
Unifying Consensus and Atomic Commitment for Effective
Cloud Data Management

Sujaya Maiyya* Faisal Nawab† Divyakant Agrawal* Amr El Abbadi*
*UC Santa Barbara, †UC Santa Cruz

*{sujaya maiyya, divyagrawal, elabbadi}@ucsb.edu, †{fnawab@ucsc.edu}

ABSTRACT
Data storage in the Cloud needs to be scalable and fault-
tolerant. Atomic commitment protocols such as Two Phase
Commit (2PC) provide ACID guarantees for transactional
access to sharded data and help in achieving scalability.
Whereas consensus protocols such as Paxos consistently rep-
licate data across different servers and provide fault toler-
ance. Cloud based datacenters today typically treat the
problems of scalability and fault-tolerance disjointedly. In
this work, we propose a unification of these two different
paradigms into one framework called Consensus and Com-
mitment (C&C) framework. The C&C framework can model
existing and well known data management protocols as well
as propose new ones. We demonstrate the advantages of the
C&C framework by developing a new atomic commitment
protocol, Paxos Atomic Commit (PAC), which integrates
commitment with recovery in a Paxos-like manner. We
also instantiate commit protocols from the C&C framework
catered to different Cloud data management techniques. In
particular, we propose a novel protocol, Generalized PAC
(G-PAC) that integrates atomic commitment and fault tol-
erance in a cloud paradigm involving both sharding and
replication of data. We compare the performance of G-PAC
with a Spanner-like protocol, where 2PC is used at the logi-
cal data level and Paxos is used for consistent replication of
logical data. The experimental results highlight the benefits
of combining consensus along with commitment into a single
integrated protocol.
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1. INTRODUCTION
The emergent and persistent need for big data manage-

ment and processing in the cloud has elicited substantial in-
terest in scalable, fault-tolerant data management protocols.
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Scalability is usually achieved by partitioning or sharding
the data across multiple servers. Fault-tolerance is achieved
by replicating data on different servers, often, geographi-
cally distributed, to ensure recovery from catastrophic fail-
ures. Both the management of partitioned data as well as
replicated data has been extensively studied for decades in
the database and the distributed systems communities. In
spite of many proposals to support relaxed notions of con-
sistency across different partitions or replicas, the common
wisdom for general purpose applications is to support strong
consistency through atomic transactions [21, 9, 20, 27]. The
gold standard for executing distributed transactions is two-
phase commit (2PC). But 2PC is a blocking protocol even
in the presence of mere site failures [9, 27, 20], which led
to the three phase commit protocol (3PC) [27] that is non-
blocking in the presence of crash failures. But the general
version of 3PC is still blocking in the presence of partitioning
failures [28].

On the other hand, the distributed systems and cloud
computing community have fully embraced Paxos [16, 2] as
an efficient asynchronous solution to support full state ma-
chine replication across different nodes. Paxos is a leader-
based consensus protocol that tolerates crash failures and
network partitions as long as majority of the nodes are
accessible. As with all consensus protocols, Paxos cannot
guarantee termination, in all executions, due to the FLP
Impossibility result [6]. The rise of the Cloud paradigm has
resulted in the emergence of various protocols that manage
partitioned, replicated data sets [5, 22, 14, 8]. Most of these
protocols use variants of 2PC for the atomic commitment of
transactions and Paxos to support replication of both the
data objects as well as the commitment decisions.

Given the need for scalable fault-tolerant data manage-
ment, and the complex landscape of different protocols, their
properties, assumptions as well as their similarities and sub-
tle differences, there is a clear need for a unifying framework
that unites and explains this plethora of commitment and
consensus protocols. In this paper, we propose such a uni-
fying framework: the Consensus and Commitment (C&C)
framework. Starting with 2PC and Paxos, we propose a
standard state machine model to unify the problems of com-
mitment and consensus.

The unifying framework, C&C, makes several contribu-
tions. First, it demonstrates in an easy and intuitive man-
ner that 2PC, Paxos and many other large scale data man-
agement protocols are in fact different instantiations of the
same high level framework. C&C provides a framework
to understand these different protocols by highlighting how
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they differ in the way each implements various phases of
the framework. Furthermore, by proving the correctness of
the framework, the correctness of the derived protocols is
straightforward. The framework is thus both pedagogical as
well as instructive.

Second, using the framework, we derive protocols that
are either variants of existing protocols or completely novel,
with interesting and significant performance characteristics.
In particular, we derive several data management proto-
cols for diverse cloud settings. Paxos Atomic Commitment
(PAC) is a distributed atomic commitment protocol man-
aging sharded but non-replicated data. PAC, which is a
variant of 3PC, integrates crash recovery and normal opera-
tions seamlessly in a simple Paxos-like manner. We then de-
rive Replicated-PAC (R-PAC) for fully replicated cloud data
management, which is similar to Replicated Commit [22],
and demonstrate that protocols like Google’s Spanner [5]
as well as Gray and Lamport’s Paxos Commit [8] are also
instantiations of the C&C framework. Finally we propose G-
PAC, a novel protocol for sharded replicated architectures,
which is similar to other recently proposed hybrid proto-
cols, Janus [25] and TAPIR [32]. G-PAC integrates transac-
tion commitment with the replication of data and reduces
transaction commit latencies by avoiding the unnecessary
layering of the different functionalities of commitment and
consensus.

Many prior works have observed the similarities between
the commitment and consensus problems. At the theoreti-
cal end, Guerraoui [10], Hadzilacos [11] and Charron-Bost [3]
have investigated the relationship between the atomic com-
mitment and consensus problems providing useful insights
into the similarities and differences between them. Gray and
Lamport [9] observe the similarities and then derive a hybrid
protocol. In contrast, the main contribution of this paper
is to encapsulate commitment and consensus in a generic
framework, and then to derive diverse protocols to demon-
strate the power of the abstractions presented in the frame-
work. Many of these derived protocols are generalizations of
existing protocols, however, some of them are novel in their
own right and provide contrasting characteristics that are
particularly relevant in modern cloud computing settings.

The paper is developed in a pedagogical manner. In Sec-
tion 2, we explain 2PC and Paxos and lay the background for
the framework. In Section 3 we propose the C&C unifying
framework. This is followed in Section 4 by the derivation of
a novel fault-tolerant, non-blocking commit protocol, PAC,
in a sharding-only environment. In Section 5, we propose
R-PAC for atomically committing transaction across fully-
replicated data. Section 6 introduces G-PAC for managing
data in a hybrid case of sharding and replication. In Sec-
tion 7 we experimentally evaluate the performance of G-PAC
and compare it with Spanner-like commit protocol. We dis-
cuss the related work in Section 8 and Section 9 concludes
the paper, followed by Appendix in Section 10.

2. BACKGROUND
In this section, we provide an overview of 2PC and Paxos

as representatives of consensus and atomic commit proto-
cols, respectively. Our goal is to develop a unified frame-
work for a multitude of protocols used in the cloud. In this
section, we provide a simple state-machine representation of
2PC and Paxos. These state-machine representations are
essential in our framework development later in the paper.

Algorithm 1 Given a set of response values sent by the co-
horts, the coordinator chooses one value for the transaction
based on the following conditions.

Possible values are: V = {2PC-yes, 2PC-no}.
Value Discovery: Method V
1: Input: response values ⊂ V
2: if response values from all cohorts then
3: if 2PC-no ∈ response values then
4: value← abort
5: else
6: value← commit
7: end if
8: else
9: if Timer T times out then

10: \* If a cohort crashed *\
11: value← abort
12: end if
13: end if

2.1 Two Phase Commit
Two-Phase Commit (2PC) [9, 20] is an atomic commit-

ment protocol. An atomic commitment protocol coordinates
between data shards whether to commit or abort a trans-
action. Commitment protocols typically consist of a coor-
dinator and a set of cohorts. The coordinator drives the
commitment of a transaction. The cohorts vote on whether
they agree to commit or decide to abort. We use the notion
of a method V that takes as input all the votes of individ-
ual cohorts and decides on a final value for the transaction.
Method V is represented in Algorithm 1.

q
2PC(c)

w
2PC(c)

V

2PC-req(v)

2PC-get-votes

c
2PC(c)

 2PC-yes | 2PC-no

2PC-decision

 

Value 

Discovery 

Phase

Decision 

Phase

(a) Coordinator

q
2PC(h)

w
2PC(h)

V

2PC-get-votes

c
2PC(h)

2PC-yes

2PC-decision

 

2PC-get-votes

2PC-no

Value 

Discovery 

Phase

Decision 

Phase

(b) Cohort

Figure 1: State machine representation of 2PC.

We now present a state machine that represents 2PC. We
show two distinct state machines, one for the coordinator
that triggers the commitment protocol, and another for each
cohort responding to the requests from the coordinator. In
each state machine, a state is represented as a circle. An
arrow from a state si to sj with the label

ei,j
ai,j

denotes that

a transition from si to sj is triggered by an event ei,j and
causes an action ai,j . Typically, events are received mes-
sages from clients or other nodes but may also be internal
events such as timeouts or user-induced events. Actions are
the messages that are generated in response to the transi-
tion, but may also denote state changes such as updating
a variable. We use notations q as a starting state, followed
by one or more waiting states, denoted by w and the final
commit (representing both commit and abort) state, c.

Figure 1 shows the state machine representation of 2PC.
In this work, we represent both transaction commit and
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Algorithm 2 Given a set of responses sent by the accep-
tors, the leader decides whether to transit from one state to
another based on the conditions explained below.

Possible responses: {pax-prepared, pax-accept}.
Leader election: Method M
1: QM ← majority quorum
2: if pax-prepared messages from QM then
3: return true
4: else
5: return false
6: end if

Replication: Method R
1: QM ← majority quorum
2: if pax-accept messages from QM then
3: return true
4: else
5: return false
6: end if

transaction abort as one final state, instead of having two
different final states for commit and abort decisions as rep-
resented in [27]. The coordinator (Figure 1a) begins at the
initial state q2PC(C) (the subscript 2PC(C) denotes a 2PC

coordinator state). When a client request, 2PC-req1, to end
the transaction arrives, the coordinator sends 2PC-get-votes
messages to all cohorts and enters a waiting state, wV

2PC(C).
Once all cohorts respond, the responses are sent to method
V represented in Algorithm 1 and a decision is made. The
coordinator propagates 2PC-decision messages to all cohorts
and reaches the final state c2PC(C). Although 2PC is pro-
posed for an asynchronous system, in practice, if the coor-
dinator does not hear back the value from a cohort after a
time T , the cohort is considered to be failed and the method
V returns abort.

Figure 1b shows the state machine representation for a
cohort. Initially, the cohort is in the initial state, q2PC(h)

(the subscript 2PC(h) denotes a 2PC cohort state). If it
receives a 2PC-get-votes message from a coordinator, it re-
sponds with a yes or no vote. A no vote is a unilateral
decision, and therefore the cohort moves to the final state
immediately with an abort decision. A yes vote will move
the cohort to a waiting state, wV

2PC(h). In both cases, the
cohort responds with its vote to the coordinator. While
in wV

2PC(h) state, the cohort waits until it receives a 2PC-
decision message from the coordinator and it moves to the
final decision state of c2PC(h). 2PC can be blocking when
there are crashes but we will not discuss it in this work.

2.2 Paxos Consensus Protocol
Paxos [16] is a consensus protocol that is often used to

support fault-tolerance through replication. Consensus is
the problem of reaching agreement on a single value between
a set of nodes. To achieve this, Paxos adopts a leader-based
approach. Figure 2 presents the state machine representa-
tion of Paxos: one for the process aspiring to be the leader,
called a proposer, and another for each process receiving re-
quests from the proposer, called an acceptor.

1The different protocols we discuss use similar terminology
for messages with different meanings. To avoid confusion,
we will use a prefix to denote the corresponding protocol.
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Figure 2: State machine representation of Paxos.

Consider the proposer state machine in Figure 2a. The
proposer is with an initial state qpax(p) (the subscript pax(p)
denotes a Paxos proposer state). A user request to execute
value v, pax-req(v), triggers the Leader Election phase. pax-
prepare messages are sent with the proposal number (initially
0) to at least a majority of acceptors. The proposer is then
in state wLE

pax(p) waiting for pax-prepared messages. The con-

dition to transition from wLE
pax(p) state to the next state is

given by method M in Algorithm 2: once a majority of ac-
ceptors, denoted by majority quorum QM , respond with pax-
prepared messages, the proposer moves to the Replication
phase (state wR

pax(p)), sending pax-propose messages to at
least a majority of acceptors and waiting to receive enough
pax-accept messages. To decide the completion of replication
phase, the leader uses method R described in Algorithm 2,
which requires a majority of pax-accept messages. The pro-
poser then moves to the final commit state, denoting that
the proposed value has been chosen, and pax-apply messages
are sent to acceptors, notifying them of the outcome.

An unsuccessful Leader Election or Replication phase may
be caused by a majority of acceptors not responding with
pax-prepared or pax-accept messages. In these cases, a time-
out is triggered (in either state wLE

pax(p) or wR
pax(p)). In such

an event, a new unique proposal number is picked that is
larger than all proposal numbers received by the proposer.
This process continues until the proposer successfully com-
mits the value v.

Now, consider the acceptor state machine in Figure 2b.
Initially, the acceptor is in an initial state qpax(a) (the sub-
script pax(a) denotes a Paxos acceptor state). The acceptor
maintains the highest promised proposal number, denoted
pmax. An acceptor may receive a pax-prepare message which
triggers responding with a pax-prepared message if the re-
ceived ballot is greater than pmax.. After responding, the
acceptor moves to state wP

pax(a) waiting for the next mes-
sage from the leader. If the acceptor receives a pax-accept
message with a proposal number that is greater or equal to
pmax, then it moves to state wA

pax(a). Finally, the acceptor
may receive a pax-apply message with the chosen value.

Note that, for presentation purposes, we omit reactions
to events that do not change the state of the process. An
example of such reactions is an acceptor responding to a
pax-prepare or a pax-propose messages in the commit state.
In case of a leader failure while executing Paxos, an acceptor
will detect the failure using a timeout. This acceptor now
tries to become the new leader, thus following the states
shown in Figure 2a.
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Figure 3: A high-level sequence of tasks that is generalized
based on Paxos and 2PC.

3. UNIFYING CONSENSUS AND
COMMITMENT

In this section, we present a Consensus and Commitment
(C&C) framework that unifies Paxos and 2PC. This general
framework can then be instantiated to describe a wide range
of data management protocols, some of them well known,
and others novel in their own right. We start by exploring
a high level abstraction of Paxos and 2PC that will aid in
developing the framework, and then derive the general C&C
framework.

3.1 Abstracting Paxos and 2PC
In this section we deconstruct Paxos and 2PC into their

basic tasks. Through this deconstruction we identify the
tasks performed by both protocols that lead to the construc-
tion of the C&C framework.

Both consensus and atomic commit protocols aim at en-
suring that one outcome is agreed upon in a distributed en-
vironment while tolerating failures. However, the conditions
for achieving this agreement is different in the two cases.
The basic phase transitions for Paxos are: leader election,
followed by fault-tolerant replication of the value and finally
the dissemination of the decision made by leader. For 2PC,
considering a failure free situation, a predetermined coordi-
nator requests the value to decide on from all cohorts, makes
the decision based on the obtained values and disseminates
the decision to all cohorts. We combine the above phases of
the two protocols and derive a high level overview of the uni-
fied framework shown in Figure 3. Each of the phases shown
in Figure 3 is described in detail explaining each phase, its
significance and its derivation.

Phases of the C&C Framework
• Leader Election : A normal operation in Paxos encom-

passes a leader election phase. 2PC, on the other hand,
assumes a predesignated leader or a coordinator, and does
not include a leader election process as part of normal op-
eration. However, if the coordinator fails while committing
a transaction, one way to terminate the transaction is by
electing one of the live cohorts as a coordinator which tries
to collect the states from other live nodes and attempts to
terminate the transaction.
• Value Discovery : Both Paxos and 2PC are used for

reaching agreement in a distributed system. In Paxos, agree-
ment is on arbitrary values provided by a client, while in
2PC agreement is on the outcome of a transaction. The de-
cision in 2PC relies on the state of the cohorts and hence re-
quires communication with the cohorts. This typically con-
stitutes the first phase of 2PC. Whereas in Paxos, although
it is agnostic to the process of deriving the value and the cho-
sen value is independent of the current state of acceptors,
it does incorporate value discovery during re-election. The
response to a leader election message inherently includes a
previously accepted value and the new leader should choose
that value, in order to ensure the safety of a previously de-
cided value.

• Fault-Tolerant Agreement : Fault tolerance is a key
feature that has to be ensured by all atomic commitment
and consensus protocols. In the most naive approach, 2PC
provides fault tolerance by persisting the decision to a log on
the hard disk and recovering from the logs after a crash [19].
In Paxos, the role of the replication phase is essentially to
guarantee fault tolerance by ensuring that the value chosen
by the leader is persistent even in the event of leader fail-
ure. As explained in Section 2.2, the value proposed by the
leader will be stored in at least a majority of the nodes, thus
ensuring fault-tolerance of the agreed upon value.
• Decision : In Paxos, once the leader decides on the

proposed value, it propagates the decision asynchronously
to all the participants who learn the decision. Similarly in
2PC, once a decision is made, the coordinator disseminates
the decision to all the cohorts. Essentially, in both protocols
a value is decided by the leader based on specific conditions
and that value (after made fault tolerant) is broadcast to all
the remaining nodes in the system.

Given the task abstraction of the C&C framework, we
can see that a Paxos instantiation of the framework, in nor-
mal operation, will lead to Leader Election, Fault-tolerant
(FT) Agreement and Decision phases but will skip the ad-
ditional Value Discovery phase. On the other hand, a 2PC
instantiation of the C&C framework, in normal operation,
will become a sequence of Value Discovery and Decision
phase, avoiding an explicit Leader Election phase and FT-
Agreement phase.

Although we highlighted the high-level similarities in the
two protocols, there are subtle differences between the two
problems of consensus and commitment. For example: the
difference in the number of involved participants in both
protocols: Paxos only needs a majority of nodes to be alive
for a decision to be made whereas 2PC needs votes from all
the participants to decide on the final value. Such subtleties
in different protocols can be captured by specific protocol
instantiations of the generic framework.

3.2 The C&C Framework
The Consensus and Commitment (C&C) framework aims

to provide a general framework that represents both con-
sensus and atomic commitment protocols. In Section 3.1,
we started by unifying the two key protocols, Paxos and
2PC, and developed a high level abstraction of the unified
framework. Now we expand the precise states in the C&C
framework and the transitions across different states. Since
our framework takes a centralized approach, each partici-
pating node in the system either behaves as a leader or a
cohort. Figure 4 shows the state machines for a leader and
a cohort in the framework. As mentioned earlier, an arrow
from states si to sj with the label

ei,j
ai,j

denotes a transi-

tion from si to sj . This transition is triggered by an event
ei,j and the transition causes an action ai,j . One important
point to keep in mind is that each event ei,j and its corre-
sponding action ai,j can have different meaning in different
protocol instantiations.

We first define the typical behavior of a leader node in
the C&C framework. As shown in Figure 4a, the leader
node starts in the initial state qc&c(l) (l indicates leader).
A client sends c&c-req(v?) request to node L. Depending
on the protocol being instantiated, a client request may or
may not contain the value v on which to reach agreement.
In commitment protocols, the client request will be void
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Figure 4: State machines of the C&C framework.

of the value. The leader L increments its ballot number
b and starts Leader Election by sending c&c-elect-me mes-
sages containing b to all the cohorts. The leader waits in
the wLE

c&c(l) state for a majority of the cohorts to reply with
c&c-elect-you messages. We model the above event as the
method M as explained in Algorithm 2 which will return
true when a majority of the cohorts vote for the contend-
ing leader. Once L receives votes from a majority, it starts
Value Discovery. The c&c-elect-you message can contain
previously accepted values by the cohorts, in which case L
chooses one of these values. Otherwise, L sends c&c-get-
value to all participants and transitions to the wait state
wV

c&c(l). The leader now waits to receive c&c-value mes-
sages from all the participants and since value discovery is
derived from 2PC, C&C uses the method V, explained in
Algorithm 1, to decide on a value based on the c&c-value
replies. Method V can be overridden depending on the re-
quirements of the instantiating protocol (as will be shown in
Section 4). The leader makes the chosen value fault-tolerant
by starting FT-Agreement and sending out c&c-ft-agree mes-
sages to all nodes. L waits in the wA

c&c(l) state until method
R in Algorithm 2 (with c&c-agreed messages as input) re-
turns true. InR we use majority quorum but an instantiated
protocol can use any other quorum as long as the quorum
in method R intersects with the quorum used in method
M. This follows from the generalizations proposed in [12,
24]. The leader L finally propagates the decision by sending
c&c-apply messages and reaches the final state cc&c(l).

Now we consider the typical behavior of a cohort in the
C&C framework, as shown in Figure 4b. The cohort C starts
in an initial state qc&c(c) (c stands for cohort). After receiv-
ing a c&c-elect-me message from the leader L, the cohort
responds with c&c-elect-you upon verifying if ballot b sent
by the leader is the largest ballot seen by C. The c&c-elect-
you response can also contain any value previously accepted
by C, if any. C then moves to the wLE

c&c(c) state and waits
for the new leader to trigger the next action. Typically,
the cohort receives a c&c-get-value request from the leader.
Each cohort independently chooses a value and then replies
with a c&c-value message to L. In atomic-commitment-like
protocols, the value will be either commit or abort of the
ongoing transaction. The cohort then waits in the wV

c&c(c)

state to hear back the value chosen by the leader. Upon
receiving c&c-ft-agree, the cohort stores the value sent by
leader and acknowledges its receipt to the leader by send-

ing c&c-agreed message, and moving to wA
c&c(c) state. Once

fault-tolerance is achieved, the leader sends c&c-apply and
the cohort applies the decided value and moves to the final
state cc&c(c).

A protocol instantiated from the framework can have ei-
ther all the state transitions presented in Figure 4 or a subset
of the states. Specific protocols can also merge two or more
states for optimization (PAC undertakes this approach).

Safety in the C&C framework:
Any consensus or commitment protocol derived from the

C&C framework should provide safety. The safety condi-
tion states that a value once decided, will never be
changed. A protocol instantiated from the C&C frame-
work will guarantee an overlap in the majority quorum used
for Leader Election and the majority quorum used in Fault-
Tolerant Agreement. This allows the new leader to learn
any previously decided value, if any. We provide a detailed
Safety Proof in the Appendix section 10 and show that the
C&C framework is safe, and thus, we argue that any proto-
col instantiated from the framework is also safe.

4. SHARDING-ONLY IN THE CLOUD
We now consider different data management techniques

used in the cloud and derive commitment protocols in each
scenario using the unified model. This section deals with
the sharding only scenario where the data is sharded and
there is no replication. When the data is partitioned, trans-
actions can access data from more than one partition. To
provide transactional atomicity, distributed atomic commit-
ment protocols such as 2PC [9] and 3PC [27] are used. Since
crash failures are frequent and 2PC can be blocking, 3PC
was proposed as a non-blocking commitment protocol un-
der crash failures. 3PC is traditionally presented using two
modes of operation: 1) Normal mode (without any failures),
2) Termination mode (to terminate the ongoing transaction
when a crash occurs) [1, 27]. 3PC is nonblocking if a major-
ity (or a quorum) of sites are connected. However, Keidar
and Dolev [13] show that 3PC may still suffer from block-
ing after a series of failures even if a quorum is connected.
They develop a protocol, E3PC, that guarantees any major-
ity of sites to terminate irrespective of the failure pattern.
However, E3PC still requires both normal and failure mode
operations. Inspired by the simplicity of Paxos to integrate
the failure-free and crash- recovery cases in a single mode
of operation, we use the C&C framework to derive an inte-
grated atomic commitment protocol, PAC, which, similar to
E3PC, is guaranteed to terminate as long as a majority of
sites are connected irrespective of the failure pattern. The
protocol presented in this section and the subsequent ones
assume asynchronous networks.

4.1 System Model
Transactions accessing various shards consist of read and/

or write operations on the data objects stored in one or more
shards. The term node abstractly represents either a pro-
cess or a server responsible for a subset of data. A key point
to note here is that the protocol developed in this section
(and the subsequent ones) is oblivious to the underlying con-
currency control (CC) mechanism. We can use a pessimistic
CC such as Two Phase Locking [9] or an optimistic CC tech-
nique [15]. The commit protocol is derived such that each
data shard has a transaction manager and when the client

615



requests to end a transaction, the underlying transaction
manager for each data shard decides to either commit or
abort the transaction based on the chosen CC mechanism.
Hence, the isolation and serializability guarantees depend on
the deployed CC, and is orthogonal to the work presented
here, which is focused on the atomic commitment of a sin-
gle transaction, as is traditional with atomic commitment
protocols.
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Figure 5: State m/c representation of the PAC protocol.

Table 1: State variables for each process p in PAC.

BallotNum initially < 0, p >
InitVal commit or abort

AcceptNum initially < 0, p >
AcceptVal initially Null
Decision initially False

4.2 Protocol
We now derive the Paxos Atomic Commitment (PAC)

protocol from the C&C framework. Each committing trans-
action executes a single instance of PAC, i.e., if there are sev-
eral concurrent transactions committing at the same time,
multiple concurrent PAC instances would be executing in-
dependently. In PAC, each node involved in a transaction T
maintains the variables shown in Table 1, with their initial
values, where p is the process id.

Figure 5 shows the state transition diagram for both the
leader and a cohort in PAC. Abstractly, PAC follows the four
phases of the C&C framework: Leader Election, Value Dis-
covery, Fault-tolerant Agreement and the Decision Phases.
However, as an optimization, Leader Election and Value
Discovery are merged together. Furthermore, in the C&C
framework, Leader Election needs response from a majority
while Value Discovery requires response from all the nodes.
Hence, the optimized merged phase in PAC needs to receive
responses from all nodes in the initial round, while any sub-
sequent (after failure) Leader Election may only need to
receive response from a majority.

Unlike 3PC, in PAC, the external client can send an end
-transaction(T) request to any shard accessed by T . Let L
be the node that receives the request from the client. L,
starting with an initial ballot, tries to become the leader to
atomically commit T . Note that in failure-free mode, there
are no contending leaders unless the client does not hear
from L for long-enough time and sends the end transaction-
(T) request to another shard in T . L increments its ballot

number and sends pac-elect-me messages and moves to the
WL−V

pac(l) state (l represents leader). A cohort, C, starts in

state qpac(c) (c for cohort). After receiving the election mes-
sage, C responds with a pac-elect-you message only if L’s bal-
lot number is the highest that C has received. Based on the
CC execution, each node, including L, sets its InitVal with
a decision i.e., either commit or abort the transaction. The
pac-elect-you response contains InitVal, any previously ac-
cepted value AcceptVal, and the corresponding ballot num-
ber AcceptNum, along with the Decision variable (the initial
values are defined in Table 1).

Algorithm 3 Given the pac-elect-you replies from the co-
horts, the leader chooses a value for the transaction based
on the conditions presented here.

Leader Election + Value Discovery: Method V

The replies contain variables defined in Table 1.

1: if received response from a MAJORITY then
2: if at least ONE response with Decision=True then
3: AcceptV al← AcceptVal of that response
4: Decision← True
5: else if at least one response with Accept-

Val=commit
6: \* Decision is True for none.*\ then
7: AcceptV al← commit
8: else if received response from ALL cohorts then
9: \* The normal operation case *\

10: if all InitVal = commit then
11: AcceptV al← commit
12: else
13: AcceptV al← abort
14: end if
15: else
16: AcceptV al← abort
17: end if
18: else transaction is blocked
19: end if

The transition conditions for L to move from WL−V
pac(l) to

WA
pac(l) are shown in method V in Algorithm 3. Once L

receives pac-elect-you messages from a majority of cohorts,
it is elected as leader, based on the Leader Election phase of
the C&C framework. If none of the responses had Decision
value true or AcceptVal value set, then this corresponds to
Value Discovery phase where L has to wait till it hears pac-
elect-you from ALL the cohorts to check if any cohort has
decided to abort the transaction. If any one cohort replies
with InitVal as abort, L chooses abort as AcceptVal, and
commit otherwise. We will describe crash recovery later.
The leader then propagates pac-ft-agree message with the
chosen AcceptVal to all the cohorts and starts the fault-
tolerant agreement phase Each cohort upon receiving pac-
ft-agree message validates the ballot number and updates
the local AcceptVal to the value chosen by the leader. It
then responds to the leader with pac-ft-agreed message, thus
moving to WA

pac(c) state.
The leader waits to hear back pac-ft-agreed message from

only a majority, as explained in method R in Algorithm 2
but with pac-ft-agreed messages as input. After hearing back
from a majority, the leader sets Decision to True, informs the
client of the transaction decision and asynchronously sends
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out pac-apply message with Decision as True to all cohorts,
eventually reaching the final state cpac(l). A cohort C can

receive pac-apply message when it is in either WL−V
pac(c) or

WA
pac(c) states, upon which it will update its local Decision

and AcceptVal variables and applies the changes made by
the transaction to the data shard that C is responsible for.

In case of leader failure while executing PAC, the recovery
is similar to Paxos (Section 2.2). A cohort will detect the
failure using a timeout and sends out pac-elect-me to all the
live nodes and will become the new leader upon receiving a
majority of pac-elect-you. The value to be selected by the
leader depends on the obtained pac-elect-you messages, as
described in method V in Algorithm 3. If any node, say N
replies with Decision as True, this implies that the previ-
ous leader had made the decision and propagated it to at
least one node before crashing; so the new leader will choose
the value sent by N . If none of the replies has Decision
as True but at least one of them has AcceptVal as commit,
this implies that the previous leader obtained replies from
all and had chosen commit and sent out pac-ft-agree mes-
sages. Hence, the new leader will choose commit. In all
the other cases, abort is chosen. If the new leader does not
get a majority of pac-elect-you, then the protocol is blocked.
The subsequent phases of replication and decision follow the
states shown in Figure 5.

5. REPLICATION-ONLY IN THE CLOUD
In this section, we explore a data management technique

that deals with fully replicated data i.e., the data is fully
replicated across, potentially different, data-centers. Using
the unified C&C framework, we derive a commit protocol,
similar to PAC, called Replicated-PAC (R-PAC).

5.1 System Model
In a traditional state machine replication (SMR) system,

the client proposes a value and all replicas try to reach agree-
ment on that value. In a fully replicated data management
system, each node in the system maintains an identical copy
of the data. Clients perform transactional accesses on the
data. Here, the abstraction of a node can represent a dat-
acenter or a single server; but all entities denoted as nodes
handle identical data. At transaction commitment, each
node independently decides whether to commit or to abort
the transaction. The transactions can span multiple data
objects in each node and any updates on the data by a trans-
action will be executed atomically. Since the data is fully
replicated, R-PAC is comparable to the Replicated Commit
protocol [22].

Every node runs a concurrency control (CC) protocol and
provides a commitment value for a transaction. If a node is
an abstraction for a single machine, we can have a CC, such
as 2PL, that decides if a transaction can be atomically com-
mitted or if it has to be aborted. Whereas, if a node repre-
sents a datacenter and if data is partitioned across different
machines within the datacenter, the commitment value per
node can be obtained in two ways. In the first approach with
shared-nothing architecture, each data center has a transac-
tion manager which internally performs a distributed atomic
commitment such as 2PC or PAC (Section 4) and provide
a single value for that node (datacenter). In the second
approach with a shared-storage architecture, different ma-
chines can access the same storage driver and detect any

concurrency violations [1]. In either architecture, each node
provides a single value per transaction. For simplicity, we
do not delve deeper into the ways of providing CC; rather
we work with the abstraction that when the leader asks for a
commitment value of a transaction, each node provides one
value. The protocol presented below ensures that all the
nodes either atomically commit or abort the transaction,
thus maintaining a consistent view of data at all nodes.

5.2 Protocol
The commit protocol, Replicated-PAC (R-PAC), is sim-

ilar to PAC except for one change: the Value Discovery
method V. In PAC (Section 4), during value discovery, the
leader waits to receive pac-elect-you message from all co-
horts. When the data is partitioned, a commit decision can-
not be made until all cohorts vote because each cohort is
responsible for a disjoint set of data. In the replication-only
case, since all nodes maintain identical data, the leader need
to only wait for replies from a majority of replicas that have
the same InitVal. Hence, the method V presented in Algo-
rithm 3 differs for R-PAC only at line 8, namely waiting for
pac-elect-you messages from a majority rather than all co-
horts. Since R-PAC only requires a majority of replicas to
respond, it is similar to the original majority consensus pro-
tocol proposed by Thomas [29]. The rest of the replication
phase, decision phase and in case of a crash, the recovery
mechanism, are identical to PAC.

Depending on the CC mechanism adopted, and due to
the asynchrony of the system, different replicas can end up
choosing different commitment values. A key observation
here is that if a majority of the replicas choose to commit
and one or more replicas in the minority choose to abort the
transaction, the leader forces ALL replicas to commit the
transaction. This does not violate the isolation and serializ-
abilty guarantees of the CC protocol, as updates will not be
reflected on the data of a replica R until R receives a pac-
apply message. This ensures that all replicas have consistent
views of the data at the end of each transaction.

6. SHARDING + REPLICATION IN THE
CLOUD

In this section, we present a general hybrid of the two
previously presented data management schemes i.e., data
is both partitioned across different shards and each shard
is replicated across different nodes. Transactions can span
multiple shards, and any update of a shard will cause an
update of its replicas. When the data is both sharded and
replicated, solutions like Spanner and MDCC [5, 14] use a
hierarchical approach by horizontally sharding the data and
vertically replicating each shard onto replicas. The replica-
tion is managed by servers called shard leaders. The other
category of solutions, such as Janus [25] and TAPIR [32]
deconstruct the hierarchy of shards and replicas and atom-
ically access data from all the involved nodes. Hence, we
categorize the hybrid case of sharded and replicated data
into two different classes based on the type of replication: 1)
Using standard State Machine Replication (SMR) wherein
the coordinator communicates only with the leaders of each
shard, 2) Using PAC-like protocol wherein the coordinator
of a transaction communicates with all the involved nodes.
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6.1 Replication using standard SMR:
Layered architecture

A popular approach for providing non-blocking behavior
to a commitment protocol such as 2PC is to replicate each
state of a participating node (coordinator or cohort). SMR
ensures fault-tolerance by replicating each 2PC state of a
shard to a set of replica nodes. This has been adopted by
many systems including Spanner [5] and others [7, 22, 14].
We will refer to this approach as 2PC/SMR. 2PC/SMR
shares the objective of 3PC which is to make 2PC fault-
tolerant. While SMR uses replicas to provide fault
tolerance, 3PC uses participants to provide persis-
tence of decision. Therefore, 2PC/SMR can be consid-
ered as an alternative to commitment protocols that pro-
vides fault tolerance using as additional phase such as 3PC
or PAC. 2PC/SMR follows the abstraction defined by the
C&C framework. In particular, 2PC provides the Value Dis-
covery phase of C&C and any SMR protocol, such as Paxos,
provides the Fault-Tolerant Agreement phase of the frame-
work. The Decision phase of C&C is propagated hierarchi-
cally by the coordinator to SMR leaders and then the leaders
propagate the decision on to the replicas.

The system model of 2PC/SMR consists of a coordina-
tor and a set of cohorts, each responsible for a data shard.
Along with that, 2PC/SMR also introduces SMR replicas.
SMR replicas are not involved in the 2PC protocol. Rather,
they serve as backups for the coordinator and cohorts and
are used to implement the FT-Agreement phase of C&C.
The coordinator and cohorts each have a set of—potentially
overlapping—SMR replicas, the idea originally proposed by
Gray and Lamport in [8]. If a shard holder (coordinator or
cohort) fails, the associated SMR replicas recover the state
of the failed shard. This changes the state transitions of
2PC. At a high level, every state change in 2PC is trans-
formed into two state changes: one to replicate the state to
the associated SMR replicas and another to make the transi-
tion to the next 2PC state. For example, before a cohort in
2PC responds to 2PC-get-votes, it replicates its value onto a
majority of SMR replicas. Similarly, the coordinator, after
making a decision, first replicates it on a majority of SMR
replicas before responding to the client or informing other
cohorts.

The advantage of using 2PC/SMR in building a system
is that if the underlying SMR replication is in place, it is
easy to leverage the SMR system to derive a fault-tolerant
commitment protocol using 2PC. Google’s Spanner is one
such example. We discuss the trade-offs in terms of number
of communication rounds for a layered solution vs. flattened
solution in the evaluation Section 7.

6.2 Replication using Generalized PAC:
Flattened architecture

In this section, we propose a novel integrated approach
for SMR in environments with both sharding and replica-
tion. Our approach is a generalized version of PAC, hence
is named Generalized PAC or G-PAC. The main motivation
driving our proposal is to reduce the number of wide-area
communication messages. One such opportunity stems from
the hierarchy that is imposed in traditional SMR systems—
such as Spanner. The hierarchy of traditional SMR systems
incur wide-area communication unnecessarily. This is be-
cause the 2PC (Atomic Commitment) layer and Paxos (con-
sensus/replication) layers are operating independently from

each other. Specifically, a wide-area communication mes-
sage that is sent as part of the 2PC protocol can be used for
Paxos (e.g., leader election). We investigate this opportu-
nity and propose G-PAC to find optimization opportunities
between the Atomic Commit and Consensus layers.

The G-PAC protocol consists of three phases: an inte-
grated Leader Election and Value Discovery phase, a Fault-
Tolerant Agreement phase, followed by the Decision phase.
If a transaction, T , accesses n shards and each shard is repli-
cated in r servers, there are a total of n ∗ r servers that are
involved in the transaction T . This set of servers will be re-
ferred as participating servers. The client chooses one of the
participating servers, L, and sends an end transaction(T)
request. L then tries to become the leader or the coordina-
tor for transaction T . The coordinator, L, and the cohorts
follow the same state transition as shown in Figure 5 except
that the contending leader sends plac-elect-me message to
all the participating servers. The overridden Value Discov-
ery method V is similar to the one presented Algorithm 3.
The flattening of the architecture for sharding and replica-
tion changes the notion of all and majority cohorts that is
referred in Algorithm 3 to:

• super-set: Given n shards, each with r replicas, super
-set is a majority of replicas for each of the n shards.
The value for each shard is the one chosen by a ma-
jority of replicas of that shard i.e., ( r

2
+ 1) replicas.

If any shard (represented by a majority of its repli-
cas) chooses to abort, the coordinator sets AcceptVal
to abort.

• super-majority: a majority of replicas for a majority
of shards involved in transaction T i.e., (n

2
+ 1) shards

and for each shard, a value is obtained when a majority
of its replicas respond i.e., ( r

2
+ 1) replicas for each

shard.

Algorithm 4 For G-PAC, given the plac-elect-you replies
from the participating servers, the leader chooses a value
for the transaction based on the conditions presented here.

Leader Election + Value Discovery: Method V
The replies contain variables defined in Table 1.

1: if received response from a SUPER-MAJORITY then
2: if at least ONE shard response has Decision=True
3: then
4: AcceptV al← AcceptVal of that response
5: Decision← True
6: else if at least one shard response has AcceptVal
7: = commit then \* Decision is True for none.*\
8: AcceptV al← commit
9: else if received response from SUPER-SET

10: \* The normal operation case *\ then
11: if all InitVal = commit then
12: AcceptV al← commit
13: else
14: AcceptV al← abort
15: end if
16: else
17: AcceptV al← abort
18: end if
19: else transaction is blocked
20: end if
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Method V with the newly defined notions of super-set and
super-majority, which decides the value for the transaction,
in described in Algorithm 4. We reuse the definition of repli-
cation method R described in Algorithm 2, where majority
is replaced by super-majority. Note that during the inte-
grated Leader Election and Value Discovery phase, if a node
receives response from a super-majority, it could be elected
as leader, however to proceed with Value Discovery, it needs
to wait for a super-set, which is a more stringent condition
due to the atomic commitment requirement.

7. EVALUATION
In our evaluations we compare the performance of G-PAC

and 2PC/SMR and discuss the trade-offs in wide-area com-
munication delays between the two approaches. The perfor-
mance of 2PC/SMR varies widely based on the placement
of the SMR leaders. When the SMR leaders are dispersed
across different datacenters, the commitment of a transac-
tion needs 4 inter-datacenter round-trip time (RTT) delays:
two rounds for the two phases of 2PC and one round each
for replicating each of those phases using multi-Paxos [2].
As an optimization, placing all the leaders in a single dat-
acenter will reduce the inter-datacenter communication to
3 RTTs. G-PAC, on the other hand, always only needs 3
RTTs (one for each phase of G-PAC) to complete a trans-
action commitment.

The practical implications of using G-PAC is that in G-
PAC, the leader should know not only the involved shards
in a transaction, but also about their replicas. This requires
the replicas to have additional information which either has
to be stored as meta-data for each transaction or can be
stored in a configuration file. If a replica is added/removed
or if new shards are added, this will require a configura-
tion change. Propagating this change can be challenging,
potentially leading to additional overhead. Although this is
practically challenging, many existing practical deployments
deal with configuration changes using asynchronous but con-
sistent roll-out based methods such as Raft [26] or Lamport
proposals [18, 17]. Any such method can be adapted in the
case of G-PAC.

Our experiments evaluate the performance of G-PAC with
respect to two versions of 2PC/SMR: the most optimal one
(collocated SMR leaders) and the worst-case (geographi-
cally distributed SMR leaders across different datacenters).
Hence, on average, the performance of 2PC/SMR would lie
in between the two cases. We compare the behavior of all the
protocols by increasing the concurrent clients (or threads),
each of which generates transactions sequentially. We lever-
aged Amazon EC2 machines from 5 different datacenters for
the experiments. The datacenters used were N.California
(C), N.Virginia (V), Ireland (I), Sao Paolo (SP) and Tokyo
(T). In what follows we use the capitalized first initial of
each datacenter as its label. Cross datacenter round trip la-
tencies are shown in Table 2. In these experiments, we used
compute optimized EC2 c4.large machines with 2 vCPUs
and 3.75 GiB RAM.

Although G-PAC can be built upon any concurrency con-
trol, for equivalent comparison, both G-PAC and 2PC/SMR
implementations used Two Phase Locking (2PL) as a con-
currency control technique. In 2PC/SMR, only the shard
leaders maintain the lock table; whereas in G-PAC, all par-
ticipating servers maintain their own lock tables. Both pro-
tocols execute the decision phase asynchronously.

Table 2: RTT latencies across different datacenters in ms.

V I SP T
C 60.3 150 201 111
V - 74.4 139 171
I - - 183 223

SP - - - 269

7.1 Micro Benchmark
As the first step in our evaluation, we performed the ex-

periments using a transactional YCSB-like [4] micro- bench-
mark that generated read-write transactions. Every opera-
tion within a transaction accessed different keys, thus, gen-
erating multi-record transactional workloads. Each shard
consisted of 10000 data items. Every run generated 2500
transactions; each plotted data point is an average of 3 runs.
To imitate real global data access patterns, the transactions
perform a skewed data access i.e, 90% of the transactions
access 10% of the data objects, while the remaining trans-
actions access the other 90% of the data items.

7.1.1 Varying number of shards
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Figure 6: Commit latency vs. number of shards.

Commit latency, as measured by the client, is the time
taken to commit a transaction once the client sends an end
transaction request. As the first set of experiments, we as-
sessed the average commit latency of transactions when the
transactions spanned increasing number of shards. In this
experiment, both the coordinator and the client are located
on datacenter C. We measure the average latencies for the
three protocols by increasing the number of shards accessed
by transactions from 1 to 5. And the data was partially
replicated i.e., each shard was replicated in only 3 datacen-
ters. The results are depicted in Figure 6. When the data
objects accessed by the transactions are from all 5 shards
(at datacenters C, V, I, SP and T), 2PC/ SMR with leaders
scattered on 5 different datacenters, has the highest commit
latency, as the coordinator is required to communicate with
geo-distributed shard leaders. For 2PC/SMR with scattered
leaders, the average commit latency decreases with the re-
duction in the number of involved shards. This is because
with each reduction in number of shards, we removed the
farthest datacenter from the experiment. Whereas, the av-
erage commit latency for G-PAC does not increase substan-
tially with increasing shards as it communicates only with
the closest replicas of each shard, before responding to the
client. When the clients access data from a single shard,
the average latencies for all three protocols converge almost
to the same value. This is because with a single shard, all
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Figure 7: Various performance evaluations using TPC-C benchmark

three protocols need to communicate with only a majority
of the 3 replicas for the shard.

This experiment not only shows that G-PAC has highly
stabilized performance when the number of involved shards
increase, but it also highlights the fact that, with 2PC/SMR
with collocated leaders, at least one datacenter must be over-
loaded with all shards in order to obtain optimal results.
This is in contrast to G-PAC which equally distributes the
load on all datacenters, while preserving optimal latency.

From the results shown in Figure 6, we choose 3 shards to
run each of the experiments that follow, as it is representa-
tive of the trade-offs offered by the three protocols.

7.2 TPC-C Benchmark
As a next step, we evaluate G-PAC using TPC-C bench-

mark, which is a standard for benchmarking OLTP systems.
TPC-C includes 9 different tables and 5 types of transactions
that access the data stored in the tables. There are 3 read-
write transactions and 2 read-only transactions in the bench-
mark. In our evaluation, we used 3 warehouses, each with
10 districts, each of which in-turn maintained 3000 customer
details (as dictated by the spec). One change we adapted
was to allocate disjoint sets of items to different warehouses,
as the overall goal is to evaluate the protocols for distributed,
multi-record transactions. Hence, each warehouse consisted
of 33,333 items and the New Order transaction (which con-
sisted of 70% of the requests) accessed items from all 3 ware-
houses. Each run consisted of 2500 transactions and every
data point presented in all the experiments is an average of
three runs.

We measured various aspects of the performance of G-
PAC and contrasted it with the two variations of 2PC/SMR.
We used AWS on 3 different datacenters for the following ex-
periments: C, V and I. In 2PC/SMR with dispersed leaders,
the three shard leaders are placed on 3 different datacenters.
And for 2PC/SMR with collocated leaders, all shard lead-
ers were placed in datacenter C. Although not required, for
ease of evaluation, each shard was replicated across all three
datacenters.

7.2.1 Commit Latency
In this experiment, we measure the commit latencies for

G-PAC and the two versions of 2PC/SMR while increas-
ing the number of concurrent clients from 20 to 1000. The
results are shown in Figure 7a. Both G-PAC and the opti-
mized 2PC/SMR respond to the client after two RTTs (as
the decision is sent asynchronously to replicas), and hence,
both protocols start off with almost the same latency val-
ues for lower concurrency levels. But with high concur-

rency, 2PC/SMR has higher latency as all commitments
need to go through the leaders, which can become a bottle-
neck for highly concurrent workloads. 2PC/SMR with dis-
persed leaders is the least efficient with the highest latency.
This is because the coordinator of each transaction needs at
least one round of communication with all geo-distributed
leaders for the first phase of 2PC (2PC-get-value and 2PC-
value). Hence, we observed that G-PAC, when compared
to the most and the least performance efficient versions of
2PC/SMR, provides the lowest commit latency of the three.

7.2.2 Number of Commits
In this set of experiments, we measured the total number

of committed transactions out of 2500 transactions by all
three protocols while increasing the number of concurrent
clients from 20 to 1000. The results are shown in Figure 7b.
From the graph, we observe that G-PAC commits, on an av-
erage, 15.58% more transactions than 2PC/SMR with col-
located leaders and and 32.57% more than 2PC/SMR with
scattered leaders.

Both G-PAC and 2PC/SMR implemented 2-Phase Lock-
ing for concurrency control among contending transactions.
The locks acquired by one transaction are released after the
decision is propagated by the coordinator of the transaction.
The leader based layered architecture of 2PC/ SMR, and its
disjoint phases of commitment and consensus, takes an ad-
ditional round-trip communication before it can release the
locks, as compared to G-PAC. And in 2PC/SMR, since lock
tables are maintained only at the leaders, at higher con-
tention, more transactions end up aborted. Hence, this ex-
periment shows that flattening the architecture by one level
and off-loading the concurrency overhead to all the replicas,
G-PAC can release the locks obtained by a transaction ear-
lier than 2PC/SMR, and thus can commit more transactions
than 2PC/SMR.

7.2.3 Throughput
We next show the throughput measurements for G-PAC

and 2PC/SMR. Throughput is measured as number of suc-
cessful transaction commits per second and hence, the high
contention of data access affects the throughput of the sys-
tem. Figure 7c shows the performance as measured by
transactions executed per second with increasing number of
concurrent clients. G-PAC provides 27.37% more through-
put on an average than 2PC/SMR with collocated leaders
and 88.91% higher throughput than 2PC/SMR with scat-
tered leaders, thus indicating that G-PAC has significantly
higher throughput than 2PC/SMR. Although Figure 7a
showed similar commit latencies for G-PAC and optimized
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2PC/SMR, the throughput difference between the two is
large. This behavior is due to lower number of successful
transaction commits for 2PC/SMR, as seen in Figure 7b.
The scattered leader approach for 2PC/SMR provides low
throughput due to larger commit delays. The lower latencies
along with greater number of successful transactions boosts
the throughput of G-PAC as compared to 2PC/SMR.

7.2.4 Latency of each phase in G-PAC
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Figure 8: Latency of each phase in G-PAC

G-PAC consists of 3 phases: Value Discovery, Fault Toler-
ant Agreement (essentially replicating the decision) and the
Decision phase. In our implementation, the decision is first
disseminated to the client, and then asynchronously sent to
the cohorts. In this experiment, we show the breakdown of
the commit latency and analyze the time spent during each
phase of G-PAC. Figure 8 shows the average latency spent
during each phase, as well as the overall commit latency,
with low to high concurrency. The results indicate that
the majority of the time is spent on Value Discovery phase
(which requires response from super-set of replicas as well as
involves acquiring locks using 2PL) and the FT-Agreement
time is quite consistent throughout the experiment (which
needs responses only from super-majority and does not in-
volve locking). The increased concurrency adds additional
delays to the overall commit latency.

7.3 Availability Analysis
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Figure 9: Availability Analysis

In this section, we perform a simple availability analy-
sis to better understand how the availability of G-PAC and
2PC/SMR vary with the availability of individual replicas.
Let p be the probability with which an individual replica is
available. Consider a system involving three shards, where
each shard is replicated three ways (2*f+1 with f = 1). For
the Value Discovery phase, both protocols require a majority
of replicas from all the shards, hence there is no difference
in their availability. But to replicate the decision, G-PAC

needs only a super-majority (majority of majority) while
2PC/SMR requires a majority from all the shards.

We mathematically represent the availability of both the
protocols. First, the availability of each shard (each of which
is replicated 3 ways) is computed as shown in Equation 1:
either all 3 replicas of the shard are available or a majority
of the replicas are available. Second, based on the proba-
bility, pshard, of each shard being available, we derive the
availability of the two protocols. In G-PAC, the decision
needs to be replicated in a majority of shards. Provided
there are 3 shards, the availability of G-PAC is given by
Equation 2: either all shards are alive or a majority of them
are alive. Similarly, the availability of 2PC/SMR is given by
Equation 3 which indicates that all shards need to be alive
to replicate the decision in 2PC/SMR.

pshard = 3C3 ∗ p3 + 3C2p
2 ∗ (1− p) (1)

AG PAC = 3C3 ∗ p3shard + 3C2p
2
shard ∗ (1− pshard) (2)

A2PC/SMR = 3C3 ∗ p3shard (3)

Figure 9, shows the availability of G-PAC and 2PC/SMR
with increasing probability of an individual site being avail-
able. The analysis indicates that G-PAC has higher tol-
erance to failures than 2PC/SMR. In particular, G-PAC
achieves four nines of availability (i.e., 99.99%) when each
replica is available with probability p = 0.96, where as to
achieve the same, 2PC/SMR requires each replica to be
available with probability p = 0.997.

8. RELATED WORK
Distributed transaction management and replication pro-

tocols have been studied extensively [1, 31, 16, 23]. These
works involve many different aspects, including but not re-
stricted to concurrency control, recovery, quorums, commit-
ment etc. Our focus in this paper has been on the particu-
lar aspect of transaction commitment and how this relates
to the consensus problem. The other aspects are often or-
thogonal to the actual mechanisms of how the transaction
commits. Furthermore, the renewed interest in this field has
been driven by the recent adoption of replication and trans-
action management in large scale cloud enterprises. Hence,
in this section we focus on commitment and consensus proto-
cols that are specifically appropriate for Cloud settings that
require both sharding and replication, and contrast them
with some of the proposed protocols derived from C&C.

We start-off by discussing one of the early and landmark
solutions for integrating Paxos and Atomic Commitment,
namely, Paxos Commit, proposed by Gray and Lamport [8].
Abstractly, Paxos Commit uses Paxos to fault-tolerantly
store the commitment state of 2PC on multiple replicas.
Paxos Commit optimizes on the number of message ex-
changes by collocating multiple replicas on the same node.
This is quite similar to the 2PC/SMR protocol of Section 6.1.

Google Spanner [5] adapts an approach similar to Paxos
Commit to perform transactional commitment but unlike
Paxos Commit, Spanner replicates on geo-distributed ser-
vers. 2PC/SMR, developed in Section 6.1 is a high level
abstraction of Spanner. Replicated Commit by Mahmoud
et al. [22] is a commit protocol that is comparable to Span-
ner, but unlike Spanner, it assumes full replication of data.
Replicated Commit can also be viewed as an instance of the
C&C framework, as it can be materialized from the R-PAC
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protocol (Section 5). MDCC by Kraska et al. [14] is another
commit protocol for geo-replicated transactions. MDCC
guarantees commitment in one cross datacenter round trip
for a collision free transaction. However, in the presence of
collision, MDCC requires two message rounds for commit-
ment. Furthermore, MDCC restricts the ability of a client
to abort a transaction once the end transaction request has
been sent.

More recently, there have been some attempts to consol-
idate the commitment and consensus paradigms. One such
work is TAPIR by Zhang et al. [32]. TAPIR identifies the
expensive redundancy caused due to consistency guarantees
provided by both the commitment and the replication layer.
TAPIR can be specified by the abstractions defined in the
C&C framework. In a failure-free and contention-free case,
TAPIR uses a fast-path to commit transactions, where the
coordinator communicates with 3

2
f+1 replicas of each shard

to get the value of the transaction. This follows the Value
Discovery phase of the C&C framework. G-PAC contrasts
with TAPIR mainly in failure recovery during a coordinator
crash. TAPIR executes an explicit cooperative termination
protocol to terminate a transaction after a crash whereas
G-PAC has the recovery tightly integrated in its normal ex-
ecution. There are other subtle differences between G-PAC
and TAPIR: TAPIR does not allow aborting a transaction
by the coordinator once commitment is triggered. And al-
though fast paths provide an optimization over G-PAC, in
a contentious workload, TAPIR’s slow paths make the com-
plexity of both protocols comparable. Finally, G-PAC pro-
vides flexibility in choosing any quorum definition across
different phases, unlike the fast-path quorum (3/2f+1) in
TAPIR.

Janus by Mu et al. [25] in another work attempting to-
wards combining commitment and consensus in a distributed
setting. In Janus, the commitment of a conflict free transac-
tion needs one round of cross-datacenter message exchange
to commit, and with conflicts, it needs two rounds. Al-
though Janus provides low round-trip delays in conflict-free
scenarios, the protocol is designed for stored procedures. The
protocol also requires explicit a priori knowledge of write
sets in order to construct conflict graphs, which are used for
consistently ordering transactions. In comparison, G-PAC
is more general, as it does not make any of the assumptions
required by Janus.

Another on-going line of work is on deterministic data-
bases, where the distributed execution of transactions are
planned a priori to increase the scalability of the system.
Calvin [30] is one such example. However, this planning
requires declaring the read and write sets before the pro-
cessing of each transaction. This limits the applicability of
deterministic approaches, whereas G-PAC is proposed as a
more generalized atomic commit protocol that can be built
on top of any transactional concurrency mechanism.

9. CONCLUSION
A plethora of consensus, replication and commitment pro-

tocols developed in the past years poses a need to study
their similarities and differences and to unify them into a
generic framework. In this work, using Paxos and 2PC as the
underlying consensus and commit protocols, we construct
a Consensus and Commitment (C&C) unification frame-
work. The C&C framework is developed to model many
existing data management solutions for the Cloud and also

aid in developing new ones. This abstraction pedagogi-
cally helps explain and appreciate the subtle similarities
and differences between different protocols. We demon-
strate the benefits of the C&C framework by instantiat-
ing a number of novel or existing protocols and argue that
the seemingly simple abstractions presented in the frame-
work capture the essential requirements of many impor-
tant distributed protocols. The paper also presents an in-
stantiation of a novel distributed atomic commit protocol,
Generalized-Paxos Atomic Commit (G-PAC), catering to
sharded and replicated data. We claim that separating fault-
tolerant replication from the transaction commitment mech-
anism can be expensive and provide an integrated replica-
tion mechanism in G-PAC. We conclude the paper by eval-
uating the performance of G-PAC with a Spanner-like so-
lution and highlight the performance gains in consolidating
consensus with commitment.

10. APPENDIX
Safety in the C&C framework

Proof. In this section we discuss the safety guarantees
that any consensus or commit protocol derived from the
C&C framework will provide. The safety condition sta-
tes that a value once decided, will never be changed.
Although majority quorums are used to explain the state
transitions of the C&C framework, for the safety proof we
do not assume any specific form of quorum.

Let QL be the set of all possible leader election quorums
used in the Leader Election phase and QR be the set of
all possible replication quorums used in the Fault-Tolerant
Agreement phase of the C&C framework. Any protocol in-
stantiated from the C&C framework should satisfy the fol-
lowing intersection condition:

∀QL ∈ QL, ∀QR ∈ QR : QL ∩QR 6= ∅ (4)

The safety condition states that: If a value v is decided
for ballot number b, and if a value v′ is decided for another
ballot number b′, then v=v′.

Let L be the leader elected with ballot number b and v
be the value chosen by method V based on the c&c-value
responses. For the chosen value v to be decided, v must be
fault-tolerantly replicated on a quorum QR ∈ QR.

Now consider another node L′ decides to become leader.
L′ sends out c&c-elect-me message with ballot b′ to all the
other nodes. L′ becomes a leader if it receives c&c-elect-you
messages from a quorum QL ∈ QL. Based on condition 4,
QL∩QR is non-empty i.e., there is at least one node A such
that A ∈ QL and A ∈ QR. There can be two possibilities
for ballot b′.
• b′ < b: In this case, L′ will not be able to get c&c-elect-

you replies from a quorum QL as there is at least one node
A that a ballot b > b′ and hence will reject L′’s message.
• b′ > b: In this case, as a response to L′’s c&c-elect-me

message, A sends the previously accepted value v to the new
leader. L′ then updates the value to propose from v′ to v.

Hence, we show that the C&C framework is safe and any
protocol instantiated from the framework will be safe as long
as condition 4 is satisfied.
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