.
The temporal N-elements encode the history of tuples (30k), (40k)
and (50k). Note that T30k is not coalesced since the two non-zero
intervals of this N-element overlap. Applying N-coalesce we get:

CN(T30k) = {[3, 10) 7→ 2, [10, 13) 7→ 1}

That is, this tuple occurs twice within the time interval [3, 10) and
once in [10, 13), i.e., it has annotation changepoints 3, 10, and
14. Interpreting the same relation under set semantics (semiring
B), the history of (30k) can be encoded as a temporal B-element
T30k′ = {[3, 10) 7→ true, [3, 13) 7→ true}. Applying B-coalesce:

CB(T30k′) = {[3, 13) 7→ true}

That is, this tuple occurs (is annotated with true) within the time
interval [3, 13) and its annotation changepoints are 3 and 14.

We now prove several important properties of the K-coalesce
operator establishing that TECK (coalesced temporalK-elements)
is a good choice for a normal form of temporal K-elements.
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Lemma 5.1. Let K be a semiring and T , T1 and T2 temporal K-
elements. We have:

CK(CK(T )) = CK(T ) (idempotence)
T1 ∼ T2 ⇔ CK(T1) = CK(T2) (uniqueness)

T ∼ CK(T ) (equivalence preservation)

Proof Sketch. We provide the proofs for all lemmas and theorems in
a technical report [19], but show sketches for important proofs here.
Equivalence preservation and uniqueness follow from the fact that
annotation change points are defined based on snapshots. Unique-
ness plus equivalence preservation implies idempotence.

6. PERIOD SEMIRINGS
Having established a unique normal form of temporal K-

elements, we now proceed to define period semirings as our logical
model. The elements of a period semiring are temporalK-elements
in normal form. We prove that these structures are semirings and
ultimately that relations annotated with period semirings form a
representation system for snapshot K-relations for RA+. In Sec-
tion 7, we then prove them to also be a representation system for
RAagg , i.e., queries involving difference and aggregation.

When defining the addition and multiplication operations and
their neutral elements in the semiring structure of temporal K-
elements, we have to ensure that these definitions are compatible
with semiringK on snapshots. Furthermore, we need to ensure that
the output of these operations is guaranteed to beK-coalesced. The
latter can be ensured by applying K-coalesce to the output of the
operation. For addition, snapshot reducibility is achieved by point-
wise addition (denoted as +KP ) of the two functions that constitute
the two input temporalK-elements. That is, for each interval I , the
function that is the result of the addition of temporal K-elements
T1 and T2 assigns to I the value T1(I) +K T2(I). For multipli-
cation, the multiplication of two K-elements assigned to an over-
lapping pair of intervals I1 and I2 is valid during the intersection
of I1 and I2. Since both input temporal K-elements may assign
non-zero values to multiple intervals that have the same overlap,
the resulting K-value at a point T would be the sum over all pairs
of overlapping intervals. We denote this operation as ·KP . Since
+KP and ·KP may return a temporal K-element that is not coa-
lesced, we define the operations of our structures to apply CK to
the result of +KP and ·KP . The zero element of the temporal ex-
tension of K is the temporal K-element that maps all intervals to 0
and the 1 element is the temporal element that maps every interval
to 0K except for [Tmin, Tmax) which is mapped to 1K .

Definition 6.1 (Period Semiring). For a time domain T with min-
imum Tmin and maximum Tmax and a semiring K, the period
semiring KT is defined as:

KT = (TECK ,+KT , ·KT , 0KT , 1KT )

where for k, k′ ∈ TECK and :

∀I ∈ I : 0KT (I) = 0K 1KT (I) =

{
1K if I = [Tmin, Tmax)

0K otherwise

k +KT k
′ = CK(k +KP k

′)

∀I ∈ I : (k +KP k
′)(I) = k(I) +K k′(I)

k ·KT k
′ = CK(k ·KP k

′)

∀I ∈ I : (k ·KP k
′)(I) =

∑
∀I′,I′′:I=I′∩I′′

k(I ′) ·K k′(I ′′)

Example 6.1. Consider the NT -relation works shown in Fig-
ure 2 (middle) and query Πskill(works). Recall that the anno-
tation of a tuple t in the result of a projection over a K-relation is
the sum of all input tuples which are projected onto t. For result
tuple (SP) we have input tuples (Ann,SP) and (Sam,SP) with
T1 = {[03, 10) 7→ 1, [18, 20) 7→ 1} and T2 = {[08, 16) 7→ 1},
respectively. The tuple (SP) is annotated with the sum of these
annotations, i.e., T1 +NT T2. Substituting definitions we get:

T1 +NT T2 = CN(T1 +NP T2)

=CN({[03, 10) 7→ 1, [18, 20) 7→ 1, [08, 16) 7→ 1})
={[03, 08) 7→ 1, [08, 10) 7→ 2, [10, 16) 7→ 1, [18, 20) 7→ 1}

Thus, as expected, the result records that, e.g., there are two skilled
workers (SP) on duty during time interval [08, 10).

Having defined the family of period semirings, it remains to be
shown thatKT with standard K-relational query semantics is a rep-
resentation system for snapshot K-relations.

6.1 KT is a Semiring
As a first step, we prove that for any semiring K, the struc-

ture KT is also a semiring. The following lemma shows that K-
coalesce can be redundantly pushed into +KP and ·KP operations.

Lemma 6.1. Let K be a semiring and k, k′ ∈ TECK . Then,

CK(k +KP k
′) = CK(CK(k) +KP k

′)

CK(k ·KP k
′) = CK(CK(k) ·KP k

′)

Using this lemma, we now prove that for any semiring K, the
structure KT is also a semiring.

Theorem 6.2. For any semiring K, structure KT is a semiring.

Proof Sketch. We prove that KT obeys the laws of a commutative
semiring based on K being a semiring and Lemma 6.1.

6.2 Timeslice Operator
We define a timeslice operator for KT -relations based on the

timeslice operator for temporal K-elements. We annotate each tu-
ple in the output of this operator with the result of τT applied to the
temporal K-element the tuple is annotated with.

Definition 6.2 (Timeslice for KT -relations). Let R be a KT -
relation and T ∈ T. The timeslice operator τT (R) is defined as:

τT (R)(t) = τT (R(t))

We now prove that the τT is a homomorphism KT → K.
Since semiring homomorphisms commute with queries [21], KT
equipped with this timeslice operator does fulfill the snapshot-
reducibility condition of representation systems (Definition 4.5).

Theorem 6.3. For any T ∈ T, the timeslice operator τT is a semir-
ing homomorphism from KT to K.

Proof Sketch. Proven by substitution of definitions and by regroup-
ing terms using semiring laws.

As an example of the application of this homomorphism, con-
sider the period N-relation works from our running example as
shown on the left of Figure 2. Applying τ08 to this relation yields
the snapshot shown on the bottom of this figure (three employees
work between 8am and 9am out of whom two are specialized). If
we evaluate query Qonduty over this snapshot we get the snapshot
shown on the right of this figure (the count is 2). By Theorem 6.3
we get the same result if we evaluateQonduty over the input period
N-relation and then apply τ08 to the result.
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6.3 Encoding of Snapshot K-relations
We now define a bijective mapping ENCK from snapshot K-

relations to KT -relations. We then prove that the set of KT -
relations together with the timeslice operator for such relations and
the mapping ENCK

−1 (the inverse of ENCK ) form a representa-
tion system for snapshotK-relations. Intuitively, ENCK(R) is con-
structed by assigning each tuple t a temporal K-element where the
annotation of the tuple at time T (i.e.,R(T )(t)) is assigned to a sin-
gleton interval [T, T + 1). This temporal K-element TR,t is then
coalesced to create a TECK element.

Definition 6.3. LetK be a semiring andR a snapshotK-relation,
ENCK is a mapping from snapshot K-relations to KT -relations
defined as follows.

∀t : ENCK(R)(t) = CK(TR,t)

∀t, I : TR,t(I) =

{
R(T )(t) if I = [T, T + 1)

0K otherwise

We first prove that this mapping is bijective, i.e., it is invertible,
which guarantees that ENCK

−1 is well-defined and also implies
uniqueness (condition 1 of Definition 4.5).

Lemma 6.4. For any semiring K, ENCK is bijective.

Next, we have to show that ENCK preserves snapshots, i.e., the
instance at a time point T represented by R can be extracted from
ENCK(R) using the timeslice operator.

Lemma 6.5. For any semiring K, snapshot K-relation R, and
time point T ∈ T, we have τT (ENCK(R)) = τT (R).

Based on these properties of ENCK and the fact that the times-
lice operator over KT -relations is a homomorphism KT → K,
our main technical result follows immediately. That is, the set of
KT -relations equipped with the timeslice operator and ENCK

−1

is a representation system for positive relational algebra queries
(RA+) over snapshot K-relations.

Theorem 6.6 (Representation System). Given a semiring K,
let DBKT be the set of all KT -relations. The triple
(DBKT , ENCK

−1, τ) is a representation system forRA+ queries
over snapshot K-relations.

Proof Sketch. We have to show that conditions (1), (2), and (3) of
Definition 4.5 hold. Conditions (1) and (2) have been proven in
Lemmas 6.4 and 6.5, respectively. Condition (3) follows from the
fact that τT is a homomorphism (Theorem 6.3) and that homomor-
phisms commute withRA+-queries [21, Proposition 3.5].

7. COMPLEX QUERIES
Having proven that KT -relations form a representation system

forRA+, we now study extensions for difference and aggregation.

7.1 Difference
Extensions of K-relations for difference have been studied

in [3, 20]. For instance, the difference operator on N relations
corresponds to bag difference (SQL’s EXCEPT ALL). Geerts et
al. [20] apply an extension of semirings with a monus operation
that is defined based on the natural order of a semiring and demon-
strated how to define a difference operation for K-relations based
on the monus operation for semirings where this operation is well-
defined. Following the terminology introduced in this work, we
refer to semirings with a monus operation as m-semirings. We now
prove that if a semiring K has a well-defined monus, then so does

KT . From this follows, that for any such K, the difference opera-
tion is well-defined for KT . We proceed to show that the timeslice
operator is an m-semiring homomorphism, which implies thatKT -
relations for any m-semiring K form a representation system for
RA (full relational algebra). The definition of a monus operator is
based on the so-called natural order �K . For two elements k and
k′ of a semiring K, k �K k′ ⇔ ∃k′′ : k +K k′′ = k′. If �K is a
partial order then K is called naturally ordered. For instance, N is
naturally ordered (�N corresponds to the order of natural numbers)
while Z is not (for any k, k′ ∈ Z we have k �Z k

′). For the monus
to be well-defined on K, K has to be naturally ordered and for any
k, k′ ∈ K, the set {k′′ | k �K k′ +K k′′} has to have a small-
est member. For any semiring fulfilling these two conditions, the
monus operation −K is defined as k −K k′ = k′′ where k′′ is the
smallest element such that k �K k′ + k′′. For instance, the monus
for N is the truncating minus: k −N k

′ = max(0, k − k′).

Theorem 7.1. For any m-semiring K, semiring KT has a well-
defined monus, i.e., is an m-semiring.

Proof Sketch. We first prove thatK being naturally ordered implies
thatKT is naturally ordered where k �KT k

′ is τT (k) �K τT (k′)
for all time points T . Then we show constructively that for any k
and k′, the set {k′′ | k �KT k′ + k′′} has a smallest element
wrt. �KT . These two condition are the only requirements for a
semiring to have a well-defined monus.

Let k −KP k
′ denote an operation that returns a temporal K-

element which assigns to each singleton interval [T, T + 1) the
result of the monus for K: τT (k) −K τT (k′) . In the proof of
Theorem 7.1, we demonstrate that k −KT k

′ = CK(k −KP k
′).

Obviously, computing k −KP k′ using singleton intervals is not
effective. In our implementation, we use a more efficient way to
compute the monus for KT that is based on normalizing the input
temporalK-elements k and k′ such that annotations are attached to
larger time intervals where k −KP k

′ is guaranteed to be constant.
Importantly, τT is a homomorphism for monus-semiring KT .

Theorem 7.2. Mapping τT is an m-semiring homomorphism.

Proof Sketch. Proven by substitution of definitions.
For example, consider Qskillreq from Example 1.2 which

can be expressed in relational algebra as Πskill(assign) −
Πskill(worker). The NT -relation corresponding to the period
relation assign shown in this example annotates each tuple with
a singleton temporal N-element mapping the period of this tuple
to 1, e.g., (M1, SP) is annotated with {[03, 12) 7→ 1}. The
annotation of result tuple (SP) is computed as

({[03, 12) 7→ 1}+NT {[06, 14) 7→ 1})
−NT ({[03, 10) 7→ 1}+NT {[08, 16) 7→ 1}+NT {[18, 20) 7→ 1})

={[03, 06) 7→ 1, [06, 12) 7→ 2, [12, 14) 7→ 1}
−NT {[03, 08) 7→ 1, [08, 10) 7→ 2, [10, 16) 7→ 1, [18, 20) 7→ 1}

={[06, 08) 7→ 1, [10, 12) 7→ 1}

As expected, the result is the same as the one from Example 1.2.

7.2 Aggregation
The K-relational framework has previously been extended to

support aggregation [4]. This required the introduction of at-
tribute domains which are symbolic expressions that pair values
with semiring elements to represent aggregated values. Since the
construction used in this work to derive the mathematical struc-
tures representing these symbolic expressions is applicable to all
semirings, it is also applicable to our period semirings. It was
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shown that semiring homomorphisms can be lifted to these more
complex annotation structures and attribute domains. Thus, the
timeslice operator, being a semiring homomorphism, commutes
with queries including aggregation, and it follows that using the
approach from [4], we can define a representation system for snap-
shot K-relations underRA with aggregation, i.e.,RAagg .

One drawback of this definition of aggregation over K-relations
with respect to our use case is that there are multiple ways of encod-
ing the same snapshot K-relation in this model. That is, we would
loose uniqueness of our representation system. Recall that one of
our major goals is to implement snapshot query semantics on-top
of DBMS using a period multiset encoding of NT -relations. The
symbolic expressions representing aggregation function results are
a compact representation which, in case of our interval-temporal
semirings, encode how the aggregation function results change over
time. However, it is not clear how to effectively encode the sym-
bolic attribute values and comparisons of symbolic expression as
multiset semantics relations, and how to efficiently implement our
snapshot semantics over this encoding. Nonetheless, for N, we can
apply a simpler definition of aggregation that returns aKT relation
and is also a representation system. For simplicity, we define aggre-
gation Gγf(A)(R) grouping on G to compute a single aggregation
function f over the values of an attribute A. For convenience, ag-
gregation without group-by, i.e., γf(A)(R) is expressed using an
empty group-by list.

Definition 7.1 (Aggregation). Let R be a NT relation. Operator
Gγf(A)(R) groups the input on a (possibly empty) list of attributes
G = (g1, . . . , gn) and computes aggregation function f over the
values of attribute A. This operator is defined as follows:

Gγf(A)(R)(t) = CN(kR,t)

kR,t(I) =

{
1 if ∃T : I = [T, T+1) ∧ t ∈ Gγf(A)(τT (R))

0 otherwise

In the output of the aggregation operator, each tuple t is anno-
tated with a N-coalesced temporal N-element which is constructed
from singleton intervals. A singleton interval I = [T, T + 1) is
mapped to 1 if evaluating the aggregation over the multiset rela-
tion corresponding to the snapshot at T returns tuple t. We now
demonstrate that NT using this definition of aggregation is a repre-
sentation system for snapshot N-relations.

Theorem 7.3. NT -relations form a representation system for snap-
shot N-relations and RAagg queries using aggregation according
to Definition 7.1.

Proof Sketch. By construction, the result of aggregation is a
NT relation (it is coalesced). Also by construction, we have
τT (Gγf(A)(R)) = Gγf(A)(τT (R)).

8. SQL PERIOD RELATION ENCODING
While provably correct, the annotation structure that we have

defined is quite complex in nature raising concerns on how to effi-
ciently implement it. We now demonstrate that NT -relations (mul-
tisets) can be encoded as SQL period relations (as shown on the
top of Figure 2). Recall that SQL period relations are multiset re-
lations where the validity time interval (period) of a tuple is stored
in an interval-valued attribute (or as two attributes storing interval
end points). Queries over NT are then translated into non-temporal
multiset queries over this encoding. In addition to employing a
proven and simple representation of time this enables our approach
to run snapshot queries over such relations without requiring any
preprocessing and to implement our ideas on top of a classical

DBMS. For convenience we represent SQL period relations using
non-temporal N-relations in the definitions. SQL period relations
can be obtained based on the well-known correspondence between
multiset relations and N-relations: we duplicate each tuple based on
the multiplicity recorded in its annotation. To encode NT -relations
as N-relations we introduce an invertible mapping PERIODENC.
We rewrite queries with NT -semantics into non-temporal queries
with N-semantics over this encoding using a rewriting function
REWR. This is illustrated in the commutative diagram below.

R R′

Q(R) Q′(R′)

PERIODENC

Q Q′ = REWR(Q)

PERIODENC−1

(1)

Our encoding represents a tuple t annotated with a temporal ele-
ment T as a set of tuples, one for each interval I which is assigned
a non-zero value by T . For each such interval, the interval’s end
points are stored in two attributes Abegin and Aend , which are ap-
pended to the schema of t. Again, we use t 7→ k to denote that tuple
t is annotated with k and U to denote a universal domain of values.
We use SCH(R) to denote the schema of relationR and arity(R)
to denote its arity (the number of attributes in the schema).

Definition 8.1 (Encoding as SQL Period Relations). PERIODENC
is a function from NT -relations to N-relations. Let R be a NT
relation with schema SCH(R) = {A1, . . . , An}. The schema
of PERIODENC(R) is {A1, . . . , An, Abegin , Aend}. Let R′ be
PERIODENC(R) for some NT -relation. PERIODENC and its in-
verse are defined as follows:

PERIODENC(R) =
⋃

t∈Uarity(R)

⋃
I∈I

{(t, I+, I−) 7→ R(t)(I)}

PERIODENC−1(R′) =
⋃

t∈Uarity(R)

{t 7→ TR′,t}

∀I ∈ I : TR′,t(I) = R′(tI) for tI = (t, I+, I−)

Before we define the rewriting REWR that reduces a query Q
with NT semantics to a query with N semantics, we introduce two
operators that we will make use of in the reduction. The N-coalesce
operator applies CN to the annotation of each tuple in its input.

Definition 8.2 (Coalesce Operator). LetR be PERIODENC(R′) for
some NT -relation R′. The coalesce operator C(R) is defined as:

C(R) = PERIODENC(R′)

∀t : R′(t) = CN(PERIODENC−1(R)(t))

The split operator NG(R,S) splits the intervals in the tempo-
ral elements annotating a tuple t based on the union of all interval
end points from annotations of tuples t′ which agree with t on at-
tributesG. InputsR and S have to be union compatible. The effect
of this operator is that all pairs of intervals mapped to non-zero el-
ements are either the same or are disjoint. This operator has been
applied in [16,18] and in [12,47]. We use it to implement snapshot-
reducible aggregation and difference over intervals instead of single
snapshots as in Section 7. Recall that in Section 7, the monus (dif-
ference) and aggregation were defined in a point-wise manner. The
split operator allows us to evaluate these operations over intervals
directly by generating tuples with intervals for which the result of
these operations is guaranteed to be constant.

Definition 8.3 (Split Operator). The split operator NG(R1, R2)
takes as input two N-relations R1 and R2 that are encodings
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REWR(R) = R REWR(σθ(Q)) = C(σθ(REWR(Q))) REWR(ΠA(Q)) = C(ΠA,Abegin ,Aend (REWR(Q)))

REWR(Q1 ./θ Q2) = C(ΠSCH(Q1./θQ2),max(Q1.Abegin ,Q2.Abegin ),min(Q1.Aend ,Q2.Aend )(REWR(Q1) ./θ∧overlaps(Q1,Q2) REWR(Q2)))

REWR(Q1 −Q2) = C(NSCH(Q1)(REWR(Q1),REWR(Q2))−NSCH(Q2)(REWR(Q2),REWR(Q1)))

REWR(γf(A)(Q)) = C(Abegin ,Aend γf(A)(N∅(REWR(Q) ∪ {(null, Tmin, Tmax)},REWR(Q))))

REWR(γcount(∗)(Q)) = REWR(γcount(A)(Π1→A(Q)))

REWR(Gγf(A)(Q)) = C(G,Abegin ,Aend γf(A)(NG(REWR(Q),REWR(Q)))) REWR(Q1 ∪Q2) = C(REWR(Q1) ∪ REWR(Q2))

Figure 4: Rewriting REWR that reduces queries over NT to queries over a multiset encoding produced by PERIODENC.

of NT -relations. For a tuple t in such an encoding let I(t) =
[t.Abegin , t.Aend). The split operator is defined as:

NG(R1, R2)(t) = split(t, R1, EPG(R1 ∪R2, t))

EPG(R, t) =
⋃

t′∈R:t′.G=t.G∧R(t′)>0

{t′.Abegin} ∪ {t′.Aend}

split(t, R,EP ) =
∑

t′:I(t)⊆I(t′)∧I(t)∈EPI(t,EP )

R(t′)

EPI(t, EP ) = {[Tb, Te) | Tb <T Te ∧ Tb ∈ EP∧
(Te ∈ EP ∨ Te = Tmax)∧
6 ∃T ′ ∈ EP : Tb <T T

′ <T Te}

The use of the PERIODENC and PERIODENC−1 mappings in the
definitions of the coalesce and split algebra operators is only for
ease of presentation. These operators can be implemented as SQL
queries executed over an PERIODENC-encoded relation.

Definition 8.4 (Query Rewriting). We use overlaps(Q1, Q2) as
a shortcut for Q1.Abegin < Q2.Aend ∧ Q2.Abegin < Q1.Aend .
The definition of rewriting REWR is shown in Figure 4. Here {t}
denotes a constant relation with a single tuple t annotated with 1.

Note that the rule for count(∗) is a necessary preprocessing step
that takes precedence over the rule for general aggregation.

Example 8.1. Reconsider query Qonduty from Example 1.1 and
its results for the logical model and period relations (Figure 2).
In relational algebra, the input query is written as Qonduty =
γcount(∗)(σskill=SP (works)︸ ︷︷ ︸

Q1

). Applying REWR we get:

REWR(Qonduty) = C(Abegin ,Aend γcount(A)(N∅(
Π1→A,Abegin ,Aend (REWR(Q1)) ∪ {(null, 0, 24)},
REWR(Q1))))

REWR(Q1) = C(σskill=SP (works))

Subquery REWR(Q1) filters out the second tuple from the input
(see Figure 2). The split operator is then applied to the union
of the result of REWR(Q1) and a tuple with the neutral element
null for the aggregation function and period [Tmin, Tmax), where
Tmin = 0 and Tmax = 24 for this example. After the split N , the
aggregation is evaluated grouping the input on Abegin , Aend . The
count aggregation function then either counts a sequence of 1s
and a single null value producing the number of facts that overlap
over the corresponding period [Abegin , Aend), or counts a single
null value over a “gap” producing 0. For instance, for [08, 10)
there are two facts whose intervals cover this period (Ann and Sam)
and, thus, (2, [08, 10)) is returned by REWR(Qonduty). While for
for [20, 24) there are no facts and thus we get (0, [20, 24)).

Theorem 8.1. The commutative diagram in Equation (1) holds.

Proof Sketch. Proven by induction over query structure.

9. IMPLEMENTATION
We have implemented the encoding and rewriting introduced in

the previous section in a middleware which supports snapshot mul-
tiset semantics through an extension of SQL. To instruct the sys-
tem to interpret a subquery using snapshot semantics, the user en-
closes the subquery in a SEQ VT (...) block. We assume that
the inputs to a snapshot query are encoded as period multiset rela-
tions, i.e., each relation has two temporal attributes that store the
begin and end timestamp of their validity interval. For each rela-
tion access within a SEQ VT block, the user has to specify which
attributes store the period of a tuple.

Our coalescing and split operators can be expressed in SQL.
Thus, a straightforward way of incorporating these operators into
the compilation process is to devise additional rewrites that pro-
duce the relational algebra code for these operators where neces-
sary. However, preliminary experiments demonstrated that a naive
implementation of these operators is prohibitively expensive.

We address this problem in two ways. First, we observe that it is
sufficient to apply coalesce as a last step in a query instead of apply-
ing it as part of every operator rewrite. Applying this optimization,
the rewritten version of a query will only contain one coalesce op-
erator. Recall from Lemma 6.1 that coalescing can be redundantly
pushed into the addition and multiplication operations of period
semirings, e.g., CK(k +KP k

′) = CK(CK(k) +KP k
′). We have

proven that this Lemma also holds for monus [19]. Interpreting
this equivalence from right to left and applying it repeatedly to a
semiring expression e, e can be rewritten into an equivalent expres-
sion of the form CK(e′), where e′ is an expression that only uses
operations +KP , ·KP , and −KP . Since relational algebra over K-
relations is defined by applying multiplication, addition, and monus
to input annotations, this implies that it is sufficient to apply coa-
lescing only as a final operation in a query. For further discussion
of this optimization and an example see [19, Appendix C].

We developed an optimized implementation of multiset coalesc-
ing using SQL analytical window functions, similar to set-based
coalescing in [48], that counts for value-equivalent attributes the
number of open intervals per time point, determines change points
based on differences between these counts, and then only out-
put maximal intervals using a filter step. This implementation
uses sorting in its window declarations and has time complexity
O(n logn) for n tuples. A native implementation would require
only one sorting step. The number of sorting steps required by our
SQL implementation depends on whether the DBMS is capable of
sharing window declarations (we observe 2 and 7 sorting steps for
the systems used in our experimental evaluation).

For aggregation we integrate the split operator into the aggre-
gation. It turned out to be most effective to pre-aggregate the in-
put before splitting and then compute the final aggregation results
during the split step by further aggregating the results of the pre-
aggregation step. We apply a similar optimization for difference.
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10. EXPERIMENTS
In our experimental evaluation we focus on two aspects. First,

we evaluate the cost of our SQL implementation of N-coalescing
(multiset coalescing). Then, we evaluate the performance of snap-
shot queries with our approach over three DBMSs and compare it
against native implementations of snapshot semantics that are avail-
able in two of these systems (using our implementation of coalesc-
ing to produce a coalesced result).

10.1 Workloads and Experimental Setup
Datasets. We use two datasets in our experiments. The MySQL

Employees dataset (https://github.com/datacharmer/
test db) which contains ≈4 million records and consists of the
following six period tables: table employee stores basic infor-
mation about employees; table departments stores department
information; table titles stores the job titles for employees; ta-
ble salaries stores employee salaries; table dept manager
stores which employee manages which department; and table
dept emp stores which employee is working for which depart-
ment. TPC-BiH is the bi-temporal version of the TPC-H bench-
mark dataset as described in [25]. Since our approach supports
only one time dimension we only generated the valid time dimen-
sion for this dataset. In this configuration a scale factor 1 (SF1)
database corresponds to roughly 1GB of data. In our technical
report we also use a real-world Tourism dataset (835k records).

Workloads. To evaluate the efficiency of snapshot queries, we
created a workload consisting of the following 10 queries expressed
over the employee dataset. join-1: salary and department for
each employee using a join between the department and salary ta-
bles. join-2: salary and title for each employee using a join
between the salary and title tables. join-3: department of em-
ployees that manage a department and earn more than $70,000 us-
ing a join between the manager and salary tables and a selection
on attribute salary.join-4: gather all information for each man-
ager using joins between the tables managers, salary, and employ-
ees. agg-1: average salary of employees per department using the
result of query join-1 with a subsequent aggregation per depart-
ment. agg-2: average salary of managers using a join between the
manager and salary tables with a subsequent aggregation without
grouping. agg-3: number of departments with more than 21 em-
ployees. This query has no join but two aggregations, one to com-
pute the number of employees per department and a second one to
count the number of relevant departments. agg-join: names of
employees with the highest salary in their department. This query
consists of a 4-way join where one of the inputs is the result of a
subquery with aggregation. diff-1: employees that are not man-
agers using a difference operation between two tables. diff-2:
salaries of employees that are not managers by computing the dif-
ference between a table and a subquery with a join. For the TPC-
BiH dataset we took 9 of the 22 standard queries [14] from this
benchmark that do not contain nested subqueries or LIMIT (which
are not supported by our or any other approach for snapshot queries
we are aware of) and evaluated these queries under snapshot seman-
tics. Note that some of these queries use the ORDER BY clause that
we do not support for snapshot queries. However, we can evaluate
such a query without ORDER BY under snapshot semantics and
then sort the result without affecting what rows are returned. The
number of rows returned by the Employee and TPC-H queries are
shown in Table 2. The SQL code and more detailed descriptions of
these queries are provided in [19, Appendix B].

Systems. We ran experiments on three different database man-
agement systems: a version of Postgres (PG) with native sup-

Table 2: Number of query result rows
join-1 join-2 join-3 join-4 agg-1 agg-2 agg-3 agg-join diff-1 diff-2
2.8M 28.3M 10 177 57.4k 177 210 260 300k 2.8M

TPC-H Q1 Q3 Q5 Q6 Q7 Q8 Q9 Q10 Q12 Q14 Q19
1GB 4.3k 10 386 529 1.6k 742 69.7k 20 785 479 220
10GB 4.3k 10 579 532 1.7k 867 74.8k 20 786 487 1.3k
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Figure 5: Multiset coalescing for varying input size.

port for temporal operators as described in [16, 18]; a commer-
cial DBMS, DBX, with native support for snapshot semantics (only
available as a virtual machine); and a commercial DBMS, DBY,
without native support for snapshot semantics. We used our ap-
proach to translate snapshot queries into standard SQL queries and
ran the translated queries on all three systems (denoted as PG-Seq,
DBX-Seq, and DBY-Seq). For PG and DBX, we ran the queries also
with the native solution for snapshot semantics paired with our im-
plementation of coalescing to produce a coalesced result (referred
to as PG-Nat and DBX-Nat). As explained in Section 2, no sys-
tem correctly implements snapshot multiset semantics for differ-
ence and aggregation, and many systems do not support snapshot
semantics for these operators at all. DBX-Nat and PG-Nat both
support snapshot aggregation, however, their implementations are
not snapshot-reducible. DBX-Nat does not support snapshot dif-
ference, whereas PG-Nat implements temporal difference with set
semantics. Despite such differences, the experimental comparison
allows us to understand the performance impact of our provably
correct approach.

All experiments were executed on a machine with 2 AMD
Opteron 4238 CPUs, 128GB RAM, and a hardware RAID with 4×
1TB 72.K HDs in RAID 5. For Postgres we set the buffer pool size
to 8GB. For the other systems we use values recommended by the
automated configuration tools of these systems. We execute queries
with warm cache. For short-running queries we show the median
runtime across 100 consecutive runs. For long running queries we
computed the median over 10 runs. In general we observed low
variation in runtimes (a few percent).

10.2 Multiset Coalescing
To evaluate the performance of coalescing, we use a selection

query that returns employees that earn more than a specific salary
and materialize the result as a table. The selectivity varies from 1K
to 3M rows. We then evaluate the query SELECT * FROM ...
over the materialized tables under snapshot semantics in order to
measure the cost of coalescing in isolation. Figure 5 shows the re-
sults of this experiment. The runtime of coalescing is linear in the
input size for all three systems. Even though the theoretical worst-
case complexity of the sorting step, which is applied by all sys-
tems to evaluate the analytics functions that we exploit in our SQL-
based implementation of multiset coalescing, is O(n · log(n)), an
inspection of the execution plans revealed that the sorting step only
amounts to 5%-10% of the execution time (for all selectivities) and,
hence, is not a dominating factor.
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Table 3: Runtimes (sec) of snapshot queries: N/A = not supported,
OOTS = system ran out of temporary space (2GB), TO (2h)=
timed out (2 hours).

Employee dataset
Query PG-Seq PG-Nat DBX-Seq DBX-Nat DBY-Seq Bug
join-1 91.97 118.01 118.95 116.03 64.00
join-2 1543.81 888.13 1569.45 1200.36 763.70
join-3 0.01 4.91 0.55 0.43 0.01
join-4 0.52 12.85 0.83 0.60 0.22
agg-1 7.02 5980.85 56.47 OOTS 5.24
agg-2 0.06 10.31 0.82 0.82 0.01 AG
agg-3 1.42 0.02 0.78 0.55 0.01 AG
agg-join 6643.61 19195.03 OOTS OOTS 7555.97
diff-1 14.18 6.88 30.15 N/A 10.29 BD
diff-2 63.58 79.63 129.87 N/A 61.90 BD

TPC-BiH
SF1 (∼1 GB) SF10 (∼10 GB)

Query PG-Seq PG-Nat DBY-Seq PG-Seq PG-Nat DBY-Seq Bug
Q1 12.02 3686.47 11.80 63.85 TO (2h) 82.61
Q5 0.58 142.91 1.14 5.85 1794.10 14.89
Q6 0.79 12.65 1.14 7.70 126.91 7.28 AG
Q7 1.14 285.91 5.33 28.70 1642.20 21.75
Q8 1.77 108.63 2.20 21.78 1484.61 17.33
Q9 10.12 TO (2h) 8.09 129.01 TO (2h) 71.37
Q12 1.10 23.85 1.81 10.49 264.57 13.30
Q14 1.72 403.92 2.75 26.55 3436.30 23.79 AG
Q19 0.92 203.83 2.55 9.60 2873.13 22.35 AG

10.3 Snapshot Semantics - Employee
Table 3 provides an overview of the performance results for our

snapshot query workloads. For every query we indicate in the right-
most column whether native approaches are subject to the aggrega-
tion gap (AG) or bag difference (BD) bugs.

Join Queries. The performance of our approach for join queries
is comparable with the native implementation in PG-Nat. For join
queries with larger intermediate results (join-2), the native im-
plementation outperforms our approach by ≈73%. Running the
queries produced by our approach in DBY is slightly faster than
both. DBX-Nat uses merge joins for temporal joins, while both PG
and DBY use a hash-join on the non-temporal part of the join condi-
tion. The result is that DBX-Nat significantly outperforms the other
methods for temporal join operations. However, the larger cost for
the SQL-based coalescing implementation in this system often out-
weighs this effect. This demonstrates the potential for improving
our approach by making use of native implementations of temporal
operators in our rewrites for operators that are compatible with our
semantics (note that joins are compatible).

Aggregation Queries. Our approach outperforms the native im-
plementations of snapshot semantics on all systems by several or-
ders of magnitude for aggregation queries as long as the aggrega-
tion input exceeds a certain size (agg-1 and agg-2). Our ap-
proach as well as the native approaches split the aggregation input
which requires sorting and then apply a standard aggregation op-
erator to compute the temporal aggregation result. The main rea-
son for the large performance difference is that the SQL code we
generate for a snapshot aggregation includes several levels of pre-
aggregation that are intertwined with the split operator. Thus, for
our approach the sorting step for split is applied to a typically much
smaller pre-aggregated dataset. This turned out to be quite effec-
tive. The only exception is if the aggregation input is very small
(agg-3) in which case an efficient implementation of split (as in
PG-Nat) outweighs the benefits of pre-aggregation. Query agg-1
did not finish on DBX-Nat as it exceeded the 2GB temporary space
restriction (memory allocated for intermediate results) of the freely
available version of this DBMS.

Mixed Aggregation and Join. Query agg-join applies an
aggregation over the result of several joins. Our approach is more
effective, in particular for the aggregation part of this query, com-
pared to PG-Nat. This query did not finish on DBX due to the 2GB
temporary space restriction per query imposed by the DBMS.

Difference Queries. For difference queries we could only com-
pare our approach against PG-Nat, since DBX-Nat does not support
difference in snapshot queries. Note that, PG-Nat applies set dif-
ference while our approach supports multiset difference. While our
approach is less effective for diff-1 which contains a single dif-
ference operator, we outperform PG-Nat on diff-2.

10.4 Snapshot Semantics - TPC-BiH
The runtimes for TPC-H queries interpreted under snapshot se-

mantics (9 queries are currently supported by the approaches) over
the 1GB and 10GB valid time versions of TPC-BiH is also shown
in Table 3. For this experiment we skip DBX since the limitation
to 2GB of temporary space of the free version we were using made
it impossible to run most of these queries. Overall we observe that
our approach scales roughly linearly from 1GB to 10GB for these
queries. We significantly outperform PG-Nat because all of these
queries use aggregation. Additionally, some of these queries use up
to 7 joins. For these queries the fact that PG-Nat aligns both inputs
with respect to each other [16] introduces unnecessary overhead
and limits join reordering. The combined effect of these two draw-
backs is quite severe. Our approach is 1 to 3 orders of magnitude
faster than PG-Nat. For some queries this is a lower bound on the
overhead of PG-Nat since the system timed out for these queries
(we stopped queries that did not finish within 2 hours).

10.5 Summary
Our experiments demonstrate that an SQL-based implementa-

tion of multiset coalescing is feasible – exhibiting runtimes linear
in the size of the input, albeit with a relatively large constant fac-
tor. We expect that it would be possible to significantly reduce
this factor by introducing a native implementation of this operator.
Using pre-aggregation during splitting, our approach significantly
outperforms native implementations for aggregation queries. DBX
uses merge joins for temporal joins (interval overlap joins) which
is significantly more efficient than hash joins which are employed
by Postgres and DBY. This shows the potential of integrating such
specialized operators with our approach in the future. For example,
we could compile snapshot queries into SQL queries that selec-
tively employ the temporal extensions of a system like DBX.

11. CONCLUSIONS AND FUTURE WORK
We present the first provably correct interval-based representa-

tion system for snapshot semantics over multiset relations and its
implementation in a database middleware. We achieve this goal
by addressing a more general problem: snapshot-reducibility for
temporal K-relations. Our solution is a uniform framework for
evaluation of queries under snapshot semantics over an interval-
based encoding of temporal K-relations for any semiring K. That
is, in addition to sets and multisets, the framework supports snap-
shot temporal extensions of probabilistic databases, databases an-
notated with provenance, and many more. In future work, we will
study how to extend our approach for updates over annotated rela-
tions, study its applicability for combining probabilistic and tem-
poral query processing, investigate implementations of split and
K-coalescing inside a database kernel, and study extensions for
bi-temporal data.
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