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ABSTRACT
Multi-relation graphs intuitively capture the heterogeneous corre-
lations among real-world entities by allowing multiple types of re-
lationships to be represented as entity-connecting edges, i.e., two
entities could be correlated with more than one type of relation-
ship. This is important in various applications such as social net-
work analysis, ecology, and bio-informatics. Existing studies on
these graphs usually consider an edge label constraint perspective,
where each edge contains only one label and each edge is consid-
ered independently. For example, there are lines of research fo-
cusing on reachability between two vertices under a set of edge
label constraints, or finding paths whose consecutive edge labels
satisfy a user-specified logical expression. This is too restricted
in real graphs, and in this work, we define a generic correlation
constraint on multi-relation graphs from the perspective of vertex
correlations, where a correlation can be defined recursively. Specif-
ically, we formalize and investigate the shortest path problem over
large multi-relation graphs in the presence of both necessity and
denial constraints, which have various real applications. We show
that it is nontrivial to apply conventional graph traversal algorithms
(e.g., BFS or DFS) to address the challenge. To effectively reduce
the search space, we propose a Hybrid Relation Encoding method,
a.k.a. HyRE, to encode both topological and relation information
in a compact way. We conduct extensive experiments over large
real-world graphs to validate the effectiveness and efficiency of the
proposed solution.
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1. INTRODUCTION
Real-world entities are often correlated in multiple ways, either

explicitly or implicitly. For example, two persons could be iden-
tified as friends when they follow each other on social media, and
they could be business rivals working on similar projects, or po-
tential collaborators in the future; STRING [42, 43] models the
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complex protein-to-protein interaction with six types of correla-
tions statistically learned from existing protein databases, revealing
that most protein-to-protein interactions are associated with at least
two types of correlations. Other applications where these multiple
relationships exist between entities include urban and transporta-
tion systems [13], ecology research [41], and recommender sys-
tems [31, 40]. The data in these applications are typically mod-
eled as multi-relation graphs capturing the heterogeneous multiple
correlations among real-world entities as entity-connecting edges.
Compared to other emerging graph models, e.g., the property graph
model [4, 3], which allows multiple attributes and values to be as-
sociated with vertices and edges, the multi-relation model is sim-
plified to focus on the correlation of vertices. This graph model has
been attracting increasing research interest in graph analytics with
most work focusing on structural graph characteristics, e.g., reacha-
bility between two vertices under given edge label constraints [46],
or finding paths that have consecutive edge labels that satisfy a
user-specified logical expression [36, 23, 17]. However, the ex-
isting work considers only edge labels, which model the pairwise
vertex correlation, often ignoring the correlation among a group of
vertices. In addition, the existing work only considers positive con-
straints (what we refer in this paper as necessity constraints) that
need to hold for query evaluation. However, considering negative
constraints (what we call denial constraints) are equally important
but far more complicated. In this paper, we consider both positive
and negative constraints under the unified correlation constraints.
We model the correlation between vertices recursively, such that
the correlation between two vertices that are not immediately con-
nected can be captured. To ground our discussion, we focus on
the shortest path computing problem over multi-relation graphs al-
though the method is more generally applicable.

Given a multi-relation graph, finding the shortest path between
two vertices that satisfies a set of user-defined constraints has vari-
ous practical applications. Examples include finding the connec-
tion of two individuals on a social network allowing only “fol-
lower” semantics, or calculating an optimal message routing strat-
egy using all possible connections except those with latency greater
than 5msec. All these predicates are necessity constraints imposed
on the property or relation type of an edge, which has inspired sev-
eral lines of research [36, 23, 17]. In this work, we focus on incor-
porating denial constraints into shortest path computing, which is
needed in a number of applications:

Example 1.1. Functioning path in gene regulatory network. A
gene regulatory network [6] depicts multiple types of interactions
among a collection of molecular regulators and other substances in
the cell for gene expression. Gene X regulates gene Y if certain
coherence patterns are found between them. One major analysis
task over this type of network is to find a functional path such that
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genes on the path are only regulated following the same coherence
pattern [26]. Therefore, a denial constraint should be imposed to
eliminate all other types of regulatory coherence in the search for
functioning paths.

Example 1.2. Conflict-of-interests free search. Being free of
conflicts-of-interest (COI) is critical in many applications: e.g., a
peer review committee needs to be COI-free to deliver unbiased ob-
jective opinions. Committee members need to be experts of the par-
ticular field, which is the necessity constraint, and no two of them
should be from the same institution or should have co-authored a
paper together, which is the denial constraint. Given the size limit
of the committee as well as an academic graph that encodes co-
authorship, study interests, affiliation, etc., this can be easily trans-
formed into a correlation constraint query. Another practical sce-
nario is where the existence of a certain type of pairwise relation-
ship is considered to be private, such that a COI-free path needs
to meet certain privacy-preserving guarantees, e.g., the differential
shortest path problem [38].

Example 1.3. Secure message passing. In communication net-
works, “eavesdropping” and message injection are easy between
two peers who have been hacked. Thus, a message should not be
considered legitimate if it is routed through peers who are suspected
of being corrupted. A straightforward extension of this simple sce-
nario is the k-anonymous shortest path problem [47, 48], where as-
suming a set of nodes are under control, limiting message passing
through no more than k nodes in this set becomes a denial con-
straint, otherwise anonymity is broken.

One common feature of these examples is that a given type of re-
lation must not exist among the vertices in the result, which is why
they are called denial constraints. Handling denial constraints is
more complicated than enforcing necessity constraints as the pos-
sible search space increases. Intuitively, if the correlation between
two vertices matches the denial constraint, these vertices cannot
appear simultaneously in the returned result. Thus, existing ex-
ploration methods, e.g., breadth-first-search (BFS) or depth-first-
search (DFS), cannot be straightforwardly applied as the search
space would change whenever a vertex is filtered out as a result
of meeting the denial constraint, and determining the proper order
of such changes in order to get the correct result is difficult.

There are other practical factors that make the problem challeng-
ing. First, given the size of real-world multi-relation graphs that
scale to millions of vertices and billions of edges, it is necessary to
incorporate any solution into parallel graph processing approaches
such as the vertex-centric [30, 5] or the block-centric [51] comput-
ing. Second, many of these graphs are dynamic and experience reg-
ular updates. This makes exhaustive indexing techniques for con-
ventional shortest path computing, e.g., tree decomposition [49], or
landmarks [2, 21] infeasible or difficult due to index maintenance
overhead. Moreover, the skew in the sizes and topological struc-
tures among subgraphs induced by different relations pose chal-
lenges to partitioning of the graph. It is worth pointing out that we
explore the correlation constraint shortest path problem based on
the assumption that the multi-relation graph has been constructed
w.r.t correlation functions that can be user defined or application
specific. The construction process of a multi-relation graph is be-
yond the scope of our discussion.

In this work, we study a general approach to handling correla-
tion constraints (both necessity and denial) in the context of short-
est path problem over multi-relation graphs. We propose a solution
framework that includes three main components. First, we pro-
pose a novel vertex encoding scheme, namely Hybrid Relation En-
coding, a.k.a. HyRE, which encodes the information representing

both hierarchical structures and the skewed sizes of subgraphs in-
duced by different relations. This serves as a lightweight index to
effectively reduce the search space. Second, we investigate a non-
trivial extension of the conventional BFS algorithm to answer the
correlation constraint shortest path query. We prove that finding a
shortest path with denial constraints is NP-hard and cannot be ap-
proximated within a constant factor; therefore, we further propose
a time efficient heuristic algorithm that progressively adds “high
value” vertices for evaluation that are promising to form a rela-
tively short path. Third, we devise an index structure that can be
computed cumulatively, which favors the scenarios where the set
of denial constraints is fixed or frequently appears in the query log.
Our proposed solution has the following advantages:

• It effectively deals with both necessity and denial constraints
for shortest path evaluation on large multi-relation graphs;

• HyRE is a space-saving compact encoding scheme that can
effectively reduce the search space and quickly reach an early
stop condition when the query result is empty.

• Compared to an exploration-based method such as BFS, our
proposed heuristic solution can return satisfactory results more
efficiently; and

• Our solution can be straightforwardly adopted in a large scale
graph processing framework with off-the-shelf dimensional-
ity reduction techniques for data partitioning.

To validate the approach, we conduct extensive experiments on a
collection of real-world multi-relation graphs on a moderately sized
cluster. The rest of this paper is organized as follows. After a brief
review of related literature in Section 2, we introduce the generic
predicate-aware shortest path computing problem in Section 3. We
introduce HyRE in Section 4 and explain how it can reduce the
search space. In Section 5, we investigate both exact and approxi-
mate algorithms for query processing, followed by experiment re-
sults discussions in Section 6. We conclude with Section 7.

2. RELATED WORK
Multi-relation Graphs. A multi-relation graph, (also known as
multi-dimensional network or multilayer network), has a wide range
of applications in scientific computing and social network analy-
sis [13, 41, 14]. However, most existing analyses performed on
these graphs target finding specific feature metrics, e.g., eigenvalue
spectrum analysis, information flow, or densely connected com-
ponent. There hasn’t been much research on answering selective
queries like shortest path on such graphs.
Edge Constraint Shortest Path. Many works exist on shortest-
path querying, e.g., [1, 9, 20, 37]. The work most related to ours
is a line of research focusing on shortest path query on labeled
graphs, called Edge Constraint Shortest Path (ECSP) problem [11,
36, 19, 23], where the edge constraints are user-specified labels or
edge property values, which are all necessity constraints. Bonchi
et al. [11] present approximate answers for ECSP queries based
on landmark vertices, which are reference points. They propose
two types of indexes, namely, PowCov and ChromLand that ex-
hibit interesting trade-offs between index size and accuracy. How-
ever, neither of these indexes are suitable for applications that re-
quire exact shortest-path computations. CHLR [36] can answer
ECSP queries exactly and has been extended to support more flex-
ible edge restrictions [19]. CHLR adopts Contraction Hierarchies
(CH, for short) [20] to provide an exact answer to the following
query: Given a source s, a destination d, and a set of restricted
labels R, retrieve the shortest path from s to d that avoids all the
edges with labels inR. An ECSP query can be answered by CHLR
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by computing the complement of set of labels listed as necessity
constraints. EDP [23] is a traversal-based algorithm that supports
dynamic graphs. The essential idea is to construct an index over
subgraphs that are induced by each type of label to capture the
overall topological structure such that cross partition exploration
can be effectively supported. Although EDP claims that its solution
can be extended to multi-relation graphs, an effective synchroniza-
tion mechanism is missing when simultaneous traversals are per-
formed in multiple subgraphs (induced by multiple relationships).
Without proper synchronization, there would be considerable in-
efficiency in parallel computation due to significant data shuffling
and imbalanced workloads. Variants of finding Regular-Language-
Constraint-Paths (RLCP) have also been studied [8, 15, 33]. An
RLCP query works on edge-labeled graphs where the concatena-
tion of the labels of the found path satisfies a specified regular ex-
pression. While ECSP queries do not impose any order on the la-
bels, RLCP queries assume that the user knows the exact order of
the labels. Hence, RLCP queries are orthogonal to ECSP queries.
Another line of research focuses on applying conjunctive regular
path queries to vertex pairs, namely the CRPQs, which normally
output a set of vertex pairs who are connected by the way defined in
the query [12, 18]. Extended CRPQ [7] is proposed to improve the
expressiveness of CRPQ, such that complex correlations between
paths can be defined, and to have paths included in the query re-
sults. The fundamental difference between this class of queries and
the one we define in this paper is that the semantics of our corre-
lation constraint guarantees that every pair of vertices in the output
results satisfies the given constraint, which cannot be guaranteed
by CRPQ or its extensions.
Graph indexing. A plethora of index techniques have been pro-
posed to facilitate different types of graph queries. For shortest
path queries, a decomposed tree index is proposed [50], which has
the advantage of reducing the search space by traversing only tree
branches. Distance-aware embedding approaches [29] have proven
effective for sparse graphs with large diameters. However, none of
these works can be straightforwardly applied when correlation con-
straints are taken into consideration. As discussed in later sections,
we introduce a correlation-aware layer-by-layer abstraction index
structure to prune the search space. A recent work [28] also pro-
poses a layered index to speed up graph similarity search under the
graph edit distance semantics. Their approach is to devise a multi-
layer filter, where each layer is independent and constructed based
on a partition of the underlying graph so as to maximize the proba-
bility of pruning false positives. The major methodological differ-
ence of our approach is that the HyRE index is a tree-like structure,
which has correlations among consecutive levels or layers.
Large Scale Graph Processing. A number of scale-out graph pro-
cessing systems have been developed in the last decade. The most
prominent is probably the vertex-centric BSP (bulk synchronous
parallel) approach popularized by Pregel [30] and its open-source
equivalent Giraph [5]. The so-called “think-like-a-vertex” paradigm
allows algorithm developers to express their computation in terms
of vertex programs that describe the operations to be executed on
a single vertex and its incident edges and share vertex states by
message passing among neighbor vertices. The BSP computation
ensures that parallel computing nodes synchronize at the end of
each iteration. Another programming model called “think-like-a-
subgraph”, as represented by Blogel [51], is a partition-based ap-
proach that allows sequential execution within each partition so
that only cross-partition message passing is needed. Online graph
query and transactional workloads are typically serviced by graph
database systems such as Neo4j [45] and JanusGraph [25]. Both
systems adopt the native graph storage model (i.e., adjacency list)
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Figure 1: (a) Multi-relation graph G; (b) GC , where C = r1;
singleton vertex b is omitted.

and evaluate queries with traversals. Global and local indices are
built to accelerate the vertex/edge access. Although a number of
graph computing algorithms are developed within the context of
the above computing frameworks and systems, no correlation con-
straint shortest path computing method has been investigated.

3. PROBLEM DEFINITION
Definition 1 (Multi-Relation Graph). A multi-relation graph G is
a four-tuple G = 〈V,E,R, F 〉, where V is the set of vertices,
E ⊆ V × V is the set of edges, R = {r1, ..., rk} is the set of
all relations allowed in G, and F : E → R (R ⊆ R and R 6= ∅) is
a mapping function that assigns to each edge a subset of R.

We assume that each vertex is identified by a unique vertex id.
According to the definition, each edge represents at least one type
of relation between two vertices. G could be a directed graph, in
which case the set of relations connecting two vertices is not nec-
essarily symmetric. In other words, F (〈s, t〉) and F (〈t, s〉) can
be different. This represents real-world applications, e.g., peo-
ple do not necessarily follow all their followers on Twitter. As
a matter of fact, by differentiating the initiator (outgoing edge)
and the acceptance (incoming edge) of a relation, our solution can
be straightforwardly extended to cover asymmetric correlations.
For simplicity, in the remainder we only consider the case where
F (〈s, t〉) = F (〈t, s〉).

Given a multi-relation graph G that describes complex correla-
tions between vertices, an application dependent analysis may only
focus on the vertices that participate in a subset of relation types.
For example, in social media analysis, the number of likes of a post
from users belonging to the same community suggests the influ-
ence of this post to a specific group of people. Thus, by extracting
such posts and users connections, a subgraph of G can be derived
to serve further analysis. Another example is the communication
network, where the system load analysis would focus on dimen-
sions like frequency, length, and transmission rate of phone calls,
while a marketing strategy is designed based on portraits of users
and communities. We define a group of vertices that participate in a
set R of relations in G, denoted R-correlated subgraph, as follows:

Definition 2 (R-Correlated Subgraph). Given a multi-relation graph
G = 〈V,E,R, F 〉, a R-correlated subgraph (where R ⊂ R), de-
noted as gR = 〈VR, ER〉, is a maximal induced graph of a set of
vertices VR ⊂ V such that ∀Vx, Vy ⊂ VR, where Vx ∩Vy = ∅ and
Vx ∪ Vy = VR, ∃u ∈ Vx, v ∈ Vy and R ⊂ F (〈u, v〉).

A R-correlated subgraph is a connected subgraph of G that has
relation set R covered on each edge. The maximal semantic indi-
cates that no supergraph of gR remains a R-correlated subgraph.
Note that given R and G, there can be multiple non-overlapping
subgraphs that satisfy this definition. For example in Figure 1, let
{r1, r2, r3, r4} denote types of relations in graph G, there are two
{r1}-correlated subgraphs, as shown in Figure 1(b).
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Definition 3 (Vertex Correlation). Given a multi-relation graphG =
〈V,E,R, F 〉, a set of vertices V ′ ⊂ V is correlated under a relation
set R (where R ⊂ R) iff ∃gR = 〈VR, ER〉, such that V ′ ⊂ VR.

The above definition indicates that two vertices u and v are cor-
related w.r.t ri when the following conditions are true: (1) if two
vertices are adjacent in G and the edge between them has relation
ri; or (2) there is a path in G between u and v where each edge
in the path has relation ri. For example, in Figure 1, vertices from
{a, c, d, e, f, g} are correlated under r1. However, vertices from
two disjoint sets of vertices {a, c, d, e, f, g} and {h, j, k} are not
correlated under r1. Formally, we define the correlation constraint
and its satisfying condition as follows:

Definition 4 (Correlation Constraint). A correlation constraint C
is either a singleton relation or recursively defined with an operator
o ∈ {∧,∨,¬}:

C =


ri ∈ R
¬C
Ci ∧ Cj
Ci ∨ Cj

We say a set of vertices V ′ satisfies C, denoted V ′ � C, iff

C =


ri if V ′ is correlated under ri
¬C if @u, v ∈ V ′, s.t. {u, v} � C
Ci ∧ Cj if V ′ � Ci and V ′ � Cj
Ci ∨ Cj if ∃Vx ∪ Vy = V ′, s.t. Vx � Ci and Vy � Cj

As noted earlier, a correlation constraint is a predicate that can
consist of a necessity constraint (positive) and denial constraint
(negative), represented byCN andCD, respectively, andC = CN∧
CD. Following the above definition, CN indicates the types of rela-
tions that are desired to connect a group of vertices. In contrast,CD

imposes a constraint on the types of relations that must not exist be-
tween any two vertices in a group. Note that a correlation constraint
C does not necessarily have both CD and CN; either one can be
empty, which implies that no such constraint exists. Although Def-
inition 4 allowsC to be recursively defined,C is evaluated based on
set semantics as specified in the definition. Compared to resolving
regular expression constraints in Regular Path Query, which typi-
cally targets validating a sequence of edge labels with automata- or
search-based approach [17, 39], C is tested on a set of vertices.

Definition 5 (C-SAT Subgraph). Given G = 〈V,E,R, F 〉, a cor-
relation constraintC, a correlation-satisfying subgraph (C-SAT sub-
graph), denoted gC = 〈VC , EC〉, is a maximal induced subgraph
of G, such that VC � C.

Definition 6 (C-SAT Graph). Given G = 〈V,E,R, F 〉, a corre-
lation constraint C, a correlation-satisfying graph (C-SAT graph),
denoted GC = 〈VC , EC〉, is a maximal set of C-SAT subgraphs
from G, GC = {giC |i = 1, ..., k}, ∀giC , gjC ∈ GC , giC ∩ gjC = ∅.

Note that the maximal set constraint indicates that no superset of
aGC can be a C-SAT Graph. Given a multi-relation graphG and a
necessity predicate CN, by scanning all the edges, it is straightfor-
ward to obtain a singleC-SAT graphGCN on a fixed set of vertices,
as shown in Figure 1(b). In contrast, when a denial constraint CD

is applied, there can be more than one C-SAT graph that meets the
constraint even on a fixed set of vertices. The reason is that no two
vertices that are correlated under the specified denial constraint can
appear simultaneously in GCD . To elaborate, following the same
example graph shown in Figure 1(a), whenC = r1∧¬r2, there are
four sets of subgraphs of G which meet the constraint, as shown in
Figure 2. Following the above definitions, we formally define the
pairwise correlation constraint shortest path problem below.
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Figure 2: GC , C = r1 ∧ ¬r2, singleton vertices omitted

Problem Definition 1 (s ∼ t CCSP). Given a multi-relation graph
G = 〈V,E,R, F 〉, a correlation constraint C, and two vertices
s, t ∈ V , let pst denote a path from s to t inG; |pst| be the number
of hops in pst; pst.V be the set of vertices involved in pst. The
problem of correlation constrained shortest path from s to t (de-
noted s ∼ t CCSP) is to find p∗st, such that: (1)|p∗st| is minimized;
and (2) p∗st.V � C.

Different from conventional shortest path problem, which only
asks for minimum number of hops (first condition above), CCSP
has an additional requirement on the correlation of returned set of
vertices (second condition). Again we elaborate using the example
shown in Figure 1(a). A query “find the shortest path from a to c
under constraint r1” (note the necessity constraint) can be straight-
forwardly evaluated using the graph in Figure 1(b). However, if
we add a denial constraint ¬r2 to the query, the result would be
empty, since vertices e and f become mutually exclusive. There-
fore there is no path from a to c that satisfies both the necessity and
denial constraints at the same time. Such a definition imposes a
restriction on the correlation of any pair of vertices in the returned
results, which is desired in many real-world applications. Consider
the protein-to-protein network, which depicts the interaction be-
tween different protein modules. Some key chemical interactions
can be identified to be harmful, which are exactly the denial con-
straints that need to be met.

However, the above definition can be over restrictive. For exam-
ple, in some applications, the strength of relation correlation may
decay along the an increasing path length, e.g., two people may
never know each other even if they are only two hops away on the
social network, and the above definition can significantly narrow its
application in practice. Therefore, we further investigate the short-
est path problem with a relaxed denial constraint. Following the
same context presented above, we formally define it below.

Problem Definition 2 (s ∼ t CCSP-R). A relaxed s ∼ t CCSP
shortest path problem (denoted s ∼ t CCSP-R) is to find p∗st, such
that: (1) |p∗st| is minimized; (2) p∗st.V � C; and (3) ∀u, v ∈ p∗st.V ,
|p∗uv| < dCD

uv , where dCD
uv is the shortest path distance between u

and v in GCD .

s ∼ t CCSP-R relaxes the denial constraint based on the as-
sumption that fewer number of hops implies stronger correlation.
For example, two persons who are three-hop friends on a social
network but are linked under the same working project, are more
correlated as co-workers than as friends. We study the complexity
of above problems with the following Lemma.

Lemma 1. The s ∼ t CCSP problem can be solved with O(c|E|)
edge traversals (i.e., messages), where c is the number of C-SAT
subgraphs in GC′ , and C′ = ¬CD.

Proof. Every vertex u ∈ GCD that is reached would filter out all
other vertices reachable from u in GCD . This can be done by for-
warding an early stop signal message after reaching u during the
graph traversal to make sure CD is strictly met. As such an event
can be triggered at most c times during the exploration, the total
number of messages is at most c|E|.
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It is worth pointing out that CD = ∅ implies C′ = ∅, meaning
that no constraint applies in obtaining GC′ . Thus, there will be
only one C-SAT subgraph, which is G itself, indicating c = 1.

Lemma 2. If CD 6= ∅, the s ∼ t CCSP-R problem is NP-hard.

Proof. We prove the Lemma with a reduction from the maximum
clique problem. For simplicity, we consider the simplest denial
constraint where CD = rd. Given multi-relation graph G, a {rd}-
SAT graph G{rd} can be derived based on Definition 6. We con-
struct another graph G′ as follows: 1) ∀u, v ∈ G having {u, v} �
CN, connect u and v in G′; 2) let e(u, v) denote an edge be-
tween u and v, then ∀e(u, v) ∈ G{rd}, if ∃w ∈ G′ such that
e(u,w), e(v, w) ∈ G′, then remove e(u, v) fromG′; 3) remove all
the vertices in G′ that are not neighbors of input vertices s and t.
The above process can be done in O(|V |2) time. Then the short-
est path between s and t under correlation constraint is contained
in the intersection of the maximum clique of G′ and the CN-SAT
graph GCN . Thus, if s ∼ t CCSP-R query can be efficiently an-
swered, the maximum clique of G′ can be efficiently computed as
it must contain the vertices that reside on the s ∼ t path. There-
fore, s ∼ t CCSP-R is at least as difficult as the maximum clique
problem, which is both fixed-parameter intractable and hard to ap-
proximate [24]. Unless P=NP, there cannot be any polynomial time
algorithm that approximates the problem with a factor better than
O(n1−ε), for any ε > 0.

In this work, we study both s ∼ t CCSP and its relaxation
s ∼ t CCSP-R. We investigate an extension of conventional graph
exploration-based methods such as BFS to return the exact corre-
lation constraint shortest path. In addition, we propose a heuristic
algorithm to address the relaxed shortest path problem, since it re-
mains an open question if a constant factor approximation exists for
the general traveling salesman problem. In the following sections,
we first present HyRE, a novel vertex encoding scheme that can
effectively reduce the search space, then detail our proposed query
processing strategies in Section 5.

4. HYRE INDEX
In this section, we introduce an indexing technique that encodes

the types of relations that vertices participate in, as well as the hier-
archical topology of a multi-relation graph. Ideally, such an index
benefits the s ∼ t CCSP query processing in two ways: first, it
enables an immediate decision as to whether s can reach t under
a given correlation constraint; second, it significantly reduces the
total number of vertex accesses. To achieve this goal, we devise
a hybrid relation tree structure, where internal nodes are topologi-
cal abstractions of graphs. We first present the index structure, and
reason how it can be used to significantly reduce the search space
for the s ∼ t CCSP problem in Section 4.1. Then we present our
algorithm to construct the index in Section 4.2, followed by the
encoding method in Section 4.3.

4.1 Hybrid Relation Tree
The concept of graph abstraction is defined as follows.

Definition 7 (Graph Abstraction). Given G = {V,E}, a set of
vertex sets V = {Vr1 , ..., Vrk}, where Vri ⊂ V , @Vri ⊂ Vrj and⋃k
i=1 Vri = V , a graph abstraction of G is a graph G = {V,E},

where V = {Vr1 , ..., Vrk}, edge (Vri , Vrj ) ∈ E iff Vri
⋂
Vrj 6= ∅.

We refer the vertices and edges in G as abstracted vertices and
abstracted edges, respectively.

Intuitively, graph abstraction is another graph whose vertices are
partitions of the original graph and an edge exists whenever two
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Figure 3: Example of recursive abstraction

partitions overlap. It is straightforward to extend the above defi-
nition to a relation-based graph abstraction, where each Vri ∈ V
can be a set of vertices correlated under relation ri. Consider the
example shown in Figure 1, where V 1

r1 = {a, c, d, e, f, g} � r1,
V 2
r1 = {h, j, k} � r1, i.e., two disjoint sets of vertices are cor-

related under r1, so the entire graph can be viewed as two ab-
stracted vertices. Note that such an operation can be applied re-
cursively within each abstracted vertex. For example, as shown in
Figure 3(a), V 1

r4 = {a, d, e, f, g} � r4, and V 1
r2 = {e, f} � r2,

two levels of recursive abstractions can be performed on V 1
r1 that

creates V 1
r1,r4 and V 1

r1,r2,r4 . Meanwhile, V 1
r1 is updated to include

all the vertices that are correlated under r1 but not r4: V 1
r1,r4 =

V 1
r1 \ V

1
r4 = {c}. Conceptually, such a recursive abstraction forms

a tree structure. In this tree, every vertex in the child node also par-
ticipates in the same type of relation as vertices in the parent node.
Following Definition 7, we define a hybrid relation tree:

Definition 8 (Hybrid Relation Tree). Given a multi-relation graph
G = 〈V,E,R, F 〉, let Sri = {V 0

ri , ..., V
m
ri } be the set of vertex

sets that are correlated under ri, where ri ∈ R. A hybrid relation
tree, denoted as TG is a tree structure defined on {Sri |ri ∈ R},
such that (i) the root node is a graph abstraction of G, denoted as
G0; (ii) an internal/leaf node on i-th level, Girk , is a graph abstrac-
tion of V lrk ∈ Srk , where V lrk is an abstracted node of a graph
abstraction on the (i− 1)-th level.

In the above definition, the subscript of V lri denotes the type of
relation that a set of vertices satisfies, and the superscript l denotes
the ID of this set, as there may be multiple non-overlapping sets of
vertices in G satisfying ri. The high-level intuition of constructing
a hybrid relation tree is to recursively perform the relation-based
graph abstraction. To elaborate, consider a general multi-relation
example shown in Figure 4. Let each circle represent a set of ver-
tices that satisfies a type of relation, the entire graph can be parti-
tioned into multiple sets of vertices. We capture the relation-based
graph abstractions with a tree-like structure shown on the right. At
the top level, a graph abstraction defined on relations ra, rb, and
rc forms the root node. Its three children are recursively defined
within each partition set. For example, another graph abstraction
can be derived from Vra , which are two sets of vertices that satisfy
relations rd and re respectively. Note that there can be multiple
non-overlapping sets of vertices that satisfy a given relation. As
shown in Figure 4, there are two groups of vertices satisfying rd
and re, and we differentiate them with V 1

rd (V 1
re ) and V 2

rd (V 2
re ).

The intuition of adopting such a recursively defined graph ab-
straction structure is to quickly prune a pair of query vertices (s, t)
under a certain correlation constraint. For example, from the struc-
ture shown in Figure 4, we know that no two vertices are reachable
when C = ¬ra ∧ rd ∧ re, because the set of vertices that satisfies
rd ∧ re is correlated under ra as well.

This hybrid relation index tree can be interpreted as a topological
structure of all types of relations that each vertex in G participates
in. For example, assume a vertex u is a member of Vre in Fig-
ure 4; following the recursive abstraction process, it is obvious that
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Figure 4: Relation-based graph abstraction

u participates in three relations, {rb, rc, re}, but this information
is stored as two paths from the root to the internal node where u
resides. It indicates that there are two paths to explore if u needs
to be visited, implying more space costs on u’s encoding to store
such information. We call the path from the root to u as u’s prefix
relation path, as formally defined below:

Definition 9 (Prefix Relation Path). A vertex u’s prefix relation
path in TG, denoted as TG(u)Pre is the path of graph abstraction
from the root to the node where u resides, i.e., a sequence of vertex
sets that are correlated under different relations, V i1r1 → ...→ V

ik
rk .

We say TG(u)PR = {r1, ..., rk} is the prefix relation of u.

Note that although u may have multiple prefix relation paths de-
pending on the way TG is generated, it is always possible to con-
struct a TG that guarantees a unique prefix relation path for u, and
this will be covered in Section 4.2. For simplicity, we now assume
u has an unique prefix relation path for discussion. Following the
definition of a vertex’s prefix relation path in TG, we now investi-
gate the pruning power of TG for s ∼ t CCSP queries. Note that
we only consider the following format of correlation constraints for
simplicity: (i) CN = ri; (ii) CN = ri ∨ rj ; and (iii) CD = ri.

Lemma 3. Given TG, a pair of vertices (s, t), and a necessity con-
straint CN = ri, s reaches t iff V lsri ∈ TG(s)Pre and V ltri ∈
TG(t)Pre, where ls = lt.

Proof. smust participate in relation ri since V lsri ∈ TG(s)Pre, and
similarly for t. If ls = lt, then both s and t are members of a set
of vertices V , such that V � ri. Therefore, s can reach t. On the
contrary, if TG(s)Pre and TG(t)Pre do not share a common vertex
set that satisfies ri, then s and t are not connected under CN.

Lemma 4. Given TG, a pair of vertices (s, t), and a necessity con-
straint CN = ri ∨ rj , s reaches t iff one of the following con-
ditions hold: (i) ri ∈ TG(s)PR, or rj ∈ TG(s)PR; (ii) ri ∈
TG(t)PR, or rj ∈ TG(t)PR; (iii) ∃V lsrk from TG(s)Pre, and V ltrm
from TG(t)Pre, such that V lsrk and V ltrm are reachable in an ab-
stracted graph from TG.

Proof. The first two conditions guarantee that s and t do partici-
pate in relations ri or rj , which are implied from Definition 3. We
prove the sufficiency and necessity of condition (iii) assuming that
the first two conditions are already met. If condition (iii) holds, let
V lsrk and V ltrm be two abstract vertices that are reachable from each
other in an abstracted graph G, based on the definition of graph
abstraction. We know vertices in V lsrk can reach vertices in V ltrm
through other sets of vertices that overlap with both of them. How-
ever, given the fact that no such graph abstraction exists, i.e., the
abstracted vertices containing s and t in the root node of TG, then
s and t must not reach each other.

Intuitively, the above two Lemmas use the prefix relation path
for necessity correlation constraint verification. The third condi-
tion of Lemma 4 can be relaxed to only perform the checking in
the root node of TG. In addition to reachability test, they also in-
dicate the solution search space of vertices that need exploring to

answer the s ∼ t CCSP query. However, as we elaborated in Sec-
tion 1, necessity correlation constraints can be evaluated straight-
forwardly during graph exploration even without the knowledge of
TG. Therefore, we now focus on using TG to effectively handle
denial correlation constraints.

Lemma 5. Given TG, a pair of vertices (s, t), and a denial con-
straint CD = ri, if ri ∈ TG(s)PR or ri ∈ TG(t)PR, s and t are
not reachable from each other.

Proof. If ri ∈ TG(s)PR, it implies that s must be correlated with
each of its neighbors under relation ri, therefore, following Defini-
tion 3, s cannot reach any other vertex for the given CD. Similar
reasoning applies to t.

Lemma 5 describes a rather simple case where a vertex s cannot
reach any other vertices if the given CD rules out the possibility
of having s and any of its neighbors appear together in the query
answer. There is another case where CD implies a split of G such
that vertices from these two partitions become unreachable, as we
elaborate below.

Definition 10 (Relation Cut). Given two sets of vertices Vri � ri,
Vrj � rj , and Vrj ⊂ Vri , if there exists two mutually exclusive
vertex sets V1 and V2, where V1

⋃
V2 = Vri \ Vrj , such that V1

and V2 are not connected after removing Vrj and its induced graph,
we say rj is a relation cut of ri in Vri .

We define the relation cut concept similar to conventional graph
cut, except that a relation cut is a set of vertices that are correlated
under a certain type of relation. It is easy to prove the transitivity
of relation cut.

Lemma 6. If ri is a relation cut of rj in V and rj is a relation cut
of rk in V ′, then ri is a relation cut of rk in V ′.

Proof. Prove by contradiction. Let V ′′ � ri and V ′′ ⊂ V . Assume
that ri is not a relation cut of rk in V ′, then there must exist two
vertices s, t ∈ V ′ \ V ′′ that are connected. However, since rj is a
relation cut of rk in V ′, by Definition 10, it indicates that ∀s′, t′ ∈
V ′ \ V , s′ and t′ are not connected. Since V ′ \ V ⊂ V \ V ′′, s
and t must belong to V \ V ′′, which contradicts the fact that ri is a
relation cut of rj in V . So ri must be a relation cut of rk in V ′.

Lemma 7. Given TG, a pair of vertices (s, t), and a denial con-
straint CD = ri, s does not reach t if ri is a relation cut of the root
of TG, such that s and t reside in two separate vertex sets implied
by the cut.

Following the transitivity introduced by Lemma 6, Lemma 7 is
easy to prove by Definition 10. However, it is nontrivial to de-
cide if a given relation ri is a relation cut of a given abstracted
vertex, or more complicated, to any necessity constraint defined
subgraphs. In addition, extra information needs to be recorded in
order to decide if s and t become unreachable once ri is determined
to be a relation cut of G. In the following section, we discuss the
implementation of the hybrid relation tree and multiple optimiza-
tion techniques that can be applied to improve the index’s pruning
power to yield faster query processing.

4.2 Construction Algorithm
Definition 8 defines the hybrid relation tree based on sets of ver-

tex groups that are correlated w.r.t each single type of relation,
which indicates a straightforward way to compute TG following
a top-down approach. We can construct TG by recursively per-
forming graph abstraction on a set of vertices that are correlated
under multiple types of relations. However, this approach is highly
inefficient in practice due to the process of choosing V for each ab-
straction. This becomes a bottleneck because all the vertex sets that
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Algorithm 1: Constructing TG (A bottom-up approach)

Data: G = 〈V,E,R, F 〉, TG ← ∅, queue Q← ∅, relation vector
−→
R

Result: TG
1
−→
R(u)← 〈l1, ..., lk〉, ∀u ∈ V ; Vtmp ← ∅;

2 while V \ Vtmp 6= ∅ do
3 Pick u ∈ V , assume l = argmin

−→
R(u);

4 V l
ri

= merge(v), where v ∈ V \ Vtmp and
−→
R(v)ri = l;

5 addNode(TG, V l
ri

); Vtmp ← Vtmp
⋃

V l
ri

;

6 while N ← TG’s nodes without a parent ∧N 6= V do
7 Pick V l

ri
∈ N , assume l = argmin

∀u∈V l
ri

∧R\{ri}
{
−→
R(u)};

8 V l′
rj

= merge(V l
ri

), where v ∈ Vri
s.t.
−→
R(v)rj = l′;

9 addNode(TG, V l′
rj

); addParent({V l
ri
}, V l′

rj
);

10 abstraction(TG) and return TG;

satisfy a certain type of relation need to be scanned and examined
at each time a graph abstraction is performed.

To eliminate this bottleneck, we propose a bottom-up TG con-
struction algorithm as shown in Algorithm 1. The overall process
is divided into two stages. The essential idea is to recursively merge
vertices into groups to form the tree structure at the first stage, then
we perform graph abstraction at each tree node from the root to
leaves at the second stage. A data structure named relation vector
−→
R is employed for vertex grouping. We define

−→
R (u) as the ID

vector of vertex groups w.r.t each relation ri ∈ R that u resides
in. For example, in Figure 1(a),

−→
R (a) = 〈1, null, 1, 1〉 indicates

a participates in vertex sets of ID 1 w.r.t relation r1, r3, and r4, re-
spectively. It is worth pointing out that the IDs of such vertex sets
can be easily computed with a Hash-Min algorithm [35] developed
for connected component discovery in the MapReduce framework.
It is guaranteed that V lri ’s ID l is the smallest vertex ID within this
set. Assume vertex ID is unique, then V lri and V lrj must have over-
lap (at least the vertex of ID l). Therefore, we use this property in
Algorithm 1 to merge vertex sets (Lines 4 and 8). The algorithm
is divided into two parts. The first WHILE loop constructs all the
leaves of TG. The second WHILE loop recursively generates par-
ent nodes level-by-level, until the final node adding to TG equals to
the entire vertex set of G. Note that we simplify the second stage
of performing top-down graph abstractions with abstraction(TG)
(Line 11) as it follows the same logic as discussed.

Lemma 8. Algorithm 1 constructs TG with time complexity of
O(|V | ×M), where M = argmaxu∈V |TG(u)PR|.
Proof. Each vertex u is examined each time child nodes containing
u are merged: a total of |TG(u)PR| times during the bottom-up
construction. During abstraction, u again can be visited at most
|TG(u)PR| times. Therefore, the overall cost is

∑
u∈V |TG(u)PR|

≤ |V | ×M , where M = argmaxu∈V |TG(u)PR|.
Lemma 8 indicates that the overall complexity of Algorithm 1

depends on the maximum size of prefix relation, i.e., the maximum
number of relations that a vertex can participate in. It is worth
pointing out that such a conclusion can be derived only because
Algorithm 1 guarantees that each vertex has one unique prefix re-
lation path following this bottom-up construction strategy.

Figure 3(b) shows a Hybrid relation tree built from the exam-
ple shown in Figure 1 following the bottom-up construction. Intu-
itively, it can be viewed as a mapping from the abstracted graphs
to individual vertices. Note that the abstraction can be conducted
over a subgraph of the abstracted graph, like V 1

r2,r3 is derived from
subgraph “V 3

r2–V 2
r1”. We omit the relation information on the right

part of the diagram as it is consistent with the left part.
One significant drawback of Algorithm 1 is that it allows the

process of merging child nodes to a parent node only if the parent

Algorithm 2: Constructing TG (A heuristic approach)

Data: G = 〈V,E,R, F 〉, TG ← ∅, queue Q← ∅, relation vector
−→
R

Result: TG
1
−→
R(u)← 〈l1, ..., lk〉, ∀u ∈ V ;

−→
T (u)← 〈s1, ..., sk〉, ∀u ∈ V ;

2 Vtmp ← ∅;
3 while V \ Vtmp 6= ∅ do
4 Pick u ∈ V , assume l = argmin

−→
R(u);

5 V l
ri

= merge(v), where v ∈ V \ Vtmp and
−→
R(v)ri = l;

6 addNode(TG, V l
ri

); Vtmp ← Vtmp
⋃

V l
ri

;

7 while N ← TG’s nodes without a parent ∧N 6= V do
8 Pick V l

ri
∈ N , assume l = argmin

∀u∈V l
ri

∧R\{ri}
{
−→
R(u)};

9 for rj ∈ R \ {ri} do
10 V l′

rj
= merge(V l

ri
), where v ∈ Vri

s.t.
−→
R(v)rj = l′;

11 if |V l′
rj
| ≥

∑
|V l

ri
| then

12 addNode(TG, V l′
rj

); addParent({V l
ri
}, V l′

rj
);

13
−→
T (u)ri+←

−→
T (u)ri , u ∈ V l

ri
;

14 abstraction(TG) and return TG;

node is a superset of all these child nodes. Consider the example
shown in Figure 4: following Algorithm 1, the last two leaf nodes
need to be merged such that Ve is not split among Vb and Vc. This
results in increasing the size of an abstracted node, in terms of the
number of vertices represented by this node. Thus, it undermines
the pruning power as more vertices need to be considered during
the search. On the contrary, although smaller abstracted node size
yields better pruning power, extra query processing overhead may
incur when vertices can have multiple prefix relation paths, which
we shall elaborate in the query processing section (§5). We realize
that, to yield the most efficient s ∼ t CCSP query processing, there
is a nontrivial trade-off between minimizing the size of abstracted
nodes and reducing the potential prefix relation paths to explore.
This is left for follow-up work. In this paper, we take a heuris-
tic approach to decide the split of an abstracted node such that it
always reduces the search space, as shown in Algorithm 2. The
difference is that in Algorithm 2 a vertex can now have multiple
prefix relation paths (result from the iteration on Line 9-13). In this
algorithm, we use additional size information of each vertex group,
as indicated by the vector

−→
T (u) ← 〈s1, ..., sk〉, which represents

the size of each vertex group that u participates in. This vector can
be considered as a side-product of computing

−→
R (u). Compared to

Algorithm 1, we duplicate a vertex group as much as possible as
long as such duplication does not undermine the pruning power of
newly formed abstracted vertices (Line 11). The size of each vertex
group is updated when new redundancy is introduced (Line 13).

Lemma 9. Algorithm 2 constructs TG with time complexity of
O(|V | ×M2), where M = argmaxu∈V |TG(u)PR|.

Lemma 9 can be easily proven following a similar discussion
as in the proof of Lemma 8. It is worth pointing out that in prac-
tice, the running time of Algorithm 2 is close to Algorithm 1 as the
redundancy from vertex set duplication usually quickly outgrows
the size of potential parent node, where the condition on Line 13
is evaluated to false in most cases. However, Algorithm 2 results
in abstracted vertices of smaller size, which generally reduces the
search space and improves the query time efficiency. Detailed eval-
uation is reported in the experiment section.

4.3 HyRE Encoding
The HyRE index suggests a natural partitioning ofG. Vertices in

the same abstracted node are most likely to be accessed together for
query evaluation, so storing them together would certainly improve
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the data locality and therefore reduce I/O swapping. Furthermore,
vertices in the same abstracted node share the same prefix relation
path, which only needs to be stored once for space cost saving.
Thus, putting the vertices within each abstracted node into one par-
tition group would yield a natural decomposition of G. Note that
following Algorithm 1, each vertex in G would be assigned to ex-
actly one partition group, while Algorithm 2 would result in a ver-
tex residing in multiple partition groups. As we discussed above,
there is a tradeoff between fewer numbers of vertex accesses to
speed up query evaluation versus the space overhead introduced by
vertex duplication among partitions.

We now describe the vertex encoding scheme to represent the
hybrid relation tree. Two major components of this encoding are
the relation tree metadata, which essentially is the prefix relation
path information, and indexing each vertex’s neighbors. The rela-
tion tree metadata is a combination of the relation path tree and the
connectivity measure within each abstracted node. Consider the
example shown in Figure 4 and assume a vertex v belongs to the
partition defined in Vrf ; then v’s prefix relation path is rb → rf .
Assume that rf is a relation cut of rb, which implies that vertices
that reside in Vrb \Vrf do not form a single connected component.
Therefore, this connectivity information should also be recorded
to assist query evaluation. Our solution is to introduce an addi-
tional indicator to record the connectivity measure, which can be
either true or false. Then the relation tree meta data of v would be
recorded as rb(false)→ rf (true).

The second component of vertex encoding is to reorganize a ver-
tex’s neighbors according to its prefix relation path. Let a vertex v’s
prefix relation path be TG(v)Pre = ri → ... → rj → ... → rk.
All of v’s neighbors that correlate with v under rj are first grouped
together, then divided into two subgroups – one for the vertices that
share the same prefix relation path of v from ri to rj and the other
one for those that do not. The intuition of such an organization
are two-fold. First, we group each vertex’s neighbors w.r.t types
of relations with which they are correlated, so as to speed up the
lookup process (instead of scanning the entire list of neighbors).
Second, such an organization is update-friendly. When there are
newly added vertices or relations, only an append is necessary to
maintain such an organization. Let H denote TG’s height and |TG|
denote the number of leaf nodes in |TG|, we study the overall space
complexity of the HyRE index with the following Lemma:

Lemma 10. The space complexity of TG isO(V ×log(H×|TG|)).
Proof. For each vertex, the length of its prefix relation path is at
most H , and each prefix relation path needs only be stored once, at
most log(H × |TG|) index space is required per vertex.

As we shall discuss in the experiment section, the space overhead
of HyRE index is relatively small compared to the raw data size G.
In addition, we can scale up the space cost of TG by following the
heuristic algorithm presented in Section 4.2 for query efficiency
improvement.

5. QUERY PROCESSING
Following the HyRE index discussed above, we first describe

a non-conventional exploration-based approach that uses HyRE to
effectively prune the search space. Then we elaborate a heuristic
approach for the s ∼ t CCSP-R problem given in Definition 2.

5.1 Exploration-based Solution
As elaborated in Section 1, the challenge of applying exploration-

based algorithms for correlation constraint shortest path queries lies
in incorporating the evaluation of denial constraints, which asks
that no two vertices that are correlated under a denial constraint can

Algorithm 3: Exploration with flags for s ∼ t CCSP (Baseline)
Data: G = 〈V,E,R, F 〉, s, t, C
Result: pst

1 for v ∈ V do
2 vflag ← true;
3 if v ← message from u & uflag = true then
4 dist(s, v)← dist(s, u) + 1;
5 for u ∈ VCD

\ {v} do
6 if dist(s, u) is not set then
7 uflag ← false; dist(s, u)←∞;

8 while t does not receive a message from v & dist(s, v) 6=∞ do
9 v sends vflag and dist(s, v) to its neighbors;

10 return pst;

appear in the returned results. In other words, multiple rounds of
explorations are needed to ensure that the constraints are satisfied.
Note that BFS has been proven to be a more preferable exploration
method than DFS to compute hop-based shortest path distance, as
discussed in [10]. Other heuristic algorithms for shortest path eval-
uation, e.g., Dijkstra [16] or A∗ [22], are proposed for weighted
graphs. These two algorithms behave exact the same as BFS when
only a hop-based distance is considered. Therefore, we consider
only the BFS exploration approach in this work.

A baseline algorithm extends the breadth-first-search exploration
for s ∼ t CCSP evaluation, as shown in Algorithm 3. The intuition
is to maintain a flag on each visited vertex to indicate whether or
not the vertex can appear in the final results. At each iteration of the
exploration, whenever a vertex in VCD is visited from a vertex that
does not belong in VCD , we flag all other vertices in VCD as “false”
indicating that they cannot appear in the final result. In addition,
we set the distance from s to these vertices to infinity. Note that we
do not eliminate these vertices completely from exploration in the
subsequent iterations; all vertices that are visited later from a vertex
outside of VCD can still be considered as candidates. Flagging ver-
tices in a specific VCD can be effectively supported by the HyRE
index as vertices are partitioned based on the correlation groups,
which facilitates such a batch processing. It is worth pointing out
that Algorithm 3 eliminates all possible vertices that can violate the
correlation constraint at each step of exploration, which guarantees
the correctness of the returned answer. It is worth pointing out that
the time complexity of Algorithm 3 meets the one given in Lemma
1, as Algorithm 3 exactly follows the methodology adopted in the
proof of Lemma 1, which guarantees its correctness.

Algorithm 3 is simple and can be adopted without a change to
a snapshot-based dynamic graph scenario, i.e., it does not need to
wait for the HyRE index to be updated. However, when the graph
update is not frequent and snapshot-based query evaluation is suf-
ficient, the shortest path search can be significantly accelerated by
considering the topological structure of HyRE, as we show in Al-
gorithm 4. Essentially, we restrict the s ∼ t CCSP search space to
vertices that reside in a root-to-leaf path in the hybrid relation tree
TG. Given s and t, we need to search their precedents and descen-
dants to find out all valid paths, which is guaranteed by the proper-
ties of TG as discussed in Lemma 4 – 7. As shown in the algorithm,
we explore both directions in one hop within in the WHILE loop
until a shortest path is found. Therefore, Algorithm 4 is guaranteed
to produce the correct results. Note that in this algorithm, a relation
cut is determined during the execution, instead of pre-computed.
One key difference to Algorithm 3 is that we no longer need a flag
to rule out redundant vertex accesses, since this is already guaran-
teed when the search follows the topological structure of the HyRE
index. It is worth pointing out that worst case running time of Algo-
rithm 4 remains the same as Algorithm 3, which is O(c|E|) given
in Lemma 1. This happens when both s and t resides in the root
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Algorithm 4: HyRE search for s ∼ t CCSP
Data: G = 〈V,E,R, F 〉, TG ← ∅, s, t, C
Result: pst

1 rc← false;
2 while rc 6= true do
3 for Vi ∈ Pre(VC(s)) do
4 if Connected(Vi=false then
5 rc← true;

6 for u ∈ Vi do
7 Update(dist(s, u)) at step 1;

8 for Vi ∈ Dec(VC(s)) do
9 if Connected(Vi=false then

10 rc← true;

11 for u ∈ Vi do
12 Update(dist(s, u)) at step 1;

13 return pst;

of TG and all the descendants need to be searched. On the con-
trary, the closer s and t locate to leaf nodes in TG, the smaller is the
search space. Based on our bottom-up construction method, most
vertices would reside close to leaf nodes, which is why we observe
a significant speedup of query evaluation with Algorithm 4.

Consider a simple case study, “to find the shortest path between
c and j with constraints CN = r1 ∧ CD = r2”. Following the
naive exploration approach, multiple vertices {f, c, g, h} need to
be visited. On the contrary, using a Hybrid relation tree shown in
Figure 3(b), a null can be immediately returned as c and j are only
connected with vertices that participate in relation r2, indicating no
valid path exists for this query.

5.2 s ∼ t CCSP-R
We define the s ∼ t CCSP-R problem in Section 3 to cover an-

other class of applications where the strength of correlation, mea-
sured by the shortest path distance under that type of correlation,
plays a more important role in the returned results. For example,
to form a small jury group to give unbiased opinions, two people
who are 4-hops away on the social network may have never met
each other; therefore, a denial constraint on social linkage, like a
friend-of-friend relation, is much less crucial than when two people
are 1-hop or 2-hop connected. One challenge to address this issue
is modeling the decay of correlation strength along the growth of
linkage path, which requires domain knowledge and is beyond the
scope of this work. As defined in Definition 2, we consider a linear
decay-length model for correlation constraint, where two vertices
that are correlated under CD are allowed to appear in the results as
long as their distance in VCN is shorter than the one in VCD .

A heuristic algorithm is presented in Algorithm 5 that follows
the same framework as in Algorithm 3. We highlight the key dif-
ference on line 8 and the IF condition on lines 9-10. In this al-
gorithm, we further divide dist(s, u) to two parts: dist(s, v) and
dist(v, u). The former denotes the distance from s to a boundary
vertex of VCD , while the latter records the distance between two
vertices that are correlated under CD, which may be valid to form a
result as indicated by the IF condition. Note that Algorithm 5 does
not guarantee that optimal CCSP-R shortest path would be found.
The reason is that it stops as soon as it finds one “short” path that
satisfies the CCSP-R definition; however, it eliminates the possi-
bility of discovering more distance-saving vertex pairs that are far
from each other in VCD . As discussed in Section 3, s ∼ t CCSP-R
cannot be approximated within a constant factor. As we discuss in
the experiments section (§6), such a heuristic solution can evaluate
the s ∼ tCCSP-R query very fast and return satisfying results com-
pared to optimal results we have computed in a brute-force manner.

Algorithm 5: Heuristic s ∼ t CCSP-R Evaluation
Data: G = 〈V,E,R, F 〉, s, t, C
Result: pst

1 for v ∈ V do
2 vflag ← true;
3 if v ← message from u & uflag = true then
4 dist(s, v)← dist(s, u) + 1;
5 for u ∈ VCD

\ {v} do
6 if dist(s, u) is not set then
7 uflag ← false;
8 dist(s, u)← dist(s, v) + dist(v, u);

9 if idst(s, u) is set & dist(v, u) ≥ 2 then
10 uflag ← true;

11 while t does not receive a message from v & dist(s, v) 6=∞ do
12 v sends vflag and dist(s, v) to its neighbors;

13 return pst;

6. EXPERIMENTS
We examine our solution from the following three perspectives:

(1) the time and space costs of building HyRE index on real-world
multi-relation graphs, we vary the space budget for HyRE index
and study the trade-off between query processing efficiency and the
storage overhead; (2) the performance of answering s ∼ t CCSP
queries using flag-based exploration and HyRE-based searching, as
well as how our solution adapts to dynamic graph updates; and (3)
the efficacy and efficiency of s ∼ t CCSP-R evaluation.

The highlights of our experimental results on multiple real-world
and synthetic graphs are as follows: (1) the time efficiency of the
heuristic approach for HyRE construction (Algorithm 2) is close
to the bottom-up approach (Algorithm 1), but it can achieve over
5−8× speedup of query processing at a cost of 2.5× storage over-
head; (2) Algorithm 2 exhibits more robust performance than Algo-
rithm 1 in the presence of skew in distribution of correlation types
(i.e., edge labels); (3) compared with the exploration-based solu-
tion (Algorithm 3), HyRE index can significantly reduce the search
space, which results in over 5 − 20× speedup in query evaluation
on real-world graphs; and (4) the proposed solution demonstrates
better performance in a scale-up setting.

6.1 Experimental Setup
We run all our experiments on a Linux server with 32 physical

cores, 256GB memory and 2TB hard disk. Scalability tests are
run on a cluster of 16 physical machines connected with a gigabit
network, where each machine has 8 physical cores, 32GB memory
and 1TB hard disk.
Implementation. The prototype system is implemented in C++,
compiled using GCC 5.4.0, with O3 switch on. We incorporate
the Intel Thread Building Block (TBB) framework to make use of
multiple cores for HyRE construction, and MPICH 3.3 is used for
the communication. Specifically, we implement parallel versions
of Algorithm 2 and Algorithm 3. Algorithm 2 constructs TG in
a bottom-up fashion, where the computation tasks on each vertex
is the same and therefore can be embarrassingly parallelized. The
challenge of building TG in parallel following the heuristic algo-
rithm lies in the split validation process (given on lines 9 and 13),
which requires a scan of other vertices that satisfy the correlation
constraint. Our solution is to parallelize Algorithm 3 at the level
of subgraphs (which is derived from an off-shelf graph partition-
ing toolkit [27]). In addition, we run the query processing algo-
rithms following a subgraph-centric computing framework (similar
to Blogel [51]), which executes the path searches serially within
each subgraph. We set the total number of graph partitions the
same as the number of physical cores.

496



Table 1: Real-World Graph Datasets.

G |V | |E| |R| |Rv | |Re| µ |VR|
|V |

σ |VR|
|V |

HyRE (Bottom-up) HyRE (Heuristic)
T (sec)Time (Sec) Size (GB) Time (Sec) Size (GB)

Youtube∗(You) 15K 13M 5 3.2 2.4 0.27 0.02 9.2 0.025 9.7 0.037 18.6
Flickr∗(Fli) 105K 2M 214 4.7 1.4 0.17 0.26 14.2 2.4 16.7 5.1 12.4

STRING (STR) 72.9M 117M 6 4.2 3.8 0.37 0.06 672 67.4 789 74.2 189.2
MAG∗ 166M 3.3B 8 5.1 1.9 0.74 0.03 1007 246 1147 297 97.4

Table 2: Correlation types and constraints adopted in query evaluation.
Youtube STRING Flickr MAG

R

r1: Contact r1: Conserved neighborhood r1: SameTag r1: AuthorInCommon
r2: Co-contact r2: Phylogenetic co-occurrence r2: SameCollection r2: SameYear
r3: Co-subscription r3: Co-expression r3: SameGroup r3: KeywordsInCommon
r4: Co-subscribed r4: Large-scale experiments r4: SameGallery r4: SameVenue
r5: Favorite r5: Literature co-occurrence r5: SameLocation r5: SameType

r6: Combined score r6: SameUser r6: Cited
r7: TakenByFriend r7: Co-cited

r8: SameAffiliation

C

1.CN = r5, CD = ∅ 1.CN = r2, CD = r5 1.CN = r1, CD = r6 1.CN = r2 ∧ r4, CD = r1
2.CN = r5, CD = r1 2.CN = r3, CD = ∅ 2.CN = r2 ∨ r3 ∨ r4, CD = r1 2.CN = r1 ∧ r3, CD = r2
3.CN = r5, CD = r1 ∨ r2 3.CN = r3 ∨ r4, CD = r1 3.CN = r1 ∧ r6, CD = r5 3.CN = r1 ∧ r3, CD = r4
4.CN = ∅, CD = r4 4.CN = ∅, CD = r5 4.CN = r1 ∧ r6, CD = r6 4.CN = r5 ∧ r3, CD = r6 ∨ r7
5.CN = r1, CD = r3 5.CN = r5, CD = r4 5.CN = r7, CD = r1 5.CN = r8 ∧ r3, CD = r6 ∨ r7

Datasets. As summarized in Table 1, we use four real-world graphs
with different characteristics. Note that the graphs appended with
“∗” are undirected graphs. Youtube graph [44] depicts a user con-
tact network, where vertices are users, edges are formed under dif-
ferent conditions, e.g., two users subscribe to the same channel
Each condition is treated as a type of correlation in our experiments.
Flickr graph [32] is an image relation network built from pictures
posted online, where vertices are pictures and edges are the corre-
lations among pictures. Over 200 types of relations are defined in
this data set, and their frequency is highly skewed. STRING [42] is
a Protein-Protein Interaction network, where vertices are proteins
and edges represent different types of empirically learned chemical
interactions. Microsoft Academic Graph [34] (MAG) is a collec-
tion of over 166 million papers.We identify 8 different types of
correlations and construct the graph by determining how each pa-
per connects to others from a random subset of the entire collection.
In Table 1, |Rv| and |Re| denote the average relation type counts
on each edge and vertex, respectively. We also report the mean and
standard deviation of the percentage of vertices that participate in
a relation with µ |VR|

|V |
and σ |VR|

|V |
. We observe that when the per-

vertex/per-edge relation counts are close, this indicates that corre-
lated vertices are more likely to participate in the same types of
relations, which is true for Youtube and STRING. The small σ |VR|

|V |
value of these two graphs also verifies this. In contrast, Flickr has
a very skewed distribution of the types of relations among vertices,
indicating an image often correlates other images under different
types of relations. Although MAG also demonstrates relatively
large difference on per-vertex/per-edge average relation count, the
small σ |VR|

|V |
shows that these types of relations are evenly dis-

tributed in the graph.
Workload. For each graph, we design 5 different correlation con-
straints and first compute the ground truth results of 1000 random
queries using the flag-based exploration method (Algorithm 3). This
allows us to study the pruning power of HyRE for invalid input ver-
tex pairs, as well as its efficiency in answering queries with valid
inputs. We report the average running time over 5 runs with cold
start. Table 2 summarizes the correlation types and constraints.

6.2 Computing HyRE
We summarize the computation of HyRE on four graphs in Ta-

ble 1. We compare the space and time cost of HyRE construction
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Figure 5: Scale-out computation of HyRE

using different algorithms. There are some observations we make
from this set of experiments. First, the heuristic approach gener-
ally add less than 20% of extra construction time compared to the
bottom-up approach, and the storage overhead does not grow expo-
nentially when we allow a vertex to keep more prefix relation paths.
As we shall show later in the query evaluation study, this enables
the heuristic-based index to perform much better than the index
built using the bottom-up approach. Second, the time complexity
of building the HyRE index is mainly dominated by two factors: the
number of edges, and the average number of correlations between
vertices. For example, although Flickr has much fewer edges than
Youtube, it takes longer to process because it is affected by the high
average number of correlations (12 in our experiments). Note that
the reported time costs in Table 1 include the vertex encoding pro-
cess, which is only proportional to |V |. The last column in Table 1
reports the total execution makespan achieved using Algorithm 4
over 1000 queries. As detailed in the following section, two orders
of magnitude speedup can be achieved using HyRE, which justi-
fies the overhead of its construction time. To verify the scalability
of the HyRE construction algorithm, we run two algorithms in a
scale-out fashion on STRING and MAG. As shown in Figure 5,
the bottom-up approach demonstrates better scalability due to its
ease of parallelization. In contrast, the heuristic approach given in
Algorithm 2 relies on more intermediate results, and this leads to
significant data exchange in a distributed setting. Therefore, the
heuristic approach favors a scale-up architecture.

6.3 s ∼ t CCSP Query Processing
We summarize the s ∼ t CCSP query processing results in Fig-

ure 6. Note that we consider the flag-based exploration approach
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Figure 6: s ∼ t CCSP evaluation: (a) Total speedup on 1K random queries; (b) Total speedup on queries with valid shortest path results; (c)-(f)
Graph specific CCSP evaluation; (g)-(h) Scale-out s ∼ t CCSP evaluation.
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Figure 7: s ∼ t CCSP evaluation with graph updates. (Snapshot taken every minute)

(Algorithm 3) as a baseline and report the speedup of Algorithm 4
here. Figure 6(a) shows the overall performance improvement over
1000 random queries compared with the baseline, while Figure 6(b)
shows the speedup for queries that do not return null. Algorithm 4
demonstrates much better efficiency, especially for random queries
where HyRE can reach an early stop much faster if the result is
null. Another observation is related to the performance of using
HyRE for query processing varies on different graphs. For exam-
ple, HyRE speedup on STR is much smaller than on MAG. The
reason is that vertices in STR tend to be correlated under a similar
set of relation types, which weakens the pruning power of HyRE.

We compare the query efficiency using different HyRE indexes
built with both Algorithms 1 and 2. As discussed in Section 4, the
heuristic-based HyRE construction approach enables the tradeoff
between space overhead and much fewer vertex access. The ex-
periments show that Algorithm 2 consistently beats Algorithm 1 in
facilitating query processing. Although the overall speedup ratio
varies on different graphs, we observe at least one order of magni-
tude of efficiency improvement. Note that evaluating queries with-
out valid output using the baseline algorithm can be very time con-
suming, while HyRE guarantees an early stop property, which con-
tributes the most in the speedup numbers shown in Figure 6(a). On
the contrary, if we only look at the queries that do have valid re-
sults, the speedup ratio of our solution is very different, as shown
in Figure 6(b). From this figure, we observe that allowing extra
space in HyRE construction is rewarding. Table 1 shows that, with
a 2 − 3× increase in storage cost, we can achieve 5 − 10× faster
query processing. Figures 6(c)-(f) gives the s ∼ t CCSP query
evaluation results with respect to the length of returned results.
We find that the performance improvements are strongly correlated
with two factors: (1) the length of returned results, and (2) the cor-

relation distribution, or the density of the subgraphs that are tra-
versed for query processing. For example, Flickr is much sparser
than Youtube, therefore, when the shortest path distance is too long
or too short, there is not much performance improvement, as the
traversal does not incur much redundant vertex access. On the con-
trary, we observe significant performance gains when the length of
shortest path increases in Youtube. The rationale behind this is that
a longer path would incur much more vertex visits in this graph. A
similar trend is observed on other graphs as well.

Among all four datasets, the best performance is observed on the
STRING graph. The explanation is two-fold. First, compared to
other datasets, the correlation types are relatively more evenly dis-
tributed among vertices. Second, this graph is featured with numer-
ous dense clusters, which would benefit query processing if vertices
within the same cluster are stored closely together, which is essen-
tially guaranteed by our encoding scheme. Note that the results
in Figure 6(a)-(f) are obtained by running the queries on a single
server. In addition, we compare the running time of s ∼ t CCSP
evaluation on STRING and MAG in a distributed setting, as shown
in Figure 6(g) and 6(h). We compare using 4, 8, and 16 machines
with 8 workers per-machine. The baseline in this case is set as the
best performance reported from experiments conducted on a single
server. When the total number of workers grows, slight efficiency
improvements (15%-30%) are observed. This is because the com-
plexity of shortest path search is dominated by the number of vertex
accesses, which does not benefit much from parallel computing.

We also test how HyRE can accommodate graph updates in a dy-
namic setting. Note that we assume all queries are evaluated based
on snapshots of the graph, therefore, we only consider batch up-
dates to HyRE and do not consider streaming graphs. Specifically,
we consider two atomic update operations: add/delete a relation to
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an existing edge. The bottom-up approach (Algorithm 1) would
require constructing the entire index structure from scratch, which
can be time-consuming. Instead, there is the opportunity of trading
off the re-construction time by allowing a vertex to have multiple
prefix relation paths, as we demonstrated in Algorithm 2. Thus,
given the updates, we would simply append a vertex’s prefix re-
lation paths if a new relation is added, or remove one of its prefix
relation paths if a relation is deleted. The drawback of this approach
is that it can increase the storage cost as well as the search space,
which would degrade the query efficiency. Figure 7 shows the ef-
ficiency of s ∼ t CCSP query under graph updates on STRING
and MAG. We compare the query efficiency of Algorithm 3 and
Algorithm 4 over different patterns of graph updates. We observe
that HyRE-based search is more sensitive to insertion, because such
an operation continuously allocates more space for the index and
potentially enlarges the search space. Another interesting fact ob-
served for the MAG data set is that constant deletion leads to lower
total query time. This is because the total number of valid paths
that can be returned significantly reduces when edges are constantly
deleted from such a sparse graph. As we trade off the update cost
with the pruning power of HyRE, periodical re-construction of the
index from scratch needs to be performed to satisfy the query effi-
ciency requirement.

6.4 s ∼ t CCSP-R Query Processing
We define the s ∼ t CCSP-R problem in Definition 2 as a re-

laxation of the strict correlation constraint condition. As shown in
Algorithm 5, we can again use HyRE as a guidance in evaluating
s ∼ t CCSP-R queries. We empirically study the efficiency and ef-
ficacy of Algorithm 5 by comparing it to a brute-force approach that
enumerates and verifies all possible shortest paths between s and t
in an ascending order of the path length until the first qualified path
is discovered. We run 1000 random queries and only report the av-
erage evaluation time of the ones that have valid returns. As shown
in Figure 8(a), compared to the baseline approach, the heuristic
search over HyRE is at least one order of magnitude faster on most
graphs. This is because our search method would stop immediately
after finding a path between s and t, which saves significant verifi-
cation overhead. However, we observe that the efficiency improve-
ment on Flickr graph is minor, which is mainly caused by two fac-
tors: the skewed relation distribution and the sparsity of the graph.
Since the graph is sparse, and the average number of relations on
each edge is low (as shown in Table 1), the pruning power of HyRE
is limited. The efficacy of Algorithm 5, as shown in Figure 8(b), is
reasonable given its huge savings on evaluation time. In this figure,
δ on the y-axis depicts the difference between the true shortest path
distance and the returned value. The reported results are based on
HyRE built with the heuristic approach (Algorithm 2). We further
observe that the performance of this index, in terms of efficiency
and efficacy of s ∼ t CCSP-R evaluation, is not always superior to
HyRE built with the bottom-up approach (Algorithm 1), due to the

fact that all of the vertices (even the ones correlated under denial
constraints) need to be followed for path examination.

We consider Q5 over MAG as a case study to demonstrate the
real-world semantic of the s ∼ t CCSP and CCSP-R queries. The
query is interpreted as “find a minimum set of papers including
the given s and t that are of the same type and with keywords in
common but do not cite or co-cite each other.” Under the CCSP
semantic, it could find papers that are relevant but missing refer-
ences among others, which can be utilized to predict linkage or
recommend citations. While under the CCSP-R semantic, where
the co-/cite correlations are allowed among the returned results, it
suggests a small set of publications that are generally related to the
inputs, which should be examined to have a broad understanding of
the particular research field.

7. CONCLUSION
In this work, we focus on the generic correlation constraint pair-

wise shortest path computing on multi-relation graphs, with the ob-
servation that existing edge label constraint solutions cannot be di-
rectly adopted to satisfy negative correlation conditions, which is
defined and studied as denial constraints in this paper. We formally
define the s ∼ t CCSP and its relaxation problem, which leads to
a novel vertex encoding scheme that can effectively encode both
topological structure and relation types, such that the shortest path
workload can be evaluated with significantly fewer vertex access.
Extensive experiments on real-world graphs are conducted to vali-
date our proposed solution.

We used shortest path to demonstrate the approach, but the data
structures and the techniques we propose can be applied more widely.
Although this is beyond the scope of this paper, we highlight how
the data structures and methods can be applied to two other work-
loads to demonstrate their wider applicability. The way we encode
each vertex is derived from HyRE, which can serve as a generic
logical structure for any type of correlation constraint path queries.
For example, given a correlation constraint reachability query, we
can evaluate it without traversing the graph, but by simply looking
into the HyRE index since it records all the relation cuts which is
sufficient to determine if two vertices are reachable under given re-
lation constraints. In addition, traversal-based evaluation of online
graph pattern matching is proven to be efficient in graph database
systems. As HyRE reflects not only the relation types that a ver-
tex participates in, but also its local neighborhood topology, it can
be used as an effective filter to reduce the search space for pattern
matching queries that incorporates correlation constraints.

Although HyRE is a generic indexing technique that can be ap-
plied to multi-relation graphs, there are multiple aspects we would
like to investigate further in future work: (1) quantify the tradeoff
between extra space cost of HyRE and its potential performance
gain; (2) explore the opportunity of reducing the search space when
a correlation function is available such that the pattern of vertex
correlation can be taken into consideration; and (3) incorporate ap-
plication scenarios where graph updates come in as a stream and
the shortest path is monitored based on a sliding window seman-
tic; and (4) study whether an optimal HyRE structure exists for a
particular type of graphs.
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