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ABSTRACT
Stream frequency measurements are fundamental in many
data stream applications such as financial data trackers,
intrusion-detection systems, and network monitoring. Typ-
ically, recent data items are more relevant than old ones, a
notion we can capture through a sliding window abstrac-
tion. This paper considers a generalized sliding window
model that supports stream frequency queries over an in-
terval given at query time. This enables drill-down queries,
in which we can examine the behavior of the system in finer
and finer granularities. For this model, we asymptotically
improve the space bounds of existing work, reduce the up-
date and query time to a constant, and provide deterministic
solutions. When evaluated over real Internet packet traces,
our fastest algorithm processes items 90–250 times faster,
serves queries at least 730 times quicker and consumes at
least 40% less space than the best known method.
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1 Introduction
High-performance stream processing is essential for many
applications such as financial data trackers, intrusion-detection
systems, network monitoring, and sensor networks. Such ap-
plications require algorithms that are both time and space
efficient to cope with high-speed data streams. Space ef-
ficiency is needed, due to the memory hierarchy structure,
to enable cache residency and to avoid page swapping. This
residency is vital for obtaining good performance, even when
the theoretical computational cost is small (e.g., constant
time algorithms may be inefficient if they access the DRAM
for each element). To that end, stream processing algo-
rithms often build compact approximate sketches (synopses)
of the input streams.
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Figure 1: We process items and support frequency queries
within an interval specified at query time. While the traditional
sliding window model can answer queries for a fixed window, our
approach allows us to consider any interval that is contained
within the last W items. In this example, we ask about the
frequency of the item a within the interval [8, 18]. If we allow
an additive error of 2, the answer to this query should be in the
range [4, 6].

Recent items are often more relevant than old ones, which
requires an aging mechanism for the sketches. Many appli-
cations realize this by tracking the stream’s items over a slid-
ing window. That is, the sliding window model [18] considers
only a window of the most recent items in the stream, while
older ones do not affect the quantity we wish to estimate.
Indeed, the problem of maintaining different types of sliding
window statistics was extensively studied [4, 8, 18, 33, 27].

Yet, sometimes the window of interest may not be known
a priori or they may be multiple interesting windows [17].
Further, the ability to perform drill-down queries, in which
we examine the behavior of the system in finer and finer
granularity may also be beneficial, especially for security
applications. For example, this enables detecting when pre-
cisely a particular anomaly has started and who was involved
in it [20]. Additional applications for this capability include
identifying the sources of flash crowd effects and pinpointing
the cause-effect relation surrounding a surge in demand on
an e-commerce website [26].

In this work, we study a model that allows the user to
specify an interval of interest at query time. This extends
traditional sliding windows that only consider fixed sized
windows. As depicted in Figure 1, a sub-interval of a maxi-
mal window is passed as a parameter for each query, and the
goal of the algorithm is to reply correspondingly. Naturally,
one could maintain an instance of a sliding window algo-
rithm for each possible interval within the maximal sliding
window. Alas, this is both computationally and space inef-
ficient. Hence, the challenge is to devise efficient solutions.

This same model was previously explored in [33], which
based their solution on exponential histograms [18]. How-
ever, as we elaborate below, their solution is both memory
wasteful and computationally inefficient. Further, they only
provide probabilistic guarantees.
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Table 1: Comparison of the algorithms proposed in the paper with ECM and WCSS (that solves the simpler problem of fixed-size
windows). ACCk can be instantiated for any k ∈ N.

Algorithm Space Update Time Query Time Comments

WCSS [8] O(ε−1 log(W |U|)) O(1) O(1) Only supports fixed-size window queries.

ECM [33] O(ε−2 logW log δ−1) O(log δ−1) O(ε−1 logW log δ−1) Only provides probabilistic guarantees.

RAW O(ε−2 log(W |U|)) O(ε−1) O(1) Uses prior art (WCSS) as a black box.

ACCk

O
(
ε−1 log(W |U|)

O(k + ε−2/W ) O(k)
Constant time operations for

+kε−(1+1/k) log ε−1
)

k = O(1) ∧ ε = Ω(W−1/2).

HIT O(ε−1(log(W |U|) + log2 ε−1)) O(1 +
(
ε−1 · log ε−1

)
/W ) O(log ε−1)

Optimal space when log2 ε−1 = O(log(W |U|)),
O(1) time updates when ε = Ω

(
log W

W

)
.

Contributions
Our work focuses on the problem of estimating frequencies
over an ad-hoc interval given at query time. We start by
introducing a formal definition of this generalized estimation
problem nicknamed (W, ε)-IntervalFrequency.

To systematically explore the problem, we first present
a näıve strawman algorithm (RAW), which uses multiple
instances of a state-of-the-art fixed window algorithm. In
such an approach, an interval query is satisfied by querying
the instances that are closest to the beginning and end of
the interval and then subtracting their results. This algo-
rithm is memory wasteful and its update time is slow, but
it serves as a baseline for comparing our more sophisticated
solutions. Interestingly, RAW achieves constant query time
while the previously published ECM algorithm [33] answers
queries in O(ε−1 logW log δ−1), where W is the maximal
window size and δ is the probability of failure. Addition-
ally, it requires about the same amount of memory and is
deterministic while ECM has an error probability.

While developing our advanced algorithms, we discov-
ered that both intrinsically solve a common problem that
we nickname n-Interval. Hence, our next contribution is
in identifying and formally defining the n-Interval prob-
lem and showing a reduction from n-Interval to the (W, ε)-
IntervalFrequency problem. This makes our algorithms shorter,
simpler, and easier to prove, analyze and implement.

Our algorithms, nicknamed HIT and ACCk (to be pre-
cise, {ACCk}k≥1 is a family of algorithms), process items

in constant time (under reasonable assumptions on the error
target) – asymptotically faster than RAW. HIT is asymptot-
ically memory optimal while serving queries in logarithmic
time. Conversely, ACCk answers queries in constant time
and incurs a sub-quadratic space overhead.

We present formal correctness proofs as well as space and
runtime analysis. We summarize our solutions’ asymptotic
performance in Table 1.

Our next contribution is a performance evaluation study
of our various algorithms along with (i) ECM-Sketch [33],
the previously suggested solution for interval queries and
(ii) the state-of-the-art fixed window algorithm (WCSS) [8],
which serves as a best case reference point since it solves a
more straightforward problem. We use on real-world packet
traces from Internet backbone routers, from a university
datacenter, and from a university’s border router. Over-
all, our methods (HIT and ACCk) process items 75–2000
times faster and consume at least 20 times less space than
the naive approach (RAW) while requiring a similar amount
of memory as the state-of-the-art fixed size window algo-
rithm (WCSS). Compared to the previously known solution
to this problem (ECM-Sketch [33]), all our advanced algo-
rithms are both faster and more space efficient. In partic-
ular, our fastest algorithm, ACC1, processes items 90–250

times faster than ECM-Sketch, serves queries at least 730
times quicker and consumes at least 40% less space.

Last, we extend our results to time-based intervals, heavy
hitters [31, 12], hierarchical heavy hitters [15, 21], and for
detecting traffic volume heavy-hitters [9], i.e., when counting
each flow’s total traffic rather than item count. We also
discuss applying our algorithms in a distributed settings, in
which measurements are recorded independently by multiple
sites (e.g., multiple routers), and the goal is to obtain a
global network analysis.

Paper roadmap We briefly survey related work in Sec-
tion 2. We state the formal model and problem statement
in Section 3. Our näıve algorithm RAW is described in Sec-
tion 4. We present the auxiliary n-Interval problem, which
both our advanced algorithms solve and has a simple reduc-
tion to the (W, ε)-IntervalFrequency problem, in Section 5.
The improved algorithms, HIT and ACCk, are then de-
scribed in Section 6. The performance evaluation of our al-
gorithms and their comparison to ECM-Sketch and WCSS
is detailed in Section 7. Section 8 discusses extensions of our
work. Finally, we conclude with a discussion in Section 9.

2 Related Work
Count Sketch [13] and Count Min Sketch [16] are perhaps
the two most widely used sketches for maintaining item’s
frequency estimation over a stream. The problem of esti-
mating item frequencies over sliding windows was first stud-
ied in [4]. For estimating frequency within a Wε addi-
tive error over a W sized window, their algorithm requires
O(ε−1 log2 ε−1 logW ) bits. This was then reduced to the
optimal O(ε−1 logW ) bits [27]. In [23], Hung and Ting im-
proved the update time to O(1) while being able to find all
heavy hitters in the optimal O(ε−1) time. Finally, the WCSS
algorithm presented in [8] also estimates item frequencies in
constant time. While some of these works also considered a
variant in which the window can expand and shrink when
processing updates [4, 27], its size was increased/decreased
by one at each update, and cannot be specified at query time.

The most relevant paper that solves the same problem as
our work is [33], who was the first to explore heavy hitters
interval queries. They introduced a sketching technique with
probabilistic accuracy guarantees called Exponential Count-
Min sketch (ECM-Sketch). ECM-Sketch combines Count-
Min sketch’ structure [16] with Exponential Histograms [18].
Count-Min sketch is composed of a set of d hash functions,
and a 2-dimensional array of counters of width w and depth
d. To add an item x of value vx, Count-Min sketch increases
the counters located at CM [j, hj(x)] by vx, for 1 ≤ j ≤ d.
Point query for an item q is done by getting the minimum
value of the corresponding cells.
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Exponential Histograms [18] allow tracking of metrics over
a sliding window to within a multiplicative error. Specifi-
cally, they allow one to estimate the number of 1’s in a slid-
ing window of a binary stream. To that end, they utilize a
sequence of buckets such that each bucket stores the times-
tamp of the oldest 1 in the bucket. When a new element
arrives, a new bucket is created for it; to save space, the
histogram may merge older buckets. While the amortized
update complexity is O(1), some arriving elements may trig-
ger an O(logW )-long cascade of bucket merges.

ECM-Sketch replaces each Count-Min counter with an
Exponential Histogram. Adding an item x to the structure
is analogous to the case of the regular Count-Min sketch.
For each of the histograms CM [j, hj(x)], where 1 ≤ j ≤ d,
the item is registered with time/count of its arrival and all
expired information is removed from the Exponential His-
togram. To query item x in range r, each of the correspond-
ing d histograms E(j, hj(x, r)), where 1 ≤ j ≤ d, computes
the given query range. The estimate value for the frequency
of x is min

j=1,...,d
E(j, hj(x), r). While the Exponential His-

togram counters estimate the counts within a multiplicative
error, their combination with the Count-Min sketch changes
the error guarantee to additive.

An alternative approach for these interval queries was pro-
posed in [17]. Their solution uses hCount [24], a sketch algo-
rithm which is essentially identical to the Count-Min sketch.
Unlike the ECM-Sketch, which uses a matrix of Exponential
Histograms, [17] uses a sequence of log(W/b) buckets each
of which is associated with an hCount instance. The small-
est bucket is of size b while the size of the i’th bucket is
b · 2i−1. When queried, [17] finds the buckets closest to
the interval and queries the hCount instances. The pa-
per does not provide any formal accuracy guarantees but
shows that it has reasonable accuracy in practice. It seems
that the memory used is O(log(W/b) ·ε−1 log δ−1 logW ) bits
while the actual error has two components: (i) an error of
up to b + W/4 in the time axis (when the queried inter-
val is not fully aligned with the buckets); and (ii) an error
of up to Wε, with probability 1 − δ, due to the hCount
instance used for the queried buckets.

In other domains, ad-hoc window queries were proposed
and investigated. That is, the algorithm assumes a prede-
termined upper bound on the window size W , and the user
could specify the actual window size w ≤W at query time.
This model was studied for quantiles [28] and summing [7].

The problem of identifying the frequent items in a data
stream, known as heavy hitters, dates back to the 80’s [31].
There, Misra and Gries (MG) proposed a space optimal al-
gorithm for computing an Nε additive approximation for the
frequency of elements in an N -sized stream. Their algorithm
had a runtime of O(log ε−1), which was improved to a con-
stant [19, 25]. Later, the Space Saving (SS) algorithm was
proposed [30] and shown to be empirically superior to prior
art (see also [14, 29]). Surprisingly, Agarwal et al. recently
showed that MG and SS are isomorphic [2], in the sense that
from a k-counters MG data structure one can compute the
estimate that a k + 1 SS algorithm would produce.

The problem of hierarchical heavy hitters, which has im-
portant security and anomaly detection applications [32],
was previously addressed with the SS algorithm [32]. To
estimate the number of packets that originate from a spe-
cific network (rather than a single IP source), it maintains
several separate SS instances, each dedicated to measuring

Table 2: List of Symbols

Symbol Meaning
S the data stream
U the universe of elements
W the maximal window size
fw
x the frequency of element x within the last w ele-

ments of S
f̂w
x an estimation of fw

x

fi,j
x the frequency of element x between the ith and jth

most recent elements of S
f̂i,j
x an estimation of fi,j

x

ε estimation accuracy parameter
δ probability of failure
n number of blocks in a frame (6/ε)
N max sum of blocks’ cardinalities (12/ε) within a window

different network sizes (e.g., networks with 2-bytes net ids
are tracked separately than those with 3-bytes, etc.). When
a packet arrives, all possible prefixes are computed and each
is fed into the relevant SS instance. Recently, it was shown
that randomization techniques can drive the update com-
plexity down to a constant [6, 10].

3 Preliminaries
Given a universe U , a stream S = x1, x2, . . . ∈ U∗ is a
sequence of universe elements. We denote by W ∈ N the
maximal window size; that is, we consider algorithms that
answer queries for an interval contained with the last W
elements window. The actual value of W is application de-
pendent. For example, a network operator that wishes to
monitor up to a minute of traffic of a major backbone link
may need W of tens of millions of packets [22]. Given an
element x ∈ U and an integer 0 ≤ w ≤W , the w-frequency,
denoted fwx , is the number of times x appears within the
last w elements of S. For integers i ≤ j ≤ W , we further
denote by f i,jx , f jx − f ix the frequency of x between the ith

and jth most recent elements of S.
We seek algorithms that support the following operations:

• ADD(x): given an element x ∈ U , append x to S.

• IntervalFrequencyQuery(x, i, j): given x ∈ U and

indices i ≤ j ≤W , return an estimate f̂ i,jx of f i,jx .

We now formalize the required guarantees.

Definition 1. An algorithm solves (W, ε)-IntervalFrequency
if given any IntervalFrequencyQuery(x, i, j) it satisfies

f i,jx ≤ f̂ i,jx ≤ f i,jx +Wε.

For simplicity of presentation, we assume that Wε/12 and
ε−1 are integers. For ease of reference, Table 2 includes a
summary of basic notations used in this work.

Space Saving: as we use the Space Saving (SS) algo-
rithm [30] in our reduction in Section 5.2, we overview it
here. SS maintains a set of 1/ε counters, each has an as-
sociated element and a value. When an item arrives, SS
first checks if it has a counter. If so, the counter is in-
cremented; otherwise, SS allocates the item with a minimal-
valued counter. For example, assume that the smallest counter
was associated with x and had a value of 4; if y arrives and
has no counter, it will take over x’s counter and increment
its value to 5 (leaving x without a counter). When queried
for the frequency of a flow, we return the value of its counter
if it has one, or the minimal counter’s value otherwise. If we
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denote the overall number of insertions by Z, then we have
that the sum of counters equals Z, and the minimal counter
is at most Zε. This ensures that the error in the SS esti-
mate is at most Zε. An important observation is that once
a counter reached a value of Zε it is no longer the minimum
throughout the rest of the measurement.

4 Strawman Algorithm
Here, we present the simple Redundant Approximate Win-
dows (RAW) algorithm that uses several instances of a black
box algorithm A(w, ε) for solving the frequency estimation
problem over a fixed W -sized window. That is, we as-
sume that A(w, ε) supports the ADD(x) operation and upon

Query(x) produces an estimation f̂wx that satisfies: fwx ≤
f̂wx ≤ fwx +wε. We note that the WCSS algorithm [8] solves
this problem using O(ε−1) counters and in O(1) time for up-
dates and queries. Both its runtime and space are optimal.1

Specifically, we maintain 4ε−1 separate solutions denoted
A1, . . . A4ε−1 , where each A` is an A(` ·Wε/4, ε/4) instance.
We perform the ADD(x) operation simply by invoking the
operation A`.ADD(x) for ` = 1, . . . , 4ε−1. When given an
IntervalFrequencyQuery(x, i, j), we return

f̂ i,jx , Adj/(Wε/4)e.Query(x)

−Abi/(Wε/4)c.Query(x) +Wε/4.

We now state the correctness of RAW. Due to lack of space,
we defer the proof to the full version of the paper [11].

Theorem 1. Using WCSS as the black box algorithm A,
RAW requires O(ε−2(logW+log |U|)) bits, performs updates
in O(ε−1) time and answers queries in constant time.

5 Block Interval Frequency
In this section, we formally define an auxiliary problem,
nicknamed n-Interval, show a reduction to the (W, ε)- In-
tervalFrequency problem, and rigorously analyze the reduc-
tion’s cost. Our motivation lies in the fact that the suggested
algorithms in Section 6 both intrinsically solve the n-Interval
auxiliary problem. It also has the benefit that any improved
reduction between these problems would improve both algo-
rithms. In n-Interval, the arriving elements are inserted into
O(Wε)-sized “blocks” and we are required to compute ex-
act interval frequencies within the blocks. Doing so simplifies
the presentation and analysis of the algorithms in Section 6,
in which we propose algorithms that improve over RAW in
both space and update time. The two algorithms, HIT and
ACCk present a space-time tradeoff while achieving asymp-
totic reductions over RAW.

5.1 The Block Interval Frequency Problem
Here, instead of frequency, we consider items’ block fre-
quency. Namely, for some x ∈ U , we define its window
block frequency gnx as the number of blocks x appears in
within the last n blocks. For integers i ≤ j ≤ n, we define
gi,jx , gjx − gix. Block algorithms support three operations:

• ADD(x): given an element x ∈ U , add it to the stream.

• ENDBLOCK(): a new empty block is inserted into
the window, and the oldest one leaves.

1A lower bound of matching asymptotic complexity appears
in [25], even for non-window solutions.

Table 3: Variables used by the Algorithm 1.

fo the offset within the current frame.
A an algorithm that solves (6/ε)-Interval.

SS a Space Saving instance with
⌈
6ε−1

⌉
counters.

s the size of blocks (fixed at s , Wε/6).

• IntervalQuery(x, i, j): given an element x ∈ U and
indices i ≤ j ≤ n, compute gi,jx (without error).

We define the n-Interval as (W, ε = 0)-IntervalFrequency.
That is, we say that an algorithm solves the n-Interval prob-
lem if given an IntervalQuery(x, i, j) it is able to compute
the exact answer for any i ≤ j ≤ n and x ∈ U .

For analyzing the memory requirements of algorithms solv-
ing this problem, we denote by N the sum of cardinalities of
the blocks in the n-sized window. An example of this setting
is given in Figure 2.

5.2 A Reduction to (W, ε)-IntervalFrequency
We show a reduction from the n-Interval problem to (W, ε)-
IntervalFrequency. To that end, we assume that A is an
algorithm that solves the n-Interval problem for n , 6ε−1.

Our reduction relies on the observation that by applying
such A on a data structure maintained by counter-based al-
gorithm such as Space Saving [30], we can compute interval
queries and not only fixed window size frequency estima-
tions. The setup of the reduction is illustrated in Figure 3.
We break the stream into W sized frames, which are fur-
ther divided into blocks of size O(Wε). We employ a Space
Saving [30, 8] instance to track element frequencies within
each frame; it supports two methods: Add(x) – adds ele-
ment x to the stream and Query(x) – reports the frequency
estimation of element x with tight guarantees on the error.

Whenever a counter reaches an integer multiple of the
block size, we add its associated flow’s identifier to the most
recent block of A. When a frame ends, we flush the Space
Saving instance and reset all of its counters. We note that
an implementation that supports constant time flush oper-
ations was suggested in [8]. Also, the max sum of block’s
cardinalities within a window (overlapping up to 2 frames)
is N = 12/ε. Finally, we reduce each IntervalFrequency-
Query to an IntervalQuery by computing the indices of
the blocks in which the interval starts and ends. The vari-
ables of the reduction algorithm are described in Table 3
and its pseudocode appears in Algorithm 1.

Algorithm 1 From Blocks to Approximate Frequencies

Initialization: fo ← 0, s , Wε/6, initialize A,SS(ε/6).
1: function Add(x)
2: fo ← (fo + 1) mod W
3: SS .Add(x)
4: if SS .Query(x) mod s = 0 then
5: A.Add(x)

6: if fo mod s = 0 then
7: A.EndBlock()

8: if fo = 0 then
9: SS .F lush()

10: function IntervalFrequencyQuery(x, i, j)
11: return s · (A.IntervalQuery(x, di/se , bj/sc) + 2)

5.3 Theoretical Analysis
Given a query IntervalFrequencyQuery(x, i, j), we are

required to estimate f i,jx = f jx − f ix. Our estimator is f̂ i,jx =
A.IntervalQuery(x, di/(Wε/6)e , bj/(Wε/6)c) +Wε/3. In-
tuitively, we query A for the block frequency of x in the
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Figure 2: The block stream setting. Here, after the EndBlock, x appears in two blocks out of the last 9 and thus g9x = 2.

Figure 3: The stream is logically divided into intervals of size
W called frames and each frame is logically partitioned into n
equal-sized blocks. The window of interest is also of size W , and
overlaps with at most 2 frames and n+ 1 blocks.

minimal sequence of blocks that contain interval i, j. Every
time x’s counter reaches an integer multiple of the block size,
the condition in Line 4 is satisfied and the block frequency
of x, as tracked by A, increases by 1. Thus, multiplying the
block frequency by s , Wε/6 allows us to approximate x’s
frequency in the original stream.

There are several sources of estimation error: First, we
do not have a counter for each element but rather a Space
Saving instance in which counters are shared. Next, unless
the counter of an item reaches an integer multiple of s, we
do not add it to the block stream. Additionally, the queried
interval might not be aligned with the blocks. Finally, when
a frame ends, we flush the counters and thus lose the fre-
quency counts of elements that are not recorded in the block
stream. With these sources of error in mind, we prove the
correctness of our algorithm.

Theorem 2. Let A be an algorithm for the 6ε−1-Interval
problem. Then Algorithm 1 solves (W, ε)-IntervalFrequency.

Proof. We begin by noticing that once an element’s counter
reaches s = Wε/6, it will stay associated with the element
until the end of the frame. This follows directly from the
Space Saving algorithm, which only disassociates elements
whose counter is minimal among all counters(see the SS
overview in Section 3). Recall that the number of elements
in a frame is W and that the Space Saving instance is allo-
cated with

⌈
6ε−1

⌉
counters. Since the sum of counters al-

ways equals the number of elements processed, any counter
that reaches a value of s will never be minimal. Thus, once
an element was added to a block (Line 5), its block frequency
within the frame is increased by one for every s subsequent
arrivals. This means that an item might be added to a block
while appearing just once in the stream, but this gives an
overestimation of at most s − 1. As the queried intervals
can overlap with two frames, this can happen at most twice,
which imposes an overestimation error of no more than 2s.

Our next error source is the fact that the queried interval
may begin and end anywhere within a block. By considering

the blocks that contain i and j, regardless of their offset, we
incur another overestimation error of at most 2s.

We have two sources of underestimation error, where items
frequency is lower than s times its block frequency. The first
is the count we lose when flushing the Space Saving instance.
Since we record every multiple of s in the block stream, a fre-
quency of at most s−1 is lost due to the flush. Second, in the
current frame, the residual frequency of an item (i.e., the ap-
pearances that have not been recorded in the block stream)
may be at most s − 1. We make up for these by adding 2s
to the estimation (Line 11). As we have covered all error
sources, the total error is smaller than 6s ≤ Wε.

Reducing the Error Above, we used a block size of s =
Wε/6, which can be reduced to Wε/5 as follows: One of
the error sources in Theorem 2 is the fact that the queried
interval i, j may begin and end in the middle of a block and
we always consider the entire blocks that contain i and j.
We can optimize this by considering i’s and j’s offsets within
the relevant blocks, and including the block’s frequency only
if the offset crosses half the size of the block. This incurs an
overestimation error of at most s instead of 2s, allows blocks
of size Wε/5 and reduces the number of blocks to n = 5/ε.

6 Improved Algorithms
6.1 Approximate Cumulative Count (ACC )
We present a family of algorithms for solving the n-Interval
problem. Approximate Cumulative Count (ACC ) of level
k, denoted ACCk , aims to compute the interval frequencies
while accessing at most k hash tables for updates and 2k+1
for queries. To reduce clutter, we assume in this section that
n1/k ∈ N; this assumption can be omitted with the necessary
adjustments while incurring a 1 + o(1) multiplicative space
overhead. This family presents a space-time trade off — the
larger k is, ACCk takes less space but is also slower.

The ACC algorithms break the block stream into consec-
utive frames of size n (the maximal window size). That is,
blocks B1, B2, . . . Bn are in the first frame, Bn+1, . . . B2n in
the second frame and so on. Notice that any n-sized win-
dow intersects with at most two frames. Within each frame,
ACC algorithms use a hierarchical structure of tables that
enables it to compute an item’s block frequency in O(1) time.

ACC1 and ACC2 are illustrated in Figure 4 and are ex-
plained below. The simplest and fastest algorithm, ACC1 ,
computes for each block a frequency table that tracks how
many times each item has arrived from the beginning of the
frame. For example, the table for block 5n + 7 (for n > 7)
will contain an entry for each item that is a member of at
least one of B5n+1, . . . B5n+7. The key is the item identifier,
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Table 4: Variables used by ACCk algorithm.

BlockSize the number of segments from a level that consist
of a next-level segment.

Tables[`, idx] used for tracking block frequencies. Each table
is identified with a level ` and the index of the
last block in its segments.

incTables[`] tables for incomplete segments.
ghostTables[`] tables for leaving segments.

offset The offset within the current frame.

and the value is its block frequency from the frame’s start.
This way, we can compute any block interval frequency by
querying at most 3 tables. Within a frame, we can com-
pute any interval by subtracting the queried item’s block
frequency at the beginning of the interval from its block fre-
quency at the end. If the interval spans across two frames,
we make one additional query for reaching the beginning of
the frame, in total we query at most 3 tables.

ACC2 saves space at the expense of additional table ac-
cesses. Tables now have “levels”, such that each table is
either in level0 or level1. The core idea is that ACC1 is
somewhat wasteful as it may create O(n) table entries for
each item, as it appears in all tables within the frame after
its arrival. Instead, we “break” each frame into

√
n sized

segments. At the end of each segment, we keep a single
level1 table that counts item frequencies from the begin-
ning of the frame. Since we can use these tables just as
in ACC1 , we are left with computing the queried item fre-
quency within a segment. This is achieved with a level0
table, which we maintain for each block. Alas, unlike the
level1 tables, level0 tables only keep the block frequency
counts from the beginning of the segment the block belongs
to. Thus, each appearance of an item (within a specific
block) can appear on all

√
n level1 tables, but on at most√

n level0 tables and this reduce space consumption. Com-
pared with ACC 1, ACC 2 reduces the overall number of table
entries from O(N · n) to O(N ·

√
n).

For an interval [i, j], let block i and block j be the block
numbers of i and j respectively. To answer any interval
frequency query of item x, we consider two cases: If block i
and block j are in the same frame, we access block i’s and
block j ’s tables to get x’s frequency from the beginning of
the frame till block i, block j and subtract the results, line 18
. If block i and block j are in different frames, we consider
x’s frequency in the j blocks within the current frame by
accessing block j ’s tables, plus its frequency within the last
i blocks of the previous frame. To do so, we compute x’s
frequency from the beginning of the previous frame, lines
19 - 22. A corner case that arises is that the level1 table
that includes block j may have already left the table. We
solve it by maintaining ghostTables for leaving segments: for
1 ≤ ` ≤ k, ghostTables[`] contains the table of last leaving
block that has a table at level`, line 10. Hence, we can
subtract the corresponding ghostTables entries as well.

Next, we generalize this to arbitrary k values. In ACCk ,
we have k levels of tables and segments. We consider each
block to be in its own level0 segment and maintain a level0
table for it. Inductively, each level` segment (for 1 ≤ ` ≤ k)

consists of n1/k level`−1 segments. That is, each level1 seg-
ment contains n1/k blocks, level2 segments each consists of
n1/k level1 segments for a total of n2/k blocks, etc. As each
item may now appear in at most n1/k tables of each level, we
get that the overall number of table entries is O(N ·k ·n1/k).
To avoid lengthy computations at the end of each segment,

Algorithm 2 ACCk

Init: offset ← 1, d , n1/k,
1: initialize Tables, incTables, ghostTables
2: function Add(x)
3: for ` ∈ 0, 1, . . . , k − 1 do . Update all incomplete tables
4: incTables[`](x)+ = 1

5: function EndBlock()
6: `← 0
7: while ((` < k − 1) ∧ offset mod d`+1 = 0) do

. A Level-` block has ended
8: empty incTables[`], ghostTables[`] . Delete all entries
9: `← `+ 1

10: ghostTables[`]← Tables[`, offset]
11: Tables[`, offset]← incTables[`] . Copy Table
12: if offset = n then . New frame
13: empty incTables[k − 1], ghostTables[k − 1]

14: offset ← 1 + (offset mod n)

15: function WinQuery(x,w) . Frequency in the last w blocks

16: cFreq ← incTables[0](x) +
∑logd offset

`=1 Tables
[
`, d`

⌊
offset

d`

⌋]
(x)

17: if w ≤ offset + 1 then

18: return cFreq −
∑logd offset+1−w

`=0 Tables
[
`, d`

⌊
offset+1−w

d`

⌋]
(x)

19: B ← n+ offset + 1− w
20: L← max

{
` : d`

⌊
B

d`

⌋
≥ offset + 1

}
21: preW ←

∑L
`=0 Tables

[
`, d`

⌊
B
d`

⌋]
(x) +

∑k−1
`=L+1

ghostTables[`](x)

22: return cFreq + Tables[k − 1, n](x)− preW
23: function IntervalQuery(x, i, j)
24: if i = 0 then
25: return WinQuery(x, j)

26: return WinQuery(x, j) - WinQuery(x, i)

we maintain k additional “incomplete” tables that contain
the cumulative counts for segments that already started, but
not all of their blocks have ended yet. A pseudo-code of the
ACCk algorithm appears in Algorithm 2.

6.1.1 Analysis
The following theorem bounds the memory consumption of
the ACC algorithms.

Theorem 3. Denote the sum of cardinalities of the last n

blocks by N . Algorithm 2 requires O(Nn
1
k k log (n|U|)) space.

Proof. Each item may appears in at most n1/k tables of
each level (because, as described before, each level` segment

(for 1 ≤ ` ≤ k) consists of n1/k level`−1 segments). ACCk

algorithm has k levels of tables, thus each item may appear
in total at most kn1/k tables. Each table entry consists of
an O(log |U|)-bits identifier and a counter of O(logn) bits.

Thus, the space of each item is O(n
1
k k log (n|U|)); hence, for

N items, ACCk requires O(Nn
1
k k log (n|U|)) bits.

Theorem 4. Algorithm 2 solves the n-Interval problem.

Proof Sketch. We need to prove that upon an Interval-
Query (x, i, j) query, for any i ≤ j ≤ n and x ∈ U , ACCk is
able to compute the exact answer. Notice that in handling
queries in Algorithm 2, we split the computation in two: The
first case is when i = 0, Line 24, this means that the end
of the interval is also the last block, and thus we only need
to return the frequency in the last j block in the window,
as calculated by WinQuery(x, j). Otherwise, we subtract
the frequency that is calculated WinQuery(x, i) from the
result of WinQuery(x, j). Hence, we need to show that the
frequency calculated by WinQuery(x,w) is correct.
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Figure 4: Illustration of the ACC1 and ACC2 algorithms. ACC1 has only level0 tables that track how many times each item has
arrived from the beginning of the frame, while ACC2 has two levels of tables. Each level1 table in ACC2 tracks the frequencies from
the beginning of the frame, while level0 tables aggregate the data from the previous level1 table.

As is evident from the code in Lines 1–13, incTables store
the frequency of items within the current block, while Tables
store the frequencies of completed blocks from the beginning
of their frame. Consider the case where the entire interval is
within the current frame. In this case, the frequency of an
item in the last w blocks can be calculated as its frequency in
the current block (using incTables) plus its frequency in the
preceding blocks, as is done in Line 16, and stored in cFreq .
Notice that to reduce query time, we access the highest level
containing this information. However, since Tables store
the frequency from the beginning of the frame, we need to
subtract from cFreq the item’s frequency in prior blocks,
which is done in Line 18 (again, by accessing the highest
level tables that include this data).

The second case is when the given interval crosses into
the previous frame. In this case, we need to add to cFreq
the frequency of the blocks that are included in the previous
frame. Once again, we need to query the table holding the
frequency in the last relevant block of that frame and sub-
tract from the result the frequency in the preceding tables.
As some of these tables might be beyond an entire win-
dow limit, their information might be stored in ghostTables
rather than Tables. This is handled in Lines 19–22.

6.2 Hierarchical Interval Tree (HIT)
Hierarchical Interval Tree, denoted HIT , tracks flow fre-
quencies using a hierarchical tree structure in which each
node stores the partial frequency of its sub-tree. Precisely,
the levels of the tree are defined as follows: level0 includes
frequency tables, one for each block of the stream, that track
how many times each item arrived within the correspond-
ing block. Tables at level` of block i track how many times
each item has arrived between block i−2`+1 and block i, where
0 < ` ≤ trailing zeros(i), line 8. That is, these tables con-
tain partial queries results for each item and track item’s
multiplicity from the previous same level block. Hence, each
level contains tables for half the blocks of the previous level,
and thus each block i has tables in trailing zeros(i) levels; we
assume that the number of trailing zeros can be computed
efficiently with the ctz machine instruction in modern CPUs.
An illustration of the algorithm appears in Figure 5.

For example, consider block9, block10, block11 and block12

in Figure 5. During block9, items x and d arrive; x also
arrives in block10 and block11, while there are no items ar-
rivals in block12. So the tables of block12 will be as follow:
level0 table is empty because there is no items arrival within
block12. level1 table tracks items arrival between block11 and
block12; its content will be item x with count 1. level2 table
counts the item arrival between block9 and block12, so it will
contain item x three times (block9, block10 and block11) and
d once (in block9). Note that each table at level`+1 merges
two level` frequency tables.

We can compute any interval frequency by using the hi-
erarchical tree tables. While this can be done using linear
scan, the higher levels of the tree are designed to allow effi-
cient time computation by using the stored partial queries.

Notice that some of the partial queries results stored in
the higher levels may be invalid. For example, in case a new
block is added, the oldest one departs the window, so the
content of tables that refer to the departing block become
invalid. We solve this problem by choosing the levels to use
such that we only consider valid tables. Let block i and block j
be the block numbers of the first interval index and the sec-
ond one. Here, we scan backward from block j to block i,
greedily using the highest possible level at each point, line
16. This minimizes the number of needed steps. If block j >
blocki, all tables along the way are valid. In this case, we
only need log2(blockj − blocki + 1) value look-ups. Other-
wise, we choose level0 tables between blocks 1 and block j ,
so we need log2(blockj+1) value look-ups, and then another
log2(n−blocki+1) look-ups for querying the remaining inter-
val. Overall, our computation takes at most 2 logn steps.

We use an incremental table for incomplete blocks in each
we increment an element x’s entry for any ADD(x) opera-
tion, line 2. The pseudo code of the algorithms appears in
Algorithm 3 and Table 5 contains a list of the used variables.

6.2.1 Analysis

Theorem 5. Algorithm 3 solves the n-Interval problem.

The proof is simple and technical; it appears in the full
version of this paper [11].
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Figure 5: HIT algorithms, first level tables track how many times each item arrived within the corresponding block. At level`, tables
of block i track how many times each item has arrived between block i−2`+1 and block i. For example, item b arrives once at block7, so
block7 level0 table contains b with count 1, block8 level1 table tracks how many times each item arrived between block7 and block8, so
it contains b with count 1 and level2 table for block8, track how many times each item arrived between block5 and block8, and as well
contains b once. Table at level`+1 merges two level` frequency tables. For example, block8 third level table merges second level tables
of block8 and block8.

Algorithm 3 HIT

Initialization: offset ← 0, initialize Tables, incTable.
1: function Add(x)
2: incTable(x)+ = 1 . Update the incomplete block’s tables

3: function EndBlock()
4: offset ← (offset + 1) mod n
5: Tables[0, idx]← incTable
6: empty incTable . Delete all entries.
7: for ` ∈ 1, . . . , ctz(offset) do
8: Tables[`, offset] = Tables[`− 1, offset]

+Tables[`− 1, offset − 2` + 1]

9: function IntervalQuery(x, i, j)
10: last = (offset − j) mod n . The most recent block’s index
11: first = (offset − i) mod n . The oldest queried block’s
12: b← first
13: count← 0
14: d← 1 + (first− last mod n)
15: while d > 0 do
16: level← min(ctz(b), blog dc)
17: count← count + Tables[level, b](x)

18: d← d - 2level

19: b← b - 2level

20: if b = 0 then
21: b← k
22: return count

Theorem 6. Denote the sum of cardinalities of the last n
blocks by N . Algorithm 3 requires O(N logn log (n|U|)) space.

Proof. As described above, each element’s appearance may
reflect in O(logn) tables. Every table entry takes O(log |U|)
bits for the key and another O(logn) for the value, and thus
the overall space is O(N logn log (n|U|)).

Optimizations In the full version [11] we provide optimiza-
tions that reduce HIT’s space to O(N(log |U|+ logn logN))

and that ofACCk toO(N(log |U|+n
1
k k logN)). We also dis-

cuss how to deamortize the update process to get the worst-
case time complexity equivalent to the amortized analysis.

Table 5: Variables used by HIT algorithm.

BlockSize Number of blocks from a level that consist of a
next-level block.

Tables[`, idx] used for tracking block frequencies. Each table is
identified with a level ` and the index of the last
block in its block.

incTable A table for the most recent, incomplete, block.
offset The offset within the current frame.

7 Evaluation
We developed a C++ prototype of all algorithms described
in this work: HIT , RAW , and instantiations of the ACCk

protocols for k = 1, 2, 4, 8. Here, the HIT and ACCk algo-
rithms are implemented using Space Saving [30] as a build-
ing block. Besides, we also implemented ECM -Sketch [33]
(a.k.a ECM ) in C++ for comparison because the authors’
code is in Java. ECM was configured for error probability
δ = 0.01%. As Table 1 shows, δ affects the space and per-
formance of ECM. Specifically, the memory, update time,
and query time, all logarithmically depend on δ−1. While
the actual value of δ is application dependent, for perform-
ing a drill-down query (which translates into muliple inter-
val queries), one may need δ to be quite small so that the
overall error probability will be acceptable. Figure 8 shows
ECM space consumption and update time as functions of
δ. As expected, as δ increases, update and query opera-
tions become faster and ECM consumes less space but the
overall error probability is higher. We also compared with
the WCSS algorithm [8] as a general baseline since it is the
state of the art for the more straightforward problem of a
fixed sliding window. Here again, we implemented WCSS
in C++ as its authors implemented it in Java. For each
algorithm, we evaluated the speed of executing Interval-
FrequencyQuery (x, i, j) and ADD(x) operations, as well
as its memory requirements.

The evaluation was performed on an Intel(R) 3.20GHz
Xeon(R) CPU E5-2667 v4 running Linux with kernel 4.4.0-
71. Each data point in all runtime measurements is shown
as a 95% confidence interval of 10 runs. Our evaluation
includes a Backbone dataset collected during 2016 from the
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Figure 6: Update operation runtime comparison as a function of the accuracy guarantee (ε) and the maximum window size (W ). Since
the update speed of RAW is significantly slower than the other algorithms, we have placed it in a separate graph and we managed to
run RAW only up to ε = 2−10 due to its memory consumption limitation. The graphs plot contains a subplot which compares ECM
with our slowest algorithm, ACC8 in this case. We see that ECM is much slower than ACC8 . We also compared our algorithms with
WCSS which is the state of the art for the simpler problem of a fixed sliding window.

Figure 7: Query operation runtime comparison as a function of the accuracy guarantee (ε) and the maximum window size (W ). When
varying ε, again, we managed to run RAW only up to ε = 2−10 due to its memory consumption limitation. For graphs exploring varying
W , we ran ECM only up to 216 due to time limitation. We compared our algorithms with WCSS since it is the state of the art for the
simpler problem of a fixed sliding window but it can only answer queries with fixed window size.

backbone router ‘equinix-chicago’ [22]. In the full version [11]
we show these graphs with two additional packet traces (a
data-center and an edge router) with very similar results.

7.1 Update Speed Comparison

Figure 6 compares the update speed. We start by exploring
the trade-off of ε parameter with a fixed maximal window
of size W = 220. Then, we explain the trade-off of window
size parameter with a fixed ε = 2−8.

7.1.1 Effect of ε on Update Time
Throughout, as ε decreases, more tables must be updated on
every overflowed element. Thus, update operations become
slower when ε decreases. As depicted, HIT update perfor-
mance is close to ACC1 and ACC2. As k increases, there are
more tables to update on every overflowed element, so the
performance decreases. This difference becomes especially
noticeable with small ε values.

Recall that every update operation in RAW means 4ε−1

add operations, one for every 4ε−1 instances of the A(·, ε/4)
algorithm, which is WCSS in our implementation. So, as
ε decreases, update operations take more time. Since the
update speed of RAW is orders of magnitudes slower than
the other algorithms, we have placed it in a separate graph
in which we managed to run this only for ε ≥ 2−10 due to
space limitation on the server. This echoes Table 1, which
presents the analytical performance summary of the differ-
ent algorithms. Among our algorithms depicted in Figure 6,

the slowest one is ACC8 , as can be seen in the inner graphs,
even ACC8 processes items 57-210 times faster than ECM .

7.1.2 Effect of Window Size on Update Time
Figure 6 shows also the effect of window size when ε is fixed
to 2−8. All algorithms perform better when the window
size is larger as this means fewer blocks and table accesses.
The ACCk algorithms get slower as k increases as they need
to update more tables. Again, we compared the most ineffi-
cient algorithm ACC8 with ECM in the inner graphs; ACC8

processes items 50-218 times faster than ECM for the given
ε values.

7.2 Query Speed Comparison
For query speed comparison, we chose random intervals,
each of size 1% of the total window’s size. We begin the
evaluation by exploring the impact of the ε parameter with
a fixed window of size 220. Then, we explain the trade-
off of the window size parameter with fixed ε = 2−8. The
performance of the improved algorithms is compared with
the existing work, ECM , and WCSS , recall that WCSS can
only answer queries with fixed window size.

7.2.1 Effect of ε on Query Time
As shown in Figure 7, RAW is the fastest as each interval
query is translated to two WCSS queries. We managed to
run RAW only up to ε = 2−10 due to its memory consump-
tion limitation (see section 7.3).
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Figure 8: ECM space and performance comparison as functions of the error probability δ using Backbone dataset, ε = 2−8 and window
of size 220. Note that the y-axes of these graphs is in linear scales.

(a) Vary Interval sizes (b) Observed Error (c) Memory Consumption

Figure 9: (a) Query operation runtime comparison as a function of interval size (b) Root Mean Square Error comparison as a function
of required memory and maximum window of size 220 (c) Algorithms space comparison as a function of the accuracy guarantee (ε).

HIT computes any block interval frequency by using the
hierarchical tree tables, greedily choosing the highest possi-
ble level each time. For decreasing ε values, the blocks num-
bers increases, so the queried interval crosses more blocks
and accesses more tables. Consequently, we got slower in-
terval query operations.

For the ACCk algorithms, for increasing k values we get
fewer queries per seconds as we read more tables on aver-
age. For example, ACC1 computes any block frequency by
querying at most 3 tables, while ACC2 does the same by
accessing no more than 5 tables as explained in Section 6.1.
Query operations runtime depends also on the interval it-
self; there are “good” intervals in which the corresponding
blocks have table at level k− 1, so one table access for each
is sufficient. Therefore, we chose random intervals for every
query. As ε value decreases, block sizes become smaller and
the number of tables grow. In this case, not all the tables
fit in memory and we experienced paging that causes lower
query performance. Recall that while WCSS is the fastest,
it solves the much simpler problem of a fixed window size
and only serves as a best case reference point. ECM answers
queries in a very inefficient way compared to our algorithms.
We only run ECM up to ε = 2−8 due to time limitation. As
expected, its performance decreases for decreasing ε values.

7.2.2 Effect of Window Size on Query Time
As mentioned before, we evaluated queries by choosing ran-
dom intervals of size 1% of window’s size, when ε is fixed to
2−8. Figure 7 shows that all algorithms’ query performance
is not very sensitive to the window size. This is because the
number of tables accessed depends on the ratio between the
interval and window sizes. We ran ECM only up to 216 due

to time limitation. The performances of our algorithms are
orders of magnitudes better than ECM also in this case.

7.3 Memory Consumption Comparison
Figure 9c shows the space consumed by our algorithms as
well as ECM for a given ε value. As seen, the smaller ε gets,
all algorithms consume more space. We can see that ECM
is more compact than RAW but consumes more space than
the others. As mentioned before, RAW maintains 4ε−1 sepa-
rate WCSS instances so its space consumption is the largest.
For the ACCk algorithms, as k increases, the overall number
of tables entries for overflowed elements decreases resulting
is better space consumption. So there is a trade-off between
the speed and required spaces by adjusting the parameter k
, using Figure 9c and figures 6,7 can help choosing k parame-
ter according to the desired speed and memory consumption.
Yet, ECM consumes more space than ACC1 which has the
highest memory consumption among the ACCk algorithms
family. As shown, the memory consumption of ACC8 is
close to HIT . Yet, HIT is the most efficient among the al-
gorithms that solve n-Interval because its data structure is
the most compact but its query performance affected by the
interval size as explained in section 7.4 so for larges inter-
val sizes we may prefer ACC algorithm over HIT . Recall
that while WCSS is the most compact algorithm in term of
space, it solves the much simpler problem of a fixed window
size and only serves as a best case reference point.

7.4 Interval Size Comparison
Figure 9a shows query runtime performance of our algo-
rithms as a function of interval size. The query operation
performance was measured with random intervals of varying
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sizes: 1%, 5%, 10%, 15%, 30%, or 50% of the total window’s
size while fixing ε = 2−8 and W = 220.

As expected, the query performance of HIT gets slower
as the size of the interval gets larger, because the queried
interval crosses more blocks and accesses more tables. In
contrast, query performance of ACCk algorithms is not af-
fected by interval size as ACCk algorithms consider only
the edges of the queried interval. That is, when the edges
are i and j, they compute the frequency of the given item
from the beginning of the frame till block i and block j and
subtract the results. RAW algorithm query performance
is not affected by interval size since it is translated to two
WCSS queries regardless of interval size. ECM algorithm
is not included in the graph since it is orders of magnitudes
slower than our algorithms so we will not see the difference
between them (see figure 7). ECM query performance is
affected by interval size since its query operation depends
on Exponential Histograms [18] query. As interval size gets
larger, Exponential Histograms scans a larger sequence of
buckets and as a result, ECM query gets slower.

In conclusion, when the interval size is big, we would pre-
fer to choose ACC1 over HIT when there is sufficient mem-
ory. We expect that as data rates and volumes get higher,
one would use smaller ε values, making ACCk increasingly
more attractive also for larger k values.

7.5 Root-Mean-Square Error Comparison
Figure 9b shows the empirical Root Mean Square Error
(RMSE) in correlation with the required memory for ACCk

algorithms, HIT and ECM with window of size 220. The ob-
served errors are lower than the user-selected value ε. Since
ACCk algorithms and HIT solve the same n-Interval in-
stance, their empirical error is equal for same ε values. The
difference between the algorithms comes from the memory
requirements which differ for the same n value. In general,
a lower space consumption required for a specific ε value
translates into better empirical error. For example, ACC1

consumes more memory than ACC2 for the same ε. Thus,
for a given memory budget, ACC2 is more accurate than
ACC1 and HIT is more accurate than both. ECM was
measured with error probability δ = 0.01% which led to
large memory consumption relative to HIT and ACCk algo-
rithms; as a result its empirical error higher than others but
yet lower than the theoretical value.

8 Extensions and Applications
Here, we briefly discuss how our solutions can be applied
to temporal queries, weighted stream, distributed stream,
heavy hitters, and hierarchical heavy hitters (HHH).

8.1 Time Based Intervals
In this section, we describe how to extend our algorithms for
supporting time intervals. The idea is that sometimes what
matters is the flow frequencies in a time interval rather than
during a item-count interval. For example, if we want to
allow a user to make 100 queries/sec to an API, we need
to measure the number of times this user has accessed the
system during the last second. In such a setting, we consider
a timed stream S = 〈x1, t1〉, 〈x2, t2〉, . . . ∈ (U × N)∗. Here,
each item has an integer valued timestamp and we assume
that the items arrive in order, i.e., t1 ≤ t2 ≤ . . ..

We also assume that the number of elements that arrive
in a single time-frame is bounded by R ∈ N. In practice,

this is a reasonable assumption; for example, if we perform
the measurement over a 1Gbps link, and each item must be
of size of at least 64 bytes for its headers, then we can set
R , 109/(8 · 64) = 2M [items / second]. We denote by htx
the frequency of x within the last t timestamps. That is, if
the query time is T , then htx , | {〈x, ti〉 ∈ S : ti ≥ T − t} |.
Similarly, we define the frequency within a time window as
hi,jx , hix − hjx. The time based interval algorithms goal is
then to answer the following queries:

• TimeIntervalFrequencyQuery(x, i, j): given an el-
ement x ∈ U and indices j ≤ i ≤ W , return an esti-

mate ĥi,jx of hi,jx .

Finally, if an algorithm’s error is at most an ε fraction of
the overall possible traffic in T time, we say that it solves
the (T, R, ε)-TimeIntervalFrequency problem. That is, its
estimation needs to satisfy

∀j ≤ i ≤ T : hi,jx ≤ ĥi,jx ≤ hi,jx + T ·R · ε.

Our construction has two parts: We maintain a (T ·R, ε/2)-
IntervalFrequency solution in addition to a data structure
that translates time intervals into item intervals. For this,
we use Ben Basat’s Sliding Ranker (SR) algorithm [7] that
can compute a sliding window sum over an integer stream,
where the size of the window is given at query time. SR has
parameters 〈R,W,∆〉; it processes a stream in {0, 1, . . . , R}
such that upon a query for some i ≤ W, it computes a ∆-
additive approximation for the sum of the last i elements.
Every timestamp, we feed the number of items that arrived
into an SR with parameters 〈R,T,T ·Rε/2〉. Given a time-
interval query x, i, j, we use the SR for computing the num-
ber of items sent since time i and from time j. We then use
these estimations to query the IntervalFrequency instance
for the estimated item-interval. Since the SR and Interval-
Frequency each has an error of T ·Rε/2, we satisfy the error
guarantee. The memory consumption of SR for ∆ = Θ(RW)
is just O(RW∆ + logW) = O(ε−1 + logW) bits.

8.2 Supporting Heavy-Hitters
We now show how one can use the described algorithms to
support heavy hitters queries over a given interval. Denote
by HHi,j

θ ,
{
x ∈ U : f i,jx ≥ θ · (j − i)

}
the set of heavy hit-

ters items that appeared at least a θ fraction of the queried
interval for given integers i ≤ j ≤ W and a real num-
ber θ ∈ [0, 1]. IntervalHeavyHittersQuery(θ, i, j) op-

eration returns an estimate ĤHi,j
θ ⊆ U that approximates

HHi,j
θ given indices i ≤ j ≤ W . The algorithms solves

IntervalHeavyHittersQuery(θ, i, j) and guarantees

HHi,j
θ ⊆ ĤH

i,j
θ ⊆

{
x ∈ U : f i,jx ≥ θ · (j − i)−Wε

}
.

That is, the estimated set must contain all elements that ap-
pear at least a θ fraction of the interval and must not have
any members whose frequency is lower than θ · (j − i) −
Wε. Given that the described algorithms solve the (W, ε)-
IntervalFrequency problem, by the following observation they
also solve the (W, ε)-IntervalHeavyHitters problem.

Observation 7. Any algorithm A that solves (W, ε)-Interval-
Frequency can answer an IntervalHeavyHittersQuery

by returning ĤHi,j
θ , {x ∈ U : f̂ i,jx ≥ θ · (j − i)}.
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Specifically, all algorithms presented in this paper can

compute the set ĤHi,j
θ in time O(ε−1) without iterating over

all universe elements. Thus, we note that all proposed algo-

rithms can efficiently compute the ĤHi,j
θ suggested above.

8.3 Hierarchical Heavy Hitters
Next, we describe how our algorithms can be used for an-
swering interval HHH queries (see [32] for formal defini-
tions). In [32], Mitzenmacher et al. proposed combining
their approach (which originally utilized Space Saving [30])
with sliding window algorithms such as [23, 8] to solve HHH
on sliding windows. However, such an approach yields a
fixed window size algorithm. By replacing the underlying
black box algorithm by our interval query solutions, we get
an algorithm that solves HHH on interval queries. This is
also orthogonal to the other approaches; a combination of
the extensions proposed in this chapter would allow find-
ing HHH over time-based intervals, finding distributed HHH
(see the following section), or finding HHH in terms of traffic
volume (Section 8.5).

8.4 The Distributed Model
We now consider applying our algorithms in distributed set-
tings. Here, multiple streams are received at various sites
S1,. . . ,Sr (r > 1) and each site maintains its own instance
of the chosen algorithm, e.g., ACCk, HIT , etc. Obtaining
a global view of the system’s status requires merging data
structures from all individual sites. The common way of
serving such queries is to have all individual sites transmit
a copy of their data structures to a central controller C,
which merges them into a global data structure. This can
be done either periodically assuming synchronized clocks be-
tween the sites, or in a coordinated manner initiated peri-
odically by C. Queries are forwarded to the controller that
computes the reply based on its merged data-structure. This
model is communication efficient when queries are frequent,
since queries are served directly by the controller and the
rate in which the distributed sites need to communicate with
the controller can be lower than the query rate.

In contrast, when queries are not as frequent, the above
solution is inefficient, since the sites needlessly update the
controller. To that end, by applying the time based intervals
adaptation, our solution enables the reverse model. That is,
given a range query, it is directly propagated to each of the r
distributed sites. Each site returns its locally computed por-
tion and all replies are then merged into a global one. The
reason why time based intervals are needed is that individual
streams might arrive at different rates to the various sites.
Hence, it is meaningless to merge the results of queries on
an item based window or range. For this reason, the above
approach cannot be applied to item based sketch algorithms.

Last, as mentioned before, our algorithms provide an ε
error guarantee. Hence, when each of the sites runs its in-
dependent instance, the overall error guarantee of the dis-
tributed model becomes rε. Another way of looking at this
is that since the space requirement is inversely proportional
to the error guarantee, the space requirement for a given
error grows with r. Since usually r is a small constant, for
most systems this is acceptable.

8.5 Supporting Traffic Volume Heavy-Hitters
It is often desired to find the heavy hitters in terms of
traffic volume. That is, consider a stream in which its

item has a size and we wish to find the flows that account
for most of the bandwidth in a given interval. Formally,
we consider a weighted stream S = 〈x1,w1〉, 〈x2,w2〉, . . . ∈
(U × {1, 2, . . . ,M})∗ and define a flow’s volume as the sum
of sizes for items that belong to it.

Intuitively, to address this problem we can add the weight
of the item in Line 3 of Algorithm 1, and change the con-
dition of Line 4 to consider whether the current estimation
exceeds a new multiple of s ·M . The Space Saving algo-
rithm [30] can find weighted heavy hitters over a stream
with O(log ε−1) update time [12]. Recent breakthroughs [9,
5, 3] improve this runtime to a constant. Thus, we can solve
the interval volume estimation and (weighted) heavy hitters
problems with the same asymptotic complexity as the un-
weighted variants and with an error of at most WMε. This
is a generalization of the result of [5] that finds weighted
heavy hitters over fixed size windows.

9 Discussion
In this paper, we studied the problems of flow frequency es-
timation over intervals that are passed at query time. Such
capabilities can be useful when one wishes to maintain the
above statistics over multiple sliding windows and for per-
forming drill-down queries, e.g., for root cause analysis of
network anomalies.

We presented formal definitions of these generalized prob-
lems and explored three alternative solutions: a naive ap-
proach (RAW ) and more sophisticated solutions called HIT
and ACCk. Both HIT and ACCk process updates in O(1),
but differ in their space vs. query time tradeoff: HIT is
asymptotically memory optimal but answers queries in log-
arithmic time whereas ACCk processes queries in O(1) but
consumes more space. Moreover, HIT interval queries per-
formance is affected by interval size: as interval size gets
larger, query gets slower. In contrast, the ACCk algorithms
are not affected by interval size. In fact, HIT ’s space require-
ment is similar to the memory requirement of the state of the
art algorithm that can only cope with fixed size windows.
Hence, HIT is adequate when space is tight or the intervals
are small while ACCk is suitable for real time query pro-
cessing. Both our advanced algorithms are faster and more
space efficient than ECM [33], the previously known solution
for interval queries. This is true both asymptotically and in
measurements over real-world traces, in which we demon-
strated orders of magnitude runtime improvements as well as
at least 40% memory reductions for similar estimation errors.
Our approach can be applied to additional related problems.
For example, we showed in Section 8 how to adapt our algo-
rithms to answer queries over time based intervals as well as
to identifying heavy hitters. This can be further generalized
to the hierarchical heavy hitters (HHH) problem [32], which
is useful in detecting distributed denial of service attacks
(DDoS). In the latter, one can replace the Space Saving in-
stances employed by [32] with HIT or ACCk to detect HHH
over query intervals!
Code Availability: All code is available online [1].
Acknowledgements: We are grateful for many helpful
comments and observations made by Dimitrios Kaliakmanis.
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