
Meta-Mappings for Schema Mapping Reuse

Paolo Atzeni
Università Roma Tre

paolo.atzeni@uniroma3.it

Luigi Bellomarini
Banca d’Italia

luigi.bellomarini@bancaditalia.it
Paolo Papotti

EURECOM
papotti@eurecom.fr

Riccardo Torlone
Università Roma Tre

riccardo.torlone@uniroma3.it

ABSTRACT
The definition of mappings between heterogeneous schemas
is a critical activity of any database application. Existing
tools provide high level interfaces for the discovery of corre-
spondences between elements of schemas, but schema map-
pings need to be manually specified every time from scratch,
even if the scenario at hand is similar to one that has already
been addressed. The problem is that schema mappings are
precisely defined over a pair of schemas and cannot directly
be reused on different scenarios. We tackle this challenge
by generalizing schema mappings as meta-mappings: for-
malisms that describe transformations between generic data
structures called meta-schemas. We formally characterize
schema mapping reuse and explain how meta-mappings are
able to: (i) capture enterprise knowledge from previously
defined schema mappings and (ii) use this knowledge to sug-
gest new mappings. We develop techniques to infer meta-
mappings from existing mappings, to organize them into a
searchable repository, and to leverage the repository to pro-
pose to users mappings suitable for their needs. We study
effectiveness and efficiency in an extensive evaluation over
real-world scenarios and show that our system can infer,
store, and search millions of meta-mappings in seconds.

PVLDB Reference Format:
P. Atzeni, L. Bellomarini, P. Papotti, R. Torlone. Meta-Mappings
for Schema Mapping Reuse. PVLDB, 12(5): 557-569, 2019.
DOI: https://doi.org/10.14778/3303753.3303761

1. INTRODUCTION
Schema mappings are widely used as a principled and

practical tool for data exchange and data integration. How-
ever, although there are systems supporting data architects
in the creation of mappings [12, 14], designing them is still
a hard and time-consuming task. In this framework, it has
been observed that, given the overwhelming amount of “en-
terprise knowledge” stored in traditional data warehouses
and in data lakes [16, 21, 31], reuse is an opportunity of in-
creasing importance [1]. In particular, data transformation

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 12, No. 5
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3303753.3303761

Firm Gains Zone Sector

ACME 15 Area A B8.9.1
CARS 36 Area S N77.1.1

RASA

Code Description

B8.9.1 Chemical

N77.1.1 Renting

Activity

Company Gains Zone Sector

ACME 15 Area A Chemical
CARS 36 Area S Renting

EDEN 2 Area V Sport

FLOUR 6 Area M Metals

HOTEL 1 Area S Housing

PEARS 7 Area G Media

BalanceG

FKey

Enterprise Gains Sector Capital Area

EDEN 2 Sport 5 V12

FLOUR 6 Metals 3 M1

RBSB

Code Name

M1 Area M
V12 Area V

Location
FKey

FKey

Enterprise Sector Capital Profits Area

HOTELS M57 12 1 S14

PEARS C18 2 7 G2

RC
SC

Code Name

G2 Area G

S14 Area S

Location
Code Description

C18 Media

M57 Housing

Activity

FKey

Figure 1: A data transformation scenario

scenarios are often defined over schemas that are different in
structure but similar in semantics. This is especially true if
data sources, which are extremely heterogeneous, have to be
mapped to a shared format. In this setting, it often happens
that mappings are shared as well, so that previous experi-
ence can be leveraged. It follows that a great opportunity
to reduce the effort of transformation design is to reuse ex-
isting schema mappings. Unfortunately, there is no obvious
approach for this problem. Consider the following example
inspired from a real use case.

Example 1. A central bank maintains a register with bal-
ance data from all companies in the country (Figure 1). This
register has schema G, with a relation Balance storing, for
each company, its gains, zone of operation, and economic
sector. External providers send data to the bank in differ-
ent forms. Provider A adopts a schema SA, with a rela-
tion RA for companies (firms), with gains, zone of operation,
and economic sector, whose code refers to relation Activity.
Provider B adopts a schema SB, with a relation RB for com-
panies (enterprises), their gains, sector, capital, and area,
whose code refers to relation Location. Data is moved from
SA and SB into G, by using two schema mappings:

σA: RA(f, g, z, s),Activity(s, d) → Balance(f, g, z, d).

σB: RB(e, g, s, c, a),Location(a, n) → Balance(e, g, n, s).

557

The example shows a data exchange scenario where the
differences in the mappings are due to the structural differ-
ences between SA and SB , which are, on the other hand, se-
mantically very similar. Moreover, every new data provider
(e.g., SC in the Figure) would require the manual design of
a new, ad-hoc mapping, even if there is a clear analogy with
the already defined mappings.

So, what is the right way to reuse σA and σB and avoid
the definition of a new mapping for SC? Ideally, we would
like to collect all the available mappings in a repository;
then, for any new pair of schemas (e.g., SC and G in the
Figure), we would like to query such repository to retrieve a
suitable mapping. Unfortunately, this form of direct reuse is
complicated by the nature of schema mappings. Actually, a
mapping characterizes integration scenarios as a constraint
and captures the semantics for a pair of schemas at a level
of detail that enables both logical reasoning and efficient
execution. Yet, a simple variation in a schema, such as a
different relation or attribute name or a different number of
attributes, makes it not applicable. Indeed, our experiments
show that mappings of a corpus of 1.000 schema mappings
can be reused for new, unmapped pairs of schemas only in
20% of cases. To be reusable, a mapping should be described
in a way that is independent of its specificities but, at the
same time, harnesses the essence of the constraint so as to
work for similar schemas.

Example 2. Consider a “generic” mapping ΣA, obtained
from σA by replacing names of the relations and attributes
with variables. It could be informally described as follows:

ΣA: for each relation r with key f and attributes g, a, s

for each relation r′ with key s and attribute d

with a foreign key constraint from s of r to s of r′

there exists a relation r′′ with key f and attributes g, a, d.

If instantiated on SA, the generic mapping ΣA expresses
a mapping to G that is the same as σA. This solution seems
a valid compromise between precision, i.e., the ability to ex-
press the semantics of the original mapping, and generality,
as it can be applicable over different schemas. However, ΣA
falls short of the latter requirement, as it is not applicable
on SB . Indeed, there are no constraints on attribute g and
a, and so they could be bound to any of Gains, Sector and
Capital, incorrectly trying to map Capital into the target.

Example 3. Consider now a more elaborated generic map-
ping that uses constants to identify attributes:

ΣHB : for each relation r with key e and attributes g, s, c, a

for each relation r′ with key a and attribute d

with a foreign key constraint from a of r to a of r′

where g = Gains, s 6= Gains, s 6= Capital,

c 6= Gains, c 6= Sector

there exists a relation r′′ with key e and attributes g, d, s.

This generic mapping is precise enough to correctly describe
both σA and σB and can be re-used with other schemas.

The example shows a combination of attributes, identified
by constraints on their names and role, that form a correct
and useful generic mapping. Once pinpointed, generic map-
pings can be stored in a repository, so that it is possible to
retrieve and use them for a new scenario. In our example,
given SC and G, the generic mapping ΣHB can be retrieved
from the repository and immediately applied.

Figure 2: The architecture of GAIA.

There are three main challenges in this approach.

- We need a clear characterization of what it means for a
generic mapping to correctly describe and capture the se-
mantics of an original schema mapping.

- A generic mapping is characterized by a combination of
constraints (e.g., the ones on attribute names and roles)
and so, for a given original mapping, there is a combina-
torial blow-up of possible generic mappings. We need a
mechanism to generate and store all of them.

- For a new scenario (e.g., new schemas), there is an over-
whelming number of generic mappings that potentially
apply, with different levels of “suitability”. We need effi-
cient tools to search through and choose among them.

In this work, we address the above challenges with GAIA,
a system for mapping reuse. GAIA supports two tasks, as
shown in Figure 2: (1) infer generic mappings, called meta-
mappings, from input schema mappings, and store them in a
repository; (2) given a source and a target schema, return a
ranked list of meta-mappings from the repository which are
used to generate possible mappings between these schemas.

In sum, this paper provides the following contributions:

• The notion of fitness: a semantics to precisely characterize
and check when a meta-mapping is suitable for a reuse
scenario (Section 3).
• A necessary and sufficient condition for the fitness of a

meta-mapping, which we use to devise an algorithm to
infer meta-mappings from schema mappings with an ap-
proach that extends previous efforts for the definition of
schema mappings by example; this algorithm is used to
populate a repository of meta-mappings supporting schema
mapping reuse (Section 3).
• An approach to reuse based on: (i) the search, in the

repository of available meta-mappings those that fit a new
pair of source and target schemas and (ii) the construc-
tion, from the retrieved meta-mappings, of possible map-
pings to be proposed to the designer (Section 4).
• Given the binary nature of fitness and the complexity of

testing it, we introduce coverage, a feature-based metric
based on nearest neighbour search that acts as a predic-
tor for fitness; we show that coverage enables an efficient
search in the repository for meta-mappings that best fit a
given pair of schemas, as well as a sound ranking of the
retrieved meta-mappings according to their “fitness dis-
tance” from the schemas under consideration (Section 5).

We provide a full-scale evaluation of the algorithms in
our system with more than 20,000 real-world data transfor-
mations over 40,000 schemas. The results show that our
solution is effective in practice and the optimizations enable
an interactive use of the system (Section 6).

Because of space limitation, proofs for all theorems are in
the full version of the paper [4].

558

2. BACKGROUND AND GOAL
In this section we recall the notion of schema mapping [15]

and introduce that of meta-mapping. While the former no-
tion is used to model specific data trations, the latter intro-
duces an abstraction over mappings [23, 29] and allows us
to model generic mappings between schemas. Building on
these notions, we also clarify the goals of this paper.

2.1 Schema mappings
Let S (the source) and T (the target) be two relational

schemas and let Inst(S) and Inst(T) denote the set of all
possible instances of S and T, respectively. A (schema)
mapping M for S and T is a binary relation over their in-
stances, that is, M ⊆ Inst(S)× Inst(T) [9].

Without loss of generality, we consider mappings expressed
by a single source-to-target tuple-generating-dependency (st-
tgd) σ of the form: ∀x(φ(x) → ∃yψ(x,y)) where x and y
are two disjoint sets of variables, φ(x) (the left-hand-side,
LHS) is a conjunction of atoms involving relations in S and
ψ(x,y) (the right-hand-side, RHS) is a conjunction of atoms
involving relations in T. The dependency represents a map-
ping M in the sense that (I, J) ∈ M if and only if (I, J)
satisfies σ. In this case, J is called a solution of I under
σ. We can compute a suitable J in polynomial time by ap-
plying the chase procedure to I using σ [15]: the result may
have labeled nulls denoting unknown values and is called
the universal solution, since it has a homomorphism to any
possible solution J ′, that is, a mapping h of the nulls into
constants and nulls such that h(J) ⊆ J ′.

Example 4. Consider the schemas SA, SB and G of
Figure 1, which we recall in Figure 3 with all the formalisms
that will be discussed throughout the paper.

A mapping between SA and G is the st-tgd σA discussed
in the Introduction and reported in Figure 3 (quantifiers are
omitted for the sake of readability). Intuitively, the appli-
cation of the chase to the instance of SA using σA enforces
this dependency by generating one tuple in the target for each
pair of tuples in the source for which there is a binding to
the LHS of the dependency. The result includes the first two
tuples in relation Balance in Figure 1.

Besides, a mapping from SB to G is represented by the
s-t tgd σB in Figure 3. The result of the chase is a relation
with the third and fourth tuple of relation Balance.

Specifying a mapping through st-tgds is a consolidated
practice, as they offer a clear mechanism to define a rela-
tionship between the source and the target schema. Since
we consider one dependency at a time, in the following we
blur the distinction between mapping and dependency and
simply refer to “the mapping”. Moreover, we will call a set
of mappings H = {σ1, . . . , σn} a transformation scenario.

2.2 Meta-mappings
A meta-mapping describes generic mappings between re-

lational schemas and is defined as a mapping over the cata-
log of a relational database [29]. Specifically, in a relational
meta-mapping, source and target are both defined over the
following schema, called (relational) dictionary : Rel(name),
Att(name, in), Key(name, in), FKey(name, in, refer) (for the
sake of simplicity, we consider here a simplified version of
the relational model). An instance S of the dictionary is
called m-schema and describes relations, attributes and con-
straints of a (standard) relational schema S.

Example 5. Figure 3 shows also the m-schemas of the
schemas SA, SB, and G of the running example.

We assume, hereinafter, that, given a schema, its corre-
sponding m-schema is also given, and vice versa.

A meta-mapping is expressed by means of an st-tgd over
dictionaries that describes how the elements of a source m-
schema map to the elements of a target m-schema.

Example 6. Mapping σA of Example 4 can be expressed,
at the dictionary level, by meta-mapping ΣA in Figure 3.
This st-tgd describes a generic transformation that takes two
source relations R and S linked by a foreign key F and gen-
erates a target relation T obtained by joining R and S on F
that includes: the key K1 and the attributes A1 and A2 from
relation R and the attribute A3 from S.

Similarly to schema mappings, given a source m-schema S
and a meta-mapping M , we compute a target m-schema T
by applying the chase procedure to S using M .

Example 7. The chase of the m-schema SA using ΣA,
both in Figure 3, generates the following target m-schema
where ⊥R is a labelled null denoting a relation name.

Rel
name
⊥R

Key
name in
Firm ⊥R

Att
name in
Gains ⊥R
Zone ⊥R

Description ⊥R

This m-schema describes the relational schema:

R(Firm,Gains,Zone,Description)

A meta-mapping operates at schema level rather than at
data level and thus provides a means for describing generic
transformations. There are subtleties that could arise from
the chase procedure in presence of existential quantifications
in meta-mappings producing duplications of relations in the
result. This is avoided by assuming that, for each existen-
tially quantified variable, there is a target equality generating
dependency (egd) [15] ensuring that whenever two relations
in the target have the same structure, then they coincide.

2.3 From meta-mappings to mappings
Given a source schema S and a meta-mapping Σ, not only

is it possible to generate a target schema by using the chase,
as shown in Example 7, but it is also possible to automat-
ically obtain a schema mapping σ that represents the spe-
cialization of Σ for S and T [29]. The schema to data ex-
change transformation (SD transformation) generates from
S and Σ a complete schema mapping made of S, a target
schema T (obtained by chasing the m-schema of S with the
meta-mapping), and an s-t tgd σ between S and T. The cor-
respondences between LHS and RHS of σ are derived from
the provenance information computed during the chase step,
in the same fashion as the provenance computed over the
source instance when chasing schema mappings [13].

Example 8. Consider again the scenario in Figure 3. If
we apply the SD transformation to the schema SA and the
meta-mapping ΣA, we obtain the target m-schema of Exam-
ple 7 and the following mapping from SA to ⊥R:

σ : RA(f, g, z, s),Activity(s, d)→ ⊥R(f, g, z, d).

Thus, we get back, up to a renaming of the target relation,
the mapping σA in Figure 3 from which ΣA originates.

559

schemas

SA = {RA(Firm,Gains,Zone,Sector),Activity(Code,Description),RA.Sector 7→ Activity.Code}
G = {Balance(Company,Gains,Zone,Sector)}
SB = {RB (Enterprise,Gains,Sector ,Capital,Area),Location(Code,Name),RB .Area 7→ Location.Code}}

mappings

σA : RA(f , g, z , s),Activity(s, d) → Balance(f , g, z , d). σB : RB (e, g, s, c, a),Location(a,n) → Balance(e, g,n, s).

m-schemas

SA

Rel
name
RA

Activity

Key
name in
Firm RA
Code Activity

Att
name in
Gains RA
Zone RA

Description Activity

FKey
name in refer
Sector RA Activity

SB

Rel
name
RB

Location

Key
name in

Enterprise RB
Code Location

Att
name in
Gains RB
Sector RB
Capital RB
Name Location

FKey
name in refer
Area RB Location

G
Rel
name

Balance

Key
name in

Company Balance

Att
name in
Gains Balance
Zone Balance
Sector Balance

meta-mappings

ΣA : Rel(R),Key(K1, R),Att(A1, R),Att(A2, R),FKey(F,R, S),Rel(S),Key(K2, S),Att(A3, S) → Rel(T),Key(K1, T),Att(A1, T),Att(A2, T),Att(A3, T)
qS(x) = Rel(R),Key(K1, R),Att(A1, R),Att(A2, R),Att(A3, R), FKey(F,R, S),Rel(S),Key(K2, S),Att(A4, S)
qT (x,y) = Rel(T),Key(K1, T),Att(A1, T),Att(A2, T),Att(A4, T)

ΣB : qS(x) → qT (x,y)

ΣPB : qS(x), A1 =Gains,A2 =Sector ,A3 =Capital → qT (x,y)

ΣNB : qS(x), A1 6=Sector ,A1 6=Capital,A2 6=Gains,A2 6=Capital,A3 6=Gains,A3 6=Sector → qT (x,y)

ΣHB : qS(x), A1 =Gains,A2 6=Gains,A2 6=Capital,A3 6=Gains,A3 6=Sector → qT (x,y)

Figure 3: Schemas, m-schemas, mappings, and meta-mappings discussed along the paper.

2.4 Problem statement
While previous work focused on generating a schema map-

ping from a given meta-mapping [29], here we tackle the
more general problem of mapping reuse, which consists of:
(i) generating a repository of meta-mappings from a set of
user-defined schema mappings, and (ii) given a new pair of
source and target schemas, generating a suitable mapping
for them from the repository of meta-mappings. For exam-
ple, in the scenario of Figure 3, the goal is to reuse meta-
mapping ΣA, which has been inferred from σA between SA
and G, to generate a mapping between SB and G.

3.FROM MAPPINGS TO META-MAPPINGS
In this section we describe how a schema mapping is gen-

eralized into a set of meta-mappings. We start by intro-
ducing the notion of fitness (Section 3.1), which formalizes
the relationship between a meta-mapping and the mappings
it generalizes. We then discuss how we infer fitting meta-
mappings from mappings. This is done in two main steps:
(1) the construction of a “canonical meta-mapping” (Sec-
tion 3.2), which can be non-fitting, and (2) the “repair” of
non-fitting canonical meta-mappings by means of suitable
equality and inequality constraints (Section 3.3). The over-
all approach is then summarized in Section 3.4.

3.1 Fitness of meta-mappings
We say that there is a matching from S1 to S2 if there

is an injective mapping µ from the elements of S1 to the
elements of S2 such that: (i) µ preserves the identity on
common constants (that is, for every constant c occurring
in both S1 and S2, µ(c) = c), (ii) µ maps nulls to constants,
and (iii) when µ is extended to schemas, µ(S1) ⊆ S2.

We are now ready for the definition of fitness of meta-
mappings.

Definition 1. Let S and T be a pair of schemas and S
and T be the m-schemas of S and T, respectively. A meta-
mapping Σ fits S and T if there is a matching between the
universal solution of S under Σ and T. By extension, a
meta-mapping Σ fits a mapping σ if it fits its source and
target schemas.

Example 9. To test if the meta-mapping ΣA of our run-
ning example fits the mapping σA between SA and G (both
in Figure 3), we compute the universal solution of SA under
ΣA by chasing SA using ΣA. The result is the following:

T
Rel
name
⊥R

Key
name in
Firm ⊥R

Att
name in
Gains ⊥R
Zone ⊥R

Description ⊥R

It is now easy to see that there is a matching from T to
G (in Figure 3), which maps ⊥R to Balance, Firm to Com-
pany, Description to Sector, and leaves the other constants
unchanged. It follows that, indeed, ΣA fits σA.

Note that the notion of matching is Boolean and, for sim-
plicity, refers to the identity of names used in the schemas.
However, we point out that this definition (and thus the
notion of fitness) can be naturally extended by adopting
a more general notion of similarity, such as those used in
schema matching [8].

3.2 Canonical meta-mappings
We now consider a basic way to derive a fitting meta-

mapping from a mapping σ, which we call canonical. It is

560

built by “projecting”, in its source and target m-schemas
the correspondences between attributes expressed by σ.

The projection of σ on its m-schemas S and T is a pair of
m-schemas, denoted by Sσ and Tσ, obtained from S and T
as follows: for each variable x that occurs in both the LHS
and the RHS of σ, we equate, if they are different, all the
attributes in S and T on which x occurs, using the same
distinct “fresh” constant.

Example 10. The projections of σA in Figure 3 on its
source and target m-schemas SA and G are the following.

S
σA
A

Rel
name
RA

Activity

Key
name in
cf RA

Code Activity

Att
name in
Gains RA
Zone RA
cd Activity

FKey
name in refer
Sector RA Activity

GσA
Rel
name

Balance

Key
name in
cf Balance

Att
name in
Gains Balance
Zone Balance
cd Balance

Basically, constant cf describes the fact that σA maps the
key of relation RA to the key of Balance, whereas constant
cd describes the fact that a non-key attribute of Activity maps
a non-key attribute of Balance. Note that the other attributes
remain unchanged since they appear in both schemas.

Given a tuple (a1, . . . , ak) in the instance I of a schema
R(A1, . . . , Ak), we call the atom R(a1, . . . , ak) a fact of I.

Definition 2. The canonical meta-mapping Σ for a map-
ping σ from S to T is the st-tgd ∀x(qS(x) → ∃yqT (x,y))
where: (i) qS(x) is the conjunction of all the facts in Sσ

with each value replaced by the same universally quantified
variable in x and (ii) qT (x,y) is the conjunction of all the
facts of Tσ with each value not occuring in S replaced with
the same existentially quantified variable in y.

Example 11. Consider again the mapping σA in Fig-
ure 3. From the projections of σA on its source and target
m-schemas, presented in Example 10, we obtain precisely the
canonical-meta mapping ΣA (also in Figure 3). In Exam-
ple 9 we have shown that, indeed, ΣA fits σA.

For a given pair of m-schemas, the canonical meta-mapping
always exists and can be determined in linear time by apply-
ing Definition 2 in a constructive way. It can be observed
that our notion extends that of canonical GLAV schema
mappings [3], defined at data level.

Unfortunately, a canonical meta-mapping does not neces-
sarily fit the mapping it originates from.

Example 12. Let us consider the mapping σB in Fig-
ure 3. The projection of σB on its source and target m-
schemas SB and G are the following m-schemas.

S
σB
B

Rel
name
RB

Location

Key
name in
ce RB

Code Location

Att
name in
Gains RB
Sector RB
Capital RB
cn Location

FKey
name in refer
Area RB Location

GσB
Rel
name

Balance

Key
name in
ce Balance

Att
name in
Gains Balance
cn Balance

Sector Balance

The canonical meta-mapping ΣB for σB is then as follows.

ΣB : Rel(R),Key(K1, R),Att(A1, R),Att(A2, R),Att(A3, R),
FKey(F,R, S),Rel(S),Key(K2, S),Att(A4, S) →

Rel(T),Key(K1, T),Att(A1, T),Att(A2, T),Att(A4, T).

This meta-mapping does not fit σB since the chase of SB

using ΣB produce the following universal solution that does
not match with G:

T
Rel
name
⊥R

Key
name in

Enterprise ⊥R

Att
name in
Gains ⊥R
Sector ⊥R
Capital ⊥R
Name ⊥R

The example above shows that canonical mappings may
fail to identify structural ambiguities, such as, in our ex-
ample, the multiple non-key attributes (A1, A2, A3) related
to the same relation (R), which can bind to any of the at-
tributes Gains, Sector and Capital, eventually copying Capital
into the target, which is not desired.

We formalize this intuition by introducing the notion of
(potentially) ambiguous variables and studying its connec-
tions to the fitness of a meta-mapping. We say that the
position τ(q, x) of a variable x in a conjunctive formula q
is the set of pairs {(a1, p1), . . . , (an, pn)}, where ai is the
predicate of an atom in q containing x, and pi is the relative
position of x in ai. For example, given: q : Rel(R),Att(A,R)
we have: τ(q,R) = {(Rel, 1), (Att, 2)}.

Definition 3. Two distinct variables xi and xj are po-
tentially ambiguous in a conjunctive formula q if τ(q, xi) ∩
τ(q, xj) 6= ∅.

The above notion (which can be generalized to the case of
multiple variables by considering them pairwise) applied to
the premise qS of a canonical meta-mapping, captures the
“structural ambiguity” of the two variables, that is, their
presence in the same position in homonym atoms. However,
additional facts are generated in the target only if the am-
biguity is actually “activated” by a homomorphism in some
chase step, as captured by the next definition.

We recall that: a homomorphism h from q(x) to I extends
to another homomorphism h′ from q′(y) to J , if for every
variable x ∈ x ∩ y, h(x) = h′(x).

Definition 4. Two distinct variables xi, xj are ambigu-
ous in a canonical meta-mapping Σ : qS → qT if: (1) they
are potentially ambiguous in qS, (2) there exists a homomor-
phism h that maps some atom α whose predicate occurs in
τ(qS , xi) ∩ τ(qS , xj), into the same fact, and (3) one of the
following holds: (a) xi and xj are not potentially ambiguous
in qT ; (b) h extends to a homomorphism h′ that maps α into
different facts.

Example 13. Variables A1, A2, A3 of ΣB in Figure 3 are
ambiguous since: (i) they are pairwise potentially ambigu-
ous in qS (τ(qS , A1) ∩ τ(qS , A2) ∩ τ(qS , A3) = {(Att, 1)});
(ii) they are not pairwise potentially ambiguous in qT (A3

does not appear in the conclusion). By contrast, variables
A1, A2 of ΣA in Figure 3 are not ambiguous since they are
potentially ambiguous in qS and qT .

Condition (b) of Definition 4 covers the subtle cases in which
xi and xj are potentially ambiguous in both qS and qT

561

(hence condition (a) does not hold), yet the atoms of the
target in which xi and xj appear contain terms bound to
different values by an extended homomorphism.

We are now ready to give an effective characterization of
fitness for a meta-mapping.

Theorem 1. A canonical meta-mapping Σ fits its map-
ping σ if and only if it does not contain ambiguous variables.

3.3 Repairing canonical meta-mappings
Taking inspiration from Theorem 1, which provides a nec-

essary and sufficient condition to guarantee fitness, we can
enforce fitness in canonical meta-mappings by including con-
straints that avoid the presence of ambiguous variables. More
specifically, we extend a canonical meta-mapping by adding
to its LHS a conjunction of explicit constraints of the form
x = c or x 6= c, in which x is a variable and c is a constant.
We denote them as positive, negative or hybrid constraints
if they involve equalities only, inequalities only or both, re-
spectively.

Example 14. Let qS(x) and qT (x,y) be the LHS and
the RHS of the meta-mapping ΣB in Figure 3, respectively.
Possible extensions of ΣB with constraints are reported be-
low. They belong to different classes: positive (ΣPB), negative
(ΣNB), and hybrid (ΣHB). All of them fit σB.

ΣPB : qS(x), A1 = Gains,A2 = Sector ,A3 = Capital → qT (x,y)

ΣNB : qS(x), A1 6= Sector ,A1 6= Capital ,A2 6= Gains,
A2 6= Capital ,A3 6= Gains,A3 6= Sector → qT (x,y)

ΣHB : qS(x), A1 = Gains,A2 6= Gains,A2 6= Capital ,
A3 6= Gains,A3 6= Sector → qT (x,y)

Explicit constraints guarantee a form of semantic compli-
ance between the meta-mapping and the scenario at hand.
For instance, the meta-mappings in Example 14 are likely to
be more suitable in application domains involving Gains and
Capital rather than those involving Students and Courses.
Negative constraints cover more cases but tend to be too
general, while positive constraints are more restrictive but
better capture a specific application domain. Therefore,
to exploit the advantages of both, it is useful to generate
also hybrid constraints, which involve both equalities and
inequalities.

Algorithm 1 turns a non-fitting canonical meta-mapping
Σ = qS → qT for a mapping σ between S and T into a
fitting one by adding such constraints. We call such process
a repair of the given meta-mapping.

This algorithm first computes the set HS of all the possi-
ble homomorphisms from qS to Sσ and the set HT of all the
possible homomorphisms from qT to Tσ (lines 5-6). Then,
we isolate the set HE of homomorphisms in HS that ex-
tend to some homomorphism in HT (line 7). Lines 8-9 store
in Γ and Λ the n-uples of potentially ambiguous variables
in qS and qT respectively, according to Definition 3. The
subsequent loop checks whether potentially ambiguous vari-
ables are indeed ambiguous. Whenever a homomorphism
activates the potential ambiguity in the LHS (lines 12-13),
if such ambiguity is not present in the RHS (line 14) or
is present but, for some extension h′, the potentially am-
biguous variables occur in atoms that are mapped by h′ to
different facts (lines 15-16), then those variables are stored
in A (line 17). The ambiguous variables in A are then fixed

by means of the extended homomorphisms in HE . For this,
we select the homomorphisms that assign different values to
the ambiguous variables (line 19) and, for each of them, we
build several repairs by adding a conjunction of constrains
γ1, . . . , γn (line 20) for each n-uple of ambiguous variables
that appear in both qS and qT . Each constraint γi can be
(line 21): (i) an equality that binds the ambiguous variable
xi to the value h(xi) assigned by h; (ii) a conjunction of in-
equalities of the form xi 6= h(xj) for any possible ambiguous
variable xj other than xi.

Example 15. Assume we want to repair the canonical
meta-mapping ΣB in Example 8. Among the homomor-
phisms in HE, there are:

h1 : {(A1,Gains), (A2, Sector), (A3,Capital), . . .}
h2 : {(A1,Gains), (A2,Gains), (A3,Gains), . . .}

The potentially ambiguous variables in qS and qT are Γ =
{(A1, A2, A3)} and Λ = {(A1, A2)}, respectively. The three
Att atoms of the LHS with the potentially ambiguous vari-
ables are all mapped by h2 to the same fact; moreover, since
(A1, A2, A3) is not in Λ, the variables are ambiguous. To re-
pair the meta-mapping, we identify all the extending homo-
morphisms hi such that: hi(A1) 6= hi(A2) 6= hi(A3). Among
them, the homomorphism h1 above, from which we generate
the mappings ΣPB, ΣNB and ΣHB in Figure 3.

The following result shows the correctness of Algorithm 1.

Theorem 2. A meta-mapping that fits a given mapping
σ always exists and Algorithm 1 always terminates and de-
termines such meta-mapping.

Unfortunately, the repair process unavoidably requires to
detect all the ambiguities, a problem with inherent expo-
nential complexity.

Theorem 3. The problem of enforcing fitness in a canon-
ical meta-mapping is Πp

2-hard.

3.4 Meta-mapping inference
Algorithm 2 summarizes the overall technique to infer fit-

ting meta-mappings from mappings. Given a schema map-
ping σ from S to T, we first project σ on the m-schemas S
and T of S and T, respectively (line 5). We then build from
Sσ and Tσ the canonical meta-mapping Σ (line 6), which
may not fit σ. We finally repair Σ by adding explicit con-
straints, as discussed in Section 3.3, and produce a set Q of
meta-mappings, all fitting σ (line 7). This method can be
extended to a set H of mappings by selecting, among the
meta-mappings generated, only those that fit all the map-
pings in H .

The correctness of the overall approach follows by Theo-
rem 2. In the worst case our technique requires exponential
time, as an unavoidable consequence of the hardness of the
underlying problem of repairing a canonical meta-mapping
(Theorem 3). While the complexity is high, the algorithm
is executed in a few seconds in practice with real schemas.
Also, the inference can be done off-line, without affecting
the users facing the system for mapping reuse.

Finally, note that there is the risk of generating a large
number of different fitting variants out of a single non-fitting
meta-mapping. We will show however in Section 6 that the
presence of many variants increases the chances to find rel-
evant solutions.

562

Algorithm 1 Meta-mapping repair.

1: procedure repair-meta-mapping
2: Input: a canonical meta-mapping Σ = qS → qT for a mapping σ between S and T, Sσ and Tσ;
3: Output: a set R of meta-mappings fitting σ
4: R,A ← ∅
5: HS ← generate all the homomorphisms from qS to Sσ

6: HT ← generate all the homomorphisms from qT to Tσ

7: HE ← {h ∈HS s.t. h extends to some h′ ∈HT }
8: Γ← {(x1, . . . , xn) of qS s.t.

⋂n
i=1 τ(qS , xi) 6= ∅}, with x1 6= x2 6= . . . 6= xn . set of potential ambiguous variables in qS

9: Λ← {(x1, . . . , xn) of qT s.t.
⋂n
i=1 τ(qT , xi) 6= ∅}, with x1 6= x2 6= . . . 6= xn . set of potential ambiguous variables in qT

10: for h ∈HE do . here we detect ambiguous variables
11: for (x1, . . . , xn) ∈ Γ do
12: if (a(h(k1), . . . , h(x1), . . . , h(km)) = . . . = a(h(w1), . . . , h(xn), . . . , h(wm))
13: for some (a, ·) ∈

⋂n
i=1 τ(qS , xi)) and . presence of an ambiguity in the LHS

14: ((x1, . . . , xn) /∈ Λ or
15: (a(h′(k1), . . . , h′(x1), . . . , h′(kn)) 6= . . . 6= a(h′(w1), . . . , h′(xn), . . . , h′(wn))
16: for some (a, ·) ∈

⋂n
i=1 τ(qT , xi) and some extension h′ of h)) . w/o a corresp. ambiguity in the RHS

17: then A ← A ∪ {(x1, . . . , xn)}
18: for h ∈HE do . here we fix the ambiguities
19: if h(x1) 6= . . . 6= h(xn), for all (x1, . . . , xn) ∈ A s.t. xi appears in both qS and qT
20: then add ∀x(qS(x), γ → ∃yqT (x,y)) to R where:
21: γ =

∧
(x1,...,xn)∈A (γ1, . . . , γn) and γi is either xi = h(xi) or

∧
i,j=1...n, i6=j xi 6= h(xj)

22: return R

Algorithm 2 Meta-mapping inference.

1: procedure infer
2: Input: a mapping σ between S (whose m-schema is S)

and T (whose m-schema is T)
3: Output: a set of meta-mappings Q fitting σ
4: Q ← ∅
5: (Sσ,Tσ)← project-mapping(σ,S,T)
6: Σ← canonical-meta-mapping(Sσ,Tσ)
7: Q ← repair-meta-mapping(Σ,Sσ,Tσ)
8: return Q

4. MAPPING REUSE
In this section we first present an approach to the reuse

of schema mapping that relies on the availability of a repos-
itory of meta-mappings built as shown in the previous sec-
tion (Section 4.1) and then discuss how to implement this
approach in an efficient and robust way (Section 4.2).

4.1 An approach to reuse based on fitness
The first, fundamental, step towards the reuse of a set of

mappings H is the construction of a repository of meta-
mappings Q inferred from H using Algorithm 2. At this
point, if we need to map a new source schema S to a new
target schema T, we can reuse the knowledge in the original
mappings H by searching any meta-mapping Σ in Q that
fits S and T and generate from it a mapping from S to T.
The rationale under this approach is the following: if Σ fits
S and T in the same way in which it fits, by construction,
the source and the target of the mapping σ from which it
has been inferred, then it will generate a mapping from S
to T that “mimic” σ on these schemas.

Thus, mapping reuse can proceed as described by Algo-
rithm 3. This algorithm takes as input a repository of meta-
mappings Q (built from an initial set of mappings H using
Algorithm 2) and a pair of schemas S and T, and returns a
set of possible mappings between S and T .

Algorithm 3 Mapping reuse.

1: procedure reuse
2: Input: a set of meta-mappings Q and a pair of schemas

S (with m-schema S) and T (with m-schema T)
3: Output: a set of schema mappings S from S to T
4: S ,M ← ∅
5: for Σ ∈ Q do
6: U← chase(S,Σ)
7: M ← matchings(U,T)
8: if M is not empty then
9: σ ← SD-transformation(S,Σ)

10: for γ ∈M do S ← S ∪ γ(σ)
11: return S

For each meta-mapping Σ in Q (line 5) we first test if Σ
fits S and T: according to Definition 1, this can be done
by first computing the universal solution U of S under Σ by
chasing S with Σ (line 6) and then checking for the existence
of matchings from U to T (line 7). If Σ fits S and T (line 8),
we generate from Σ a mapping σ from S to T using the
SD transformation discussed in Section 2.3 (line 9) and, for
each matching γ between U and T, we add γ(σ) to the set
of possible solutions (line 10).

Example 16. Consider the possible reuse of the mapping
σB between SB and G in Figure 3 for generating a mapping
between SA and G. As discussed in Example 15, the meta-
mappings that can be inferred from σB include ΣPB, ΣNB and
ΣHB , reported in Figure 3. Consider now ΣHB .

By chasing the m-schema SA of SA using ΣHB , we obtain
the following universal solution of SA under ΣHB :

U
Rel
name
⊥R

Key
name in
Firm ⊥R

Att
name in
Gains ⊥R
Zone ⊥R

Description ⊥R

563

Table 1: Applicability of meta-mappings.
SA,G SB ,G SC ,G SA,G

′ SD,SE

ΣA X × × X ×
ΣB X × × X ×
ΣPB × X × × ×
ΣNB X X X X ×
ΣHB X X X X ×
ΣOB × X × × ×

It is easy to see that there is a matching γ from U to the m-
schema G of G that maps: ⊥B to Balance, Firm to Company,
and Description to Sector. If we apply the SD transformation
to SA and ΣHB we obtain the following mapping σ:

σ : RA(f, g, z, s),Activity(s, d)→ ⊥R(f, g, z, d).

Hence, we can finally return γ(σ) = σA to the user as a
possible suggestion for a mapping between SA and G.

Consider now Table 1, where the columns denote meta-
mappings and the rows denote pairs of source and target
schemas: it shows with a X if it is possible to generate,
using the process described above, a suitable mapping be-
tween a pair of schemas from a given meta-mapping. Using
this table, we now discuss various scenarios to better explain
how our definition of mapping reuse works in practice.

New target schema. Consider the case when we have a
new target schema, which is a modified version of G:

G′ = {Balance(Company ,Gains,Area,Sector)},

where one attribute has been changed from Zone to Area.
The meta-mapping ΣHB can still be applied on SA producing
the following target schema:

T = {Balance(Firm,Gains,Zone,Description)}.

Notice that now there are two possible isomorphisms be-
tween T and G: one mapping Zone to Area and Description
to Sector (correct), and a second one mapping Zone to
Sector and Description to Area (incorrect). In these cases,
we expose both mappings and let the user decide.

No reusable meta-mappings. Consider now a new sce-
nario, which is not structurally related to the bank scenarios
and it is defined as follows:

SD = {R1 (A1 ,A2 ,A3),R2 (A1 ,A4),R1 .A1 7→ R2 .A1}
SE = {R3 (A5 ,A1 ,A3))}

No matter what are the labels for attributes and relations,
there is no meta-mapping in our examples that consider the
case where the foreign key is defined over two keys. As no
meta-mapping with this structure has been defined yet, the
search would result empty for this pair of schemas.

Overfitting meta-mappings. Finally, in addition to the
meta-mappings that we have already introduced, we con-
sider a meta-mapping ΣOB that fully specifies the attribute
names which is defined as follows:

ΣOB : qS(x), R = RB , A1 = Gains,A2 = Sector ,
A3 = Capital ,K1 = Enterprise,F = Area,

S = Location,K2 = Code,A4 = Description → qT (x,y)

where qS(x) and qT (x,y) are those in Figure 3.
Interestingly, it turns out that the hybrid meta-mappings

ΣHB appears to be the most usable, since it is not applicable

only to the pair SD and SE , which belong to a different sce-
nario. On the other extreme, the meta-mapping ΣO applies
only to SB and G, as it is built from an exact correspondence
to schema elements of σB and works only for this case.

The examples suggest that the mechanism for inferring
meta-mappings illustrated in this section provides a power-
ful tool for mapping reuse.

4.2 Practical approach to reuse
The reuse technique illustrated in Section 4.1 is solid but

the search for fitting meta-mappings in the repository, as
done in Algorithm 3, has two drawbacks, as follows.

1. It is Boolean: a pair of schemas either fits a meta-
mapping or not. Hence, the search returns empty re-
sults even if there are meta-mappings that need only
minor adjustments to fit the input schemas. For in-
stance, ΣPB in Figure 3 does not fit schemas SA and
G′ (Table 1), yet ΣPB is certainly better than ΣO (Sec-
tion 4.1). In fact, it is sufficient to drop the constraint
A1 = Gains from it to fit SA and G′; conversely, ΣO
would require multiple changes to fit those schemas.

2. It requires to scan through all the meta-mappings in
the repository and check whether each of them fits a
given pair of schemas, a task that is computationally
expensive: it is polynomial in the number of meta-
mappings, and, for the single check, exponential in the
number of schema elements.

To overcome these limitations, we introduce the notion of
coverage, a parametric distance metric that, using a machine
learning technique based on nearest neighbor search with
supervised distance metric learning, works as a predictor for
fitting meta-mappings. Specifically, given S and T, coverage
ranks as top results the meta-mappings that, based on their
structure and on constants involved, most likely fit S and T.
This solution not only enables efficient retrieval, but it also
ranks meta-mappings according to the amount of change
needed to make them usable for the given schemas.

The approach relies on a set of features that are learnt
with a supervised technique and is based on three phases:

• a feature engineering phase, in which some features
are identified to describe meta-mappings and schemas:
number of relations, number and kind of joins, number
and kind of constraints, constant values;

• a supervised distance metric learning phase, in which
a set of schemas and meta-mapping pairs labeled as
fitting/non fitting are used to learn the coverage, which
scores the level of fitness of a meta-mapping for a pair
of schemas;

• a test phase, where the coverage is applied on an input
pair of source and target schema and ranks the meta-
mappings that best fit the given scenario.

The coverage metric enables top-k ranking of the most suit-
able meta-mappings, thus addressing problem 1 above. Also,
as the fitness prediction takes constant time, the test phase
takes linear time in the worst case, thus addressing prob-
lem 2. Furthermore, a distance metric allows the use of
data structures for fast retrieval of top-ranked results and
we exploit this property to design a solution that operates
in LOGTIME. We detail this solution in the next section.

564

5. SEARCHING THE REPOSITORY
We now present in detail coverage, our distance metric

between meta-mappings and schemas (Section 5.1). We
then describe how we use coverage to perform efficiently the
search for meta-mappings over a repository (Section 5.2).

5.1 The Coverage distance-metric
The coverage is a distance metric that enables a compar-

ison between the LHS and the RHS of a meta-mapping Σ
with a pair S and T of source and a target schemas, respec-
tively. If such distance is low, then it is likely that Σ fits S
and T. In addition, coverage can be used to compare the
LHS and RHS of two meta-mappings, which allows us to or-
ganize and index the repository of meta-mappings, with the
goal of reducing the search time for a given pair of schemas.
In the following, we discuss the case of comparing the LHS
of a meta-mapping Σ with a source schema S, as the other
case is similar.

From Fitness to Coverage. Recalling Definition 1 (fit-
ness), we have that Σ fits S and T if there is a matching
from the universal solution U of S under Σ to T (where S
and T are the m-schemas of S and T, respectively). While
proper fitness holds only if there exists a mapping from U
to T that preserves all constants, a predictor of fitness is
a distance metric that just counts the number of constants
shared by U and T. We call this measure domain distance.
Here, the constants act as domain features, representing the
domain of interest of a specific meta-mapping or schema.
Similarly, the presence of a matching from U to T denotes
that the structure of U is preserved; still, we can predict how
much structure is actually shared. This is done by classify-
ing the schema elements into structural features and using a
structural distance between the sets to compare them.

Domain Distance. The domain distance δ measures the
distance along a domain feature, i.e., it scores how likely
the LHS of Σ and S deal with the same domain based on
the presence of shared constants. A constant is shared if an
atom of the meta-mapping is bound to an element of the
schema. For example, this happens if Σ involves an atom
Att(A,R) together with a constraint A=Gains and Gains is
an attribute of S. The same applies to relation names, keys,
and foreign keys. More specifically, we adopt the Jaccard
distance between the sets of constants:

δΣ,S = 1− | constants(Σ) ∩ constants(S) |
| constants(Σ) ∪ constants(S) |

where we consider the set of all the constant names used in
the meta-mapping or in the schema.

Structural Distance. The structural distance d measures
the distance along a structural feature fΣ of the LHS of Σ,
and the corresponding one fS for S. Structural features vary
from simple, such as the number of atoms in a meta-mapping
(or relations in a schema), to more complex, such as the
number of unique pairs of atoms in a meta-mapping with
at least one common variable. Some of them specifically
refer to the LHS of the meta-mapping, interpreted as the
source and target schemas, respectively, when applied to
schemas. An exhaustive list of features is in the full version
of the paper [4]. To combine the feature, we adopt a [0, 1]-
normalized distance of cardinalities:

dfΣ,fS =
| fΣ − fS |

max(fΣ, fS)
.

Coverage. The coverage χ is then defined as follows.

χ =

∏n
i=1(1− dfiΣ,fiS)× (1− δΣ,S)∏n

i=1(1− dfiΣ,fiS)× (1− δΣ,S) + δΣ,S ×
∏n
i=1(dfiΣ,f

i
S

)

For every pair of common features f iΣ and f iS of Σ and S,
we consider their score s = (1−dfiΣ,fiS), which indicates the

probability that Σ covers S according to those features. A
score of 0.5 denotes that a feature is not informative to pre-
dict fitness. A score lower than 0.5 indicates that the meta-
mapping is likely to fit the schema with many modifica-
tions, while a higher score indicates that the meta-mapping
is likely to fit the schema with few modifications. The cover-
age is actually built as the Graham combination [19] of the
scores for all features. Moreover, our model is enhanced with
a parametric scaling of the features, which accounts for the
relative importance of each of them. This is obtained with
the application of a parametric scaling formula to each score
s, which adjusts the positive and negative contribution of s
by altering the range of s. Thus, all scores are in the para-
metric range [a, b], and so in χ each score s is replaced with
a+ s× (b− a). Assuming that a score of 0.5 is not informa-
tive, a and b behave as follows: (i) [0.5, 0.5]: sf is neutral,
(ii) [0.5, >0.5]: sf has only a positive effect, (iii) [<0.5, 0.5]:
sf has only a negative effect, (iv) [<0.5, >0.5]: sf has both
a positive and a negative effect.

Classifier Training. As our distance metric is parametric
in the ranges, we adopt a supervised training phase to learn
a and b for each feature. This can be done in many ways
with standard ML techniques. In particular, we train a lo-
gistic classifier [10] with a training set consisting of pairs
〈X, Y 〉, where X is a vector of scores for each sample and
Y is a target variable denoting whether we are in a fitting
situation (hence the value is one), or not (value zero). For
each sample, the following applies:

logit(p) = Xβ

with logit(p) = ln p
1−p , p is the fitness probability, and β a

vector of the b parameters in the ranges [a, b] of the features.
Solving the formula w.r.t. β, we obtain, for each feature
f , its logarithmic odds, i.e., the marginal relevance of f ,

from which we derive b = e
βf

1+e
βf

. The same is done to

calculate parameter a. Values a and b of each feature are
then used to evaluate χ. The estimated parameters can be
directly used in the so-trained logistic classifier for binary
fitness estimation. We experimentally show that effective
configurations are identified with few training examples.

We point out that there are cases where the coverage does
not return the same result of a fitness test. For example,
given SA and G, the meta-mappings ΣNB and ΣHB are fitting,
but ΣPB is not. However, they have identical scores based on
the proposed features, as they have the same structure and
the same intersection of attribute labels (Sector and Gains).

5.2 Searching meta-mappings
Thanks to the notion of coverage, we are now able to

perform nearest neighbor search (NNS) and find the top-
k meta-mappings in the repository that are likely to fit a
given a pair of source and target schemas. While in prin-
ciple NNS requires an exhaustive comparison of the pair of
schemas with all the available meta-mappings, we propose

565

an optimized approach, based on the construction of a meta-
mapping index, which allows us to efficiently find the top-k
meta-mappings for the given schemas according to NNS.

Specifically, for each meta-mapping Σ in the repository,
we compute the vector of its structural features fΣ and use it
to position the meta-mapping in a multi-dimensional space,
which we with a k-d tree [7], a space-partitioning data struc-
ture that is built in O(n log n) and enables to retrieve points
in O(log n). As distance function, we use 1− χS , where χS
is the coverage between two meta-mappings as defined in
Section 5.1. To strike a trade-off between granularity and
efficiency, we use only structural features in the index.

With the index in place, given a pair of input schemas, we
can: (i) compute their features and build the corresponding
vector; (ii) look up such vector in the meta-mapping index
to obtain all meta-mappings that are close to the input;
(iii) calculate the coverage only for these meta-mappings.

6. EXPERIMENTAL EVALUATION
We have evaluated our approach on real-world transfor-

mation scenarios using our system, GAIA, which implements
the methods illustrated in the previous sections. The evalu-
ation setting is described in Section 6.1. In Section 6.2, we
report on the efficiency of GAIA in terms of inference and
search time. In Section 6.3, we show the effectiveness of the
coverage in ranking results, while in Sections 6.4 and 6.5,
we report on the quality of the returned transformations in
large scale experiments. Finally, we compare our approach
against a repository of schema mappings in Section 6.6.

6.1 Experimental setup
We implemented GAIA in PL/SQL 11.2 for Oracle 11g.

All experiments were conducted on Oracle Linux, with an
Intel Core i7@2.60GHz, 16GB RAM.

Datasets and Transformations. We used a real-world
scenario crafted from the data transformations that are peri-
odically done to store data coming from several data sources
into the Central National Balance Sheet (CNBS) database,
a national archive of financial information of about 40,000
enterprises. The schema of CNBS is composed of 5 relations
with roughly 800 attributes in total. Source data come from
three different providers, detailed in Table 2. In particular,
the Chamber of Commerce provides data for 20,000 com-
panies (datasets Chamber). While the schemas of these
datasets are similar to one another, the differences require
one mapping per company with an average of 32 (self) joins
in the LHS between relations involving up to 30 attributes.
Data for 20,000 more companies are collected by a commer-
cial data provider in a single database (CDP) and then im-
ported into CNBS. This database is different both in struc-
ture and attributes names from the schemas in Chamber
and requires one mapping involving 15 joins in its LHS. Fi-
nally, data for further 1,300 companies (Stock) is imported
from the stock exchange into CNBS, with each company
requiring a mapping with 40 joins on average.

Transformation scenarios. For the inference of the meta-
mappings, we have considered two configurations: single,
where a meta-mapping is inferred from one mapping, and
multiple, where the inference is computed on a group of map-
pings for companies in the same business sector. After test-
ing different numbers of mappings in the group, we observed
that the results stabilized with 10 schema mappings and did

Table 2: Statistics on mappings and schemas.
Dataset Total # Avg Total Avg #

st-tgds # rels # atts atoms

Chamber 20,000 5 900 32
CDP 1 23 800 15
Stock 1,300 34 900 40

not improve significantly with larger numbers, therefore we
always consider 10 mappings for the multiple configuration.

6.2 Inference and search times
In Figure 4 (left), we report the times for computing the

inference of meta-mappings with Algorithm 2, which relies
on the notion of fitness. We infer meta-mappings from origi-
nal mappings with an increasing number of ambiguous vari-
ables (x-axis: 2-10), hence requiring the evaluation of an
exponentially growing number of homomorphisms. With
20,000 mappings and 10 ambiguous variables, more than 20
millions of meta-mappings are generated in about a minute.

Figure 4: Inference and search execution times.

For the largest repository, we then report in Figure 4
(right) the time to execute the search procedure based on
coverage with the k-d tree. For each test, we average the
response times of 25 randomly selected tests. From the re-
sults, we observe low latency (in the order of seconds) even
for large repositories generated from more than 20,000 input
mappings with millions of meta-mappings in the repository.
Search times confirm the logarithmic behaviour of the search
using the index over meta-mappings.

6.3 Coverage and fitness
We now show with a set of meta-mappings labelled as

fit/unfit that the coverage effectively ranks at the top the
fitting meta-mappings for a given scenario.

Consider 4 pairs of source and target schemas ((SA,G),
(SB ,G), (SC ,G), (SD,G)) and a repository with 5 meta-
mappings (ΣA,ΣB ,Σ

P
B ,Σ

N
B ,Σ

H
B) discussed in Table 1. For

each pair, we retrieve from the repository a list of meta-
mappings ranked according to their coverage for the given
scenario. We compute the feature scores for this experiment
by using a training set of 20 examples (we discuss later the
impact of the number of examples).

Table 3 reports, for each pair of source and target schemas
in the training set: (i) the number of fitting meta-mapping
in the repository and (ii) the precision in the top-k results
(1 ≤ k ≤ 4) ranked according to the coverage measure.

The coverage ranks at the top the fitting meta-mappings,
when they are in the repository for the given scenario, with
perfect results for (SB ,G) and (SC ,G). For (SA,G), a

566

Table 3: Precision@k according to coverage.
Scenario # of fitting m-m k=1 k=2 k=3 k=4

SA,G 4/5 1.0 0.75 0.75 0.75
SB ,G 3/5 1.0 1.0 1.0 0.75
SC ,G 2/5 1.0 1.0 0.67 0.5
SD,E 0/5 0 0 0 0

fitting meta-mapping is retrieved at k=1, but three meta-
mappings having the same score follow it in the ranking (ΣPB ,
ΣNB and ΣHB). Since among these three there is one that is
not fitting (ΣPB), the accuracy is 0.75 for k=2, 3, 4. In fact,
the non fitting meta-mapping can be identified only with
expensive homomorphism checks. Finally, for (SD,E) the
precision is always zero because there are no fitting meta-
mappings in the repository. Clearly, this reflects the quality
of the repository w.r.t. σD rather than the quality of the
coverage in ranking meta-mappings.

Notice that the coverage comes with a measure of fit-
ness. This is crucial for two reasons. First, it identifies
meta-mappings that are close to fit a given scenario. For
instance, while ΣPB does not fit (SA,G), its coverage is 0.49,
as a change in a constant would make it fitting. Conversely,
no meta-mapping in the repository fits (SD, E) and the cov-
erage is always lower than 0.39. Second, the score allows us
to take a binary decision on fitness based on a threshold. By
manually setting a threshold of 0.48, the coverage correctly
identifies all the fitting meta-mappings in the experiment
except one, for a precision in classification of 0.95.

We evaluated the impact of small training datasets over
test data. The classification precision varies between 0.90
and 0.95 in a five-fold cross validation with 4 training exam-
ples. It turns out that, with little effort in the tuning of the
feature scores, the coverage correctly distinguishes fitting
and non fitting meta-mappings (detailed results are in [4]).

The experiments with labeled scenarios show that cover-
age is an effective measure for ranking fitting meta-mappings.
As labeling meta-mappings for fitness is an expensive exer-
cise, in the following large-scale experiments we use the cov-
erage to evaluate the quality of the retrieved meta-mappings.

6.4 Search precision
Let σ be a mapping from a source S to a target T and

let Q be the set of meta-mappings inferred from σ. We
now measure, in terms of search precision, the ability of the
system to return the meta-mappings in Q when queried with
S and T, i.e., how well the system retrieves correct cases.

We use a resubstitution approach: we populate an initially
empty repository by inferring the meta-mappings from a set
Θ of mappings. For each schema mapping σ in Θ, we will
denote by Qσ all the meta-mappings inferred from σ. We
then pick a schema mapping σ′ from Θ and search the repos-
itory by providing as input the source and target schemas
of σ′. We then collect the top-10 results according to the
coverage and compute the percentage of correctly retrieved
meta-mapping, that is, those that belong to Qσ′ .

We test search precision with a corpus of mappings of in-
creasing size (from 200 to 21,301). In each test, we query the
repository of meta-mappings inferred from the given map-
pings by using 50 different source-target pairs and report
their average search precision. The experiment is executed
on single and multiple configurations. The largest repository
contains about 700K explicit meta-mappings in single con-

Figure 5: Search precision and search capability.

figuration and 110K in multiple configuration. In the multi-
ple scenario, the test is considered successful on a mapping σ
when the retrieved meta-mapping originates from the group
that includes σ. On average, a meta-mapping includes 12
equality and/or inequality constraints.

The chart on the left of Figure 5 shows that search preci-
sion decreases with the size of the repository as larger num-
bers of mappings lead to an increasing number of false pos-
itives in the result. We report the search precision for the
CDP mapping with a separate line. As soon as this map-
ping is inserted in the repository (after about 10,200 trans-
formations), it is immediately identified by the search with
all configurations. This shows that specific structures and
constants lead to meta-mappings that are easy to retrieve.

Inferring meta-mappings from multiple schema mappings
improves search precision for two main reasons. First, the
meta-mappings are inferred from a larger number of simi-
lar cases and are therefore more general, reducing the risk
of overfitting. Second, the size of the repository decreases,
which reduces the number of false positive.

6.5 Search capability
We now evaluate GAIA in the search of valuable transfor-

mations for completely new schemas, not seen by the sys-
tem yet. For this task, we introduce the notion of search
capability. Given a mapping σ from S to T and the set of
meta-mappings Qσ inferred from σ, we search suitable meta-
mappings for S and T in the repository, making sure that it
does not include any meta-mapping in Qσ. We then mea-
sure the search capability by comparing the k best retrieved
meta-mappings and the meta-mappings in Qσ. This is done
by using the coverage between meta-mappings (Section 5.1).

In the experiment, we resort to a hold-one-out technique.
We start from the empty repository of meta-mappings and
a set Θ of mappings. We populate the repository with a set
Γ ⊂ Θ of mappings and then randomly choose a set of map-
pings Φ ⊂ Θ−Γ (the “new mappings”). For each σ ∈ Φ, we
query the repository giving their source and target schemas
as input. We then compute the average α of the coverage
of the top–10 meta-mappings w.r.t. the meta-mappings Qσ.
Finally, we compute the average of the α values of all σ ∈ Φ.

We test the dependence of search capability on the size of
the corpus of mappings and of the transformation scenario.
For each test run, the repository is populated with the meta-
mappings generated by a number of mappings (from 200 to
10,200) in which we do not include CDP, in order to assess
how well the system provides mappings for it. We then
compute the search capability with 50 different source-target
pairs, including also the source and the target of CDP.

As apparent in Figure 5 (right) the more meta-mappings
are added to the repository, the higher is the search capabil-

567

Figure 6: Precision and capability using a repository
of mappings and a repository of meta-mappings.

ity. This is expected, as the availability of a large repository
increases the likelihood to find a suitable meta-mapping for
the given input. For CDP, we report only the best result,
which is obtained with a multiple configuration. We observe
a significant improvement after the inclusion of the transfor-
mation number “6400”, which is closer to the size of CDP.

Grouping mappings as a single transformation scenario
(multiple configuration) improves performance also in this
case. Not only is the size of the repository reduced, but
for the same number of input mappings, we observe an in-
creased search capability for all configurations. This shows
that there is an advantage in including in the repository
meta-mappings that fits not only one, but several mappings.

These tests show that rather simple mappings can be de-
rived very well with a sufficiently large set of meta-mappings.
Conversely, very complex mappings can be hardly derived
from meta-mappings that do not originate from them.

6.6 Meta-Mappings vs Schema Mappings
Finally, we repeat the experiments using the real-world

datasets to measure search precision and search capability of
our system when the repository is populated with mappings
rather than meta-mappings. To build the repository, we
compute the canonical meta-mapping for each mapping and
bind all the variables to the specific names of attributes of
source and target schemas (e.g., ΣOB in Section 4.1), turning
them into pure mappings. We then compare the results with
the case in which the repository contains meta-mappings.

In Figure 6, the search precision using a repository of
schema mappings is comparable to the search precision us-
ing meta-mappings up to about 5,000 input mappings. Then
the response becomes inaccurate because of the specificity of
mappings, which lead to many false positives in the search.
The differences between the two approaches is even more ap-
parent if we consider the search capability. For new, unseen
cases, a repository of mappings does not provide significant
benefits, never going above 0.4 for any configuration. This
demonstrates the limits of using schema mappings, that are
hardly usable for similar but not identical cases.

7. RELATED WORK
While the notion of reuse is popular for software com-

ponents [17], it got attention in the database community
only recently [1]. The motivation comes from the increased
capability of storing enterprise data and metadata in non-
structured repositories, such as data lakes [16, 21, 31] and
knowledge graphs [6], and from the wish to exploit “enter-
prise knowledge” by means of data management tasks. A re-
cent example of the reuse approach is the automatic adapta-
tion of rules for fraud detection across different datasets [28].

Our work follows this direction by introducing a novel
framework for the reuse of schema mappings. We adopt the
standard language of tgds for the declarative definition of
schema mappings [15], enriched with the semantics of meta-
mappings for the problem of exchanging metadata instead
of data [29]. One contribution in data exchange is the semi-
automatic generation of schema mappings [14, 20] given
simple correspondences between the schema elements [5, 8].
Matching discovery support data transformation design [24],
but it must be done for each new pair of schemas. Also,
schema mappings are usually manually tuned with extra in-
formation coming from the user background knowledge [3].
Our system is able to reuse this manual refinement. There
exist proposals to store element matches for reuse [26], but
they cannot store logical formulas. Therefore, crucial infor-
mation, such as the structure of the schema and the manual
tuning, is completely lost, as experimetally demonstrated
in Section 6.6. There is also a previous effort on mapping
reuse, based on the inference of types in schemas [32]. This
approach heavily relies on names (and possibly synonyms),
while ours adopts a combination of names and structure,
with a much wider potential for reuse.

Our inference of meta-mappings from mappings can be
seen as the lifting to meta-level of the discovery of mappings
from data examples [2, 3, 11, 18, 30], which in turn is in-
spired by the discovery of queries given data examples [27].
In our setting, previous algorithms [2, 3] would generate
meta-mappings that do not capture the semantics of a trans-
formation. Another theoretical framework for the discovery
of schema mappings addresses unsuitable mappings by ex-
amining different repairs and solving a cost-based optimiza-
tion problem to choose the best ones [18]. These results
are not directly applicable to our context for two reasons:
they operate at data level, and we have shown that plain
schema mappings fail to generalize (see Section 6.6); then,
they contribute intractability results, which reinforce our
need for heuristic search techniques. The latter framework
has also been extended with polynomial-time approxima-
tion algorithms to quickly choose the best repairs [30]. This
is useful in practice, yet would be limiting in our setting,
where we are actually interested in storing all the variants
to maximise reuse.

ETL tools and research and commercial systems for data
wrangling [22, 25] allow to store, load and combine previ-
ously defined transformations without any schema-level gen-
eralization or indexing of the transformation semantics. As
shown in the experiments, our inference algorithm increases
the chances of reusing previous mappings.

8. CONCLUSIONS
We introduced a system to support the design of schema

mappings. Starting from a set of schema mappings, we gen-
erate more generic meta-mappings, which capture the se-
mantics of the input mappings at a higher level of abstrac-
tion. We store meta-mappings in a searchable repository
and index them for fast retrieval. Given a new scenario, we
then provide a list of “suitable” schema mappings. Experi-
ments confirm the high quality of the retrieved mappings.

One direction for future work is the extension of the ap-
proach to schema mappings that include constants. This
would allow us to capture and reuse data-level constraints
that are meaningful to the user.

568

9. REFERENCES
[1] D. Abadi et al. The Beckman report on database

research. Commun. ACM, 59(2):92–99, Jan. 2016.

[2] B. Alexe, B. ten Cate, P. G. Kolaitis, and W. C. Tan.
Characterizing schema mappings via data examples.
ACM Trans. Database Syst., 36(4):23, 2011.

[3] B. Alexe, B. ten Cate, P. G. Kolaitis, and W. C. Tan.
Designing and refining schema mappings via data
examples. In SIGMOD, pages 133–144, 2011.

[4] P. Atzeni, L. Bellomarini, P. Papotti, and R. Torlone.
Metamappings for schema mapping reuse. Full
version, 2018. http:
//www.eurecom.fr/~papotti/files/GaiaTR18.pdf.

[5] Z. Bellahsene, A. Bonifati, and E. Rahm, editors.
Schema Matching and Mapping. Data-Centric Systems
and Applications. Springer, 2011.

[6] L. Bellomarini, G. Gottlob, A. Pieris, and E. Sallinger.
Swift logic for big data and knowledge graphs. In
IJCAI, pages 2–10. ijcai.org, 2017.

[7] J. L. Bentley. Multidimensional divide-and-conquer.
Communications of the ACM, 23(4):214–229, 1980.

[8] P. A. Bernstein, J. Madhavan, and E. Rahm. Generic
schema matching, ten years later. PVLDB,
4(11):695–701, 2011.

[9] P. A. Bernstein and S. Melnik. Model management
2.0: manipulating richer mappings. In SIGMOD, 2007.

[10] C. M. Bishop. Pattern Recognition and Machine
Learning. Springer-Verlag, 2006.

[11] A. Bonifati, U. Comignani, E. Coquery, and R. Thion.
Interactive mapping specification with exemplar
tuples. In SIGMOD, pages 667–682, 2017.

[12] C. Chen, B. Golshan, A. Y. Halevy, W. Tan, and
A. Doan. Biggorilla: An open-source ecosystem for
data preparation and integration. IEEE Data Eng.
Bull., 41(2):10–22, 2018.

[13] L. Chiticariu and W. C. Tan. Debugging schema
mappings with routes. In VLDB, pages 79–90, 2006.

[14] R. Fagin, L. M. Haas, M. A. Hernández, R. J. Miller,
L. Popa, and Y. Velegrakis. Clio: Schema mapping
creation and data exchange. In Conceptual Modeling,
2009.

[15] R. Fagin, P. Kolaitis, R. Miller, and L. Popa. Data
exchange: Semantics and query answering. In ICDT,
2003.

[16] R. C. Fernandez, Z. Abedjan, S. Madden, and
M. Stonebraker. Towards large-scale data discovery. In
ExploreDB, pages 3–5, 2016.

[17] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.

Design Patterns: Elements of Reusable
Object-oriented Software. Addison-Wesley, 1995.

[18] G. Gottlob and P. Senellart. Schema mapping
discovery from data instances. J. ACM, 57(2), 2010.

[19] P. Graham. Better bayesian filtering. In Proceedings of
Spam Conference, 2003.

[20] L. M. Haas, M. A. Hernández, H. Ho, L. Popa, and
M. Roth. Clio grows up: from research prototype to
industrial tool. In SIGMOD, pages 805–810. ACM,
2005.

[21] A. Y. Halevy, F. Korn, N. F. Noy, C. Olston,
N. Polyzotis, S. Roy, and S. E. Whang. Managing
Google’s data lake: an overview of the Goods system.
IEEE Data Eng. Bull., 39(3):5–14, 2016.

[22] J. Heer, J. M. Hellerstein, and S. Kandel. Predictive
interaction for data transformation. In CIDR, 2015.

[23] M. A. Hernández, P. Papotti, and W. C. Tan. Data
exchange with data-metadata translations. PVLDB,
1(1):260–273, 2008.

[24] V. Kantere, D. Bousounis, and T. K. Sellis. A tool for
mapping discovery over revealing schemas. In EDBT,
2009.

[25] N. Konstantinou, M. Koehler, E. Abel, C. Civili,
B. Neumayr, E. Sallinger, A. A. A. Fernandes,
G. Gottlob, J. A. Keane, L. Libkin, and N. W. Paton.
The VADA architecture for cost-effective data
wrangling. In SIGMOD, pages 1599–1602. ACM, 2017.

[26] J. Madhavan, P. A. Bernstein, A. Doan, and
A. Halevy. Corpus-based schema matching. In ICDE.
IEEE, 2005.

[27] R. J. Miller, L. M. Haas, and M. A. Hernández.
Schema mapping as query discovery. In VLDB, pages
77–88, 2000.

[28] T. Milo, S. Novgorodov, and W. Tan. Interactive rule
refinement for fraud detection. In EDBT, pages
265–276, 2018.

[29] P. Papotti and R. Torlone. Schema exchange: Generic
mappings for transforming data and metadata. Data
Knowl. Eng., 68(7):665–682, 2009.

[30] B. ten Cate, P. G. Kolaitis, K. Qian, and W. Tan.
Approximation algorithms for schema-mapping
discovery from data examples. ACM Trans. Database
Syst., 42(2):12:1–12:41, 2017.

[31] I. G. Terrizzano, P. M. Schwarz, M. Roth, and J. E.
Colino. Data wrangling: The challenging yourney
from the wild to the lake. In CIDR, 2015.

[32] R. Wisnesky, M. A. Hernández, and L. Popa. Mapping
polymorphism. In ICDT, pages 196–208, 2010.

569

