
Local Algorithms for
Hierarchical Dense Subgraph Discovery

Ahmet Erdem Sarıyüce
University at Buffalo

Buffalo, NY
erdem@buffalo.edu

C. Seshadhri
University of California

Santa Cruz, CA
sesh@ucsc.edu

Ali Pinar
Sandia National Laboratories

Livermore, CA
apinar@sandia.gov

ABSTRACT
Finding the dense regions of a graph and relations among
them is a fundamental problem in network analysis. Core
and truss decompositions reveal dense subgraphs with hi-
erarchical relations. The incremental nature of algorithms
for computing these decompositions and the need for global
information at each step of the algorithm hinders scalable
parallelization and approximations since the densest regions
are not revealed until the end. In a previous work, Lu et al.
proposed to iteratively compute the h-indices of neighbor
vertex degrees to obtain the core numbers and prove that the
convergence is obtained after a finite number of iterations.
This work generalizes the iterative h-index computation for
truss decomposition as well as nucleus decomposition which
leverages higher-order structures to generalize core and truss
decompositions. In addition, we prove convergence bounds
on the number of iterations. We present a framework of
local algorithms to obtain the core, truss, and nucleus de-
compositions. Our algorithms are local, parallel, offer high
scalability, and enable approximations to explore time and
quality trade-offs. Our shared-memory implementation ver-
ifies the efficiency, scalability, and effectiveness of our local
algorithms on real-world networks.

PVLDB Reference Format:
Ahmet Erdem Sarıyüce, C. Seshadhri, and Ali Pinar. Local Al-
gorithms for Hierarchical Dense Subgraph Discovery. PVLDB,
12(1): 43-56, 2018.
DOI: https://doi.org/10.14778/3275536.3275540

1. INTRODUCTION
A characteristic feature of the real-world graphs is sparsity
at the global level yet density in the local neighborhoods [15].
Dense subgraphs are indicators for functional units or un-
usual behaviors. They have been adopted in various ap-
plications, such as detecting DNA motifs in biological net-
works [12], identifying the news stories from microblogging
streams in real-time [2], finding price value motifs in finan-
cial networks [10], and locating spam link farms in web [24,
13, 9]. Dense regions are also used to improve efficiency of

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 12, No. 1
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3275536.3275540

compute-heavy tasks like distance query computation [21]
and materialized per-user view creation [14].

Detecting dense structures in various granularities and
finding the hierarchical relations among them is a funda-
mental problem in graph mining. For instance, in a citation
network, the hierarchical relations of dense parts in various
granularities can reveal how new research areas are initiated
or which research subjects became popular in time [38]. k-
core [39, 27] and k-truss decompositions [34, 6, 44, 48] are
effective ways to find many dense regions in a graph and
construct a hierarchy among them. k-core is based on the
vertices and their degrees, whereas k-truss relies on the edges
and their triangle counts.

Higher-order structures, also known as motifs or graphlets,
have been used to find dense regions that cannot be detected
with edge-centric methods [4, 42]. Computing the frequency
and distribution of triangles and other small motifs is a sim-
ple yet effective approach used in data analysis [19, 30, 1,
33]. Nucleus decomposition is a framework of decomposi-
tions that is able to use higher-order structures to find dense
subgraphs with hierarchical relations [37, 38]. It generalizes
the k-core and k-truss approaches and finds higher-quality
dense subgraphs with more detailed hierarchies. However,
existing algorithms in the nucleus decomposition framework
require global graph information, which becomes a perfor-
mance bottleneck for massive networks. They are also not
amenable for parallelization or approximation due to their
interdependent incremental nature. We introduce a frame-
work of algorithms for nucleus decomposition that uses only
local information. Our algorithms provide faster and ap-

-1.0

-0.5

0.0

0.5

1.0

 0 5 10 15 20 25 30

Ke
nd

al
l T

au

number of iterations

FB
SSE
TW
WN

WIKI

(a) Convergence rates

0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0

 4 6 12 24

sp
ee

du
p

number of threads

ASK
FRI
HG

ORK
SLJ

WIKI
Peeling-24t

57.3s

30.8s

2794s

(b) Scalability performance

Figure 1: On the left, we present the convergence rates for k-
truss decomposition on five graphs. Kendall-Tau similarity
score compares the obtained and the exact decompositions;
becomes 1.0 when they are the same. Our local algorithms
compute the almost-exact decompositions in around 10 it-
erations. On the right, we show the runtime performances
w.r.t. partially parallel peeling algorithms. On average, k-
truss computations are 4.8x faster when we switch from 4
threads to 24 threads.

43

proximate solutions and their local nature enables query-
driven processing of vertices/edges.

1.1 Problem and challenges
The standard method to compute a k-core decomposition
is a sequential algorithm, known as the peeling process. To
find a k-core, all vertices with degree less than k are re-
moved repeatedly until no such vertex remains. This process
is repeated after incrementing k until no vertices remain.
Batagelj and Zaversnik introduced a bucket-based O(|E|)
algorithm for this process [3]. It keeps track of the vertex
with the minimum degree at each step, thus requires global
information about the graph at any time. k-truss decom-
position has a similar peeling process with O(|4|) complex-
ity [6]. To find a k-truss, all edges with less than k triangles
are removed repeatedly and at each step, algorithm keeps
track of the edge with the minimum triangle count, which
requires information from all around the graph. Nucleus de-
composition [37] also facilitates the peeling process on the
given higher-order structures. The computational bot-
tleneck in the peeling process is the need for the
global graph information. This results in inherently se-
quential processing. Parallelizing the peeling process in a
scalable way is challenging since each step depends on the
results of the previous step. Parallelizing each step in itself is
also infeasible since synchronizations are needed to decrease
the degrees of the vertices that are adjacent to multiple ver-
tices being processed in that step.
Iterative h-index computation: Lu et al. introduced an
alternative formulation for k-core decomposition [26]. They
proposed iteratively computing h-indices on the vertex de-
grees to find the core numbers of vertices (even though they
do not call out the correspondence of their method to h-
indices). Degrees of the vertices are used as the initial core
number estimates and each vertex updates its estimate as
the h-index value for its neighbors’ core number estimates.
This process is repeated until convergence. At the end, each
vertex has its core number. They prove that convergence
to the core numbers is guaranteed, and analyze the conver-
gence characteristics of the real-world networks and show
runtime/quality trade-offs.

We generalize Lu et al.’s work for any nucleus decom-
position, including k-truss. We show that convergence is
guaranteed for all nucleus decompositions and prove the
first upper bounds for the number of iterations. Our frame-
work of algorithms locally compute any nucleus decompo-
sition. We propose that iteratively computing h-indices of
vertices/edges/r-cliques based on their degrees/triangle/s-
clique counts converges in the core/truss/nucleus numbers
(r < s). Local formulation also enables the parallelization.
Intermediate values provide an approximation to the ex-
act nucleus decomposition to trade-off between runtime and
quality. Note that this is not possible in the peeling process,
because no intermediate solution can provide an overall ap-
proximation to the exact solution, e.g., the densest regions
are not revealed until the end.

1.2 Contributions
Our contributions can be summarized as follows:
• Generalizated nucleus decomposition: We general-

ize the iterative h-index computation idea [26] for any nu-
cleus decomposition by using only local information. Our
approach is based on iteratively computing the h-indices

on the degrees of vertices, triangle counts of edges, and
s-clique counts of r-cliques (r < s) until convergence. We
prove that the iterative computation by h-indices guaran-
tees exact core, truss, and nucleus decompositions.
• Upper bounds for convergence: We prove an upper

bound for the number of iterations needed for conver-
gence. We define the concept of degree levels that models
the worst case for convergence. Our bounds are applicable
to any nucleus decomposition and much tighter than the
trivial bounds that rely on the total number of vertices.
• Framework of parallel local algorithms: We intro-

duce a framework of efficient algorithms that only use
local information to compute any nucleus decomposition.
Our algorithms are highly parallel due to the local com-
putation and are implemented in OpenMP for shared-
memory architectures.
• Extensive evaluation on real-world networks: We

evaluate our algorithms and implementation on various
real-world networks. We investigate the convergence char-
acteristics of our new algorithms and show that close ap-
proximations can be obtained only in a few iterations.
This enables exploring trade-offs between time and ac-
curacy. Figure 1a presents the convergence rates for the
k-truss decomposition. In addition, we present a metric
that approximates solution quality for informed decisions
on accuracy/runtime trade-offs. We also evaluate run-
time performances of our algorithms, present scalability
results, and examine trade-offs between runtime and ac-
curacy. Figure 1b has the results at a glance for the k-truss
case. Last, but not least, we highlight a query-driven sce-
nario where our local algorithms are used on a subset of
vertices/edges to estimate the core and truss numbers.

2. BACKGROUND
We work on a simple undirected graph G = (V,E) where V
is the set of vertices and E is the set of edges. We define
r-clique as a complete graph among r vertices for r > 0, i.e.,
each vertex is connected to all the other vertices. We use
R (and S) to denote r-clique (and s-clique).

2.1 Core, Truss, and Nucleus Decompositions

Definition 1. k-core of G is a maximal connected sub-
graph of G, where each vertex has at least degree k.

A vertex can reside in multiple k-cores, for different k
values, which results in a hierarchy. Core number of a vertex
is defined to be the the largest k value for which there is a
k-core that contains the vertex. Maximum core of a vertex
is the maximal subgraph around it that contains vertices
with equal or larger core numbers. It can be found by a
traversal that only includes the vertices with larger or equal
core numbers. Figure 2a illustrates k-core examples.

Definition 2. k-truss of G is a maximal connected sub-
graph of G where each edge is in at least k triangles.

Cohen [6] defined the standard maximal k-truss as one-
component subgraph such that each edge participates in at
least k − 2 triangles, but here we just assume it is k tri-
angles for the sake of simplicity. An edge can take part in
multiple k-trusses, for different k values, and there are also
hierarchical relations between k-trusses in a graph. Similar
to the core number, truss number of an edge is defined to

44

33

3 3

33

3 3

2

1 3

1
2

(a) k-cores

02

2

2

2

2
2 12

2

2

2

2
2 0

1

2

0
12

(b) k-trusses

Figure 2: Illustrative examples for k-core and k-truss. On
the left, red, blue, and green regions show the 3-, 2-, and
1-cores. Core numbers are also shown for each vertex. For
the same graph, trusses are presented on the right. Entire
graph is a 0-truss. Five vertices on the right form a 1-truss,
in blue. There are also two 2-trusses and one of them is a
subset of the 1-truss. Truss numbers of the edges are also
shown.

be the largest k value for which there exists a k-truss that
includes the edge and maximum truss of an edge is the max-
imal subgraph around it that contains edges with larger or
equal truss numbers. We show some truss examples in Fig-
ure 2b. Computing the core and truss numbers are known
as the core and truss decomposition.
Unifying k-core and k-truss: Nucleus decomposition is a
framework that generalizes core and truss decompositions [37].
k-(r, s) nucleus is defined as the maximal subgraph of the r-
cliques where each r-clique takes part in at least k s-cliques.
We first give some basic definitions and then formally define
the k-(r, s) nucleus subgraph.

Definition 3. Let r < s be positive integers.
• R(G)and S(G) are the set of r-cliques and s-cliques in
G, respectively (or R and S when G is unambigous).

• S-degree of R ∈ R(G) is the number of S ∈ S(G)
such that S contains R (R ⊂ S). It is denoted as
ds|G(R) (or ds|(R) when G is obvious).

• Two r-cliques R,R′ are S-connected if there exists
a sequence R = R1, R2, . . . , Rk = R′ in R such
that for each i, some S ∈ S contains Ri ∪Ri+1.

• Let k, r, and s be positive integers such that r < s. A
k-(r, s) nucleus is a subgraph G′ which contains the
edges in the maximal union S of s-cliques such that

– S-degree of any r-clique R ∈ R(G′) is at least
k.

– Any r-clique pair R,R′ ∈ R(G′) are S-connected.

For r = 1, s = 2, k-(1, 2) nucleus is a maximal (induced)
connected subgraph with minimum vertex degree k. This is

e

f

ca

b d h 2

1g

(a) k-trusses

e

f

ca

b d h 1

0g

1

(b) k-(3,4) nuclei

Figure 3: Illustrative examples for k-truss and k-(3, 4) nu-
cleus. On the left, entire graph is a single 1-truss and all
except vertex g forms a 2-truss. For the same graph, k-(3, 4)
nuclei are shown on the right. Entire graph is a 0-(3,4) nu-
cleus and there are two 1-(3,4) nuclei (in red): subgraph
among vertices a, b, c, d and subgraph among c, d, e, f, h.
Note that those two subgraphs are reported as separate, not
merged, since there is no four-clique that contains a triangle
from each nuclei (breaking S-connectedness).

Table 1: Notations

Symbol Description

G graph
R r-clique
S s-clique
R(G) (or R) set of r-cliques in graph G
S(G) (or S) set of s-cliques in graph G
C(G) (or C) R(G) ∪ S(G)
ds|G(R) S-degree of R: number of s-cliques
(or ds(R)) that contains R in graph G
δr,s(G) minimum S-degree of an r-clique in graph G
Ns(R) neighbor R′s s.t. ∃ an s-clique S ⊇ (R ∪R′)
κs(R) largest k s.t. R is contained in a k-(r, s) nucleus
κ2(u), κ3(e) Core number of vertex u, truss number of edge e
H(K) largest h s.t. at least h numbers in set K are ≥ h
U update operator, (τ : R→ N)→ (Uτ : R→ N)

exactly the k-core. Setting r = 2, s = 3 gives maximal sub-
graphs where every edge participates in at least k triangles,
which corresponds to k-truss, and all edges are triangle con-
nected, which is also introduced as a k-truss community [18].
Note that the original k-truss definition is different from
(2, 3) nucleus since it does not require triangle connectiv-
ity. In this work, we focus on core, truss, and κs indices
(Definition 4) and our algorithms work for any connectivity
constraint. We skip details for brevity.

Nucleus decomposition for r = 3 and s = 4 has been
shown to give denser (and non-trivial) subgraphs than the
k-cores and k-trusses, where density of G = (V,E) is de-

fined as 2|E|/
(|V |

2

)
[37]. Figure 3 presents the difference

between k-truss and k-(3, 4) nucleus on a toy graph. It is
used to analyze citation networks of APS journal papers
and discovered hierarchy of topics i.e., a large subgraph on
complex networks has children subgraphs on synchroniza-
tion networks, epidemic spreading and random walks, which
cannot be observed with core and truss decompositions [38].
Nucleus decomposition for larger r and s values are costly
and only affordable for small networks with a few thousand
edges. Enumerating r-cliques and checking their involve-
ments in s-cliques for r, s > 4, can become intractable for
larger graphs, making k-(3, 4) is a sweet spot.

In graph G, minimum S-degree of an r-clique R ∈ R(G)
is denoted as δr,s(G), e.g., the minimum degree of a vertex
in G is δ1,2(G). We also use Ns(R) to denote the set of
neighbor r-cliques of R such that R′ ∈ Ns(R) if ∃ an s-
clique S s.t. S ⊃ R and S ⊃ R′. As in k-core and k-
truss definitions, an r-clique can take part in multiple k-
(r, s) nuclei for different k values. We define the κs index of
r-clique analogous to the core numbers of vertices and truss
numbers of edges [37].

Definition 4. For any r-clique R ∈ R(G), the κs-index
of R, denoted as κs(R), is the largest k value such that R
is contained in a k-(r, s) nucleus.

Core number of a vertex u is denoted by κ2(u) and the
truss number of an edge e is denoted by κ3(e). We use
the notion of k-(r, s) nucleus and κs-index to introduce our
generic theorems and algorithms for any r, s values. The set
of k-(r, s) nuclei is found by the peeling algorithm [37] (given
in Algorithm 1). It is a generalization of the k-core and k-
truss decomposition algorithms, and finds the κs indices of
r-cliques in non-decreasing order.

The following lemma is standard in the k-core literature
and we prove the analogue for k-(r, s) nucleus. It is a con-
venient characterization of the κs indices.

45

Algorithm 1: Peeling(G, r, s)

Input: G: graph, r < s: positive integers
Output: κs(·): array of κs indices for r-cliques
Enumerate all r-cliques in G
For every r-clique R, set ds(R) (S-degrees)
Mark every r-clique as unprocessed
for each unprocessed r-clique R with minimum ds(R)
do
κs(R) = ds(R)
Find set S of s-cliques containing R
for each C ∈ S do

if any R ⊂ C is processed then continue
for each r-clique R′ ⊂ C, R′ 6= R do

if ds(R′) > ds(R) then ds(R′) = ds(R′)− 1

Mark R as processed

return array κs(·)

Lemma 1. ∀ R ∈ R(G), κs(R) = maxR(G′)3Rδr,s(G′),
where G′ ⊆ G.

Proof. Let T be the κs(R)-(r, s) nucleus containing R.
By definition, δr,s(T) = κs(R), so maxG′ δr,s(G′) ≥ κs(R).
Assume the contrary that there exists some subgraph T ′ 3 R
such that δr,s(T ′) > κs(R) (WLOG, we can assume T ′ is
connected; otherwise, we denote T ′ to be the component
containing R). There must exist some maximal connected
T ′′ ⊇ T ′ that is a δr,s(T ′)-nucleus. This would imply that
κs(R) ≥ δr,s(T ′) > κs(R), a contradiction.

2.2 h-index computation
The main idea in our work is the iterative h-index com-
putation on the S-degrees of r-cliques. h-index metric is
introduced to measure the impact and productivity of re-
searchers by the citation counts [17]. A researcher has an
h-index of k if she has at least k papers and each paper is
cited at least k times such that there is no k′ > k that satis-
fies these conditions. We define the function H to compute
the h-index as follows:

Definition 5. Given a set K of natural numbers, H(K)
is the largest k ∈ N such that ≥ k elements of K are ≥ k.

Core number of a vertex can be defined as the largest k such
that it has at least k neighbors whose core numbers are also
at least k. In the following section, we formalize this obser-
vation, and build on it to design algorithms to compute not
only core decompositions but also truss or nucleus decom-
position for any r and s values.

3. FROM THEh-INDEX TO THEκs-INDEX
Our main theoretical contribution is two-fold. First, we in-
troduce a generic formulation to compute the k-(r, s) nucleus
by an iterated h-index computation on r-cliques. Secondly,
we prove convergence bounds on the number of iterations.

We define the update operator U . This takes a function
τ : R→ N and returns another function Uτ : R→ N, where
R is the set of r-cliques in the graph.

Definition 6. The update U is applied on the r-cliques
in a graph G such that for each r-clique R ∈ R(G):
1. For each s-clique S ⊃ R, set ρ(S,R) = minR′⊂S,R′ 6=R τ(R′).
2. Set Uτ(R) = H({ρ(S,R)}S⊃R).

Observe that Uτ can be computed in parallel over all r-
cliques in R(G). It is convenient to think of the S-degrees

(ds) and κs indices as functions R → N. We initialize τ0 =
ds, and set τt+1 = Uτt.

The results of Lu et al. [26] prove that, for the k-core case
(r = 1, s = 2), there is a sufficiently large t such that τt = κ2

(core number). We generalize this result for any nucleus
decomposition. Moreover, we prove the first convergence
bounds for U .

The core idea of [26] is to prove that the τt(·) values never
increase (monotonicity) and are always lower bounded by
core numbers. We generalize their proof for any (r, s) nu-
cleus decomposition.

Theorem 1. For all t and all r-cliques R:
• (Monotonicity) τt+1(R) ≤ τt(R).
• (Lower bound) τt(R) ≥ κs(R).

Proof. (Monotonicity) We prove by induction on t. Con-
sider the base case t = 0. Note that for all R, τ1(R) =
Uds(R) ≤ ds(R). This is because in the second step, the
H operator acts on a set of ds(R), and this is largest pos-
sible value it can return. Now for induction (assume the
property is true up to t). Fix an r-clique R, and s-clique
S ⊃ R. For τt(R), one computes the value ρ(S,R) =
minR′⊂S,R′ 6=R τt−1(R). By the induction hypothesis, the
values ρ(S,R) computed for τt+1 is at most the value com-
puted for τt. Note that the H operator is monotone; if one
decreases values in a set K, then H(K) cannot increase.
Since the ρ values cannot increase, τt+1(R) ≤ τt(R).

(Lower bound) We will prove that for anyG′ ⊆ G,R(G′) 3
R, τt(R) ≥ δr,s(G′). Lemma 1 completes the proof.

We prove the above by induction on t. For the base case,
τ0(R) = ds|G(R) ≥ ds|G′(R) ≥ δr,s(G′). Now for induc-
tion. By the induction hypothesis, ∀ R ∈ R(G′), τt(R) ≥
δr,s(G′). Consider the computation of τt+1(R), and the val-
ues ρ(S,R) computed in the step one. For every s-clique S,
note that ρ(S,R) = minR′⊂S,R′ 6=R τt(R

′). By the induction
hypothesis, this is at least δr,s(G′). By definition of δr,s(G′),
ds|G′(R) ≥ δr,s(G′). Thus, in step two, H returns at least
δr,s(G′).

Note that this is an intermediate result and we will present
our final result in Lemma 2 at the end.

3.1 Convergence bounds by the degree levels
A trivial upper bound for convergence is the number of r-
cliques in the graph, |R(G)|, because after n iterations n r-
cliques with the lowest κs indices will converge. We present
a tighter bound for convergence. Our main insight is to de-
fine the degree levels of r-cliques, and relate these to the
convergence of τt to κs. We prove that the κs indices in the
i-th level converge within i iterations of the update opera-
tion. This gives quantitative bounds on the convergence.

Definition 7. For a graph G,
• C(G) = R(G) ∪ S(G), i.e., set of all r-cliques and s-

cliques.
• S ∈ C(G) if and only if R ∈ C(G), ∀ R ⊂ S.
• If R is removed from C(G), all S ⊃ R are also removed

from C(G).
• Degree levels are defined recursively as follows. The
i-th level is the set Li.
− L0 is the set of r-cliques that has the minimum S-

degree in C.
− Li is the set of r-cliques that has the minimum S-

degree in C \⋃j<i Lj.

46

d

g

c

eb

fa

L0
L1
L2
L3

a
b
c g
d e f

Figure 4: Illustration of degree levels for the k-core decom-
position. L0 = {a} since it has the minimum degree initially
and the only such vertex. Its removal makes the b with the
minimum degree, so L1 = {b}. After removing vertex b,
there are two vertices with the least degree; L2 = {c, g}.
Lastly, removing those leaves three vertices with the same
degree and L3 = {d, e, f}.

Figure 4 shows the degree levels for k-core decomposition
on a toy graph. We first prove the κs indices cannot decrease
as the level increases. The following proof is closely related
to the fact the minimum degree removal algorithm (peeling)
finds all cores/trusses/nuclei.

Theorem 2. Let i ≤ j. For any Ri ∈ Li and Rj ∈ Lj,
κs(Ri) ≤ κs(Rj).

Proof. Let L′ =
⋃

r≥i Lr, the union of all levels i and

above, and G′ is the graph such that L′ = R(G′). By def-
inition of the levels, ds|G′(Ri) = δr,s(G′) and ds|G′(Rj) ≥
ds|G′(Ri). There exists some κs(Ri)-nucleus T containing
Ri. We split into two cases.

Case 1: R(T) ⊆ L′. Thus, κs(Ri) = δr,s(T) ≤ δr,s(G′) =
ds|G′(Ri). Note that κs(Rj) = minP3Rj δr,s(P), so κs(Rj) ≥
δr,s(G′). Hence, κs(Ri) ≤ κs(Rj).

Case 2: R(T) \ L′ 6= ∅. Thus, there exists some r-clique
R′ ∈ R(T)∩Lb, where b < i. Choose the R′ that minimizes
this value of b. Since T is a κs(Ri)-nucleus, ds|T (R′) ≥
κs(Ri). Consider M =

⋃
r≥b Lr. Note that R(T) ⊆ M ,

since we chose R′ to minimize b. Let Q is the graph such
that M = R(Q). We have ds|Q(R′) ≥ ds|T (R′) ≥ κs(Ri).
Since R′ ∈ Lb, ds|Q(R′) = δr,s(Q). Since j > b and Rj ∈
M , κs(Rj) ≥ δr,s(Q). Combining the above, we deduce
κs(Ri) ≤ κs(Rj).

The main convergence theorem is the following. As ex-
plained earlier, it shows that the i-th level converges within
i iterations.

Theorem 3. Fix level Li. For all t ≥ i and R ∈ Li,
τt(R) = κs(R).

Proof. We prove by induction on i. For the base case
i=0; note that for anyR of minimum S-degree inG, κs(R)=
ds|G(R)=τ0(R). For induction, assume the theorem is true
up to level i. Thus, for t ≥ i and ∀ R ∈ ⋃j≤i Lj , τt(R) =

κs(R). Select arbitrary Ra ∈ Li+1, and set L′=
⋃

j≥i+1 Lj .
We partition the s-cliques containing Ra into the “low” set
S` and “high” set Sh. s-cliques in S` contain some r-clique
outside L′, and those in Sh are contained in L′. For every s-
clique S ∈ S`, there is a Rb ⊂ S such that Rb ∈ Lk for k≤ i.
By the inductive hypothesis, τt(Rb)=κs(Rb). By Theorem 2
applied to Rb ∈ Lk and Ra∈Li+1, κs(Rb)≤κs(Ra).

Now we focus on the computation of τt+1(Ra), which
starts with computing ρ(S,Ra) in step one of Definition 6.
For every S ∈ S`, by the previous argument, there is some
r-clique Rb ⊂ S, Rb 6= Ra, such that τt(Rb)≤κs(Ra). Thus,
∀S ∈S`, ρ(S,Ra)≤ κs(Ra). This crucially uses the min in
the setting of ρ(S,Ra), and is a key insight into the general-
ization of iterated H-indices for any nucleus decomposition.

The number of edges in Sh is exactly ds|G′(Ra) = δr,s(G′).
Applying Lemma 1 toRa ∈ L′, we deduce κs(Ra) ≥ ds|G′(Ra).
All in all, for all S ∈ S`, ρ(S,Ra) is at most κs(Ra). On
the other hand, there are at most κs(Ra) s-cliques in Sh.
The application of the H function in the second step yields
τt+1(Ra) ≤ κs(Ra). But the lower bound of Theorem 1 as-
serts τt+1(Ra) ≥ κs(Ra), and hence, these are equal. This
completes the induction.

We have the following lemma to show that convergence is
guaranteed in a finite number of iterations.

Lemma 2. Given a graph G let l be the maximum i, such
that Ll 6= ∅ and τl(R) ≥ κs(R) for all r-cliques (e.g., τ0 =
ds) and set τt+1 = Uτt. For some t ≤ l, τt(R) = κs(R), for
all r-cliques.

4. LOCAL ALGORITHMS
We introduce generalized local algorithms to find the κs in-
dices of r-cliques for any (r, s) nucleus decomposition. For
each r-clique, we iteratively apply h-index computation. Our
local algorithms are parallel thanks to the independent na-
ture of the h-index computations. We also explore time and
quality trade-offs by using the iterative nature. We first
present the deterministic synchronous algorithm which does
not depend on the order of processing the r-cliques. It im-
plements the U operator in Definition 6. Then we adapt
our algorithm to work in an asynchronous manner that con-
verges faster and uses less space. For those familiar with lin-
ear algebra, the synchronous and asynchronous algorithms
are analogous to Jacobi and Gauss-Seidel iterations for it-
erative solvers. At the end, we discuss some heuristics and
key implementation details for shared-memory parallelism
in OpenMP.

4.1 Synchronous Nucleus Decomposition (Snd)
We use the update operator U to compute the k-(r, s) nuclei
of a graph G in a synchronous way. Algorithm 2 (Snd)
implements the Definition 6 for functions τ0 = ds and τt+1 =
Uτt to find the κs indices of r-cliques in graph G.
Snd algorithm iterates until no further updates occur for

any τ index, which means all the τ indices converged to
κs. Computation is performed synchronously on all the r-
cliques and at each iteration i, τi indices are found for all
r-cliques. We declare two arrays, τ(·) and τp(·), to store the
indices being computed and the indices that were computed
in the previous iteration, respectively (Lines 1 and 4). τ(·)
are initialized to the S-degrees of the r-cliques since τ0 = ds
(Line 2). At each iteration, newly computed τ(·) indices
are backed up in τp(·) (Line 7), and the new τ(·) indices
are computed. During the iterative process, convergence
is checked by the flag F (Line 5), which is initially set to
true (Line 3) and stays true as long as there is an update
on a τ index (Lines 6, 13, and 14).

Computation of the new τ(·) indices for each r-clique can
be performed in parallel (Lines 8 to 15). For each r-clique
R, we apply the two step process in the Definition 6. First,
for each s-clique S that contains R, we compute the ρ values
that is the minimum τp index of an r-clique R′ ⊂ S (R′ 6= R)
and collect them in a set L (Lines 10 to 12). Then, we
assign the h-index of the set L as the new τ index of the
r-clique (Line 15). The algorithm continues until there are
no updates on the τ index ‘ (Lines 13 and 14). Once the

47

Algorithm 2: Snd: Synchronous Nucleus Decomp

Input: G: graph, r, s: positive integers (r < s)
Output: κs(·): array of κs indices for r-cliques

1 τ(·)← indices ∀ R ∈ R(G) // current iteration

2 τ(R)← ds(R) ∀ R ∈ R(G) // set to the S-degrees
3 F ← true // stays true if any τ(R) is updated

4 τp(·)← backup indices ∀ R ∈ R(G) // prev. iter.

5 while F do
6 F ← false
7 τp(R)← τ(R) ∀ R ∈ R(G)
8 for each R ∈ R(G) in parallel do
9 L← empty set

10 for each s-clique S ⊃ R do
11 ρ← minR′∈Ns(R) τ

p(R′)
12 L . add (ρ)

13 if τp(R) 6= H(L) then
14 F ← true

15 τ(R)← H(L)

16 κs(·)← τ(·)
17 return array κs(·)

τ indices converge, we assign them to κs indices and finish
(Lines 16 and 17).

Time complexity: Snd algorithm starts with enumer-
ating the r-cliques (not shown in the pseudocode) and its
runtime is denoted by RTr(G) (this part can be parallelized
as well, but we ignore that for now). Then, each itera-
tion (Lines 5 to 15) is performed t times until convergence
where t is the total number of iterations for which we pro-
vided bounds in Section 3.1. In each iteration, each r-clique
R ∈ R is processed once, which is parallelizable. Suppose
R has vertices v1, v2, · · · , vr . We can find all s-cliques con-
taining R by looking at all (s − r)-tuples in each of the
neighborhoods of vi (Indeed, it suffices to look at just one
such neighborhood). This takes (

∑
R

∑
v∈R d(v)s−r)/p =

(
∑

v∈V
∑

R3v d(v)s−r)/p = (
∑

v∈V dR(v)d(v)s−r)/p time if
p threads are used for parallelism. Note that the h-index
computation can be done incrementally without storing all
ρ values in set L (see Section 4.4). Overall, the time com-
plexity of Snd using p threads is:

b

e

c

d

a gf

2 2 2

1 1 1 2 1 1

1 1 1

2 2
 2

3 2 2

3 2
 2

2 2 2

2 2 2

4 2 2

3 2 2 3
2

2

1
1

1

1 1 1

b

e

c

d

a g

h

i

f

2 2 2

2 2 2

2 2 2

2 2 2

2
2 2

2 2 2

1 1 1 1 1 1

1 1 1

1 1
 1 2 2 2

3
2

2

4 2 2

3 2
 2

3 2 2

3 2 2

4 2 2

4 3 2 3
2

2

⌧ ⌧ ⌧

4.3 Illustrative examples
ToDo: explain fig 3 and 4

4.4 Heuristics and implementation
Here we introduce an important scheduling decision for

the parallelization in our algorithms, and a heuristic to com-
pute the h-index of a set in linear time.

We implemented our algorithms by using OpenMP [6] to
utilize the shared-memory architectures. The loops, anno-
tated as parallel in Algorithm ??, are shared among threads,
and each thread is responsible for its partition of vertices.
Default scheduling policy in OpenMP is static and it dis-
tributes the iterations of the loop to the threads in chunks,
i.e., for two threads, one takes the first half and the other
takes the second. Although this policy is useful for many ap-
plications, it will not work well for our algorithms. The no-
tification mechanism to avoid the redundant computations
can result in significant load imbalance between threads. If
most of the converged vertices reside in a certain part, then
the thread that is responsible for that part becomes idle un-
til the end of computation. To prevent this, we embraced
the dynamic scheduling where each thread is given a new
workload once it is done. No thread stays idle this way, and
the overall computation is parallelized more e�ciently.

h-index computation of a list is done by sorting the items
in non-increasing order and checking the values from the
beginning of the list to find the largest h value for which at
least h items exist with at least h value. Main bottleneck is
the sorting operation which takes O(n.logn) time. However,
h-index can be computed without sorting. We initialize h
as zero and iterate over the items in the list. At each time,
we attempt to increase the current h value based on the
inspected item. For the current h value, we keep track of
the number of items that have equal value to h. We also

a

i

d

f

b

h

c e g
122

4

2

4

3

2

4 2

1 1

23

3

2

2
1st

2nd

3rd

step
step
step

Figure 4: Core example ToDo: put all step numbers, change
legend for taus

Table 3: Dataset statistics

|V | |E| |4| |K4|
as-skitter (ask) 1.7M 11.1M 28.8M 148.8M

facebook (fb) 4K 88.2K 1.6M 30.0M
soc-LiveJournal (slj) 4.8M 68.5M 285.7M 9.9B

soc-orkut (ork) 2.9M 106.3M 524.6M 2.4B
soc-sign-epinions (sse) 131.8K 711.2K 4.9M 58.6M
soc-twitter-higgs (hg) 456.6K 12.5M 83.0M 429.7M

twitter (tw) 81.3K 1.3M 13.1M 104.9M
web-Google (wgo) 916.4K 4.3M 13.4M 39.9M

web-NotreDame (wnd) 325.7K 1.1M 8.9M 231.9M
wikipedia-200611 (wiki) 3.1M 37.0M 88.8M 162.9M

use a hashmap to keep track of the items that are greater
than the current h value, and we simply ignore the items
that are smaller than h. This enables the computation of
the h-index in linear time. In addition, for the non-initial
iterations of the convergence process, we simply check the
items if the current ⌧ index can be preserved. Once we see
� ⌧ items with at least ⌧ index, no more checks needed.

5. EXPERIMENTS
We evaluate our algorithms on three instances of the nu-

cleus decomposition: k-core (or (1, 2)), k-truss (or (2, 3)),
and (3, 4). Constructing the hypergraphs requires to store
all the s-cliques, which is infeasible for large networks. Thus
we do not construct the actual hypergraphs to compute
the indices. Instead, we find the participations of the
r-cliques in s-cliques on-the-fly. Details about the com-
parison between two approaches are given in [25]. Our
dataset includes di↵erent types of real-world networks, such
as an internet topology network (as-skitter), online social
networks (facebook, soc-LiveJournal, soc-orkut), who-
trust-whom network (soc-sign-epinions), follower-followee

b

e

c

d

a g

h

i

f

4 3
2 3

4

3

3 1

11

1 2

2 3

4

2

2 2

2 3 2

22

2

2 2
2

2

Figure 5: Truss example

a i

d

f b

h

c

e

g2 2 2

3 2 2

4 3 2 2 2 2 2 2 1

4 2 2

4 3 2 1 1 1

2 1 1

0 1 2
(d2) (2)

22

c

d

bf e a
1

1

3

2

21 1 2

2

2

1 1 2 2

2

2

degrees

 1 indices in SND
core numbers

22

c

d

bf e a
1

1

3

2

21 1 2

2

2

1 1 2 2

2

2

degrees
core numbers
2nd step in lex. order

Figure 2: Async example

Theorem 4. In AND algorithm, if the r-cliques are pro-
cessed in the non-decreasing order of their final s indices,
convergence is obtained in a single iteration.

Proof. Say s(R) = t for an r-clique R. For the sake of
contradiction, assume that it takes more than one iteration
for ds(R) to converge s(R). So, ⌧0(R) = ds(R) and ⌧0(R) �
⌧1(R) > s(R). So, when R is being processed, H(L) > t
for L = {⇢(S) : S 3 R}. That means there are at least t+1
s-cliques where each has ⇢ value of at least t+ 1. However,
this implies that R is a part of (t + 1)-(r, s) nucleus, which
contradicts with the initial assumption.

The worst case happens when all the r-cliques see the ⌧
values of their neighbors that are computed in the previous
iteration and it is exactly the SND algorithm.

Figure 2 illustrates the di↵erence between Snd and And
algorithms (with di↵erent orderings) on the k-core case (r =
1, s = 2). Our focus is on vertices (1-cliques) and their re-
lations with edges (2-cliques). We first apply Snd. First,
vertex degrees are calculated as ⌧0 indices (blue numbers).
Then, for each vertex u we compute the ⌧1(u) = H({⌧0(v) :
v 2 N2(u)}, i.e., h-index of its neighbors’ degrees (red num-
bers). ⌧ For instance,

ToDo: should I include some numbers in exp, bounds part

4.2.1 Skipping the plateaus
ToDo: fig for tau changes and platos Our computations

converge when none of the vertices update their ⌧ indices
anymore. This implies that computations are performed for
all the vertices even when only a single update occurs. Those
computations are redundant. When ⌧(v) converges (v) for
a vertex v, no more computations are needed for v in the
following iterations. Also, a vertex can possibly maintain
the same ⌧ index for a number of iterations, reaches to a
plateau, and then updates it. So, it is not possible to deduce
whether ⌧(v) has converged to (v) by just looking at ⌧(v)
values of any vertex v. In order to skip the intermediate
or final plateaus during the convergence of ⌧(v) to (v), we
introduce a notification mechanism where a vertex notifies
its neighbors when its ⌧ index is updated.

Brown lines in Algorithm ?? summarizes the notification
mechanism we plug in to the asynchronous computation.
The only changes are in lines ??, ??, ?? and ??. Additional
C(·) array tracks whether a vertex v 2 V has updated its ⌧
index or not. It is set to true at the beginning to initiate
the computations for all vertices. Once C(v) becomes false,
i.e., maintains its ⌧ index, we avoid the computation. Note
that, a vertex restarts its computation only when a neighbor

vertex has an update (Line ??). Once a vertex completes
the computation, it is set to be not-updated (line ??) so that
no computation occurs until a notification is received from
a neighbor.

4.3 Illustrative examples
ToDo: explain fig 3 and 4

4.4 Heuristics and implementation
Here we introduce an important scheduling decision for

the parallelization in our algorithms, and a heuristic to com-
pute the h-index of a set in linear time.
We implemented our algorithms by using OpenMP [6] to

utilize the shared-memory architectures. The loops, anno-
tated as parallel in Algorithm ??, are shared among threads,
and each thread is responsible for its partition of vertices.
Default scheduling policy in OpenMP is static and it dis-
tributes the iterations of the loop to the threads in chunks,
i.e., for two threads, one takes the first half and the other
takes the second. Although this policy is useful for many ap-
plications, it will not work well for our algorithms. The no-
tification mechanism to avoid the redundant computations
can result in significant load imbalance between threads. If
most of the converged vertices reside in a certain part, then
the thread that is responsible for that part becomes idle un-
til the end of computation. To prevent this, we embraced
the dynamic scheduling where each thread is given a new
workload once it is done. No thread stays idle this way, and
the overall computation is parallelized more e�ciently.
h-index computation of a list is done by sorting the items

in non-increasing order and checking the values from the
beginning of the list to find the largest h value for which at
least h items exist with at least h value. Main bottleneck is
the sorting operation which takes O(n.logn) time. However,
h-index can be computed without sorting. We initialize h
as zero and iterate over the items in the list. At each time,
we attempt to increase the current h value based on the

a

i

d

f

b

h

c e g
122

4

2

4

3

2

4 2

1 1

23

3

2

2
1st

2nd

3rd

step
step
step

Figure 3: Core example

Figure 2: Async example

Theorem 4. In AND algorithm, if the r-cliques are pro-
cessed in the non-decreasing order of their final s indices,
convergence is obtained in a single iteration.

Proof. Say s(R) = t for an r-clique R. For the sake of
contradiction, assume that it takes more than one iteration
for ds(R) to converge s(R). So, ⌧0(R) = ds(R) and ⌧0(R) �
⌧1(R) > s(R). So, when R is being processed, H(L) > t
for L = {⇢(S) : S 3 R}. That means there are at least t+1
s-cliques where each has ⇢ value of at least t+ 1. However,
this implies that R is a part of (t + 1)-(r, s) nucleus, which
contradicts with the initial assumption.

The worst case happens when all the r-cliques see the ⌧
values of their neighbors that are computed in the previous
iteration and it is exactly the SND algorithm.

Figure 2 illustrates Snd and And algorithms (with di↵er-
ent orderings) on the k-core case (r = 1, s = 2). Our focus
is on vertices (1-cliques) and their edge (2-clique) counts
(degrees). We first apply Snd. First, vertex degrees are cal-
culated as ⌧0 indices (blue numbers). Then, for each vertex
u we compute the ⌧1(u) = H({⌧0(v) : v 2 N2(u)}, i.e., h-
index of its neighbors’ degrees (red numbers). For instance,
vertex a has two neighbors, e and b, with degrees 2 and
3. Since H({2, 3}) = 2, we get ⌧1(a) = 2. For vertex b,
we get ⌧1(b) = H({2, 2, 2}) = 2. Once we compute all ⌧1
indices, we iterate again because there were changes in ⌧
indices, e.g,. ⌧1(e) 6= ⌧0(e) (Line 13 in Algorithm 2). ⌧2
indices are shown in green. We observe an update only for
the vertex a; ⌧2(a) = H({⌧1(e), ⌧1(b)}) = H({1, 2}) = 1.
When we iterate again, no update is observed in ⌧ indices,
which means s = ⌧2 for all vertices. Regarding And algo-
rithm, we choose to follow the non-decreasing order of s

indices; {f,e,a,b,c,d}. Computing the ⌧1 indices on this or-
der enables us to reach the convergence in a single iteration.
For instance, ⌧1(a) = H({⌧1(e), ⌧0(b)}) = H({1, 2}) = 1.
If we choose to process the vertices in the alphabetical or-
der, {a,b,c,d,e,f}, we have ⌧1(a) = H({⌧0(e), ⌧0(b)}) =
H({2, 2}) = 2, which implies that we need more iteration(s)
to converge. Indeed ⌧2(a) = H({⌧1(e), ⌧1(b)}) = H({1, 2}) =
1

 ⌧1 ToDo: should I include some numbers in exp, bounds
part

4.2.1 Skipping the plateaus
ToDo: fig for tau changes and platos Our computations

converge when none of the vertices update their ⌧ indices
anymore. This implies that computations are performed for
all the vertices even when only a single update occurs. Those
computations are redundant. When ⌧(v) converges (v) for
a vertex v, no more computations are needed for v in the

following iterations. Also, a vertex can possibly maintain
the same ⌧ index for a number of iterations, reaches to a
plateau, and then updates it. So, it is not possible to deduce
whether ⌧(v) has converged to (v) by just looking at ⌧(v)
values of any vertex v. In order to skip the intermediate
or final plateaus during the convergence of ⌧(v) to (v), we
introduce a notification mechanism where a vertex notifies
its neighbors when its ⌧ index is updated.
Brown lines in Algorithm ?? summarizes the notification

mechanism we plug in to the asynchronous computation.
The only changes are in lines ??, ??, ?? and ??. Additional
C(·) array tracks whether a vertex v 2 V has updated its ⌧
index or not. It is set to true at the beginning to initiate
the computations for all vertices. Once C(v) becomes false,
i.e., maintains its ⌧ index, we avoid the computation. Note
that, a vertex restarts its computation only when a neighbor
vertex has an update (Line ??). Once a vertex completes
the computation, it is set to be not-updated (line ??) so that
no computation occurs until a notification is received from
a neighbor.

4.3 Illustrative examples
ToDo: explain fig 3 and 4

4.4 Heuristics and implementation
Here we introduce an important scheduling decision for

the parallelization in our algorithms, and a heuristic to com-
pute the h-index of a set in linear time.
We implemented our algorithms by using OpenMP [6] to

utilize the shared-memory architectures. The loops, anno-
tated as parallel in Algorithm ??, are shared among threads,
and each thread is responsible for its partition of vertices.
Default scheduling policy in OpenMP is static and it dis-
tributes the iterations of the loop to the threads in chunks,
i.e., for two threads, one takes the first half and the other
takes the second. Although this policy is useful for many ap-
plications, it will not work well for our algorithms. The no-

a

i

d

f

b

h

c e g
122

4

2

4

3

2

4 2

1 1

23

3

2

2
1st

2nd

3rd

step
step
step

Figure 3: Core example

Figure 4: Core example

⌧ ⌧ ⌧
⌧ ⌧

4.3 Illustrative examples
ToDo: explain fig 3 and 4 We present two examples to

illustrate the di↵erences between Snd and And algorithms.
Figure 4 presents the k-core decomposition process on a toy
graph.

4.4 Heuristics and implementation
Here we introduce an important scheduling decision for

the parallelization in our algorithms, and a heuristic to com-
pute the h-index of a set in linear time.

We implemented our algorithms by using OpenMP [6] to
utilize the shared-memory architectures. The loops, anno-
tated as parallel in Algorithm ??, are shared among threads,
and each thread is responsible for its partition of vertices.
Default scheduling policy in OpenMP is static and it dis-
tributes the iterations of the loop to the threads in chunks,
i.e., for two threads, one takes the first half and the other
takes the second. Although this policy is useful for many ap-
plications, it will not work well for our algorithms. The no-
tification mechanism to avoid the redundant computations
can result in significant load imbalance between threads. If
most of the converged vertices reside in a certain part, then
the thread that is responsible for that part becomes idle un-
til the end of computation. To prevent this, we embraced
the dynamic scheduling where each thread is given a new
workload once it is done. No thread stays idle this way, and
the overall computation is parallelized more e�ciently.

h-index computation of a list is done by sorting the items
in non-increasing order and checking the values from the
beginning of the list to find the largest h value for which at
least h items exist with at least h value. Main bottleneck is
the sorting operation which takes O(n.logn) time. However,
h-index can be computed without sorting. We initialize h
as zero and iterate over the items in the list. At each time,
we attempt to increase the current h value based on the
inspected item. For the current h value, we keep track of
the number of items that have equal value to h. We also

b

e

c

d

a g

h

i

f

2 2 2

2 2 2

2 2 2

2 2 2

2
2

2

2 2 2

1 1 1 1 1 1

1 1 1

1 1
 1 2 2 2

3
2

2

4 2 2

3 2
 2

3 2 2

3 2 2

4 2 2

4 3 2 3
2

2

⌧ ⌧ ⌧

4.3 Illustrative examples
ToDo: explain fig 3 and 4

4.4 Heuristics and implementation
Here we introduce an important scheduling decision for

the parallelization in our algorithms, and a heuristic to com-
pute the h-index of a set in linear time.

We implemented our algorithms by using OpenMP [6] to
utilize the shared-memory architectures. The loops, anno-
tated as parallel in Algorithm ??, are shared among threads,
and each thread is responsible for its partition of vertices.
Default scheduling policy in OpenMP is static and it dis-
tributes the iterations of the loop to the threads in chunks,
i.e., for two threads, one takes the first half and the other
takes the second. Although this policy is useful for many ap-
plications, it will not work well for our algorithms. The no-
tification mechanism to avoid the redundant computations
can result in significant load imbalance between threads. If
most of the converged vertices reside in a certain part, then
the thread that is responsible for that part becomes idle un-
til the end of computation. To prevent this, we embraced
the dynamic scheduling where each thread is given a new
workload once it is done. No thread stays idle this way, and
the overall computation is parallelized more e�ciently.

h-index computation of a list is done by sorting the items
in non-increasing order and checking the values from the
beginning of the list to find the largest h value for which at
least h items exist with at least h value. Main bottleneck is
the sorting operation which takes O(n.logn) time. However,
h-index can be computed without sorting. We initialize h
as zero and iterate over the items in the list. At each time,
we attempt to increase the current h value based on the
inspected item. For the current h value, we keep track of
the number of items that have equal value to h. We also

a

i

d

f

b

h

c e g
122

4

2

4

3

2

4 2

1 1

23

3

2

2
1st

2nd

3rd

step
step
step

Figure 4: Core example ToDo: put all step numbers, change
legend for taus

Table 3: Dataset statistics

|V | |E| |4| |K4|
as-skitter (ask) 1.7M 11.1M 28.8M 148.8M

facebook (fb) 4K 88.2K 1.6M 30.0M
soc-LiveJournal (slj) 4.8M 68.5M 285.7M 9.9B

soc-orkut (ork) 2.9M 106.3M 524.6M 2.4B
soc-sign-epinions (sse) 131.8K 711.2K 4.9M 58.6M
soc-twitter-higgs (hg) 456.6K 12.5M 83.0M 429.7M

twitter (tw) 81.3K 1.3M 13.1M 104.9M
web-Google (wgo) 916.4K 4.3M 13.4M 39.9M

web-NotreDame (wnd) 325.7K 1.1M 8.9M 231.9M
wikipedia-200611 (wiki) 3.1M 37.0M 88.8M 162.9M

use a hashmap to keep track of the items that are greater
than the current h value, and we simply ignore the items
that are smaller than h. This enables the computation of
the h-index in linear time. In addition, for the non-initial
iterations of the convergence process, we simply check the
items if the current ⌧ index can be preserved. Once we see
� ⌧ items with at least ⌧ index, no more checks needed.

5. EXPERIMENTS
We evaluate our algorithms on three instances of the nu-

cleus decomposition: k-core (or (1, 2)), k-truss (or (2, 3)),
and (3, 4). Constructing the hypergraphs requires to store
all the s-cliques, which is infeasible for large networks. Thus
we do not construct the actual hypergraphs to compute
the indices. Instead, we find the participations of the
r-cliques in s-cliques on-the-fly. Details about the com-
parison between two approaches are given in [25]. Our
dataset includes di↵erent types of real-world networks, such
as an internet topology network (as-skitter), online social
networks (facebook, soc-LiveJournal, soc-orkut), who-
trust-whom network (soc-sign-epinions), follower-followee

b

e

c

d

a g

h

i

f

4 3
2 3

4

3

3 1

11

1 2

2 3

4

2

2 2

2 3 2

22

2

2 2
2

2

Figure 5: Truss example

0 1 2
(d3) (3)

22

c

d

bf e a
1

1

3

2

21 1 2

2

2

1 1 2 2

2

2

degrees

 1 indices in SND
core numbers

22

c

d

bf e a
1

1

3

2

21 1 2

2

2

1 1 2 2

2

2

degrees
core numbers
2nd step in lex. order

Figure 2: Async example

Theorem 4. In AND algorithm, if the r-cliques are pro-
cessed in the non-decreasing order of their final s indices,
convergence is obtained in a single iteration.

Proof. Say s(R) = t for an r-clique R. For the sake of
contradiction, assume that it takes more than one iteration
for ds(R) to converge s(R). So, ⌧0(R) = ds(R) and ⌧0(R) �
⌧1(R) > s(R). So, when R is being processed, H(L) > t
for L = {⇢(S) : S 3 R}. That means there are at least t+1
s-cliques where each has ⇢ value of at least t+ 1. However,
this implies that R is a part of (t + 1)-(r, s) nucleus, which
contradicts with the initial assumption.

The worst case happens when all the r-cliques see the ⌧
values of their neighbors that are computed in the previous
iteration and it is exactly the SND algorithm.

Figure 2 illustrates the di↵erence between Snd and And
algorithms (with di↵erent orderings) on the k-core case (r =
1, s = 2). Our focus is on vertices (1-cliques) and their re-
lations with edges (2-cliques). We first apply Snd. First,
vertex degrees are calculated as ⌧0 indices (blue numbers).
Then, for each vertex u we compute the ⌧1(u) = H({⌧0(v) :
v 2 N2(u)}, i.e., h-index of its neighbors’ degrees (red num-
bers). ⌧ For instance,

ToDo: should I include some numbers in exp, bounds part

4.2.1 Skipping the plateaus
ToDo: fig for tau changes and platos Our computations

converge when none of the vertices update their ⌧ indices
anymore. This implies that computations are performed for
all the vertices even when only a single update occurs. Those
computations are redundant. When ⌧(v) converges (v) for
a vertex v, no more computations are needed for v in the
following iterations. Also, a vertex can possibly maintain
the same ⌧ index for a number of iterations, reaches to a
plateau, and then updates it. So, it is not possible to deduce
whether ⌧(v) has converged to (v) by just looking at ⌧(v)
values of any vertex v. In order to skip the intermediate
or final plateaus during the convergence of ⌧(v) to (v), we
introduce a notification mechanism where a vertex notifies
its neighbors when its ⌧ index is updated.

Brown lines in Algorithm ?? summarizes the notification
mechanism we plug in to the asynchronous computation.
The only changes are in lines ??, ??, ?? and ??. Additional
C(·) array tracks whether a vertex v 2 V has updated its ⌧
index or not. It is set to true at the beginning to initiate
the computations for all vertices. Once C(v) becomes false,
i.e., maintains its ⌧ index, we avoid the computation. Note
that, a vertex restarts its computation only when a neighbor

vertex has an update (Line ??). Once a vertex completes
the computation, it is set to be not-updated (line ??) so that
no computation occurs until a notification is received from
a neighbor.

4.3 Illustrative examples
ToDo: explain fig 3 and 4

4.4 Heuristics and implementation
Here we introduce an important scheduling decision for

the parallelization in our algorithms, and a heuristic to com-
pute the h-index of a set in linear time.
We implemented our algorithms by using OpenMP [6] to

utilize the shared-memory architectures. The loops, anno-
tated as parallel in Algorithm ??, are shared among threads,
and each thread is responsible for its partition of vertices.
Default scheduling policy in OpenMP is static and it dis-
tributes the iterations of the loop to the threads in chunks,
i.e., for two threads, one takes the first half and the other
takes the second. Although this policy is useful for many ap-
plications, it will not work well for our algorithms. The no-
tification mechanism to avoid the redundant computations
can result in significant load imbalance between threads. If
most of the converged vertices reside in a certain part, then
the thread that is responsible for that part becomes idle un-
til the end of computation. To prevent this, we embraced
the dynamic scheduling where each thread is given a new
workload once it is done. No thread stays idle this way, and
the overall computation is parallelized more e�ciently.
h-index computation of a list is done by sorting the items

in non-increasing order and checking the values from the
beginning of the list to find the largest h value for which at
least h items exist with at least h value. Main bottleneck is
the sorting operation which takes O(n.logn) time. However,
h-index can be computed without sorting. We initialize h
as zero and iterate over the items in the list. At each time,
we attempt to increase the current h value based on the

a

i

d

f

b

h

c e g
122

4

2

4

3

2

4 2

1 1

23

3

2

2
1st

2nd

3rd

step
step
step

Figure 3: Core example

Figure 2: Async example

Theorem 4. In AND algorithm, if the r-cliques are pro-
cessed in the non-decreasing order of their final s indices,
convergence is obtained in a single iteration.

Proof. Say s(R) = t for an r-clique R. For the sake of
contradiction, assume that it takes more than one iteration
for ds(R) to converge s(R). So, ⌧0(R) = ds(R) and ⌧0(R) �
⌧1(R) > s(R). So, when R is being processed, H(L) > t
for L = {⇢(S) : S 3 R}. That means there are at least t+1
s-cliques where each has ⇢ value of at least t+ 1. However,
this implies that R is a part of (t + 1)-(r, s) nucleus, which
contradicts with the initial assumption.

The worst case happens when all the r-cliques see the ⌧
values of their neighbors that are computed in the previous
iteration and it is exactly the SND algorithm.

Figure 2 illustrates Snd and And algorithms (with di↵er-
ent orderings) on the k-core case (r = 1, s = 2). Our focus
is on vertices (1-cliques) and their edge (2-clique) counts
(degrees). We first apply Snd. First, vertex degrees are cal-
culated as ⌧0 indices (blue numbers). Then, for each vertex
u we compute the ⌧1(u) = H({⌧0(v) : v 2 N2(u)}, i.e., h-
index of its neighbors’ degrees (red numbers). For instance,
vertex a has two neighbors, e and b, with degrees 2 and
3. Since H({2, 3}) = 2, we get ⌧1(a) = 2. For vertex b,
we get ⌧1(b) = H({2, 2, 2}) = 2. Once we compute all ⌧1
indices, we iterate again because there were changes in ⌧
indices, e.g,. ⌧1(e) 6= ⌧0(e) (Line 13 in Algorithm 2). ⌧2
indices are shown in green. We observe an update only for
the vertex a; ⌧2(a) = H({⌧1(e), ⌧1(b)}) = H({1, 2}) = 1.
When we iterate again, no update is observed in ⌧ indices,
which means s = ⌧2 for all vertices. Regarding And algo-
rithm, we choose to follow the non-decreasing order of s

indices; {f,e,a,b,c,d}. Computing the ⌧1 indices on this or-
der enables us to reach the convergence in a single iteration.
For instance, ⌧1(a) = H({⌧1(e), ⌧0(b)}) = H({1, 2}) = 1.
If we choose to process the vertices in the alphabetical or-
der, {a,b,c,d,e,f}, we have ⌧1(a) = H({⌧0(e), ⌧0(b)}) =
H({2, 2}) = 2, which implies that we need more iteration(s)
to converge. Indeed ⌧2(a) = H({⌧1(e), ⌧1(b)}) = H({1, 2}) =
1

 ⌧1 ToDo: should I include some numbers in exp, bounds
part

4.2.1 Skipping the plateaus
ToDo: fig for tau changes and platos Our computations

converge when none of the vertices update their ⌧ indices
anymore. This implies that computations are performed for
all the vertices even when only a single update occurs. Those
computations are redundant. When ⌧(v) converges (v) for
a vertex v, no more computations are needed for v in the

following iterations. Also, a vertex can possibly maintain
the same ⌧ index for a number of iterations, reaches to a
plateau, and then updates it. So, it is not possible to deduce
whether ⌧(v) has converged to (v) by just looking at ⌧(v)
values of any vertex v. In order to skip the intermediate
or final plateaus during the convergence of ⌧(v) to (v), we
introduce a notification mechanism where a vertex notifies
its neighbors when its ⌧ index is updated.
Brown lines in Algorithm ?? summarizes the notification

mechanism we plug in to the asynchronous computation.
The only changes are in lines ??, ??, ?? and ??. Additional
C(·) array tracks whether a vertex v 2 V has updated its ⌧
index or not. It is set to true at the beginning to initiate
the computations for all vertices. Once C(v) becomes false,
i.e., maintains its ⌧ index, we avoid the computation. Note
that, a vertex restarts its computation only when a neighbor
vertex has an update (Line ??). Once a vertex completes
the computation, it is set to be not-updated (line ??) so that
no computation occurs until a notification is received from
a neighbor.

4.3 Illustrative examples
ToDo: explain fig 3 and 4

4.4 Heuristics and implementation
Here we introduce an important scheduling decision for

the parallelization in our algorithms, and a heuristic to com-
pute the h-index of a set in linear time.
We implemented our algorithms by using OpenMP [6] to

utilize the shared-memory architectures. The loops, anno-
tated as parallel in Algorithm ??, are shared among threads,
and each thread is responsible for its partition of vertices.
Default scheduling policy in OpenMP is static and it dis-
tributes the iterations of the loop to the threads in chunks,
i.e., for two threads, one takes the first half and the other
takes the second. Although this policy is useful for many ap-
plications, it will not work well for our algorithms. The no-

a

i

d

f

b

h

c e g
122

4

2

4

3

2

4 2

1 1

23

3

2

2
1st

2nd

3rd

step
step
step

Figure 3: Core example

Figure 5: Truss example

Table 3: Dataset statistics

|V | |E| |4| |K4|
as-skitter (ask) 1.7M 11.1M 28.8M 148.8M

facebook (fb) 4K 88.2K 1.6M 30.0M
soc-LiveJournal (slj) 4.8M 68.5M 285.7M 9.9B

soc-orkut (ork) 2.9M 106.3M 524.6M 2.4B
soc-sign-epinions (sse) 131.8K 711.2K 4.9M 58.6M
soc-twitter-higgs (hg) 456.6K 12.5M 83.0M 429.7M

twitter (tw) 81.3K 1.3M 13.1M 104.9M
web-Google (wgo) 916.4K 4.3M 13.4M 39.9M

web-NotreDame (wnd) 325.7K 1.1M 8.9M 231.9M
wikipedia-200611 (wiki) 3.1M 37.0M 88.8M 162.9M

use a hashmap to keep track of the items that are greater
than the current h value, and we simply ignore the items
that are smaller than h. This enables the computation of
the h-index in linear time. In addition, for the non-initial
iterations of the convergence process, we simply check the
items if the current ⌧ index can be preserved. Once we see
� ⌧ items with at least ⌧ index, no more checks needed.

5. EXPERIMENTS
We evaluate our algorithms on three instances of the nu-

cleus decomposition: k-core (or (1, 2)), k-truss (or (2, 3)),
and (3, 4). Constructing the hypergraphs requires to store
all the s-cliques, which is infeasible for large networks. Thus
we do not construct the actual hypergraphs to compute
the indices. Instead, we find the participations of the
r-cliques in s-cliques on-the-fly. Details about the com-
parison between two approaches are given in [25]. Our
dataset includes di↵erent types of real-world networks, such
as an internet topology network (as-skitter), online social
networks (facebook, soc-LiveJournal, soc-orkut), who-
trust-whom network (soc-sign-epinions), follower-followee
Twitter networks (soc-twitter-higgs, twitter), web net-
works (web-Google,
web-NotreDame), and a network of wikipedia pages
(wikipedia-200611). Number of vertices, edges, triangles
and four-cliques in those graphs are given in Table 3.

22

c

d

bf e a
1

1

3

2

21 1 2

2

2

1 1 2 2

2

2

degrees

 1 indices in SND
core numbers

22

c

d

bf e a
1

1

3

2

21 1 2

2

2

1 1 2 2

2

2

degrees
core numbers
2nd step in lex. order

Figure 2: Async example

Theorem 4. In AND algorithm, if the r-cliques are pro-
cessed in the non-decreasing order of their final s indices,
convergence is obtained in a single iteration.

Proof. Say s(R) = t for an r-clique R. For the sake of
contradiction, assume that it takes more than one iteration
for ds(R) to converge s(R). So, ⌧0(R) = ds(R) and ⌧0(R) �
⌧1(R) > s(R). So, when R is being processed, H(L) > t
for L = {⇢(S) : S 3 R}. That means there are at least t+1
s-cliques where each has ⇢ value of at least t+ 1. However,
this implies that R is a part of (t + 1)-(r, s) nucleus, which
contradicts with the initial assumption.

The worst case happens when all the r-cliques see the ⌧
values of their neighbors that are computed in the previous
iteration and it is exactly the SND algorithm.

Figure 2 illustrates the di↵erence between Snd and And
algorithms (with di↵erent orderings) on the k-core case (r =
1, s = 2). Our focus is on vertices (1-cliques) and their re-
lations with edges (2-cliques). We first apply Snd. First,
vertex degrees are calculated as ⌧0 indices (blue numbers).
Then, for each vertex u we compute the ⌧1(u) = H({⌧0(v) :
v 2 N2(u)}, i.e., h-index of its neighbors’ degrees (red num-
bers). ⌧ For instance,

ToDo: should I include some numbers in exp, bounds part

4.2.1 Skipping the plateaus
ToDo: fig for tau changes and platos Our computations

converge when none of the vertices update their ⌧ indices
anymore. This implies that computations are performed for
all the vertices even when only a single update occurs. Those
computations are redundant. When ⌧(v) converges (v) for
a vertex v, no more computations are needed for v in the
following iterations. Also, a vertex can possibly maintain
the same ⌧ index for a number of iterations, reaches to a
plateau, and then updates it. So, it is not possible to deduce
whether ⌧(v) has converged to (v) by just looking at ⌧(v)
values of any vertex v. In order to skip the intermediate
or final plateaus during the convergence of ⌧(v) to (v), we
introduce a notification mechanism where a vertex notifies
its neighbors when its ⌧ index is updated.

Brown lines in Algorithm ?? summarizes the notification
mechanism we plug in to the asynchronous computation.
The only changes are in lines ??, ??, ?? and ??. Additional
C(·) array tracks whether a vertex v 2 V has updated its ⌧
index or not. It is set to true at the beginning to initiate
the computations for all vertices. Once C(v) becomes false,
i.e., maintains its ⌧ index, we avoid the computation. Note
that, a vertex restarts its computation only when a neighbor

vertex has an update (Line ??). Once a vertex completes
the computation, it is set to be not-updated (line ??) so that
no computation occurs until a notification is received from
a neighbor.

4.3 Illustrative examples
ToDo: explain fig 3 and 4

4.4 Heuristics and implementation
Here we introduce an important scheduling decision for

the parallelization in our algorithms, and a heuristic to com-
pute the h-index of a set in linear time.
We implemented our algorithms by using OpenMP [6] to

utilize the shared-memory architectures. The loops, anno-
tated as parallel in Algorithm ??, are shared among threads,
and each thread is responsible for its partition of vertices.
Default scheduling policy in OpenMP is static and it dis-
tributes the iterations of the loop to the threads in chunks,
i.e., for two threads, one takes the first half and the other
takes the second. Although this policy is useful for many ap-
plications, it will not work well for our algorithms. The no-
tification mechanism to avoid the redundant computations
can result in significant load imbalance between threads. If
most of the converged vertices reside in a certain part, then
the thread that is responsible for that part becomes idle un-
til the end of computation. To prevent this, we embraced
the dynamic scheduling where each thread is given a new
workload once it is done. No thread stays idle this way, and
the overall computation is parallelized more e�ciently.
h-index computation of a list is done by sorting the items

in non-increasing order and checking the values from the
beginning of the list to find the largest h value for which at
least h items exist with at least h value. Main bottleneck is
the sorting operation which takes O(n.logn) time. However,
h-index can be computed without sorting. We initialize h
as zero and iterate over the items in the list. At each time,
we attempt to increase the current h value based on the

a

i

d

f

b

h

c e g
122

4

2

4

3

2

4 2

1 1

23

3

2

2
1st

2nd

3rd

step
step
step

Figure 3: Core example

Figure 2: Async example

Theorem 4. In AND algorithm, if the r-cliques are pro-
cessed in the non-decreasing order of their final s indices,
convergence is obtained in a single iteration.

Proof. Say s(R) = t for an r-clique R. For the sake of
contradiction, assume that it takes more than one iteration
for ds(R) to converge s(R). So, ⌧0(R) = ds(R) and ⌧0(R) �
⌧1(R) > s(R). So, when R is being processed, H(L) > t
for L = {⇢(S) : S 3 R}. That means there are at least t+1
s-cliques where each has ⇢ value of at least t+ 1. However,
this implies that R is a part of (t + 1)-(r, s) nucleus, which
contradicts with the initial assumption.

The worst case happens when all the r-cliques see the ⌧
values of their neighbors that are computed in the previous
iteration and it is exactly the SND algorithm.

Figure 2 illustrates Snd and And algorithms (with di↵er-
ent orderings) on the k-core case (r = 1, s = 2). Our focus
is on vertices (1-cliques) and their edge (2-clique) counts
(degrees). We first apply Snd. First, vertex degrees are cal-
culated as ⌧0 indices (blue numbers). Then, for each vertex
u we compute the ⌧1(u) = H({⌧0(v) : v 2 N2(u)}, i.e., h-
index of its neighbors’ degrees (red numbers). For instance,
vertex a has two neighbors, e and b, with degrees 2 and
3. Since H({2, 3}) = 2, we get ⌧1(a) = 2. For vertex b,
we get ⌧1(b) = H({2, 2, 2}) = 2. Once we compute all ⌧1
indices, we iterate again because there were changes in ⌧
indices, e.g,. ⌧1(e) 6= ⌧0(e) (Line 13 in Algorithm 2). ⌧2
indices are shown in green. We observe an update only for
the vertex a; ⌧2(a) = H({⌧1(e), ⌧1(b)}) = H({1, 2}) = 1.
When we iterate again, no update is observed in ⌧ indices,
which means s = ⌧2 for all vertices. Regarding And algo-
rithm, we choose to follow the non-decreasing order of s

indices; {f,e,a,b,c,d}. Computing the ⌧1 indices on this or-
der enables us to reach the convergence in a single iteration.
For instance, ⌧1(a) = H({⌧1(e), ⌧0(b)}) = H({1, 2}) = 1.
If we choose to process the vertices in the alphabetical or-
der, {a,b,c,d,e,f}, we have ⌧1(a) = H({⌧0(e), ⌧0(b)}) =
H({2, 2}) = 2, which implies that we need more iteration(s)
to converge. Indeed ⌧2(a) = H({⌧1(e), ⌧1(b)}) = H({1, 2}) =
1

 ⌧1 ToDo: should I include some numbers in exp, bounds
part

4.2.1 Skipping the plateaus
ToDo: fig for tau changes and platos Our computations

converge when none of the vertices update their ⌧ indices
anymore. This implies that computations are performed for
all the vertices even when only a single update occurs. Those
computations are redundant. When ⌧(v) converges (v) for
a vertex v, no more computations are needed for v in the

following iterations. Also, a vertex can possibly maintain
the same ⌧ index for a number of iterations, reaches to a
plateau, and then updates it. So, it is not possible to deduce
whether ⌧(v) has converged to (v) by just looking at ⌧(v)
values of any vertex v. In order to skip the intermediate
or final plateaus during the convergence of ⌧(v) to (v), we
introduce a notification mechanism where a vertex notifies
its neighbors when its ⌧ index is updated.
Brown lines in Algorithm ?? summarizes the notification

mechanism we plug in to the asynchronous computation.
The only changes are in lines ??, ??, ?? and ??. Additional
C(·) array tracks whether a vertex v 2 V has updated its ⌧
index or not. It is set to true at the beginning to initiate
the computations for all vertices. Once C(v) becomes false,
i.e., maintains its ⌧ index, we avoid the computation. Note
that, a vertex restarts its computation only when a neighbor
vertex has an update (Line ??). Once a vertex completes
the computation, it is set to be not-updated (line ??) so that
no computation occurs until a notification is received from
a neighbor.

4.3 Illustrative examples
ToDo: explain fig 3 and 4

4.4 Heuristics and implementation
Here we introduce an important scheduling decision for

the parallelization in our algorithms, and a heuristic to com-
pute the h-index of a set in linear time.
We implemented our algorithms by using OpenMP [6] to

utilize the shared-memory architectures. The loops, anno-
tated as parallel in Algorithm ??, are shared among threads,
and each thread is responsible for its partition of vertices.
Default scheduling policy in OpenMP is static and it dis-
tributes the iterations of the loop to the threads in chunks,
i.e., for two threads, one takes the first half and the other
takes the second. Although this policy is useful for many ap-
plications, it will not work well for our algorithms. The no-

a

i

d

f

b

h

c e g
122

4

2

4

3

2

4 2

1 1

23

3

2

2
1st

2nd

3rd

step
step
step

Figure 3: Core example

d3

 0 1 2
 3

1 2 3 4

AND (lex. order) :

 no notification :
degree, core number :

1 2 3 4 with notification :

Figure 5: Truss example

plateaus. Because it can maintain the same ⌧ index for a
number of iterations, creating a plateau, and then update.
Thus, it is not possible to deduce whether ⌧(R) has con-
verged to (R) by just looking at consecutive ⌧(R) indices.
In order to skip the intermediate or final plateaus during the
convergence, we introduce a notification mechanism where
an r-clique notifies its neighbors when its ⌧ index is updated.

Orange lines in Algorithm 3 presents the notification mech-
anism we plug in to the asynchronous computation. c(·)
array is declared in line 4 to track whether an R 2 R(G)
has updated its ⌧ index or not. c(R) = false means that
R is an idle r-clique and there is no need to recompute its ⌧
value, as shown in line 8. Thus, all c(·) is set to true at the
beginning to initiate the computations for all the r-cliques.
Each r-clique marks itself idle at the end of an iteration
(line 17) and waits until an update happens in the ⌧ in-
dex of a neighbor. Whenever the ⌧ index of an r-clique is
updated, all its neighbors are notified and woken up since
their ⌧ indices might be a↵ected (line 15). Note that some
neighbors might already be active at that time and misses
the new update, but it is ok since the following iterations
will handle it – in the worst case it will be a synchronous
computation.
⌧0 ⌧1 ⌧2 ⌧3
⌧0 ⌧1 ⌧2
d3 3

⌧0 ⌧1
d2 2

Figure 5 illustrates the k-truss decomposition (r = 2, s =
3) on a toy graph. We follow the lexicographical order of
the edges (vertex pairs). Triangle counts (d3) of edges are
given in blue, which are used to initialize ⌧0 indices. We first
process edge ab. It has four triangles, abc, abd, abe, abi.
⇢ value of each triangle is calculated by taking the minimum
⌧0 value of the neighbor edges of ab (Line 11). Set of ⇢ values
is {min(⌧0(ac), ⌧0(bc)),min(⌧0(ad), ⌧0(bd)),min(⌧0(ae),
⌧0(be)),min(⌧0(ai), ⌧0(bi))}, which is L = {4, 3, 3, 2} and
⌧1(ab) = H(L) = 3. After computing ⌧1 indices of all the
edges in lexicographical order (ei edge is last),

4.3 Heuristics and implementation

Table 3: Dataset statistics

|V | |E| |4| |K4|
as-skitter (ask) 1.7M 11.1M 28.8M 148.8M

facebook (fb) 4K 88.2K 1.6M 30.0M
soc-LiveJournal (slj) 4.8M 68.5M 285.7M 9.9B

soc-orkut (ork) 2.9M 106.3M 524.6M 2.4B
soc-sign-epinions (sse) 131.8K 711.2K 4.9M 58.6M
soc-twitter-higgs (hg) 456.6K 12.5M 83.0M 429.7M

twitter (tw) 81.3K 1.3M 13.1M 104.9M
web-Google (wgo) 916.4K 4.3M 13.4M 39.9M

web-NotreDame (wnd) 325.7K 1.1M 8.9M 231.9M
wikipedia-200611 (wiki) 3.1M 37.0M 88.8M 162.9M

Here we introduce an important scheduling decision for
the parallelization in our algorithms, and a heuristic to com-
pute the h-index of a set in linear time.
We implemented our algorithms by using OpenMP [6] to

utilize the shared-memory architectures. The loops, anno-
tated as parallel in Algorithm ??, are shared among threads,
and each thread is responsible for its partition of vertices.
Default scheduling policy in OpenMP is static and it dis-
tributes the iterations of the loop to the threads in chunks,
i.e., for two threads, one takes the first half and the other
takes the second. Although this policy is useful for many ap-
plications, it will not work well for our algorithms. The no-
tification mechanism to avoid the redundant computations
can result in significant load imbalance between threads. If
most of the converged vertices reside in a certain part, then
the thread that is responsible for that part becomes idle un-
til the end of computation. To prevent this, we embraced
the dynamic scheduling where each thread is given a new
workload once it is done. No thread stays idle this way, and
the overall computation is parallelized more e�ciently.
h-index computation of a list is done by sorting the items

in non-increasing order and checking the values from the
beginning of the list to find the largest h value for which at
least h items exist with at least h value. Main bottleneck is
the sorting operation which takes O(n.logn) time. However,
h-index can be computed without sorting. We initialize h
as zero and iterate over the items in the list. At each time,
we attempt to increase the current h value based on the
inspected item. For the current h value, we keep track of
the number of items that have equal value to h. We also
use a hashmap to keep track of the items that are greater
than the current h value, and we simply ignore the items
that are smaller than h. This enables the computation of
the h-index in linear time. In addition, for the non-initial
iterations of the convergence process, we simply check the
items if the current ⌧ index can be preserved. Once we see
� ⌧ items with at least ⌧ index, no more checks needed.

5. EXPERIMENTS
We evaluate our algorithms on three instances of the nu-

cleus decomposition: k-core (or (1, 2)), k-truss (or (2, 3)),
and (3, 4). Constructing the hypergraphs requires to store
all the s-cliques, which is infeasible for large networks. Thus
we do not construct the actual hypergraphs to compute
the indices. Instead, we find the participations of the
r-cliques in s-cliques on-the-fly. Details about the com-

to converge. Indeed, a is the only vertex that has not
reached its 2 value at the end of first iteration. We get
⌧2(a) = H({⌧1(e), ⌧1(b)}) = H({1, 2}) = 1, thus converge
in two iterations.

4.2.1 Skipping the plateaus
And algorithm converges when none of the r-cliques up-
date their ⌧ indices anymore. Consequently, computations
are performed for all the r-cliques even when only one up-
date occurs. Figure 5 shows the ⌧ indices of some edges
in the facebook graph during the k-truss decomposition
(r = 2, s = 3). There are wide plateaus where ⌧ indices
stay constant. However, those computations are redundant.
When ⌧(R) converges to s(R) for an r-clique R, no more
computations are needed for R anymore. But we do not
know if the ⌧(R) has converged or not by only watching the
plateaus. Because it can maintain the same ⌧ index for a
number of iterations, creating a plateau, and then update.
Thus, it is not possible to deduce whether ⌧(R) has con-
verged to (R) by just looking at consecutive ⌧(R) indices.
In order to skip the intermediate or final plateaus during the
convergence, we introduce a notification mechanism where
an r-clique notifies its neighbors when its ⌧ index is updated.
Orange lines in Algorithm 3 presents the notification mech-

anism we plug in to the asynchronous computation. c(·)
array is declared in line 4 to track whether an R 2 R(G)
has updated its ⌧ index or not. c(R) = false means that
R is an idle r-clique and there is no need to recompute its ⌧
value, as shown in line 8. Thus, all c(·) is set to true at the
beginning to initiate the computations for all the r-cliques.
Each r-clique marks itself idle at the end of an iteration
(line 17) and waits until an update happens in the ⌧ in-
dex of a neighbor. Whenever the ⌧ index of an r-clique is
updated, all its neighbors are notified and woken up since
their ⌧ indices might be a↵ected (line 15). Note that some
neighbors might already be active at that time and misses
the new update, but it is ok since the following iterations
will handle it – in the worst case it will be a synchronous
computation.
⌧0 ⌧1 ⌧2 ⌧3
⌧0 ⌧1 ⌧2
d3 3

22

c

d

bf e a
1

1

3

2

21 1 2

2

2

1 1 2 2

2

2

degree (d2)

 1 in SND & AND alph. order
core number (2)

22

c

d

bf e a
1

1

3

2

21 1 2

2

2

1 1 2 2

2

2

degrees
core numbers
2nd step in lex. order

Figure 2: Async example

Theorem 4. In AND algorithm, if the r-cliques are pro-
cessed in the non-decreasing order of their final s indices,
convergence is obtained in a single iteration.

Proof. Say s(R) = t for an r-clique R. For the sake of
contradiction, assume that it takes more than one iteration
for ds(R) to converge s(R). So, ⌧0(R) = ds(R) and ⌧0(R) �
⌧1(R) > s(R). So, when R is being processed, H(L) > t
for L = {⇢(S) : S 3 R}. That means there are at least t+1
s-cliques where each has ⇢ value of at least t+ 1. However,
this implies that R is a part of (t + 1)-(r, s) nucleus, which
contradicts with the initial assumption.

The worst case happens when all the r-cliques see the ⌧
values of their neighbors that are computed in the previous
iteration and it is exactly the SND algorithm.

Figure 2 illustrates the di↵erence between Snd and And
algorithms (with di↵erent orderings) on the k-core case (r =
1, s = 2). Our focus is on vertices (1-cliques) and their re-
lations with edges (2-cliques). We first apply Snd. First,
vertex degrees are calculated as ⌧0 indices (blue numbers).
Then, for each vertex u we compute the ⌧1(u) = H({⌧0(v) :
v 2 N2(u)}, i.e., h-index of its neighbors’ degrees (red num-
bers). ⌧ For instance,

ToDo: should I include some numbers in exp, bounds part

4.2.1 Skipping the plateaus
ToDo: fig for tau changes and platos Our computations

converge when none of the vertices update their ⌧ indices
anymore. This implies that computations are performed for
all the vertices even when only a single update occurs. Those
computations are redundant. When ⌧(v) converges (v) for
a vertex v, no more computations are needed for v in the
following iterations. Also, a vertex can possibly maintain
the same ⌧ index for a number of iterations, reaches to a
plateau, and then updates it. So, it is not possible to deduce
whether ⌧(v) has converged to (v) by just looking at ⌧(v)
values of any vertex v. In order to skip the intermediate
or final plateaus during the convergence of ⌧(v) to (v), we
introduce a notification mechanism where a vertex notifies
its neighbors when its ⌧ index is updated.

Brown lines in Algorithm ?? summarizes the notification
mechanism we plug in to the asynchronous computation.
The only changes are in lines ??, ??, ?? and ??. Additional
C(·) array tracks whether a vertex v 2 V has updated its ⌧
index or not. It is set to true at the beginning to initiate
the computations for all vertices. Once C(v) becomes false,
i.e., maintains its ⌧ index, we avoid the computation. Note
that, a vertex restarts its computation only when a neighbor

vertex has an update (Line ??). Once a vertex completes
the computation, it is set to be not-updated (line ??) so that
no computation occurs until a notification is received from
a neighbor.

4.3 Illustrative examples
ToDo: explain fig 3 and 4

4.4 Heuristics and implementation
Here we introduce an important scheduling decision for

the parallelization in our algorithms, and a heuristic to com-
pute the h-index of a set in linear time.
We implemented our algorithms by using OpenMP [6] to

utilize the shared-memory architectures. The loops, anno-
tated as parallel in Algorithm ??, are shared among threads,
and each thread is responsible for its partition of vertices.
Default scheduling policy in OpenMP is static and it dis-
tributes the iterations of the loop to the threads in chunks,
i.e., for two threads, one takes the first half and the other
takes the second. Although this policy is useful for many ap-
plications, it will not work well for our algorithms. The no-
tification mechanism to avoid the redundant computations
can result in significant load imbalance between threads. If
most of the converged vertices reside in a certain part, then
the thread that is responsible for that part becomes idle un-
til the end of computation. To prevent this, we embraced
the dynamic scheduling where each thread is given a new
workload once it is done. No thread stays idle this way, and
the overall computation is parallelized more e�ciently.
h-index computation of a list is done by sorting the items

in non-increasing order and checking the values from the
beginning of the list to find the largest h value for which at
least h items exist with at least h value. Main bottleneck is
the sorting operation which takes O(n.logn) time. However,
h-index can be computed without sorting. We initialize h
as zero and iterate over the items in the list. At each time,
we attempt to increase the current h value based on the

a

i

d

f

b

h

c e g
122

4

2

4

3

2

4 2

1 1

23

3

2

2
1st

2nd

3rd

step
step
step

Figure 3: Core example

22

c

d

bf e a
1

1

3

2

21 1 2

2

2

1 1 2 2

2

2

degrees

 1 indices in SND
core numbers

22

c

d

bf e a
1

1

3

2

21 1 2

2

2

1 1 2 2

2

2

degrees
core numbers
2nd step in lex. order

Figure 2: Async example

Theorem 4. In AND algorithm, if the r-cliques are pro-
cessed in the non-decreasing order of their final s indices,
convergence is obtained in a single iteration.

Proof. Say s(R) = t for an r-clique R. For the sake of
contradiction, assume that it takes more than one iteration
for ds(R) to converge s(R). So, ⌧0(R) = ds(R) and ⌧0(R) �
⌧1(R) > s(R). So, when R is being processed, H(L) > t
for L = {⇢(S) : S 3 R}. That means there are at least t+1
s-cliques where each has ⇢ value of at least t+ 1. However,
this implies that R is a part of (t + 1)-(r, s) nucleus, which
contradicts with the initial assumption.

The worst case happens when all the r-cliques see the ⌧
values of their neighbors that are computed in the previous
iteration and it is exactly the SND algorithm.

Figure 2 illustrates the di↵erence between Snd and And
algorithms (with di↵erent orderings) on the k-core case (r =
1, s = 2). Our focus is on vertices (1-cliques) and their re-
lations with edges (2-cliques). We first apply Snd. First,
vertex degrees are calculated as ⌧0 indices (blue numbers).
Then, for each vertex u we compute the ⌧1(u) = H({⌧0(v) :
v 2 N2(u)}, i.e., h-index of its neighbors’ degrees (red num-
bers). ⌧ For instance,

ToDo: should I include some numbers in exp, bounds part

4.2.1 Skipping the plateaus
ToDo: fig for tau changes and platos Our computations

converge when none of the vertices update their ⌧ indices
anymore. This implies that computations are performed for
all the vertices even when only a single update occurs. Those
computations are redundant. When ⌧(v) converges (v) for
a vertex v, no more computations are needed for v in the
following iterations. Also, a vertex can possibly maintain
the same ⌧ index for a number of iterations, reaches to a
plateau, and then updates it. So, it is not possible to deduce
whether ⌧(v) has converged to (v) by just looking at ⌧(v)
values of any vertex v. In order to skip the intermediate
or final plateaus during the convergence of ⌧(v) to (v), we
introduce a notification mechanism where a vertex notifies
its neighbors when its ⌧ index is updated.

Brown lines in Algorithm ?? summarizes the notification
mechanism we plug in to the asynchronous computation.
The only changes are in lines ??, ??, ?? and ??. Additional
C(·) array tracks whether a vertex v 2 V has updated its ⌧
index or not. It is set to true at the beginning to initiate
the computations for all vertices. Once C(v) becomes false,
i.e., maintains its ⌧ index, we avoid the computation. Note
that, a vertex restarts its computation only when a neighbor

vertex has an update (Line ??). Once a vertex completes
the computation, it is set to be not-updated (line ??) so that
no computation occurs until a notification is received from
a neighbor.

4.3 Illustrative examples
ToDo: explain fig 3 and 4

4.4 Heuristics and implementation
Here we introduce an important scheduling decision for

the parallelization in our algorithms, and a heuristic to com-
pute the h-index of a set in linear time.
We implemented our algorithms by using OpenMP [6] to

utilize the shared-memory architectures. The loops, anno-
tated as parallel in Algorithm ??, are shared among threads,
and each thread is responsible for its partition of vertices.
Default scheduling policy in OpenMP is static and it dis-
tributes the iterations of the loop to the threads in chunks,
i.e., for two threads, one takes the first half and the other
takes the second. Although this policy is useful for many ap-
plications, it will not work well for our algorithms. The no-
tification mechanism to avoid the redundant computations
can result in significant load imbalance between threads. If
most of the converged vertices reside in a certain part, then
the thread that is responsible for that part becomes idle un-
til the end of computation. To prevent this, we embraced
the dynamic scheduling where each thread is given a new
workload once it is done. No thread stays idle this way, and
the overall computation is parallelized more e�ciently.
h-index computation of a list is done by sorting the items

in non-increasing order and checking the values from the
beginning of the list to find the largest h value for which at
least h items exist with at least h value. Main bottleneck is
the sorting operation which takes O(n.logn) time. However,
h-index can be computed without sorting. We initialize h
as zero and iterate over the items in the list. At each time,
we attempt to increase the current h value based on the

a

i

d

f

b

h

c e g
122

4

2

4

3

2

4 2

1 1

23

3

2

2
1st

2nd

3rd

step
step
step

Figure 3: Core example

Figure 2: Async example

Theorem 4. In AND algorithm, if the r-cliques are pro-
cessed in the non-decreasing order of their final s indices,
convergence is obtained in a single iteration.

Proof. Say s(R) = t for an r-clique R. For the sake of
contradiction, assume that it takes more than one iteration
for ds(R) to converge s(R). So, ⌧0(R) = ds(R) and ⌧0(R) �
⌧1(R) > s(R). So, when R is being processed, H(L) > t
for L = {⇢(S) : S 3 R}. That means there are at least t+1
s-cliques where each has ⇢ value of at least t+ 1. However,
this implies that R is a part of (t + 1)-(r, s) nucleus, which
contradicts with the initial assumption.

The worst case happens when all the r-cliques see the ⌧
values of their neighbors that are computed in the previous
iteration and it is exactly the SND algorithm.

Figure 2 illustrates Snd and And algorithms (with di↵er-
ent orderings) on the k-core case (r = 1, s = 2). Our focus
is on vertices (1-cliques) and their edge (2-clique) counts
(degrees). We first apply Snd. First, vertex degrees are cal-
culated as ⌧0 indices (blue numbers). Then, for each vertex
u we compute the ⌧1(u) = H({⌧0(v) : v 2 N2(u)}, i.e., h-
index of its neighbors’ degrees (red numbers). For instance,
vertex a has two neighbors, e and b, with degrees 2 and
3. Since H({2, 3}) = 2, we get ⌧1(a) = 2. For vertex b,
we get ⌧1(b) = H({2, 2, 2}) = 2. Once we compute all ⌧1
indices, we iterate again because there were changes in ⌧
indices, e.g,. ⌧1(e) 6= ⌧0(e) (Line 13 in Algorithm 2). ⌧2
indices are shown in green. We observe an update only for
the vertex a; ⌧2(a) = H({⌧1(e), ⌧1(b)}) = H({1, 2}) = 1.
When we iterate again, no update is observed in ⌧ indices,
which means s = ⌧2 for all vertices. Regarding And algo-
rithm, we choose to follow the non-decreasing order of s

indices; {f,e,a,b,c,d}. Computing the ⌧1 indices on this or-
der enables us to reach the convergence in a single iteration.
For instance, ⌧1(a) = H({⌧1(e), ⌧0(b)}) = H({1, 2}) = 1.
If we choose to process the vertices in the alphabetical or-
der, {a,b,c,d,e,f}, we have ⌧1(a) = H({⌧0(e), ⌧0(b)}) =
H({2, 2}) = 2, which implies that we need more iteration(s)
to converge. Indeed ⌧2(a) = H({⌧1(e), ⌧1(b)}) = H({1, 2}) =
1

 ⌧1 ToDo: should I include some numbers in exp, bounds
part

4.2.1 Skipping the plateaus
ToDo: fig for tau changes and platos Our computations

converge when none of the vertices update their ⌧ indices
anymore. This implies that computations are performed for
all the vertices even when only a single update occurs. Those
computations are redundant. When ⌧(v) converges (v) for
a vertex v, no more computations are needed for v in the

following iterations. Also, a vertex can possibly maintain
the same ⌧ index for a number of iterations, reaches to a
plateau, and then updates it. So, it is not possible to deduce
whether ⌧(v) has converged to (v) by just looking at ⌧(v)
values of any vertex v. In order to skip the intermediate
or final plateaus during the convergence of ⌧(v) to (v), we
introduce a notification mechanism where a vertex notifies
its neighbors when its ⌧ index is updated.
Brown lines in Algorithm ?? summarizes the notification

mechanism we plug in to the asynchronous computation.
The only changes are in lines ??, ??, ?? and ??. Additional
C(·) array tracks whether a vertex v 2 V has updated its ⌧
index or not. It is set to true at the beginning to initiate
the computations for all vertices. Once C(v) becomes false,
i.e., maintains its ⌧ index, we avoid the computation. Note
that, a vertex restarts its computation only when a neighbor
vertex has an update (Line ??). Once a vertex completes
the computation, it is set to be not-updated (line ??) so that
no computation occurs until a notification is received from
a neighbor.

4.3 Illustrative examples
ToDo: explain fig 3 and 4

4.4 Heuristics and implementation
Here we introduce an important scheduling decision for

the parallelization in our algorithms, and a heuristic to com-
pute the h-index of a set in linear time.
We implemented our algorithms by using OpenMP [6] to

utilize the shared-memory architectures. The loops, anno-
tated as parallel in Algorithm ??, are shared among threads,
and each thread is responsible for its partition of vertices.
Default scheduling policy in OpenMP is static and it dis-
tributes the iterations of the loop to the threads in chunks,
i.e., for two threads, one takes the first half and the other
takes the second. Although this policy is useful for many ap-
plications, it will not work well for our algorithms. The no-

a

i

d

f

b

h

c e g
122

4

2

4

3

2

4 2

1 1

23

3

2

2
1st

2nd

3rd

step
step
step

Figure 3: Core example

Figure 2: We apply the k-core decomposition (r =
1, s = 2). So, we need to find 2 (edge is 2-clique)
indices of vertices. ⌧0 indices are initialized to the
degrees (d2s in blue). Snd algorithm converges in
two iterations (⌧1s in red, ⌧2 = 2s in green). Same
happens when we use And algorithm and process the
vertices in the alphabetical order. However, if we
choose {f,e,a,b,c,d} order, which is actually a non-
decreasing order on 2 indices, And converges in a
single iteration.

Theorem 4. In And algorithm, if the r-cliques are pro-
cessed in the non-decreasing order of their final s indices,
convergence is obtained in a single iteration.

Proof. Say s(R) = t for an r-clique R. For the sake of
contradiction, assume that it takes more than one iteration
for ds(R) to converge s(R). So, ⌧0(R) = ds(R) and ⌧0(R) �
⌧1(R) > s(R). So, when R is being processed, H(L) > t
for L = {⇢(S) : S 3 R}. That means there are at least t+1
s-cliques where each has ⇢ value of at least t+ 1. However,
this implies that R is a part of (t + 1)-(r, s) nucleus, which
contradicts with the initial assumption.

The worst case happens when all the r-cliques see the ⌧
indices of their neighbors that are computed in the previ-
ous iteration and it is exactly the SND algorithm. Erdem
SAYS: I actually believe that processing the vertices in non-
increasing order of their indices will give the worst case
for And algorithm. It’s just an intuition based on the best
case theorem, not sure if I can prove. If you can prove, I
can include some worst case numbers in exp. section

Figure 2 illustrates Snd and And algorithms (with di↵er-
ent orderings) on the k-core case (r = 1, s = 2). Our focus
is on vertices (1-cliques) and their edge (2-clique) counts
(degrees). We first apply Snd. First, vertex degrees are cal-
culated as ⌧0 indices (blue numbers). Then, for each vertex
u we compute the ⌧1(u) = H({⌧0(v) : v 2 N2(u)}, i.e., h-
index of its neighbors’ degrees (red numbers). For instance,
vertex a has two neighbors, e and b, with degrees 2 and
3. Since H({2, 3}) = 2, we get ⌧1(a) = 2. For vertex b,
we get ⌧1(b) = H({2, 2, 2}) = 2. Once we compute all ⌧1
indices, we iterate again because there were changes in ⌧
indices, e.g,. ⌧1(e) 6= ⌧0(e) (Line 13 in Algorithm 2). ⌧2
indices are shown in green. We observe an update only for
the vertex a; ⌧2(a) = H({⌧1(e), ⌧1(b)}) = H({1, 2}) = 1.
When we iterate again, no update is observed in ⌧ indices,
which means s = ⌧2 for all vertices. Regarding And algo-
rithm, we choose to follow the non-decreasing order of s

indices; {f,e,a,b,c,d}. Computing the ⌧1 indices on this or-
der enables us to reach the convergence in a single iteration.
For instance, ⌧1(a) = H({⌧1(e), ⌧0(b)}) = H({1, 2}) = 1.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 0 2 4 6 8 10 12 14 16

t i
nd

ic
es

number of iterations

Figure 3: Changesasd

If we choose to process the vertices in the alphabetical or-
der, {a,b,c,d,e,f}, we have ⌧1(a) = H({⌧0(e), ⌧0(b)}) =
H({2, 2}) = 2, which implies that we need more iteration(s)
to converge. Indeed, a is the only vertex that has not
reached its 2 value. We get ⌧2(a) = H({⌧1(e), ⌧1(b)}) =
H({1, 2}) = 1, thus converge in two iterations.

0
10
20
30
40
50
60
70
80
90

0 2 4 6 8 10 12 14 16

⌧
in
d
ic
es

number of iterations

4.2.1 Skipping the plateaus
ToDo: fig for tau changes and platos Our computations

converge when none of the vertices update their ⌧ indices
anymore. This implies that computations are performed for
all the vertices even when only a single update occurs. Those
computations are redundant. When ⌧(v) converges (v) for
a vertex v, no more computations are needed for v in the
following iterations. Also, a vertex can possibly maintain
the same ⌧ index for a number of iterations, reaches to a
plateau, and then updates it. So, it is not possible to deduce
whether ⌧(v) has converged to (v) by just looking at ⌧(v)
indices of any vertex v. In order to skip the intermediate
or final plateaus during the convergence of ⌧(v) to (v), we
introduce a notification mechanism where a vertex notifies
its neighbors when its ⌧ index is updated.

Brown lines in Algorithm ?? summarizes the notification
mechanism we plug in to the asynchronous computation.
The only changes are in lines ??, ??, ?? and ??. Additional

2
2

cd

b
f

e
a

1 1

3

2 2
1

1
2

2 2

1
1

2
2

2 2

d
e
g

re
e
 (
d

2)

1

in
 S

N
D

 &
 A

N
D

 a
lp

h
.

o
rd

e
r

c
o

re
 n

u
m

b
e
r

(

2)

2
2

cd

b
f

e
a

1 1

3

2 2
1

1
2

2 2

1
1

2
2

2 2

d
e
g

re
e
s

c
o

re
 n

u
m

b
e
rs

2
n
d
 st

e
p

 in
 le

x.
 o

rd
e
r

F
ig
u
re

2
:
A
sy
n
c
ex
a
m
p
le

T
h
e
o
r
e
m

4
.
In

A
N
D

a
lg
o
ri
th
m
,
if
th
e
r-
cl
iq
u
es

a
re

p
ro
-

ce
ss
ed

in
th
e
n
o
n
-d
ec
re
a
si
n
g
o
rd
er

o
f
th
ei
r
fi
n
a
l

s
in
d
ic
es
,

co
n
ve
rg
en

ce
is

o
bt
a
in
ed

in
a
si
n
gl
e
it
er
a
ti
o
n
.

P
r
o
o
f
.
S
ay

s
(R

)
=

t
fo
r
a
n
r-
cl
iq
u
e
R
.
F
o
r
th
e
sa
k
e
o
f

co
n
tr
a
d
ic
ti
o
n
,
a
ss
u
m
e
th
a
t
it

ta
k
es

m
o
re

th
a
n
o
n
e
it
er
a
ti
o
n

fo
r
d
s
(R

)
to

co
n
v
er
g
e

s
(R

).
S
o
,
⌧ 0
(R

)
=

d
s
(R

)
a
n
d
⌧ 0
(R

)
�

⌧ 1
(R

)
>

s
(R

).
S
o
,
w
h
en

R
is

b
ei
n
g
p
ro
ce
ss
ed

,
H
(L

)
>

t
fo
r
L
=

{⇢
(S

)
:
S
3
R
}.

T
h
a
t
m
ea
n
s
th
er
e
a
re

a
t
le
a
st

t
+
1

s-
cl
iq
u
es

w
h
er
e
ea
ch

h
a
s
⇢
va
lu
e
o
f
a
t
le
a
st

t
+

1
.
H
ow

ev
er
,

th
is

im
p
li
es

th
a
t
R

is
a
p
a
rt

o
f
(t

+
1
)-
(r
, s
)
n
u
cl
eu

s,
w
h
ic
h

co
n
tr
a
d
ic
ts

w
it
h
th
e
in
it
ia
l
a
ss
u
m
p
ti
o
n
.

T
h
e
w
o
rs
t
ca
se

h
a
p
p
en

s
w
h
en

a
ll
th
e
r-
cl
iq
u
es

se
e
th
e
⌧

va
lu
es

o
f
th
ei
r
n
ei
g
h
b
o
rs

th
a
t
a
re

co
m
p
u
te
d
in

th
e
p
re
v
io
u
s

it
er
a
ti
o
n
a
n
d
it

is
ex
a
ct
ly

th
e
S
N
D

a
lg
o
ri
th
m
.

F
ig
u
re

2
il
lu
st
ra
te
s
th
e
d
i↵
er
en

ce
b
et
w
ee
n
S
n
d
a
n
d
A
n
d

a
lg
o
ri
th
m
s
(w

it
h
d
i↵
er
en

t
o
rd
er
in
g
s)

o
n
th
e
k
-c
o
re

ca
se

(r
=

1
, s

=
2
).

O
u
r
fo
cu

s
is

o
n
v
er
ti
ce
s
(1
-c
li
q
u
es
)
a
n
d
th
ei
r
re
-

la
ti
o
n
s
w
it
h

ed
g
es

(2
-c
li
q
u
es
).

W
e
fi
rs
t
a
p
p
ly

S
n
d
.

F
ir
st
,

v
er
te
x
d
eg
re
es

a
re

ca
lc
u
la
te
d
a
s
⌧ 0

in
d
ic
es

(b
lu
e
n
u
m
b
er
s)
.

T
h
en

,
fo
r
ea
ch

v
er
te
x
u
w
e
co
m
p
u
te

th
e
⌧ 1
(u
)
=

H
({
⌧ 0
(v
)
:

v
2
N

2
(u
)}
,
i.
e.
,
h
-i
n
d
ex

o
f
it
s
n
ei
g
h
b
o
rs
’
d
eg
re
es

(r
ed

n
u
m
-

b
er
s)
.
⌧
F
o
r
in
st
a
n
ce
,

T
o
D
o
:
sh
o
u
ld

I
in
cl
u
d
e
so
m
e
n
u
m
b
er
s
in

ex
p
,
b
o
u
n
d
s
p
a
rt

4.
2.

1
Sk

ip
pi

ng
th

e
pl

at
ea

us
T
o
D
o
:
fi
g
fo
r
ta
u
ch
a
n
g
es

a
n
d
p
la
to
s
O
u
r
co
m
p
u
ta
ti
o
n
s

co
n
v
er
g
e
w
h
en

n
o
n
e
o
f
th
e
v
er
ti
ce
s
u
p
d
a
te

th
ei
r
⌧
in
d
ic
es

a
n
y
m
o
re
.
T
h
is
im

p
li
es

th
a
t
co
m
p
u
ta
ti
o
n
s
a
re

p
er
fo
rm

ed
fo
r

a
ll
th
e
v
er
ti
ce
s
ev
en

w
h
en

o
n
ly

a
si
n
g
le
u
p
d
a
te

o
cc
u
rs
.
T
h
o
se

co
m
p
u
ta
ti
o
n
s
a
re

re
d
u
n
d
a
n
t.

W
h
en

⌧
(v
)
co
n
v
er
g
es

(v
)
fo
r

a
v
er
te
x
v
,
n
o
m
o
re

co
m
p
u
ta
ti
o
n
s
a
re

n
ee
d
ed

fo
r
v
in

th
e

fo
ll
ow

in
g
it
er
a
ti
o
n
s.

A
ls
o
,
a
v
er
te
x
ca
n

p
o
ss
ib
ly

m
a
in
ta
in

th
e
sa
m
e
⌧

in
d
ex

fo
r
a
n
u
m
b
er

o
f
it
er
a
ti
o
n
s,

re
a
ch
es

to
a

p
la
te
a
u
,
a
n
d
th
en

u
p
d
a
te
s
it
.
S
o
,
it
is
n
o
t
p
o
ss
ib
le

to
d
ed

u
ce

w
h
et
h
er

⌧
(v
)
h
a
s
co
n
v
er
g
ed

to

(v
)
b
y
ju
st

lo
o
k
in
g
a
t
⌧
(v
)

va
lu
es

o
f
a
n
y
v
er
te
x
v
.

In
o
rd
er

to
sk
ip

th
e
in
te
rm

ed
ia
te

o
r
fi
n
a
l
p
la
te
a
u
s
d
u
ri
n
g
th
e
co
n
v
er
g
en

ce
o
f
⌧
(v
)
to

(v
),

w
e

in
tr
o
d
u
ce

a
n
o
ti
fi
ca
ti
o
n
m
ec
h
a
n
is
m

w
h
er
e
a
v
er
te
x
n
o
ti
fi
es

it
s
n
ei
g
h
b
o
rs

w
h
en

it
s
⌧
in
d
ex

is
u
p
d
a
te
d
.

B
ro
w
n
li
n
es

in
A
lg
o
ri
th
m

?
?
su
m
m
a
ri
ze
s
th
e
n
o
ti
fi
ca
ti
o
n

m
ec
h
a
n
is
m

w
e
p
lu
g

in
to

th
e
a
sy
n
ch
ro
n
o
u
s
co
m
p
u
ta
ti
o
n
.

T
h
e
o
n
ly

ch
a
n
g
es

a
re

in
li
n
es

?
?
,
?
?
,
?
?
a
n
d
?
?
.
A
d
d
it
io
n
a
l

C(
·)

a
rr
ay

tr
a
ck
s
w
h
et
h
er

a
v
er
te
x
v
2
V

h
a
s
u
p
d
a
te
d
it
s
⌧

in
d
ex

o
r
n
o
t.

It
is

se
t
to

t
r
u
e
a
t
th
e
b
eg
in
n
in
g
to

in
it
ia
te

th
e
co
m
p
u
ta
ti
o
n
s
fo
r
a
ll
v
er
ti
ce
s.

O
n
ce

C(
v
)
b
ec
o
m
es

fa
l
se

,
i.
e.
,
m
a
in
ta
in
s
it
s
⌧
in
d
ex
,
w
e
av
o
id

th
e
co
m
p
u
ta
ti
o
n
.
N
o
te

th
a
t,
a
v
er
te
x
re
st
a
rt
s
it
s
co
m
p
u
ta
ti
o
n
o
n
ly

w
h
en

a
n
ei
g
h
b
o
r

v
er
te
x
h
a
s
a
n
u
p
d
a
te

(L
in
e
?
?
).

O
n
ce

a
v
er
te
x
co
m
p
le
te
s

th
e
co
m
p
u
ta
ti
o
n
,
it
is
se
t
to

b
e
n
o
t-
u
p
d
a
te
d
(l
in
e
?
?
)
so

th
a
t

n
o
co
m
p
u
ta
ti
o
n
o
cc
u
rs

u
n
ti
l
a
n
o
ti
fi
ca
ti
o
n
is

re
ce
iv
ed

fr
o
m

a
n
ei
g
h
b
o
r.

4.
3

Il
lu

st
ra

tiv
e

ex
am

pl
es

T
o
D
o
:
ex
p
la
in

fi
g
3
a
n
d
4

4.
4

H
eu

ri
st

ic
s a

nd
im

pl
em

en
ta

tio
n

H
er
e
w
e
in
tr
o
d
u
ce

a
n

im
p
o
rt
a
n
t
sc
h
ed

u
li
n
g
d
ec
is
io
n

fo
r

th
e
p
a
ra
ll
el
iz
a
ti
o
n
in

o
u
r
a
lg
o
ri
th
m
s,
a
n
d
a
h
eu

ri
st
ic

to
co
m
-

p
u
te

th
e
h
-i
n
d
ex

o
f
a
se
t
in

li
n
ea
r
ti
m
e.

W
e
im

p
le
m
en
te
d
o
u
r
a
lg
o
ri
th
m
s
b
y
u
si
n
g
O
p
en

M
P

[6
]
to

u
ti
li
ze

th
e
sh
a
re
d
-m

em
o
ry

a
rc
h
it
ec
tu
re
s.

T
h
e
lo
o
p
s,

a
n
n
o
-

ta
te
d
a
s
p
a
ra
ll
el

in
A
lg
o
ri
th
m

?
?
,
a
re

sh
a
re
d
a
m
o
n
g
th
re
a
d
s,

a
n
d
ea
ch

th
re
a
d
is

re
sp

o
n
si
b
le

fo
r
it
s
p
a
rt
it
io
n
o
f
v
er
ti
ce
s.

D
ef
a
u
lt

sc
h
ed

u
li
n
g
p
o
li
cy

in
O
p
en

M
P

is
st
a
ti
c
a
n
d

it
d
is
-

tr
ib
u
te
s
th
e
it
er
a
ti
o
n
s
o
f
th
e
lo
o
p
to

th
e
th
re
a
d
s
in

ch
u
n
k
s,

i.
e.
,
fo
r
tw

o
th
re
a
d
s,

o
n
e
ta
k
es

th
e
fi
rs
t
h
a
lf

a
n
d
th
e
o
th
er

ta
k
es

th
e
se
co
n
d
.
A
lt
h
o
u
g
h
th
is
p
o
li
cy

is
u
se
fu
l
fo
r
m
a
n
y
a
p
-

p
li
ca
ti
o
n
s,

it
w
il
l
n
o
t
w
o
rk

w
el
l
fo
r
o
u
r
a
lg
o
ri
th
m
s.

T
h
e
n
o
-

ti
fi
ca
ti
o
n
m
ec
h
a
n
is
m

to
av
o
id

th
e
re
d
u
n
d
a
n
t
co
m
p
u
ta
ti
o
n
s

ca
n
re
su
lt

in
si
g
n
ifi
ca
n
t
lo
a
d
im

b
a
la
n
ce

b
et
w
ee
n
th
re
a
d
s.

If
m
o
st

o
f
th
e
co
n
v
er
g
ed

v
er
ti
ce
s
re
si
d
e
in

a
ce
rt
a
in

p
a
rt
,
th
en

th
e
th
re
a
d
th
a
t
is
re
sp

o
n
si
b
le

fo
r
th
a
t
p
a
rt

b
ec
o
m
es

id
le

u
n
-

ti
l
th
e
en

d
o
f
co
m
p
u
ta
ti
o
n
.
T
o
p
re
v
en
t
th
is
,
w
e
em

b
ra
ce
d

th
e
d
y
n
a
m
ic

sc
h
ed

u
li
n
g
w
h
er
e
ea
ch

th
re
a
d

is
g
iv
en

a
n
ew

w
o
rk
lo
a
d
o
n
ce

it
is
d
o
n
e.

N
o
th
re
a
d
st
ay

s
id
le

th
is
w
ay
,
a
n
d

th
e
ov
er
a
ll
co
m
p
u
ta
ti
o
n
is

p
a
ra
ll
el
iz
ed

m
o
re

e�
ci
en
tl
y.

h
-i
n
d
ex

co
m
p
u
ta
ti
o
n
o
f
a
li
st

is
d
o
n
e
b
y
so
rt
in
g
th
e
it
em

s
in

n
o
n
-i
n
cr
ea
si
n
g
o
rd
er

a
n
d

ch
ec
k
in
g
th
e
va
lu
es

fr
o
m

th
e

b
eg
in
n
in
g
o
f
th
e
li
st

to
fi
n
d
th
e
la
rg
es
t
h
va
lu
e
fo
r
w
h
ic
h
a
t

le
a
st

h
it
em

s
ex
is
t
w
it
h
a
t
le
a
st

h
va
lu
e.

M
a
in

b
o
tt
le
n
ec
k
is

th
e
so
rt
in
g
o
p
er
a
ti
o
n
w
h
ic
h
ta
k
es

O
(n

.l
og

n
)
ti
m
e.

H
ow

ev
er
,

h
-i
n
d
ex

ca
n
b
e
co
m
p
u
te
d
w
it
h
o
u
t
so
rt
in
g
.
W
e
in
it
ia
li
ze

h
a
s
ze
ro

a
n
d
it
er
a
te

ov
er

th
e
it
em

s
in

th
e
li
st
.
A
t
ea
ch

ti
m
e,

w
e
a
tt
em

p
t
to

in
cr
ea
se

th
e
cu

rr
en

t
h

va
lu
e
b
a
se
d

o
n

th
e

a i

d

f b

h

c
e

g 1
2

2

4

24

3

2 4
2

1
1

23

3

2 2
1st 2nd 3rd

st
ep

st
ep

st
ep

F
ig
u
re

3
:
C
o
re

ex
a
m
p
le

2
2

cd

b
f

e
a

1 1

3

2 2
1

1
2

2 2

1
1

2
2

2 2

d
e
g
re

e
s

1
in

d
ic

e
s

in
 S

N
D

c
o
re

 n
u
m

b
e
rs

2
2

cd

b
f

e
a

1 1

3

2 2
1

1
2

2 2

1
1

2
2

2 2

d
e
g
re

e
s

c
o
re

 n
u
m

b
e
rs

2
n
d
 st

e
p

 in
 le

x.
 o

rd
e
r

F
ig
u
re

2
:
A
sy
n
c
ex
a
m
p
le

T
h
e
o
r
e
m

4
.
In

A
N
D

a
lg
o
ri
th
m
,
if
th
e
r-
cl
iq
u
es

a
re

p
ro
-

ce
ss
ed

in
th
e
n
o
n
-d
ec
re
a
si
n
g
o
rd
er

o
f
th
ei
r
fi
n
a
l

s
in
d
ic
es
,

co
n
ve
rg
en

ce
is

o
bt
a
in
ed

in
a
si
n
gl
e
it
er
a
ti
o
n
.

P
r
o
o
f
.
S
ay

s
(R

)
=

t
fo
r
a
n
r-
cl
iq
u
e
R
.
F
o
r
th
e
sa
k
e
o
f

co
n
tr
a
d
ic
ti
o
n
,
a
ss
u
m
e
th
a
t
it

ta
k
es

m
o
re

th
a
n
o
n
e
it
er
a
ti
o
n

fo
r
d
s
(R

)
to

co
n
v
er
g
e

s
(R

).
S
o
,
⌧ 0
(R

)
=

d
s
(R

)
a
n
d
⌧ 0
(R

)
�

⌧ 1
(R

)
>

s
(R

).
S
o
,
w
h
en

R
is

b
ei
n
g
p
ro
ce
ss
ed

,
H
(L

)
>

t
fo
r
L
=

{⇢
(S

)
:
S
3
R
}.

T
h
a
t
m
ea
n
s
th
er
e
a
re

a
t
le
a
st

t
+
1

s-
cl
iq
u
es

w
h
er
e
ea
ch

h
a
s
⇢
va
lu
e
o
f
a
t
le
a
st

t
+

1
.
H
ow

ev
er
,

th
is

im
p
li
es

th
a
t
R

is
a
p
a
rt

o
f
(t

+
1
)-
(r
, s
)
n
u
cl
eu

s,
w
h
ic
h

co
n
tr
a
d
ic
ts

w
it
h
th
e
in
it
ia
l
a
ss
u
m
p
ti
o
n
.

T
h
e
w
o
rs
t
ca
se

h
a
p
p
en

s
w
h
en

a
ll
th
e
r-
cl
iq
u
es

se
e
th
e
⌧

va
lu
es

o
f
th
ei
r
n
ei
g
h
b
o
rs

th
a
t
a
re

co
m
p
u
te
d
in

th
e
p
re
v
io
u
s

it
er
a
ti
o
n
a
n
d
it

is
ex
a
ct
ly

th
e
S
N
D

a
lg
o
ri
th
m
.

F
ig
u
re

2
il
lu
st
ra
te
s
th
e
d
i↵
er
en

ce
b
et
w
ee
n
S
n
d
a
n
d
A
n
d

a
lg
o
ri
th
m
s
(w

it
h
d
i↵
er
en

t
o
rd
er
in
g
s)

o
n
th
e
k
-c
o
re

ca
se

(r
=

1
, s

=
2
).

O
u
r
fo
cu

s
is

o
n
v
er
ti
ce
s
(1
-c
li
q
u
es
)
a
n
d
th
ei
r
re
-

la
ti
o
n
s
w
it
h

ed
g
es

(2
-c
li
q
u
es
).

W
e
fi
rs
t
a
p
p
ly

S
n
d
.

F
ir
st
,

v
er
te
x
d
eg
re
es

a
re

ca
lc
u
la
te
d
a
s
⌧ 0

in
d
ic
es

(b
lu
e
n
u
m
b
er
s)
.

T
h
en

,
fo
r
ea
ch

v
er
te
x
u
w
e
co
m
p
u
te

th
e
⌧ 1
(u
)
=

H
({
⌧ 0
(v
)
:

v
2
N

2
(u
)}
,
i.
e.
,
h
-i
n
d
ex

o
f
it
s
n
ei
g
h
b
o
rs
’
d
eg
re
es

(r
ed

n
u
m
-

b
er
s)
.
⌧
F
o
r
in
st
a
n
ce
,

T
o
D
o
:
sh
o
u
ld

I
in
cl
u
d
e
so
m
e
n
u
m
b
er
s
in

ex
p
,
b
o
u
n
d
s
p
a
rt

4.
2.

1
Sk

ip
pi

ng
th

e
pl

at
ea

us
T
o
D
o
:
fi
g
fo
r
ta
u
ch
a
n
g
es

a
n
d
p
la
to
s
O
u
r
co
m
p
u
ta
ti
o
n
s

co
n
v
er
g
e
w
h
en

n
o
n
e
o
f
th
e
v
er
ti
ce
s
u
p
d
a
te

th
ei
r
⌧
in
d
ic
es

a
n
y
m
o
re
.
T
h
is
im

p
li
es

th
a
t
co
m
p
u
ta
ti
o
n
s
a
re

p
er
fo
rm

ed
fo
r

a
ll
th
e
v
er
ti
ce
s
ev
en

w
h
en

o
n
ly

a
si
n
g
le
u
p
d
a
te

o
cc
u
rs
.
T
h
o
se

co
m
p
u
ta
ti
o
n
s
a
re

re
d
u
n
d
a
n
t.

W
h
en

⌧
(v
)
co
n
v
er
g
es

(v
)
fo
r

a
v
er
te
x
v
,
n
o
m
o
re

co
m
p
u
ta
ti
o
n
s
a
re

n
ee
d
ed

fo
r
v
in

th
e

fo
ll
ow

in
g
it
er
a
ti
o
n
s.

A
ls
o
,
a
v
er
te
x
ca
n

p
o
ss
ib
ly

m
a
in
ta
in

th
e
sa
m
e
⌧

in
d
ex

fo
r
a
n
u
m
b
er

o
f
it
er
a
ti
o
n
s,

re
a
ch
es

to
a

p
la
te
a
u
,
a
n
d
th
en

u
p
d
a
te
s
it
.
S
o
,
it
is
n
o
t
p
o
ss
ib
le

to
d
ed

u
ce

w
h
et
h
er

⌧
(v
)
h
a
s
co
n
v
er
g
ed

to

(v
)
b
y
ju
st

lo
o
k
in
g
a
t
⌧
(v
)

va
lu
es

o
f
a
n
y
v
er
te
x
v
.

In
o
rd
er

to
sk
ip

th
e
in
te
rm

ed
ia
te

o
r
fi
n
a
l
p
la
te
a
u
s
d
u
ri
n
g
th
e
co
n
v
er
g
en

ce
o
f
⌧
(v
)
to

(v
),

w
e

in
tr
o
d
u
ce

a
n
o
ti
fi
ca
ti
o
n
m
ec
h
a
n
is
m

w
h
er
e
a
v
er
te
x
n
o
ti
fi
es

it
s
n
ei
g
h
b
o
rs

w
h
en

it
s
⌧
in
d
ex

is
u
p
d
a
te
d
.

B
ro
w
n
li
n
es

in
A
lg
o
ri
th
m

?
?
su
m
m
a
ri
ze
s
th
e
n
o
ti
fi
ca
ti
o
n

m
ec
h
a
n
is
m

w
e
p
lu
g

in
to

th
e
a
sy
n
ch
ro
n
o
u
s
co
m
p
u
ta
ti
o
n
.

T
h
e
o
n
ly

ch
a
n
g
es

a
re

in
li
n
es

?
?
,
?
?
,
?
?
a
n
d
?
?
.
A
d
d
it
io
n
a
l

C(
·)

a
rr
ay

tr
a
ck
s
w
h
et
h
er

a
v
er
te
x
v
2
V

h
a
s
u
p
d
a
te
d
it
s
⌧

in
d
ex

o
r
n
o
t.

It
is

se
t
to

t
r
u
e
a
t
th
e
b
eg
in
n
in
g
to

in
it
ia
te

th
e
co
m
p
u
ta
ti
o
n
s
fo
r
a
ll
v
er
ti
ce
s.

O
n
ce

C(
v
)
b
ec
o
m
es

fa
l
se

,
i.
e.
,
m
a
in
ta
in
s
it
s
⌧
in
d
ex
,
w
e
av
o
id

th
e
co
m
p
u
ta
ti
o
n
.
N
o
te

th
a
t,
a
v
er
te
x
re
st
a
rt
s
it
s
co
m
p
u
ta
ti
o
n
o
n
ly

w
h
en

a
n
ei
g
h
b
o
r

v
er
te
x
h
a
s
a
n
u
p
d
a
te

(L
in
e
?
?
).

O
n
ce

a
v
er
te
x
co
m
p
le
te
s

th
e
co
m
p
u
ta
ti
o
n
,
it
is
se
t
to

b
e
n
o
t-
u
p
d
a
te
d
(l
in
e
?
?
)
so

th
a
t

n
o
co
m
p
u
ta
ti
o
n
o
cc
u
rs

u
n
ti
l
a
n
o
ti
fi
ca
ti
o
n
is

re
ce
iv
ed

fr
o
m

a
n
ei
g
h
b
o
r.

4.
3

Il
lu

st
ra

tiv
e

ex
am

pl
es

T
o
D
o
:
ex
p
la
in

fi
g
3
a
n
d
4

4.
4

H
eu

ri
st

ic
s a

nd
im

pl
em

en
ta

tio
n

H
er
e
w
e
in
tr
o
d
u
ce

a
n

im
p
o
rt
a
n
t
sc
h
ed

u
li
n
g
d
ec
is
io
n

fo
r

th
e
p
a
ra
ll
el
iz
a
ti
o
n
in

o
u
r
a
lg
o
ri
th
m
s,
a
n
d
a
h
eu

ri
st
ic

to
co
m
-

p
u
te

th
e
h
-i
n
d
ex

o
f
a
se
t
in

li
n
ea
r
ti
m
e.

W
e
im

p
le
m
en
te
d
o
u
r
a
lg
o
ri
th
m
s
b
y
u
si
n
g
O
p
en

M
P

[6
]
to

u
ti
li
ze

th
e
sh
a
re
d
-m

em
o
ry

a
rc
h
it
ec
tu
re
s.

T
h
e
lo
o
p
s,

a
n
n
o
-

ta
te
d
a
s
p
a
ra
ll
el

in
A
lg
o
ri
th
m

?
?
,
a
re

sh
a
re
d
a
m
o
n
g
th
re
a
d
s,

a
n
d
ea
ch

th
re
a
d
is

re
sp

o
n
si
b
le

fo
r
it
s
p
a
rt
it
io
n
o
f
v
er
ti
ce
s.

D
ef
a
u
lt

sc
h
ed

u
li
n
g
p
o
li
cy

in
O
p
en

M
P

is
st
a
ti
c
a
n
d

it
d
is
-

tr
ib
u
te
s
th
e
it
er
a
ti
o
n
s
o
f
th
e
lo
o
p
to

th
e
th
re
a
d
s
in

ch
u
n
k
s,

i.
e.
,
fo
r
tw

o
th
re
a
d
s,

o
n
e
ta
k
es

th
e
fi
rs
t
h
a
lf

a
n
d
th
e
o
th
er

ta
k
es

th
e
se
co
n
d
.
A
lt
h
o
u
g
h
th
is
p
o
li
cy

is
u
se
fu
l
fo
r
m
a
n
y
a
p
-

p
li
ca
ti
o
n
s,

it
w
il
l
n
o
t
w
o
rk

w
el
l
fo
r
o
u
r
a
lg
o
ri
th
m
s.

T
h
e
n
o
-

ti
fi
ca
ti
o
n
m
ec
h
a
n
is
m

to
av
o
id

th
e
re
d
u
n
d
a
n
t
co
m
p
u
ta
ti
o
n
s

ca
n
re
su
lt

in
si
g
n
ifi
ca
n
t
lo
a
d
im

b
a
la
n
ce

b
et
w
ee
n
th
re
a
d
s.

If
m
o
st

o
f
th
e
co
n
v
er
g
ed

v
er
ti
ce
s
re
si
d
e
in

a
ce
rt
a
in

p
a
rt
,
th
en

th
e
th
re
a
d
th
a
t
is
re
sp

o
n
si
b
le

fo
r
th
a
t
p
a
rt

b
ec
o
m
es

id
le

u
n
-

ti
l
th
e
en

d
o
f
co
m
p
u
ta
ti
o
n
.
T
o
p
re
v
en
t
th
is
,
w
e
em

b
ra
ce
d

th
e
d
y
n
a
m
ic

sc
h
ed

u
li
n
g
w
h
er
e
ea
ch

th
re
a
d

is
g
iv
en

a
n
ew

w
o
rk
lo
a
d
o
n
ce

it
is
d
o
n
e.

N
o
th
re
a
d
st
ay

s
id
le

th
is
w
ay
,
a
n
d

th
e
ov
er
a
ll
co
m
p
u
ta
ti
o
n
is

p
a
ra
ll
el
iz
ed

m
o
re

e�
ci
en
tl
y.

h
-i
n
d
ex

co
m
p
u
ta
ti
o
n
o
f
a
li
st

is
d
o
n
e
b
y
so
rt
in
g
th
e
it
em

s
in

n
o
n
-i
n
cr
ea
si
n
g
o
rd
er

a
n
d

ch
ec
k
in
g
th
e
va
lu
es

fr
o
m

th
e

b
eg
in
n
in
g
o
f
th
e
li
st

to
fi
n
d
th
e
la
rg
es
t
h
va
lu
e
fo
r
w
h
ic
h
a
t

le
a
st

h
it
em

s
ex
is
t
w
it
h
a
t
le
a
st

h
va
lu
e.

M
a
in

b
o
tt
le
n
ec
k
is

th
e
so
rt
in
g
o
p
er
a
ti
o
n
w
h
ic
h
ta
k
es

O
(n

.l
og

n
)
ti
m
e.

H
ow

ev
er
,

h
-i
n
d
ex

ca
n
b
e
co
m
p
u
te
d
w
it
h
o
u
t
so
rt
in
g
.
W
e
in
it
ia
li
ze

h
a
s
ze
ro

a
n
d
it
er
a
te

ov
er

th
e
it
em

s
in

th
e
li
st
.
A
t
ea
ch

ti
m
e,

w
e
a
tt
em

p
t
to

in
cr
ea
se

th
e
cu

rr
en

t
h

va
lu
e
b
a
se
d

o
n

th
e

a i

d

f b

h

c
e

g 1
2

2

4

24

3

2 4
2

1
1

23

3

2 2
1st 2nd 3rd

st
ep

st
ep

st
ep

F
ig
u
re

3
:
C
o
re

ex
a
m
p
le

F
ig
u
re

2
:
A
sy
n
c
ex
a
m
p
le

T
h
e
o
r
e
m

4
.
In

A
N
D

a
lg
o
ri
th
m
,
if
th
e
r-
cl
iq
u
es

a
re

p
ro
-

ce
ss
ed

in
th
e
n
o
n
-d
ec
re
a
si
n
g
o
rd
er

o
f
th
ei
r
fi
n
a
l

s
in
d
ic
es
,

co
n
ve
rg
en

ce
is

o
bt
a
in
ed

in
a
si
n
gl
e
it
er
a
ti
o
n
.

P
r
o
o
f
.
S
ay

s
(R

)
=

t
fo
r
a
n
r-
cl
iq
u
e
R
.
F
o
r
th
e
sa
k
e
o
f

co
n
tr
a
d
ic
ti
o
n
,
a
ss
u
m
e
th
a
t
it

ta
k
es

m
o
re

th
a
n
o
n
e
it
er
a
ti
o
n

fo
r
d
s
(R

)
to

co
n
v
er
g
e

s
(R

).
S
o
,
⌧ 0
(R

)
=

d
s
(R

)
a
n
d
⌧ 0
(R

)
�

⌧ 1
(R

)
>

s
(R

).
S
o
,
w
h
en

R
is

b
ei
n
g
p
ro
ce
ss
ed

,
H
(L

)
>

t
fo
r
L
=

{⇢
(S

)
:
S
3
R
}.

T
h
a
t
m
ea
n
s
th
er
e
a
re

a
t
le
a
st

t
+
1

s-
cl
iq
u
es

w
h
er
e
ea
ch

h
a
s
⇢
va
lu
e
o
f
a
t
le
a
st

t
+

1
.
H
ow

ev
er
,

th
is

im
p
li
es

th
a
t
R

is
a
p
a
rt

o
f
(t

+
1
)-
(r
, s
)
n
u
cl
eu

s,
w
h
ic
h

co
n
tr
a
d
ic
ts

w
it
h
th
e
in
it
ia
l
a
ss
u
m
p
ti
o
n
.

T
h
e
w
o
rs
t
ca
se

h
a
p
p
en

s
w
h
en

a
ll
th
e
r-
cl
iq
u
es

se
e
th
e
⌧

va
lu
es

o
f
th
ei
r
n
ei
g
h
b
o
rs

th
a
t
a
re

co
m
p
u
te
d
in

th
e
p
re
v
io
u
s

it
er
a
ti
o
n
a
n
d
it

is
ex
a
ct
ly

th
e
S
N
D

a
lg
o
ri
th
m
.

F
ig
u
re

2
il
lu
st
ra
te
s
S
n
d
a
n
d
A
n
d
a
lg
o
ri
th
m
s
(w

it
h
d
i↵
er
-

en
t
o
rd
er
in
g
s)

o
n
th
e
k
-c
o
re

ca
se

(r
=

1
, s

=
2
).

O
u
r
fo
cu

s
is

o
n

v
er
ti
ce
s
(1
-c
li
q
u
es
)
a
n
d

th
ei
r
ed

g
e
(2
-c
li
q
u
e)

co
u
n
ts

(d
eg
re
es
).

W
e
fi
rs
t
a
p
p
ly

S
n
d
.
F
ir
st
,
v
er
te
x
d
eg
re
es

a
re

ca
l-

cu
la
te
d
a
s
⌧ 0

in
d
ic
es

(b
lu
e
n
u
m
b
er
s)
.
T
h
en

,
fo
r
ea
ch

v
er
te
x

u
w
e
co
m
p
u
te

th
e
⌧ 1
(u
)
=

H
({
⌧ 0
(v
)
:
v
2

N
2
(u
)}
,
i.
e.
,
h
-

in
d
ex

o
f
it
s
n
ei
g
h
b
o
rs
’
d
eg
re
es

(r
ed

n
u
m
b
er
s)
.
F
o
r
in
st
a
n
ce
,

v
er
te
x
a

h
a
s
tw

o
n
ei
g
h
b
o
rs
,
e
a
n
d

b
,
w
it
h

d
eg
re
es

2
a
n
d

3
.

S
in
ce

H
({
2
, 3
})

=
2
,
w
e
g
et

⌧ 1
(a
)
=

2
.

F
o
r
v
er
te
x
b
,

w
e
g
et

⌧ 1
(b

)
=

H
({
2
, 2
, 2
})

=
2
.
O
n
ce

w
e
co
m
p
u
te

a
ll
⌧ 1

in
d
ic
es
,
w
e
it
er
a
te

a
g
a
in

b
ec
a
u
se

th
er
e
w
er
e
ch
a
n
g
es

in
⌧

in
d
ic
es
,
e.
g
,.

⌧ 1
(e
)
6=

⌧ 0
(e
)
(L

in
e
1
3
in

A
lg
o
ri
th
m

2
).

⌧ 2
in
d
ic
es

a
re

sh
ow

n
in

g
re
en

.
W
e
o
b
se
rv
e
a
n
u
p
d
a
te

o
n
ly

fo
r

th
e
v
er
te
x
a
;
⌧ 2
(a
)
=

H
({
⌧ 1
(e
),
⌧ 1
(b

)}
)
=

H
({
1
, 2
})

=
1
.

W
h
en

w
e
it
er
a
te

a
g
a
in
,
n
o
u
p
d
a
te

is
o
b
se
rv
ed

in
⌧
in
d
ic
es
,

w
h
ic
h
m
ea
n
s

s
=

⌧ 2
fo
r
a
ll
v
er
ti
ce
s.

R
eg
a
rd
in
g
A
n
d
a
lg
o
-

ri
th
m
,
w
e
ch
o
o
se

to
fo
ll
ow

th
e
n
o
n
-d
ec
re
a
si
n
g
o
rd
er

o
f

s

in
d
ic
es
;
{f
,e
,a
,b
,c
,d
}.

C
o
m
p
u
ti
n
g
th
e
⌧ 1

in
d
ic
es

o
n
th
is

o
r-

d
er

en
a
b
le
s
u
s
to

re
a
ch

th
e
co
n
v
er
g
en

ce
in

a
si
n
g
le

it
er
a
ti
o
n
.

F
o
r
in
st
a
n
ce
,
⌧ 1
(a
)
=

H
({
⌧ 1
(e
),
⌧ 0
(b

)}
)
=

H
({
1
, 2
})

=
1
.

If
w
e
ch
o
o
se

to
p
ro
ce
ss

th
e
v
er
ti
ce
s
in

th
e
a
lp
h
a
b
et
ic
a
l
o
r-

d
er
,
{a

,b
,c
,d
,e
,f
},

w
e
h
av
e
⌧ 1
(a
)
=

H
({
⌧ 0
(e
),
⌧ 0
(b

)}
)
=

H
({
2
, 2
})

=
2
,
w
h
ic
h
im

p
li
es

th
a
t
w
e
n
ee
d
m
o
re

it
er
a
ti
o
n
(s
)

to
co
n
v
er
g
e.

In
d
ee
d
⌧ 2
(a
)
=

H
({
⌧ 1
(e
),
⌧ 1
(b

)}
)
=

H
({
1
, 2
})

=
1

⌧ 1

T
o
D
o
:
sh
o
u
ld

I
in
cl
u
d
e
so
m
e
n
u
m
b
er
s
in

ex
p
,
b
o
u
n
d
s

p
a
rt

4.
2.

1
Sk

ip
pi

ng
th

e
pl

at
ea

us
T
o
D
o
:
fi
g
fo
r
ta
u
ch
a
n
g
es

a
n
d
p
la
to
s
O
u
r
co
m
p
u
ta
ti
o
n
s

co
n
v
er
g
e
w
h
en

n
o
n
e
o
f
th
e
v
er
ti
ce
s
u
p
d
a
te

th
ei
r
⌧
in
d
ic
es

a
n
y
m
o
re
.
T
h
is
im

p
li
es

th
a
t
co
m
p
u
ta
ti
o
n
s
a
re

p
er
fo
rm

ed
fo
r

a
ll
th
e
v
er
ti
ce
s
ev
en

w
h
en

o
n
ly

a
si
n
g
le
u
p
d
a
te

o
cc
u
rs
.
T
h
o
se

co
m
p
u
ta
ti
o
n
s
a
re

re
d
u
n
d
a
n
t.

W
h
en

⌧
(v
)
co
n
v
er
g
es

(v
)
fo
r

a
v
er
te
x
v
,
n
o
m
o
re

co
m
p
u
ta
ti
o
n
s
a
re

n
ee
d
ed

fo
r
v
in

th
e

fo
ll
ow

in
g
it
er
a
ti
o
n
s.

A
ls
o
,
a
v
er
te
x
ca
n

p
o
ss
ib
ly

m
a
in
ta
in

th
e
sa
m
e
⌧

in
d
ex

fo
r
a
n
u
m
b
er

o
f
it
er
a
ti
o
n
s,

re
a
ch
es

to
a

p
la
te
a
u
,
a
n
d
th
en

u
p
d
a
te
s
it
.
S
o
,
it
is
n
o
t
p
o
ss
ib
le

to
d
ed

u
ce

w
h
et
h
er

⌧
(v
)
h
a
s
co
n
v
er
g
ed

to

(v
)
b
y
ju
st

lo
o
k
in
g
a
t
⌧
(v
)

va
lu
es

o
f
a
n
y
v
er
te
x
v
.

In
o
rd
er

to
sk
ip

th
e
in
te
rm

ed
ia
te

o
r
fi
n
a
l
p
la
te
a
u
s
d
u
ri
n
g
th
e
co
n
v
er
g
en

ce
o
f
⌧
(v
)
to

(v
),

w
e

in
tr
o
d
u
ce

a
n
o
ti
fi
ca
ti
o
n
m
ec
h
a
n
is
m

w
h
er
e
a
v
er
te
x
n
o
ti
fi
es

it
s
n
ei
g
h
b
o
rs

w
h
en

it
s
⌧
in
d
ex

is
u
p
d
a
te
d
.

B
ro
w
n
li
n
es

in
A
lg
o
ri
th
m

?
?
su
m
m
a
ri
ze
s
th
e
n
o
ti
fi
ca
ti
o
n

m
ec
h
a
n
is
m

w
e
p
lu
g

in
to

th
e
a
sy
n
ch
ro
n
o
u
s
co
m
p
u
ta
ti
o
n
.

T
h
e
o
n
ly

ch
a
n
g
es

a
re

in
li
n
es

?
?
,
?
?
,
?
?
a
n
d
?
?
.
A
d
d
it
io
n
a
l

C(
·)

a
rr
ay

tr
a
ck
s
w
h
et
h
er

a
v
er
te
x
v
2
V

h
a
s
u
p
d
a
te
d
it
s
⌧

in
d
ex

o
r
n
o
t.

It
is

se
t
to

t
r
u
e
a
t
th
e
b
eg
in
n
in
g
to

in
it
ia
te

th
e
co
m
p
u
ta
ti
o
n
s
fo
r
a
ll
v
er
ti
ce
s.

O
n
ce

C(
v
)
b
ec
o
m
es

fa
l
se

,
i.
e.
,
m
a
in
ta
in
s
it
s
⌧
in
d
ex

,
w
e
av
o
id

th
e
co
m
p
u
ta
ti
o
n
.
N
o
te

th
a
t,
a
v
er
te
x
re
st
a
rt
s
it
s
co
m
p
u
ta
ti
o
n
o
n
ly

w
h
en

a
n
ei
g
h
b
o
r

v
er
te
x
h
a
s
a
n
u
p
d
a
te

(L
in
e
?
?
).

O
n
ce

a
v
er
te
x
co
m
p
le
te
s

th
e
co
m
p
u
ta
ti
o
n
,
it
is
se
t
to

b
e
n
o
t-
u
p
d
a
te
d
(l
in
e
?
?
)
so

th
a
t

n
o
co
m
p
u
ta
ti
o
n
o
cc
u
rs

u
n
ti
l
a
n
o
ti
fi
ca
ti
o
n
is

re
ce
iv
ed

fr
o
m

a
n
ei
g
h
b
o
r.

4.
3

Il
lu

st
ra

tiv
e

ex
am

pl
es

T
o
D
o
:
ex
p
la
in

fi
g
3
a
n
d
4

4.
4

H
eu

ri
st

ic
s a

nd
im

pl
em

en
ta

tio
n

H
er
e
w
e
in
tr
o
d
u
ce

a
n

im
p
o
rt
a
n
t
sc
h
ed

u
li
n
g
d
ec
is
io
n

fo
r

th
e
p
a
ra
ll
el
iz
a
ti
o
n
in

o
u
r
a
lg
o
ri
th
m
s,
a
n
d
a
h
eu

ri
st
ic

to
co
m
-

p
u
te

th
e
h
-i
n
d
ex

o
f
a
se
t
in

li
n
ea
r
ti
m
e.

W
e
im

p
le
m
en
te
d
o
u
r
a
lg
o
ri
th
m
s
b
y
u
si
n
g
O
p
en

M
P

[6
]
to

u
ti
li
ze

th
e
sh
a
re
d
-m

em
o
ry

a
rc
h
it
ec
tu
re
s.

T
h
e
lo
o
p
s,

a
n
n
o
-

ta
te
d
a
s
p
a
ra
ll
el

in
A
lg
o
ri
th
m

?
?
,
a
re

sh
a
re
d
a
m
o
n
g
th
re
a
d
s,

a
n
d
ea
ch

th
re
a
d
is

re
sp

o
n
si
b
le

fo
r
it
s
p
a
rt
it
io
n
o
f
v
er
ti
ce
s.

D
ef
a
u
lt

sc
h
ed

u
li
n
g
p
o
li
cy

in
O
p
en

M
P

is
st
a
ti
c
a
n
d

it
d
is
-

tr
ib
u
te
s
th
e
it
er
a
ti
o
n
s
o
f
th
e
lo
o
p
to

th
e
th
re
a
d
s
in

ch
u
n
k
s,

i.
e.
,
fo
r
tw

o
th
re
a
d
s,

o
n
e
ta
k
es

th
e
fi
rs
t
h
a
lf

a
n
d
th
e
o
th
er

ta
k
es

th
e
se
co
n
d
.
A
lt
h
o
u
g
h
th
is
p
o
li
cy

is
u
se
fu
l
fo
r
m
a
n
y
a
p
-

p
li
ca
ti
o
n
s,

it
w
il
l
n
o
t
w
o
rk

w
el
l
fo
r
o
u
r
a
lg
o
ri
th
m
s.

T
h
e
n
o
-

a i

d

f b

h

c
e

g 1
2

2

4

24

3

2 4
2

1
1

23

3

2 2
1st 2nd 3rd

st
ep

st
ep

st
ep

F
ig
u
re

3
:
C
o
re

ex
a
m
p
le

F
ig
u
re

2
:
W

e
a
p
p
ly

th
e

k
-c
o
re

d
e
c
o
m
p
o
si
ti
o
n

(r
=

1
,
s
=

2
).

S
o
,
w
e
n
e
e
d

to
fi
n
d

2
(e

d
g
e
is

2
-c
li
q
u
e
)

in
d
ic
e
s
o
f
v
e
rt
ic
e
s.

⌧
0
in
d
ic
e
s
a
re

in
it
ia
li
z
e
d

to
th

e
d
e
g
re

e
s
(d

2
s
in

b
lu
e
).

S
n
d

a
lg
o
ri
th

m
c
o
n
v
e
rg

e
s
in

tw
o
it
e
ra

ti
o
n
s
(⌧

1
s
in

re
d
,
⌧
2
=

2
s
in

g
re

e
n
).

S
a
m
e

h
a
p
p
e
n
s
w
h
e
n
w
e
u
se

A
n
d
a
lg
o
ri
th

m
a
n
d
p
ro

c
e
ss

th
e

v
e
rt
ic
e
s
in

th
e

a
lp
h
a
b
e
ti
c
a
l
o
rd

e
r.

H
o
w
e
v
e
r,

if
w
e

ch
o
o
se

{f
,e
,a
,b
,c
,d
}

o
rd

e
r,

w
h
ic
h

is
a
c
tu

a
ll
y

a
n
o
n
-

d
e
c
re

a
si
n
g

o
rd

e
r
o
n

2
in
d
ic
e
s,

A
n
d

c
o
n
v
e
rg

e
s
in

a
si
n
g
le

it
e
ra

ti
o
n
.

T
h
e
o
r
e
m

4
.
In

A
n
d
a
lg
o
ri
th
m
,
if
th
e
r-
cl
iq
u
es

a
re

p
ro
-

ce
ss
ed

in
th
e
n
o
n
-d
ec
re
a
si
n
g
o
rd
er

o
f
th
ei
r
fi
n
a
l

s
in
d
ic
es
,

co
n
ve
rg
en

ce
is

o
bt
a
in
ed

in
a
si
n
gl
e
it
er
a
ti
o
n
.

P
r
o
o
f
.
S
ay

s
(R

)
=

t
fo
r
a
n
r-
cl
iq
u
e
R
.
F
o
r
th
e
sa
k
e
o
f

co
n
tr
a
d
ic
ti
o
n
,
a
ss
u
m
e
th
a
t
it

ta
k
es

m
o
re

th
a
n
o
n
e
it
er
a
ti
o
n

fo
r
d
s
(R

)
to

co
n
v
er
g
e

s
(R

).
S
o
,
⌧ 0
(R

)
=

d
s
(R

)
a
n
d
⌧ 0
(R

)
�

⌧ 1
(R

)
>

s
(R

).
S
o
,
w
h
en

R
is

b
ei
n
g
p
ro
ce
ss
ed

,
H
(L

)
>

t
fo
r
L
=

{⇢
(S

)
:
S
3
R
}.

T
h
a
t
m
ea
n
s
th
er
e
a
re

a
t
le
a
st

t
+
1

s-
cl
iq
u
es

w
h
er
e
ea
ch

h
a
s
⇢
va
lu
e
o
f
a
t
le
a
st

t
+

1
.
H
ow

ev
er
,

th
is

im
p
li
es

th
a
t
R

is
a
p
a
rt

o
f
(t

+
1
)-
(r
, s
)
n
u
cl
eu

s,
w
h
ic
h

co
n
tr
a
d
ic
ts

w
it
h
th
e
in
it
ia
l
a
ss
u
m
p
ti
o
n
.

T
h
e
w
o
rs
t
ca
se

h
a
p
p
en

s
w
h
en

a
ll
th
e
r-
cl
iq
u
es

se
e
th
e
⌧

in
d
ic
es

o
f
th
ei
r
n
ei
g
h
b
o
rs

th
a
t
a
re

co
m
p
u
te
d
in

th
e
p
re
v
i-

o
u
s
it
er
a
ti
o
n
a
n
d
it

is
ex
a
ct
ly

th
e
S
N
D

a
lg
o
ri
th
m
.
E
rd
em

S
A
Y
S
:
I
a
ct
u
a
ll
y
b
el
ie
v
e
th
a
t
p
ro
ce
ss
in
g
th
e
v
er
ti
ce
s
in

n
o
n
-

in
cr
ea
si
n
g
o
rd
er

o
f
th
ei
r

in
d
ic
es

w
il
l
g
iv
e
th
e
w
o
rs
t
ca
se

fo
r
A
n
d
a
lg
o
ri
th
m
.
It
’s

ju
st

a
n
in
tu
it
io
n
b
a
se
d
o
n
th
e
b
es
t

ca
se

th
eo
re
m
,
n
o
t
su
re

if
I
ca
n
p
ro
v
e.

If
y
o
u
ca
n
p
ro
v
e,

I
ca
n
in
cl
u
d
e
so
m
e
w
o
rs
t
ca
se

n
u
m
b
er
s
in

ex
p
.
se
ct
io
n

F
ig
u
re

2
il
lu
st
ra
te
s
S
n
d
a
n
d
A
n
d
a
lg
o
ri
th
m
s
(w

it
h
d
i↵
er
-

en
t
o
rd
er
in
g
s)

o
n
th
e
k
-c
o
re

ca
se

(r
=

1
, s

=
2
).

O
u
r
fo
cu

s
is

o
n

v
er
ti
ce
s
(1
-c
li
q
u
es
)
a
n
d

th
ei
r
ed

g
e
(2
-c
li
q
u
e)

co
u
n
ts

(d
eg
re
es
).

W
e
fi
rs
t
a
p
p
ly

S
n
d
.
F
ir
st
,
v
er
te
x
d
eg
re
es

a
re

ca
l-

cu
la
te
d
a
s
⌧ 0

in
d
ic
es

(b
lu
e
n
u
m
b
er
s)
.
T
h
en

,
fo
r
ea
ch

v
er
te
x

u
w
e
co
m
p
u
te

th
e
⌧ 1
(u
)
=

H
({
⌧ 0
(v
)
:
v
2

N
2
(u
)}
,
i.
e.
,
h
-

in
d
ex

o
f
it
s
n
ei
g
h
b
o
rs
’
d
eg
re
es

(r
ed

n
u
m
b
er
s)
.
F
o
r
in
st
a
n
ce
,

v
er
te
x
a

h
a
s
tw

o
n
ei
g
h
b
o
rs
,
e
a
n
d

b
,
w
it
h

d
eg
re
es

2
a
n
d

3
.

S
in
ce

H
({
2
,3
})

=
2
,
w
e
g
et

⌧ 1
(a
)
=

2
.

F
o
r
v
er
te
x
b
,

w
e
g
et

⌧ 1
(b

)
=

H
({
2
,2
,2
})

=
2
.
O
n
ce

w
e
co
m
p
u
te

a
ll
⌧ 1

in
d
ic
es
,
w
e
it
er
a
te

a
g
a
in

b
ec
a
u
se

th
er
e
w
er
e
ch
a
n
g
es

in
⌧

in
d
ic
es
,
e.
g
,.

⌧ 1
(e
)
6=

⌧ 0
(e
)
(L

in
e
1
3
in

A
lg
o
ri
th
m

2
).

⌧ 2
in
d
ic
es

a
re

sh
ow

n
in

g
re
en

.
W
e
o
b
se
rv
e
a
n
u
p
d
a
te

o
n
ly

fo
r

th
e
v
er
te
x
a
;
⌧ 2
(a
)
=

H
({
⌧ 1
(e
),
⌧ 1
(b

)}
)
=

H
({
1
,2
})

=
1
.

W
h
en

w
e
it
er
a
te

a
g
a
in
,
n
o
u
p
d
a
te

is
o
b
se
rv
ed

in
⌧
in
d
ic
es
,

w
h
ic
h
m
ea
n
s

s
=

⌧ 2
fo
r
a
ll
v
er
ti
ce
s.

R
eg
a
rd
in
g
A
n
d
a
lg
o
-

ri
th
m
,
w
e
ch
o
o
se

to
fo
ll
ow

th
e
n
o
n
-d
ec
re
a
si
n
g
o
rd
er

o
f

s

in
d
ic
es
;
{f
,e
,a
,b
,c
,d
}.

C
o
m
p
u
ti
n
g
th
e
⌧ 1

in
d
ic
es

o
n
th
is

o
r-

d
er

en
a
b
le
s
u
s
to

re
a
ch

th
e
co
n
v
er
g
en

ce
in

a
si
n
g
le

it
er
a
ti
o
n
.

F
o
r
in
st
a
n
ce
,
⌧ 1
(a
)
=

H
({
⌧ 1
(e
),
⌧ 0
(b

)}
)
=

H
({
1
,2
})

=
1
.

 0 1
0

 2
0

 3
0

 4
0

 5
0

 6
0

 7
0

 8
0

 9
0 0

 2
 4

 6
 8

 1
0

 1
2

 1
4

 1
6

truss values

nu
m

be
r o

f i
te

ra
tio

ns

F
ig
u
re

3
:
a
sd

If
w
e
ch
o
o
se

to
p
ro
ce
ss

th
e
v
er
ti
ce
s
in

th
e
a
lp
h
a
b
et
ic
a
l
o
r-

d
er
,
{a

,b
,c
,d
,e
,f
},

w
e
h
av
e
⌧ 1
(a
)
=

H
({
⌧ 0
(e
),
⌧ 0
(b

)}
)
=

H
({
2
, 2
})

=
2
,
w
h
ic
h
im

p
li
es

th
a
t
w
e
n
ee
d
m
o
re

it
er
a
ti
o
n
(s
)

to
co
n
v
er
g
e.

In
d
ee
d
,
a

is
th
e

o
n
ly

v
er
te
x

th
a
t
h
a
s
n
o
t

re
a
ch
ed

it
s

2
va
lu
e.

W
e
g
et

⌧ 2
(a
)
=

H
({
⌧ 1
(e
),
⌧ 1
(b

)}
)
=

H
({
1
, 2
})

=
1
,
th
u
s
co
n
v
er
g
e
in

tw
o
it
er
a
ti
o
n
s.

4.
2.

1
Sk

ip
pi

ng
th

e
pl

at
ea

us
T
o
D
o
:
fi
g
fo
r
ta
u
ch
a
n
g
es

a
n
d
p
la
to
s
O
u
r
co
m
p
u
ta
ti
o
n
s

co
n
v
er
g
e
w
h
en

n
o
n
e
o
f
th
e
v
er
ti
ce
s
u
p
d
a
te

th
ei
r
⌧
in
d
ic
es

a
n
y
m
o
re
.
T
h
is
im

p
li
es

th
a
t
co
m
p
u
ta
ti
o
n
s
a
re

p
er
fo
rm

ed
fo
r

a
ll
th
e
v
er
ti
ce
s
ev
en

w
h
en

o
n
ly

a
si
n
g
le
u
p
d
a
te

o
cc
u
rs
.
T
h
o
se

co
m
p
u
ta
ti
o
n
s
a
re

re
d
u
n
d
a
n
t.

W
h
en

⌧
(v
)
co
n
v
er
g
es

(v
)
fo
r

a
v
er
te
x
v
,
n
o
m
o
re

co
m
p
u
ta
ti
o
n
s
a
re

n
ee
d
ed

fo
r
v
in

th
e

fo
ll
ow

in
g
it
er
a
ti
o
n
s.

A
ls
o
,
a
v
er
te
x
ca
n

p
o
ss
ib
ly

m
a
in
ta
in

th
e
sa
m
e
⌧

in
d
ex

fo
r
a
n
u
m
b
er

o
f
it
er
a
ti
o
n
s,

re
a
ch
es

to
a

p
la
te
a
u
,
a
n
d
th
en

u
p
d
a
te
s
it
.
S
o
,
it
is
n
o
t
p
o
ss
ib
le

to
d
ed

u
ce

w
h
et
h
er

⌧
(v
)
h
a
s
co
n
v
er
g
ed

to

(v
)
b
y
ju
st

lo
o
k
in
g
a
t
⌧
(v
)

in
d
ic
es

o
f
a
n
y
v
er
te
x
v
.
In

o
rd
er

to
sk
ip

th
e
in
te
rm

ed
ia
te

o
r
fi
n
a
l
p
la
te
a
u
s
d
u
ri
n
g
th
e
co
n
v
er
g
en

ce
o
f
⌧
(v
)
to

(v
),

w
e

in
tr
o
d
u
ce

a
n
o
ti
fi
ca
ti
o
n
m
ec
h
a
n
is
m

w
h
er
e
a
v
er
te
x
n
o
ti
fi
es

it
s
n
ei
g
h
b
o
rs

w
h
en

it
s
⌧
in
d
ex

is
u
p
d
a
te
d
.

B
ro
w
n
li
n
es

in
A
lg
o
ri
th
m

?
?
su
m
m
a
ri
ze
s
th
e
n
o
ti
fi
ca
ti
o
n

m
ec
h
a
n
is
m

w
e
p
lu
g

in
to

th
e
a
sy
n
ch
ro
n
o
u
s
co
m
p
u
ta
ti
o
n
.

T
h
e
o
n
ly

ch
a
n
g
es

a
re

in
li
n
es

?
?
,
?
?
,
?
?
a
n
d
?
?
.
A
d
d
it
io
n
a
l

C(
·)

a
rr
ay

tr
a
ck
s
w
h
et
h
er

a
v
er
te
x
v
2
V

h
a
s
u
p
d
a
te
d
it
s
⌧

in
d
ex

o
r
n
o
t.

It
is

se
t
to

t
r
u
e
a
t
th
e
b
eg
in
n
in
g
to

in
it
ia
te

th
e
co
m
p
u
ta
ti
o
n
s
fo
r
a
ll
v
er
ti
ce
s.

O
n
ce

C(
v
)
b
ec
o
m
es

fa
l
se

,
i.
e.
,
m
a
in
ta
in
s
it
s
⌧
in
d
ex
,
w
e
av
o
id

th
e
co
m
p
u
ta
ti
o
n
.
N
o
te

th
a
t,
a
v
er
te
x
re
st
a
rt
s
it
s
co
m
p
u
ta
ti
o
n
o
n
ly

w
h
en

a
n
ei
g
h
b
o
r

v
er
te
x
h
a
s
a
n
u
p
d
a
te

(L
in
e
?
?
).

O
n
ce

a
v
er
te
x
co
m
p
le
te
s

th
e
co
m
p
u
ta
ti
o
n
,
it
is
se
t
to

b
e
n
o
t-
u
p
d
a
te
d
(l
in
e
?
?
)
so

th
a
t

n
o
co
m
p
u
ta
ti
o
n
o
cc
u
rs

u
n
ti
l
a
n
o
ti
fi
ca
ti
o
n
is

re
ce
iv
ed

fr
o
m

a
n
ei
g
h
b
o
r.

4.
3

Il
lu

st
ra

tiv
e

ex
am

pl
es

T
o
D
o
:
ex
p
la
in

fi
g
3
a
n
d
4

4.
4

H
eu

ri
st

ic
s a

nd
im

pl
em

en
ta

tio
n

H
er
e
w
e
in
tr
o
d
u
ce

a
n

im
p
o
rt
a
n
t
sc
h
ed

u
li
n
g
d
ec
is
io
n

fo
r

th
e
p
a
ra
ll
el
iz
a
ti
o
n
in

o
u
r
a
lg
o
ri
th
m
s,
a
n
d
a
h
eu

ri
st
ic

to
co
m
-

p
u
te

th
e
h
-i
n
d
ex

o
f
a
se
t
in

li
n
ea
r
ti
m
e.

W
e
im

p
le
m
en
te
d
o
u
r
a
lg
o
ri
th
m
s
b
y
u
si
n
g
O
p
en

M
P

[6
]
to

u
ti
li
ze

th
e
sh
a
re
d
-m

em
o
ry

a
rc
h
it
ec
tu
re
s.

T
h
e
lo
o
p
s,

a
n
n
o
-

ta
te
d
a
s
p
a
ra
ll
el

in
A
lg
o
ri
th
m

?
?
,
a
re

sh
a
re
d
a
m
o
n
g
th
re
a
d
s,

a
n
d
ea
ch

th
re
a
d
is

re
sp

o
n
si
b
le

fo
r
it
s
p
a
rt
it
io
n
o
f
v
er
ti
ce
s.

D
ef
a
u
lt

sc
h
ed

u
li
n
g
p
o
li
cy

in
O
p
en

M
P

is
st
a
ti
c
a
n
d

it
d
is
-

tr
ib
u
te
s
th
e
it
er
a
ti
o
n
s
o
f
th
e
lo
o
p
to

th
e
th
re
a
d
s
in

ch
u
n
k
s,

i.
e.
,
fo
r
tw

o
th
re
a
d
s,

o
n
e
ta
k
es

th
e
fi
rs
t
h
a
lf

a
n
d
th
e
o
th
er

Figure 5: Changes in the ⌧ indices of some edges
in facebook graph during the k-truss decomposition
(r = 2, s = 3). Note that there are wide plateaus
during the convergence, especially at the end, where
edges do not change their ⌧ indices. Plateaus can be
also observed in the middle of the computation like
the top two lines.

⌧0 ⌧1
d2 2

Figure 2 illustrates the k-truss decomposition (r = 2, s =
3) on a toy graph. We follow the lexicographical order of
the edges (vertex pairs). Triangle counts (d3) of edges are
given in blue, which are used to initialize ⌧0 indices. We first
process edge ab. It has four triangles, abc, abd, abe, abi.
⇢ value of each triangle is calculated by taking the minimum
⌧0 value of the neighbor edges of ab (Line 11). Set of ⇢ values
is {min(⌧0(ac), ⌧0(bc)),min(⌧0(ad), ⌧0(bd)),min(⌧0(ae),
⌧0(be)),min(⌧0(ai), ⌧0(bi))}, which is L = {4, 3, 3, 2} and
⌧1(ab) = H(L) = 3. After computing ⌧1 indices of all the
edges in lexicographical order (ei edge is last),

4.3 Heuristics and implementation
Here we introduce an important scheduling decision for

the parallelization in our algorithms, and a heuristic to com-
pute the h-index of a set in linear time.

We implemented our algorithms by using OpenMP [6] to
utilize the shared-memory architectures. The loops, anno-
tated as parallel in Algorithm ??, are shared among threads,
and each thread is responsible for its partition of vertices.
Default scheduling policy in OpenMP is static and it dis-
tributes the iterations of the loop to the threads in chunks,
i.e., for two threads, one takes the first half and the other
takes the second. Although this policy is useful for many ap-
plications, it will not work well for our algorithms. The no-
tification mechanism to avoid the redundant computations
can result in significant load imbalance between threads. If
most of the converged vertices reside in a certain part, then
the thread that is responsible for that part becomes idle un-
til the end of computation. To prevent this, we embraced
the dynamic scheduling where each thread is given a new
workload once it is done. No thread stays idle this way, and
the overall computation is parallelized more e�ciently.

h-index computation of a list is done by sorting the items
in non-increasing order and checking the values from the
beginning of the list to find the largest h value for which at
least h items exist with at least h value. Main bottleneck is
the sorting operation which takes O(n.logn) time. However,
h-index can be computed without sorting. We initialize h
as zero and iterate over the items in the list. At each time,
we attempt to increase the current h value based on the
inspected item. For the current h value, we keep track of
the number of items that have equal value to h. We also
use a hashmap to keep track of the items that are greater
than the current h value, and we simply ignore the items
that are smaller than h. This enables the computation of
the h-index in linear time. In addition, for the non-initial
iterations of the convergence process, we simply check the
items if the current ⌧ index can be preserved. Once we see
� ⌧ items with at least ⌧ index, no more checks needed.

5. EXPERIMENTS
We evaluate our algorithms on three instances of the nu-

cleus decomposition: k-core (or (1, 2)), k-truss (or (2, 3)),
and (3, 4). Constructing the hypergraphs requires to store
all the s-cliques, which is infeasible for large networks. Thus
we do not construct the actual hypergraphs to compute
the indices. Instead, we find the participations of the
r-cliques in s-cliques on-the-fly. Details about the com-
parison between two approaches are given in [25]. Our

SND :

triangle count :

truss number :

to converge. Indeed, a is the only vertex that has not
reached its 2 value at the end of first iteration. We get
⌧2(a) = H({⌧1(e), ⌧1(b)}) = H({1, 2}) = 1, thus converge
in two iterations.

4.2.1 Skipping the plateaus
And algorithm converges when none of the r-cliques up-
date their ⌧ indices anymore. Consequently, computations
are performed for all the r-cliques even when only one up-
date occurs. Figure 5 shows the ⌧ indices of some edges
in the facebook graph during the k-truss decomposition
(r = 2, s = 3). There are wide plateaus where ⌧ indices
stay constant. However, those computations are redundant.
When ⌧(R) converges to s(R) for an r-clique R, no more
computations are needed for R anymore. But we do not
know if the ⌧(R) has converged or not by only watching the
plateaus. Because it can maintain the same ⌧ index for a
number of iterations, creating a plateau, and then update.
Thus, it is not possible to deduce whether ⌧(R) has con-
verged to (R) by just looking at consecutive ⌧(R) indices.
In order to skip the intermediate or final plateaus during the
convergence, we introduce a notification mechanism where
an r-clique notifies its neighbors when its ⌧ index is updated.
Orange lines in Algorithm 3 presents the notification mech-

anism we plug in to the asynchronous computation. c(·)
array is declared in line 4 to track whether an R 2 R(G)
has updated its ⌧ index or not. c(R) = false means that
R is an idle r-clique and there is no need to recompute its ⌧
value, as shown in line 8. Thus, all c(·) is set to true at the
beginning to initiate the computations for all the r-cliques.
Each r-clique marks itself idle at the end of an iteration
(line 17) and waits until an update happens in the ⌧ in-
dex of a neighbor. Whenever the ⌧ index of an r-clique is
updated, all its neighbors are notified and woken up since
their ⌧ indices might be a↵ected (line 15). Note that some
neighbors might already be active at that time and misses
the new update, but it is ok since the following iterations
will handle it – in the worst case it will be a synchronous
computation.
⌧0 ⌧1 ⌧2 ⌧3
⌧0 ⌧1 ⌧2
d3 3

22

c

d

bf e a
1

1

3

2

21 1 2

2

2

1 1 2 2

2

2

degree (d2)

 1 in SND & AND alph. order
core number (2)

22

c

d

bf e a
1

1

3

2

21 1 2

2

2

1 1 2 2

2

2

degrees
core numbers
2nd step in lex. order

Figure 2: Async example

Theorem 4. In AND algorithm, if the r-cliques are pro-
cessed in the non-decreasing order of their final s indices,
convergence is obtained in a single iteration.

Proof. Say s(R) = t for an r-clique R. For the sake of
contradiction, assume that it takes more than one iteration
for ds(R) to converge s(R). So, ⌧0(R) = ds(R) and ⌧0(R) �
⌧1(R) > s(R). So, when R is being processed, H(L) > t
for L = {⇢(S) : S 3 R}. That means there are at least t+1
s-cliques where each has ⇢ value of at least t+ 1. However,
this implies that R is a part of (t + 1)-(r, s) nucleus, which
contradicts with the initial assumption.

The worst case happens when all the r-cliques see the ⌧
values of their neighbors that are computed in the previous
iteration and it is exactly the SND algorithm.

Figure 2 illustrates the di↵erence between Snd and And
algorithms (with di↵erent orderings) on the k-core case (r =
1, s = 2). Our focus is on vertices (1-cliques) and their re-
lations with edges (2-cliques). We first apply Snd. First,
vertex degrees are calculated as ⌧0 indices (blue numbers).
Then, for each vertex u we compute the ⌧1(u) = H({⌧0(v) :
v 2 N2(u)}, i.e., h-index of its neighbors’ degrees (red num-
bers). ⌧ For instance,

ToDo: should I include some numbers in exp, bounds part

4.2.1 Skipping the plateaus
ToDo: fig for tau changes and platos Our computations

converge when none of the vertices update their ⌧ indices
anymore. This implies that computations are performed for
all the vertices even when only a single update occurs. Those
computations are redundant. When ⌧(v) converges (v) for
a vertex v, no more computations are needed for v in the
following iterations. Also, a vertex can possibly maintain
the same ⌧ index for a number of iterations, reaches to a
plateau, and then updates it. So, it is not possible to deduce
whether ⌧(v) has converged to (v) by just looking at ⌧(v)
values of any vertex v. In order to skip the intermediate
or final plateaus during the convergence of ⌧(v) to (v), we
introduce a notification mechanism where a vertex notifies
its neighbors when its ⌧ index is updated.

Brown lines in Algorithm ?? summarizes the notification
mechanism we plug in to the asynchronous computation.
The only changes are in lines ??, ??, ?? and ??. Additional
C(·) array tracks whether a vertex v 2 V has updated its ⌧
index or not. It is set to true at the beginning to initiate
the computations for all vertices. Once C(v) becomes false,
i.e., maintains its ⌧ index, we avoid the computation. Note
that, a vertex restarts its computation only when a neighbor

vertex has an update (Line ??). Once a vertex completes
the computation, it is set to be not-updated (line ??) so that
no computation occurs until a notification is received from
a neighbor.

4.3 Illustrative examples
ToDo: explain fig 3 and 4

4.4 Heuristics and implementation
Here we introduce an important scheduling decision for

the parallelization in our algorithms, and a heuristic to com-
pute the h-index of a set in linear time.
We implemented our algorithms by using OpenMP [6] to

utilize the shared-memory architectures. The loops, anno-
tated as parallel in Algorithm ??, are shared among threads,
and each thread is responsible for its partition of vertices.
Default scheduling policy in OpenMP is static and it dis-
tributes the iterations of the loop to the threads in chunks,
i.e., for two threads, one takes the first half and the other
takes the second. Although this policy is useful for many ap-
plications, it will not work well for our algorithms. The no-
tification mechanism to avoid the redundant computations
can result in significant load imbalance between threads. If
most of the converged vertices reside in a certain part, then
the thread that is responsible for that part becomes idle un-
til the end of computation. To prevent this, we embraced
the dynamic scheduling where each thread is given a new
workload once it is done. No thread stays idle this way, and
the overall computation is parallelized more e�ciently.
h-index computation of a list is done by sorting the items

in non-increasing order and checking the values from the
beginning of the list to find the largest h value for which at
least h items exist with at least h value. Main bottleneck is
the sorting operation which takes O(n.logn) time. However,
h-index can be computed without sorting. We initialize h
as zero and iterate over the items in the list. At each time,
we attempt to increase the current h value based on the

a

i

d

f

b

h

c e g
122

4

2

4

3

2

4 2

1 1

23

3

2

2
1st

2nd

3rd

step
step
step

Figure 3: Core example

22

c

d

bf e a
1

1

3

2

21 1 2

2

2

1 1 2 2

2

2

degrees

 1 indices in SND
core numbers

22

c

d

bf e a
1

1

3

2

21 1 2

2

2

1 1 2 2

2

2

degrees
core numbers
2nd step in lex. order

Figure 2: Async example

Theorem 4. In AND algorithm, if the r-cliques are pro-
cessed in the non-decreasing order of their final s indices,
convergence is obtained in a single iteration.

Proof. Say s(R) = t for an r-clique R. For the sake of
contradiction, assume that it takes more than one iteration
for ds(R) to converge s(R). So, ⌧0(R) = ds(R) and ⌧0(R) �
⌧1(R) > s(R). So, when R is being processed, H(L) > t
for L = {⇢(S) : S 3 R}. That means there are at least t+1
s-cliques where each has ⇢ value of at least t+ 1. However,
this implies that R is a part of (t + 1)-(r, s) nucleus, which
contradicts with the initial assumption.

The worst case happens when all the r-cliques see the ⌧
values of their neighbors that are computed in the previous
iteration and it is exactly the SND algorithm.

Figure 2 illustrates the di↵erence between Snd and And
algorithms (with di↵erent orderings) on the k-core case (r =
1, s = 2). Our focus is on vertices (1-cliques) and their re-
lations with edges (2-cliques). We first apply Snd. First,
vertex degrees are calculated as ⌧0 indices (blue numbers).
Then, for each vertex u we compute the ⌧1(u) = H({⌧0(v) :
v 2 N2(u)}, i.e., h-index of its neighbors’ degrees (red num-
bers). ⌧ For instance,

ToDo: should I include some numbers in exp, bounds part

4.2.1 Skipping the plateaus
ToDo: fig for tau changes and platos Our computations

converge when none of the vertices update their ⌧ indices
anymore. This implies that computations are performed for
all the vertices even when only a single update occurs. Those
computations are redundant. When ⌧(v) converges (v) for
a vertex v, no more computations are needed for v in the
following iterations. Also, a vertex can possibly maintain
the same ⌧ index for a number of iterations, reaches to a
plateau, and then updates it. So, it is not possible to deduce
whether ⌧(v) has converged to (v) by just looking at ⌧(v)
values of any vertex v. In order to skip the intermediate
or final plateaus during the convergence of ⌧(v) to (v), we
introduce a notification mechanism where a vertex notifies
its neighbors when its ⌧ index is updated.

Brown lines in Algorithm ?? summarizes the notification
mechanism we plug in to the asynchronous computation.
The only changes are in lines ??, ??, ?? and ??. Additional
C(·) array tracks whether a vertex v 2 V has updated its ⌧
index or not. It is set to true at the beginning to initiate
the computations for all vertices. Once C(v) becomes false,
i.e., maintains its ⌧ index, we avoid the computation. Note
that, a vertex restarts its computation only when a neighbor

vertex has an update (Line ??). Once a vertex completes
the computation, it is set to be not-updated (line ??) so that
no computation occurs until a notification is received from
a neighbor.

4.3 Illustrative examples
ToDo: explain fig 3 and 4

4.4 Heuristics and implementation
Here we introduce an important scheduling decision for

the parallelization in our algorithms, and a heuristic to com-
pute the h-index of a set in linear time.
We implemented our algorithms by using OpenMP [6] to

utilize the shared-memory architectures. The loops, anno-
tated as parallel in Algorithm ??, are shared among threads,
and each thread is responsible for its partition of vertices.
Default scheduling policy in OpenMP is static and it dis-
tributes the iterations of the loop to the threads in chunks,
i.e., for two threads, one takes the first half and the other
takes the second. Although this policy is useful for many ap-
plications, it will not work well for our algorithms. The no-
tification mechanism to avoid the redundant computations
can result in significant load imbalance between threads. If
most of the converged vertices reside in a certain part, then
the thread that is responsible for that part becomes idle un-
til the end of computation. To prevent this, we embraced
the dynamic scheduling where each thread is given a new
workload once it is done. No thread stays idle this way, and
the overall computation is parallelized more e�ciently.
h-index computation of a list is done by sorting the items

in non-increasing order and checking the values from the
beginning of the list to find the largest h value for which at
least h items exist with at least h value. Main bottleneck is
the sorting operation which takes O(n.logn) time. However,
h-index can be computed without sorting. We initialize h
as zero and iterate over the items in the list. At each time,
we attempt to increase the current h value based on the

a

i

d

f

b

h

c e g
122

4

2

4

3

2

4 2

1 1

23

3

2

2
1st

2nd

3rd

step
step
step

Figure 3: Core example

Figure 2: Async example

Theorem 4. In AND algorithm, if the r-cliques are pro-
cessed in the non-decreasing order of their final s indices,
convergence is obtained in a single iteration.

Proof. Say s(R) = t for an r-clique R. For the sake of
contradiction, assume that it takes more than one iteration
for ds(R) to converge s(R). So, ⌧0(R) = ds(R) and ⌧0(R) �
⌧1(R) > s(R). So, when R is being processed, H(L) > t
for L = {⇢(S) : S 3 R}. That means there are at least t+1
s-cliques where each has ⇢ value of at least t+ 1. However,
this implies that R is a part of (t + 1)-(r, s) nucleus, which
contradicts with the initial assumption.

The worst case happens when all the r-cliques see the ⌧
values of their neighbors that are computed in the previous
iteration and it is exactly the SND algorithm.

Figure 2 illustrates Snd and And algorithms (with di↵er-
ent orderings) on the k-core case (r = 1, s = 2). Our focus
is on vertices (1-cliques) and their edge (2-clique) counts
(degrees). We first apply Snd. First, vertex degrees are cal-
culated as ⌧0 indices (blue numbers). Then, for each vertex
u we compute the ⌧1(u) = H({⌧0(v) : v 2 N2(u)}, i.e., h-
index of its neighbors’ degrees (red numbers). For instance,
vertex a has two neighbors, e and b, with degrees 2 and
3. Since H({2, 3}) = 2, we get ⌧1(a) = 2. For vertex b,
we get ⌧1(b) = H({2, 2, 2}) = 2. Once we compute all ⌧1
indices, we iterate again because there were changes in ⌧
indices, e.g,. ⌧1(e) 6= ⌧0(e) (Line 13 in Algorithm 2). ⌧2
indices are shown in green. We observe an update only for
the vertex a; ⌧2(a) = H({⌧1(e), ⌧1(b)}) = H({1, 2}) = 1.
When we iterate again, no update is observed in ⌧ indices,
which means s = ⌧2 for all vertices. Regarding And algo-
rithm, we choose to follow the non-decreasing order of s

indices; {f,e,a,b,c,d}. Computing the ⌧1 indices on this or-
der enables us to reach the convergence in a single iteration.
For instance, ⌧1(a) = H({⌧1(e), ⌧0(b)}) = H({1, 2}) = 1.
If we choose to process the vertices in the alphabetical or-
der, {a,b,c,d,e,f}, we have ⌧1(a) = H({⌧0(e), ⌧0(b)}) =
H({2, 2}) = 2, which implies that we need more iteration(s)
to converge. Indeed ⌧2(a) = H({⌧1(e), ⌧1(b)}) = H({1, 2}) =
1

 ⌧1 ToDo: should I include some numbers in exp, bounds
part

4.2.1 Skipping the plateaus
ToDo: fig for tau changes and platos Our computations

converge when none of the vertices update their ⌧ indices
anymore. This implies that computations are performed for
all the vertices even when only a single update occurs. Those
computations are redundant. When ⌧(v) converges (v) for
a vertex v, no more computations are needed for v in the

following iterations. Also, a vertex can possibly maintain
the same ⌧ index for a number of iterations, reaches to a
plateau, and then updates it. So, it is not possible to deduce
whether ⌧(v) has converged to (v) by just looking at ⌧(v)
values of any vertex v. In order to skip the intermediate
or final plateaus during the convergence of ⌧(v) to (v), we
introduce a notification mechanism where a vertex notifies
its neighbors when its ⌧ index is updated.
Brown lines in Algorithm ?? summarizes the notification

mechanism we plug in to the asynchronous computation.
The only changes are in lines ??, ??, ?? and ??. Additional
C(·) array tracks whether a vertex v 2 V has updated its ⌧
index or not. It is set to true at the beginning to initiate
the computations for all vertices. Once C(v) becomes false,
i.e., maintains its ⌧ index, we avoid the computation. Note
that, a vertex restarts its computation only when a neighbor
vertex has an update (Line ??). Once a vertex completes
the computation, it is set to be not-updated (line ??) so that
no computation occurs until a notification is received from
a neighbor.

4.3 Illustrative examples
ToDo: explain fig 3 and 4

4.4 Heuristics and implementation
Here we introduce an important scheduling decision for

the parallelization in our algorithms, and a heuristic to com-
pute the h-index of a set in linear time.
We implemented our algorithms by using OpenMP [6] to

utilize the shared-memory architectures. The loops, anno-
tated as parallel in Algorithm ??, are shared among threads,
and each thread is responsible for its partition of vertices.
Default scheduling policy in OpenMP is static and it dis-
tributes the iterations of the loop to the threads in chunks,
i.e., for two threads, one takes the first half and the other
takes the second. Although this policy is useful for many ap-
plications, it will not work well for our algorithms. The no-

a

i

d

f

b

h

c e g
122

4

2

4

3

2

4 2

1 1

23

3

2

2
1st

2nd

3rd

step
step
step

Figure 3: Core example

Figure 2: We apply the k-core decomposition (r =
1, s = 2). So, we need to find 2 (edge is 2-clique)
indices of vertices. ⌧0 indices are initialized to the
degrees (d2s in blue). Snd algorithm converges in
two iterations (⌧1s in red, ⌧2 = 2s in green). Same
happens when we use And algorithm and process the
vertices in the alphabetical order. However, if we
choose {f,e,a,b,c,d} order, which is actually a non-
decreasing order on 2 indices, And converges in a
single iteration.

Theorem 4. In And algorithm, if the r-cliques are pro-
cessed in the non-decreasing order of their final s indices,
convergence is obtained in a single iteration.

Proof. Say s(R) = t for an r-clique R. For the sake of
contradiction, assume that it takes more than one iteration
for ds(R) to converge s(R). So, ⌧0(R) = ds(R) and ⌧0(R) �
⌧1(R) > s(R). So, when R is being processed, H(L) > t
for L = {⇢(S) : S 3 R}. That means there are at least t+1
s-cliques where each has ⇢ value of at least t+ 1. However,
this implies that R is a part of (t + 1)-(r, s) nucleus, which
contradicts with the initial assumption.

The worst case happens when all the r-cliques see the ⌧
indices of their neighbors that are computed in the previ-
ous iteration and it is exactly the SND algorithm. Erdem
SAYS: I actually believe that processing the vertices in non-
increasing order of their indices will give the worst case
for And algorithm. It’s just an intuition based on the best
case theorem, not sure if I can prove. If you can prove, I
can include some worst case numbers in exp. section

Figure 2 illustrates Snd and And algorithms (with di↵er-
ent orderings) on the k-core case (r = 1, s = 2). Our focus
is on vertices (1-cliques) and their edge (2-clique) counts
(degrees). We first apply Snd. First, vertex degrees are cal-
culated as ⌧0 indices (blue numbers). Then, for each vertex
u we compute the ⌧1(u) = H({⌧0(v) : v 2 N2(u)}, i.e., h-
index of its neighbors’ degrees (red numbers). For instance,
vertex a has two neighbors, e and b, with degrees 2 and
3. Since H({2, 3}) = 2, we get ⌧1(a) = 2. For vertex b,
we get ⌧1(b) = H({2, 2, 2}) = 2. Once we compute all ⌧1
indices, we iterate again because there were changes in ⌧
indices, e.g,. ⌧1(e) 6= ⌧0(e) (Line 13 in Algorithm 2). ⌧2
indices are shown in green. We observe an update only for
the vertex a; ⌧2(a) = H({⌧1(e), ⌧1(b)}) = H({1, 2}) = 1.
When we iterate again, no update is observed in ⌧ indices,
which means s = ⌧2 for all vertices. Regarding And algo-
rithm, we choose to follow the non-decreasing order of s

indices; {f,e,a,b,c,d}. Computing the ⌧1 indices on this or-
der enables us to reach the convergence in a single iteration.
For instance, ⌧1(a) = H({⌧1(e), ⌧0(b)}) = H({1, 2}) = 1.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 0 2 4 6 8 10 12 14 16

t i
nd

ic
es

number of iterations

Figure 3: Changesasd

If we choose to process the vertices in the alphabetical or-
der, {a,b,c,d,e,f}, we have ⌧1(a) = H({⌧0(e), ⌧0(b)}) =
H({2, 2}) = 2, which implies that we need more iteration(s)
to converge. Indeed, a is the only vertex that has not
reached its 2 value. We get ⌧2(a) = H({⌧1(e), ⌧1(b)}) =
H({1, 2}) = 1, thus converge in two iterations.

0
10
20
30
40
50
60
70
80
90

0 2 4 6 8 10 12 14 16

⌧
in
d
ic
es

number of iterations

4.2.1 Skipping the plateaus
ToDo: fig for tau changes and platos Our computations

converge when none of the vertices update their ⌧ indices
anymore. This implies that computations are performed for
all the vertices even when only a single update occurs. Those
computations are redundant. When ⌧(v) converges (v) for
a vertex v, no more computations are needed for v in the
following iterations. Also, a vertex can possibly maintain
the same ⌧ index for a number of iterations, reaches to a
plateau, and then updates it. So, it is not possible to deduce
whether ⌧(v) has converged to (v) by just looking at ⌧(v)
indices of any vertex v. In order to skip the intermediate
or final plateaus during the convergence of ⌧(v) to (v), we
introduce a notification mechanism where a vertex notifies
its neighbors when its ⌧ index is updated.

Brown lines in Algorithm ?? summarizes the notification
mechanism we plug in to the asynchronous computation.
The only changes are in lines ??, ??, ?? and ??. Additional

2
2

cd

b
f

e
a

1 1

3

2 2
1

1
2

2 2

1
1

2
2

2 2

d
e
g

re
e
 (
d

2)

1

in
 S

N
D

 &
 A

N
D

 a
lp

h
.

o
rd

e
r

c
o

re
 n

u
m

b
e
r

(

2)

2
2

cd

b
f

e
a

1 1

3

2 2
1

1
2

2 2

1
1

2
2

2 2

d
e
g

re
e
s

c
o

re
 n

u
m

b
e
rs

2
n
d
 st

e
p

 in
 le

x.
 o

rd
e
r

F
ig
u
re

2
:
A
sy
n
c
ex
a
m
p
le

T
h
e
o
r
e
m

4
.
In

A
N
D

a
lg
o
ri
th
m
,
if
th
e
r-
cl
iq
u
es

a
re

p
ro
-

ce
ss
ed

in
th
e
n
o
n
-d
ec
re
a
si
n
g
o
rd
er

o
f
th
ei
r
fi
n
a
l

s
in
d
ic
es
,

co
n
ve
rg
en

ce
is

o
bt
a
in
ed

in
a
si
n
gl
e
it
er
a
ti
o
n
.

P
r
o
o
f
.
S
ay

s
(R

)
=

t
fo
r
a
n
r-
cl
iq
u
e
R
.
F
o
r
th
e
sa
k
e
o
f

co
n
tr
a
d
ic
ti
o
n
,
a
ss
u
m
e
th
a
t
it

ta
k
es

m
o
re

th
a
n
o
n
e
it
er
a
ti
o
n

fo
r
d
s
(R

)
to

co
n
v
er
g
e

s
(R

).
S
o
,
⌧ 0
(R

)
=

d
s
(R

)
a
n
d
⌧ 0
(R

)
�

⌧ 1
(R

)
>

s
(R

).
S
o
,
w
h
en

R
is

b
ei
n
g
p
ro
ce
ss
ed

,
H
(L

)
>

t
fo
r
L
=

{⇢
(S

)
:
S
3
R
}.

T
h
a
t
m
ea
n
s
th
er
e
a
re

a
t
le
a
st

t
+
1

s-
cl
iq
u
es

w
h
er
e
ea
ch

h
a
s
⇢
va
lu
e
o
f
a
t
le
a
st

t
+

1
.
H
ow

ev
er
,

th
is

im
p
li
es

th
a
t
R

is
a
p
a
rt

o
f
(t

+
1
)-
(r
, s
)
n
u
cl
eu

s,
w
h
ic
h

co
n
tr
a
d
ic
ts

w
it
h
th
e
in
it
ia
l
a
ss
u
m
p
ti
o
n
.

T
h
e
w
o
rs
t
ca
se

h
a
p
p
en

s
w
h
en

a
ll
th
e
r-
cl
iq
u
es

se
e
th
e
⌧

va
lu
es

o
f
th
ei
r
n
ei
g
h
b
o
rs

th
a
t
a
re

co
m
p
u
te
d
in

th
e
p
re
v
io
u
s

it
er
a
ti
o
n
a
n
d
it

is
ex
a
ct
ly

th
e
S
N
D

a
lg
o
ri
th
m
.

F
ig
u
re

2
il
lu
st
ra
te
s
th
e
d
i↵
er
en

ce
b
et
w
ee
n
S
n
d
a
n
d
A
n
d

a
lg
o
ri
th
m
s
(w

it
h
d
i↵
er
en

t
o
rd
er
in
g
s)

o
n
th
e
k
-c
o
re

ca
se

(r
=

1
, s

=
2
).

O
u
r
fo
cu

s
is

o
n
v
er
ti
ce
s
(1
-c
li
q
u
es
)
a
n
d
th
ei
r
re
-

la
ti
o
n
s
w
it
h

ed
g
es

(2
-c
li
q
u
es
).

W
e
fi
rs
t
a
p
p
ly

S
n
d
.

F
ir
st
,

v
er
te
x
d
eg
re
es

a
re

ca
lc
u
la
te
d
a
s
⌧ 0

in
d
ic
es

(b
lu
e
n
u
m
b
er
s)
.

T
h
en

,
fo
r
ea
ch

v
er
te
x
u
w
e
co
m
p
u
te

th
e
⌧ 1
(u
)
=

H
({
⌧ 0
(v
)
:

v
2
N

2
(u
)}
,
i.
e.
,
h
-i
n
d
ex

o
f
it
s
n
ei
g
h
b
o
rs
’
d
eg
re
es

(r
ed

n
u
m
-

b
er
s)
.
⌧
F
o
r
in
st
a
n
ce
,

T
o
D
o
:
sh
o
u
ld

I
in
cl
u
d
e
so
m
e
n
u
m
b
er
s
in

ex
p
,
b
o
u
n
d
s
p
a
rt

4.
2.

1
Sk

ip
pi

ng
th

e
pl

at
ea

us
T
o
D
o
:
fi
g
fo
r
ta
u
ch
a
n
g
es

a
n
d
p
la
to
s
O
u
r
co
m
p
u
ta
ti
o
n
s

co
n
v
er
g
e
w
h
en

n
o
n
e
o
f
th
e
v
er
ti
ce
s
u
p
d
a
te

th
ei
r
⌧
in
d
ic
es

a
n
y
m
o
re
.
T
h
is
im

p
li
es

th
a
t
co
m
p
u
ta
ti
o
n
s
a
re

p
er
fo
rm

ed
fo
r

a
ll
th
e
v
er
ti
ce
s
ev
en

w
h
en

o
n
ly

a
si
n
g
le
u
p
d
a
te

o
cc
u
rs
.
T
h
o
se

co
m
p
u
ta
ti
o
n
s
a
re

re
d
u
n
d
a
n
t.

W
h
en

⌧
(v
)
co
n
v
er
g
es

(v
)
fo
r

a
v
er
te
x
v
,
n
o
m
o
re

co
m
p
u
ta
ti
o
n
s
a
re

n
ee
d
ed

fo
r
v
in

th
e

fo
ll
ow

in
g
it
er
a
ti
o
n
s.

A
ls
o
,
a
v
er
te
x
ca
n

p
o
ss
ib
ly

m
a
in
ta
in

th
e
sa
m
e
⌧

in
d
ex

fo
r
a
n
u
m
b
er

o
f
it
er
a
ti
o
n
s,

re
a
ch
es

to
a

p
la
te
a
u
,
a
n
d
th
en

u
p
d
a
te
s
it
.
S
o
,
it
is
n
o
t
p
o
ss
ib
le

to
d
ed

u
ce

w
h
et
h
er

⌧
(v
)
h
a
s
co
n
v
er
g
ed

to

(v
)
b
y
ju
st

lo
o
k
in
g
a
t
⌧
(v
)

va
lu
es

o
f
a
n
y
v
er
te
x
v
.

In
o
rd
er

to
sk
ip

th
e
in
te
rm

ed
ia
te

o
r
fi
n
a
l
p
la
te
a
u
s
d
u
ri
n
g
th
e
co
n
v
er
g
en

ce
o
f
⌧
(v
)
to

(v
),

w
e

in
tr
o
d
u
ce

a
n
o
ti
fi
ca
ti
o
n
m
ec
h
a
n
is
m

w
h
er
e
a
v
er
te
x
n
o
ti
fi
es

it
s
n
ei
g
h
b
o
rs

w
h
en

it
s
⌧
in
d
ex

is
u
p
d
a
te
d
.

B
ro
w
n
li
n
es

in
A
lg
o
ri
th
m

?
?
su
m
m
a
ri
ze
s
th
e
n
o
ti
fi
ca
ti
o
n

m
ec
h
a
n
is
m

w
e
p
lu
g

in
to

th
e
a
sy
n
ch
ro
n
o
u
s
co
m
p
u
ta
ti
o
n
.

T
h
e
o
n
ly

ch
a
n
g
es

a
re

in
li
n
es

?
?
,
?
?
,
?
?
a
n
d
?
?
.
A
d
d
it
io
n
a
l

C(
·)

a
rr
ay

tr
a
ck
s
w
h
et
h
er

a
v
er
te
x
v
2
V

h
a
s
u
p
d
a
te
d
it
s
⌧

in
d
ex

o
r
n
o
t.

It
is

se
t
to

t
r
u
e
a
t
th
e
b
eg
in
n
in
g
to

in
it
ia
te

th
e
co
m
p
u
ta
ti
o
n
s
fo
r
a
ll
v
er
ti
ce
s.

O
n
ce

C(
v
)
b
ec
o
m
es

fa
l
se

,
i.
e.
,
m
a
in
ta
in
s
it
s
⌧
in
d
ex
,
w
e
av
o
id

th
e
co
m
p
u
ta
ti
o
n
.
N
o
te

th
a
t,
a
v
er
te
x
re
st
a
rt
s
it
s
co
m
p
u
ta
ti
o
n
o
n
ly

w
h
en

a
n
ei
g
h
b
o
r

v
er
te
x
h
a
s
a
n
u
p
d
a
te

(L
in
e
?
?
).

O
n
ce

a
v
er
te
x
co
m
p
le
te
s

th
e
co
m
p
u
ta
ti
o
n
,
it
is
se
t
to

b
e
n
o
t-
u
p
d
a
te
d
(l
in
e
?
?
)
so

th
a
t

n
o
co
m
p
u
ta
ti
o
n
o
cc
u
rs

u
n
ti
l
a
n
o
ti
fi
ca
ti
o
n
is

re
ce
iv
ed

fr
o
m

a
n
ei
g
h
b
o
r.

4.
3

Il
lu

st
ra

tiv
e

ex
am

pl
es

T
o
D
o
:
ex
p
la
in

fi
g
3
a
n
d
4

4.
4

H
eu

ri
st

ic
s a

nd
im

pl
em

en
ta

tio
n

H
er
e
w
e
in
tr
o
d
u
ce

a
n

im
p
o
rt
a
n
t
sc
h
ed

u
li
n
g
d
ec
is
io
n

fo
r

th
e
p
a
ra
ll
el
iz
a
ti
o
n
in

o
u
r
a
lg
o
ri
th
m
s,
a
n
d
a
h
eu

ri
st
ic

to
co
m
-

p
u
te

th
e
h
-i
n
d
ex

o
f
a
se
t
in

li
n
ea
r
ti
m
e.

W
e
im

p
le
m
en
te
d
o
u
r
a
lg
o
ri
th
m
s
b
y
u
si
n
g
O
p
en

M
P

[6
]
to

u
ti
li
ze

th
e
sh
a
re
d
-m

em
o
ry

a
rc
h
it
ec
tu
re
s.

T
h
e
lo
o
p
s,

a
n
n
o
-

ta
te
d
a
s
p
a
ra
ll
el

in
A
lg
o
ri
th
m

?
?
,
a
re

sh
a
re
d
a
m
o
n
g
th
re
a
d
s,

a
n
d
ea
ch

th
re
a
d
is

re
sp

o
n
si
b
le

fo
r
it
s
p
a
rt
it
io
n
o
f
v
er
ti
ce
s.

D
ef
a
u
lt

sc
h
ed

u
li
n
g
p
o
li
cy

in
O
p
en

M
P

is
st
a
ti
c
a
n
d

it
d
is
-

tr
ib
u
te
s
th
e
it
er
a
ti
o
n
s
o
f
th
e
lo
o
p
to

th
e
th
re
a
d
s
in

ch
u
n
k
s,

i.
e.
,
fo
r
tw

o
th
re
a
d
s,

o
n
e
ta
k
es

th
e
fi
rs
t
h
a
lf

a
n
d
th
e
o
th
er

ta
k
es

th
e
se
co
n
d
.
A
lt
h
o
u
g
h
th
is
p
o
li
cy

is
u
se
fu
l
fo
r
m
a
n
y
a
p
-

p
li
ca
ti
o
n
s,

it
w
il
l
n
o
t
w
o
rk

w
el
l
fo
r
o
u
r
a
lg
o
ri
th
m
s.

T
h
e
n
o
-

ti
fi
ca
ti
o
n
m
ec
h
a
n
is
m

to
av
o
id

th
e
re
d
u
n
d
a
n
t
co
m
p
u
ta
ti
o
n
s

ca
n
re
su
lt

in
si
g
n
ifi
ca
n
t
lo
a
d
im

b
a
la
n
ce

b
et
w
ee
n
th
re
a
d
s.

If
m
o
st

o
f
th
e
co
n
v
er
g
ed

v
er
ti
ce
s
re
si
d
e
in

a
ce
rt
a
in

p
a
rt
,
th
en

th
e
th
re
a
d
th
a
t
is
re
sp

o
n
si
b
le

fo
r
th
a
t
p
a
rt

b
ec
o
m
es

id
le

u
n
-

ti
l
th
e
en

d
o
f
co
m
p
u
ta
ti
o
n
.
T
o
p
re
v
en
t
th
is
,
w
e
em

b
ra
ce
d

th
e
d
y
n
a
m
ic

sc
h
ed

u
li
n
g
w
h
er
e
ea
ch

th
re
a
d

is
g
iv
en

a
n
ew

w
o
rk
lo
a
d
o
n
ce

it
is
d
o
n
e.

N
o
th
re
a
d
st
ay

s
id
le

th
is
w
ay
,
a
n
d

th
e
ov
er
a
ll
co
m
p
u
ta
ti
o
n
is

p
a
ra
ll
el
iz
ed

m
o
re

e�
ci
en
tl
y.

h
-i
n
d
ex

co
m
p
u
ta
ti
o
n
o
f
a
li
st

is
d
o
n
e
b
y
so
rt
in
g
th
e
it
em

s
in

n
o
n
-i
n
cr
ea
si
n
g
o
rd
er

a
n
d

ch
ec
k
in
g
th
e
va
lu
es

fr
o
m

th
e

b
eg
in
n
in
g
o
f
th
e
li
st

to
fi
n
d
th
e
la
rg
es
t
h
va
lu
e
fo
r
w
h
ic
h
a
t

le
a
st

h
it
em

s
ex
is
t
w
it
h
a
t
le
a
st

h
va
lu
e.

M
a
in

b
o
tt
le
n
ec
k
is

th
e
so
rt
in
g
o
p
er
a
ti
o
n
w
h
ic
h
ta
k
es

O
(n

.l
og

n
)
ti
m
e.

H
ow

ev
er
,

h
-i
n
d
ex

ca
n
b
e
co
m
p
u
te
d
w
it
h
o
u
t
so
rt
in
g
.
W
e
in
it
ia
li
ze

h
a
s
ze
ro

a
n
d
it
er
a
te

ov
er

th
e
it
em

s
in

th
e
li
st
.
A
t
ea
ch

ti
m
e,

w
e
a
tt
em

p
t
to

in
cr
ea
se

th
e
cu

rr
en

t
h

va
lu
e
b
a
se
d

o
n

th
e

a i

d

f b

h

c
e

g 1
2

2

4

24

3

2 4
2

1
1

23

3

2 2
1st 2nd 3rd

st
ep

st
ep

st
ep

F
ig
u
re

3
:
C
o
re

ex
a
m
p
le

2
2

cd

b
f

e
a

1 1

3

2 2
1

1
2

2 2

1
1

2
2

2 2

d
e
g
re

e
s

1
in

d
ic

e
s

in
 S

N
D

c
o
re

 n
u
m

b
e
rs

2
2

cd

b
f

e
a

1 1

3

2 2
1

1
2

2 2

1
1

2
2

2 2

d
e
g
re

e
s

c
o
re

 n
u
m

b
e
rs

2
n
d
 st

e
p

 in
 le

x.
 o

rd
e
r

F
ig
u
re

2
:
A
sy
n
c
ex
a
m
p
le

T
h
e
o
r
e
m

4
.
In

A
N
D

a
lg
o
ri
th
m
,
if
th
e
r-
cl
iq
u
es

a
re

p
ro
-

ce
ss
ed

in
th
e
n
o
n
-d
ec
re
a
si
n
g
o
rd
er

o
f
th
ei
r
fi
n
a
l

s
in
d
ic
es
,

co
n
ve
rg
en

ce
is

o
bt
a
in
ed

in
a
si
n
gl
e
it
er
a
ti
o
n
.

P
r
o
o
f
.
S
ay

s
(R

)
=

t
fo
r
a
n
r-
cl
iq
u
e
R
.
F
o
r
th
e
sa
k
e
o
f

co
n
tr
a
d
ic
ti
o
n
,
a
ss
u
m
e
th
a
t
it

ta
k
es

m
o
re

th
a
n
o
n
e
it
er
a
ti
o
n

fo
r
d
s
(R

)
to

co
n
v
er
g
e

s
(R

).
S
o
,
⌧ 0
(R

)
=

d
s
(R

)
a
n
d
⌧ 0
(R

)
�

⌧ 1
(R

)
>

s
(R

).
S
o
,
w
h
en

R
is

b
ei
n
g
p
ro
ce
ss
ed

,
H
(L

)
>

t
fo
r
L
=

{⇢
(S

)
:
S
3
R
}.

T
h
a
t
m
ea
n
s
th
er
e
a
re

a
t
le
a
st

t
+
1

s-
cl
iq
u
es

w
h
er
e
ea
ch

h
a
s
⇢
va
lu
e
o
f
a
t
le
a
st

t
+

1
.
H
ow

ev
er
,

th
is

im
p
li
es

th
a
t
R

is
a
p
a
rt

o
f
(t

+
1
)-
(r
, s
)
n
u
cl
eu

s,
w
h
ic
h

co
n
tr
a
d
ic
ts

w
it
h
th
e
in
it
ia
l
a
ss
u
m
p
ti
o
n
.

T
h
e
w
o
rs
t
ca
se

h
a
p
p
en

s
w
h
en

a
ll
th
e
r-
cl
iq
u
es

se
e
th
e
⌧

va
lu
es

o
f
th
ei
r
n
ei
g
h
b
o
rs

th
a
t
a
re

co
m
p
u
te
d
in

th
e
p
re
v
io
u
s

it
er
a
ti
o
n
a
n
d
it

is
ex
a
ct
ly

th
e
S
N
D

a
lg
o
ri
th
m
.

F
ig
u
re

2
il
lu
st
ra
te
s
th
e
d
i↵
er
en

ce
b
et
w
ee
n
S
n
d
a
n
d
A
n
d

a
lg
o
ri
th
m
s
(w

it
h
d
i↵
er
en

t
o
rd
er
in
g
s)

o
n
th
e
k
-c
o
re

ca
se

(r
=

1
, s

=
2
).

O
u
r
fo
cu

s
is

o
n
v
er
ti
ce
s
(1
-c
li
q
u
es
)
a
n
d
th
ei
r
re
-

la
ti
o
n
s
w
it
h

ed
g
es

(2
-c
li
q
u
es
).

W
e
fi
rs
t
a
p
p
ly

S
n
d
.

F
ir
st
,

v
er
te
x
d
eg
re
es

a
re

ca
lc
u
la
te
d
a
s
⌧ 0

in
d
ic
es

(b
lu
e
n
u
m
b
er
s)
.

T
h
en

,
fo
r
ea
ch

v
er
te
x
u
w
e
co
m
p
u
te

th
e
⌧ 1
(u
)
=

H
({
⌧ 0
(v
)
:

v
2
N

2
(u
)}
,
i.
e.
,
h
-i
n
d
ex

o
f
it
s
n
ei
g
h
b
o
rs
’
d
eg
re
es

(r
ed

n
u
m
-

b
er
s)
.
⌧
F
o
r
in
st
a
n
ce
,

T
o
D
o
:
sh
o
u
ld

I
in
cl
u
d
e
so
m
e
n
u
m
b
er
s
in

ex
p
,
b
o
u
n
d
s
p
a
rt

4.
2.

1
Sk

ip
pi

ng
th

e
pl

at
ea

us
T
o
D
o
:
fi
g
fo
r
ta
u
ch
a
n
g
es

a
n
d
p
la
to
s
O
u
r
co
m
p
u
ta
ti
o
n
s

co
n
v
er
g
e
w
h
en

n
o
n
e
o
f
th
e
v
er
ti
ce
s
u
p
d
a
te

th
ei
r
⌧
in
d
ic
es

a
n
y
m
o
re
.
T
h
is
im

p
li
es

th
a
t
co
m
p
u
ta
ti
o
n
s
a
re

p
er
fo
rm

ed
fo
r

a
ll
th
e
v
er
ti
ce
s
ev
en

w
h
en

o
n
ly

a
si
n
g
le
u
p
d
a
te

o
cc
u
rs
.
T
h
o
se

co
m
p
u
ta
ti
o
n
s
a
re

re
d
u
n
d
a
n
t.

W
h
en

⌧
(v
)
co
n
v
er
g
es

(v
)
fo
r

a
v
er
te
x
v
,
n
o
m
o
re

co
m
p
u
ta
ti
o
n
s
a
re

n
ee
d
ed

fo
r
v
in

th
e

fo
ll
ow

in
g
it
er
a
ti
o
n
s.

A
ls
o
,
a
v
er
te
x
ca
n

p
o
ss
ib
ly

m
a
in
ta
in

th
e
sa
m
e
⌧

in
d
ex

fo
r
a
n
u
m
b
er

o
f
it
er
a
ti
o
n
s,

re
a
ch
es

to
a

p
la
te
a
u
,
a
n
d
th
en

u
p
d
a
te
s
it
.
S
o
,
it
is
n
o
t
p
o
ss
ib
le

to
d
ed

u
ce

w
h
et
h
er

⌧
(v
)
h
a
s
co
n
v
er
g
ed

to

(v
)
b
y
ju
st

lo
o
k
in
g
a
t
⌧
(v
)

va
lu
es

o
f
a
n
y
v
er
te
x
v
.

In
o
rd
er

to
sk
ip

th
e
in
te
rm

ed
ia
te

o
r
fi
n
a
l
p
la
te
a
u
s
d
u
ri
n
g
th
e
co
n
v
er
g
en

ce
o
f
⌧
(v
)
to

(v
),

w
e

in
tr
o
d
u
ce

a
n
o
ti
fi
ca
ti
o
n
m
ec
h
a
n
is
m

w
h
er
e
a
v
er
te
x
n
o
ti
fi
es

it
s
n
ei
g
h
b
o
rs

w
h
en

it
s
⌧
in
d
ex

is
u
p
d
a
te
d
.

B
ro
w
n
li
n
es

in
A
lg
o
ri
th
m

?
?
su
m
m
a
ri
ze
s
th
e
n
o
ti
fi
ca
ti
o
n

m
ec
h
a
n
is
m

w
e
p
lu
g

in
to

th
e
a
sy
n
ch
ro
n
o
u
s
co
m
p
u
ta
ti
o
n
.

T
h
e
o
n
ly

ch
a
n
g
es

a
re

in
li
n
es

?
?
,
?
?
,
?
?
a
n
d
?
?
.
A
d
d
it
io
n
a
l

C(
·)

a
rr
ay

tr
a
ck
s
w
h
et
h
er

a
v
er
te
x
v
2
V

h
a
s
u
p
d
a
te
d
it
s
⌧

in
d
ex

o
r
n
o
t.

It
is

se
t
to

t
r
u
e
a
t
th
e
b
eg
in
n
in
g
to

in
it
ia
te

th
e
co
m
p
u
ta
ti
o
n
s
fo
r
a
ll
v
er
ti
ce
s.

O
n
ce

C(
v
)
b
ec
o
m
es

fa
l
se

,
i.
e.
,
m
a
in
ta
in
s
it
s
⌧
in
d
ex
,
w
e
av
o
id

th
e
co
m
p
u
ta
ti
o
n
.
N
o
te

th
a
t,
a
v
er
te
x
re
st
a
rt
s
it
s
co
m
p
u
ta
ti
o
n
o
n
ly

w
h
en

a
n
ei
g
h
b
o
r

v
er
te
x
h
a
s
a
n
u
p
d
a
te

(L
in
e
?
?
).

O
n
ce

a
v
er
te
x
co
m
p
le
te
s

th
e
co
m
p
u
ta
ti
o
n
,
it
is
se
t
to

b
e
n
o
t-
u
p
d
a
te
d
(l
in
e
?
?
)
so

th
a
t

n
o
co
m
p
u
ta
ti
o
n
o
cc
u
rs

u
n
ti
l
a
n
o
ti
fi
ca
ti
o
n
is

re
ce
iv
ed

fr
o
m

a
n
ei
g
h
b
o
r.

4.
3

Il
lu

st
ra

tiv
e

ex
am

pl
es

T
o
D
o
:
ex
p
la
in

fi
g
3
a
n
d
4

4.
4

H
eu

ri
st

ic
s a

nd
im

pl
em

en
ta

tio
n

H
er
e
w
e
in
tr
o
d
u
ce

a
n

im
p
o
rt
a
n
t
sc
h
ed

u
li
n
g
d
ec
is
io
n

fo
r

th
e
p
a
ra
ll
el
iz
a
ti
o
n
in

o
u
r
a
lg
o
ri
th
m
s,
a
n
d
a
h
eu

ri
st
ic

to
co
m
-

p
u
te

th
e
h
-i
n
d
ex

o
f
a
se
t
in

li
n
ea
r
ti
m
e.

W
e
im

p
le
m
en
te
d
o
u
r
a
lg
o
ri
th
m
s
b
y
u
si
n
g
O
p
en

M
P

[6
]
to

u
ti
li
ze

th
e
sh
a
re
d
-m

em
o
ry

a
rc
h
it
ec
tu
re
s.

T
h
e
lo
o
p
s,

a
n
n
o
-

ta
te
d
a
s
p
a
ra
ll
el

in
A
lg
o
ri
th
m

?
?
,
a
re

sh
a
re
d
a
m
o
n
g
th
re
a
d
s,

a
n
d
ea
ch

th
re
a
d
is

re
sp

o
n
si
b
le

fo
r
it
s
p
a
rt
it
io
n
o
f
v
er
ti
ce
s.

D
ef
a
u
lt

sc
h
ed

u
li
n
g
p
o
li
cy

in
O
p
en

M
P

is
st
a
ti
c
a
n
d

it
d
is
-

tr
ib
u
te
s
th
e
it
er
a
ti
o
n
s
o
f
th
e
lo
o
p
to

th
e
th
re
a
d
s
in

ch
u
n
k
s,

i.
e.
,
fo
r
tw

o
th
re
a
d
s,

o
n
e
ta
k
es

th
e
fi
rs
t
h
a
lf

a
n
d
th
e
o
th
er

ta
k
es

th
e
se
co
n
d
.
A
lt
h
o
u
g
h
th
is
p
o
li
cy

is
u
se
fu
l
fo
r
m
a
n
y
a
p
-

p
li
ca
ti
o
n
s,

it
w
il
l
n
o
t
w
o
rk

w
el
l
fo
r
o
u
r
a
lg
o
ri
th
m
s.

T
h
e
n
o
-

ti
fi
ca
ti
o
n
m
ec
h
a
n
is
m

to
av
o
id

th
e
re
d
u
n
d
a
n
t
co
m
p
u
ta
ti
o
n
s

ca
n
re
su
lt

in
si
g
n
ifi
ca
n
t
lo
a
d
im

b
a
la
n
ce

b
et
w
ee
n
th
re
a
d
s.

If
m
o
st

o
f
th
e
co
n
v
er
g
ed

v
er
ti
ce
s
re
si
d
e
in

a
ce
rt
a
in

p
a
rt
,
th
en

th
e
th
re
a
d
th
a
t
is
re
sp

o
n
si
b
le

fo
r
th
a
t
p
a
rt

b
ec
o
m
es

id
le

u
n
-

ti
l
th
e
en

d
o
f
co
m
p
u
ta
ti
o
n
.
T
o
p
re
v
en
t
th
is
,
w
e
em

b
ra
ce
d

th
e
d
y
n
a
m
ic

sc
h
ed

u
li
n
g
w
h
er
e
ea
ch

th
re
a
d

is
g
iv
en

a
n
ew

w
o
rk
lo
a
d
o
n
ce

it
is
d
o
n
e.

N
o
th
re
a
d
st
ay

s
id
le

th
is
w
ay
,
a
n
d

th
e
ov
er
a
ll
co
m
p
u
ta
ti
o
n
is

p
a
ra
ll
el
iz
ed

m
o
re

e�
ci
en
tl
y.

h
-i
n
d
ex

co
m
p
u
ta
ti
o
n
o
f
a
li
st

is
d
o
n
e
b
y
so
rt
in
g
th
e
it
em

s
in

n
o
n
-i
n
cr
ea
si
n
g
o
rd
er

a
n
d

ch
ec
k
in
g
th
e
va
lu
es

fr
o
m

th
e

b
eg
in
n
in
g
o
f
th
e
li
st

to
fi
n
d
th
e
la
rg
es
t
h
va
lu
e
fo
r
w
h
ic
h
a
t

le
a
st

h
it
em

s
ex
is
t
w
it
h
a
t
le
a
st

h
va
lu
e.

M
a
in

b
o
tt
le
n
ec
k
is

th
e
so
rt
in
g
o
p
er
a
ti
o
n
w
h
ic
h
ta
k
es

O
(n

.l
og

n
)
ti
m
e.

H
ow

ev
er
,

h
-i
n
d
ex

ca
n
b
e
co
m
p
u
te
d
w
it
h
o
u
t
so
rt
in
g
.
W
e
in
it
ia
li
ze

h
a
s
ze
ro

a
n
d
it
er
a
te

ov
er

th
e
it
em

s
in

th
e
li
st
.
A
t
ea
ch

ti
m
e,

w
e
a
tt
em

p
t
to

in
cr
ea
se

th
e
cu

rr
en

t
h

va
lu
e
b
a
se
d

o
n

th
e

a i

d

f b

h

c
e

g 1
2

2

4

24

3

2 4
2

1
1

23

3

2 2
1st 2nd 3rd

st
ep

st
ep

st
ep

F
ig
u
re

3
:
C
o
re

ex
a
m
p
le

F
ig
u
re

2
:
A
sy
n
c
ex
a
m
p
le

T
h
e
o
r
e
m

4
.
In

A
N
D

a
lg
o
ri
th
m
,
if
th
e
r-
cl
iq
u
es

a
re

p
ro
-

ce
ss
ed

in
th
e
n
o
n
-d
ec
re
a
si
n
g
o
rd
er

o
f
th
ei
r
fi
n
a
l

s
in
d
ic
es
,

co
n
ve
rg
en

ce
is

o
bt
a
in
ed

in
a
si
n
gl
e
it
er
a
ti
o
n
.

P
r
o
o
f
.
S
ay

s
(R

)
=

t
fo
r
a
n
r-
cl
iq
u
e
R
.
F
o
r
th
e
sa
k
e
o
f

co
n
tr
a
d
ic
ti
o
n
,
a
ss
u
m
e
th
a
t
it

ta
k
es

m
o
re

th
a
n
o
n
e
it
er
a
ti
o
n

fo
r
d
s
(R

)
to

co
n
v
er
g
e

s
(R

).
S
o
,
⌧ 0
(R

)
=

d
s
(R

)
a
n
d
⌧ 0
(R

)
�

⌧ 1
(R

)
>

s
(R

).
S
o
,
w
h
en

R
is

b
ei
n
g
p
ro
ce
ss
ed

,
H
(L

)
>

t
fo
r
L
=

{⇢
(S

)
:
S
3
R
}.

T
h
a
t
m
ea
n
s
th
er
e
a
re

a
t
le
a
st

t
+
1

s-
cl
iq
u
es

w
h
er
e
ea
ch

h
a
s
⇢
va
lu
e
o
f
a
t
le
a
st

t
+

1
.
H
ow

ev
er
,

th
is

im
p
li
es

th
a
t
R

is
a
p
a
rt

o
f
(t

+
1
)-
(r
, s
)
n
u
cl
eu

s,
w
h
ic
h

co
n
tr
a
d
ic
ts

w
it
h
th
e
in
it
ia
l
a
ss
u
m
p
ti
o
n
.

T
h
e
w
o
rs
t
ca
se

h
a
p
p
en

s
w
h
en

a
ll
th
e
r-
cl
iq
u
es

se
e
th
e
⌧

va
lu
es

o
f
th
ei
r
n
ei
g
h
b
o
rs

th
a
t
a
re

co
m
p
u
te
d
in

th
e
p
re
v
io
u
s

it
er
a
ti
o
n
a
n
d
it

is
ex
a
ct
ly

th
e
S
N
D

a
lg
o
ri
th
m
.

F
ig
u
re

2
il
lu
st
ra
te
s
S
n
d
a
n
d
A
n
d
a
lg
o
ri
th
m
s
(w

it
h
d
i↵
er
-

en
t
o
rd
er
in
g
s)

o
n
th
e
k
-c
o
re

ca
se

(r
=

1
, s

=
2
).

O
u
r
fo
cu

s
is

o
n

v
er
ti
ce
s
(1
-c
li
q
u
es
)
a
n
d

th
ei
r
ed

g
e
(2
-c
li
q
u
e)

co
u
n
ts

(d
eg
re
es
).

W
e
fi
rs
t
a
p
p
ly

S
n
d
.
F
ir
st
,
v
er
te
x
d
eg
re
es

a
re

ca
l-

cu
la
te
d
a
s
⌧ 0

in
d
ic
es

(b
lu
e
n
u
m
b
er
s)
.
T
h
en

,
fo
r
ea
ch

v
er
te
x

u
w
e
co
m
p
u
te

th
e
⌧ 1
(u
)
=

H
({
⌧ 0
(v
)
:
v
2

N
2
(u
)}
,
i.
e.
,
h
-

in
d
ex

o
f
it
s
n
ei
g
h
b
o
rs
’
d
eg
re
es

(r
ed

n
u
m
b
er
s)
.
F
o
r
in
st
a
n
ce
,

v
er
te
x
a

h
a
s
tw

o
n
ei
g
h
b
o
rs
,
e
a
n
d

b
,
w
it
h

d
eg
re
es

2
a
n
d

3
.

S
in
ce

H
({
2
, 3
})

=
2
,
w
e
g
et

⌧ 1
(a
)
=

2
.

F
o
r
v
er
te
x
b
,

w
e
g
et

⌧ 1
(b

)
=

H
({
2
, 2
, 2
})

=
2
.
O
n
ce

w
e
co
m
p
u
te

a
ll
⌧ 1

in
d
ic
es
,
w
e
it
er
a
te

a
g
a
in

b
ec
a
u
se

th
er
e
w
er
e
ch
a
n
g
es

in
⌧

in
d
ic
es
,
e.
g
,.

⌧ 1
(e
)
6=

⌧ 0
(e
)
(L

in
e
1
3
in

A
lg
o
ri
th
m

2
).

⌧ 2
in
d
ic
es

a
re

sh
ow

n
in

g
re
en

.
W
e
o
b
se
rv
e
a
n
u
p
d
a
te

o
n
ly

fo
r

th
e
v
er
te
x
a
;
⌧ 2
(a
)
=

H
({
⌧ 1
(e
),
⌧ 1
(b

)}
)
=

H
({
1
, 2
})

=
1
.

W
h
en

w
e
it
er
a
te

a
g
a
in
,
n
o
u
p
d
a
te

is
o
b
se
rv
ed

in
⌧
in
d
ic
es
,

w
h
ic
h
m
ea
n
s

s
=

⌧ 2
fo
r
a
ll
v
er
ti
ce
s.

R
eg
a
rd
in
g
A
n
d
a
lg
o
-

ri
th
m
,
w
e
ch
o
o
se

to
fo
ll
ow

th
e
n
o
n
-d
ec
re
a
si
n
g
o
rd
er

o
f

s

in
d
ic
es
;
{f
,e
,a
,b
,c
,d
}.

C
o
m
p
u
ti
n
g
th
e
⌧ 1

in
d
ic
es

o
n
th
is

o
r-

d
er

en
a
b
le
s
u
s
to

re
a
ch

th
e
co
n
v
er
g
en

ce
in

a
si
n
g
le

it
er
a
ti
o
n
.

F
o
r
in
st
a
n
ce
,
⌧ 1
(a
)
=

H
({
⌧ 1
(e
),
⌧ 0
(b

)}
)
=

H
({
1
, 2
})

=
1
.

If
w
e
ch
o
o
se

to
p
ro
ce
ss

th
e
v
er
ti
ce
s
in

th
e
a
lp
h
a
b
et
ic
a
l
o
r-

d
er
,
{a

,b
,c
,d
,e
,f
},

w
e
h
av
e
⌧ 1
(a
)
=

H
({
⌧ 0
(e
),
⌧ 0
(b

)}
)
=

H
({
2
, 2
})

=
2
,
w
h
ic
h
im

p
li
es

th
a
t
w
e
n
ee
d
m
o
re

it
er
a
ti
o
n
(s
)

to
co
n
v
er
g
e.

In
d
ee
d
⌧ 2
(a
)
=

H
({
⌧ 1
(e
),
⌧ 1
(b

)}
)
=

H
({
1
, 2
})

=
1

⌧ 1

T
o
D
o
:
sh
o
u
ld

I
in
cl
u
d
e
so
m
e
n
u
m
b
er
s
in

ex
p
,
b
o
u
n
d
s

p
a
rt

4.
2.

1
Sk

ip
pi

ng
th

e
pl

at
ea

us
T
o
D
o
:
fi
g
fo
r
ta
u
ch
a
n
g
es

a
n
d
p
la
to
s
O
u
r
co
m
p
u
ta
ti
o
n
s

co
n
v
er
g
e
w
h
en

n
o
n
e
o
f
th
e
v
er
ti
ce
s
u
p
d
a
te

th
ei
r
⌧
in
d
ic
es

a
n
y
m
o
re
.
T
h
is
im

p
li
es

th
a
t
co
m
p
u
ta
ti
o
n
s
a
re

p
er
fo
rm

ed
fo
r

a
ll
th
e
v
er
ti
ce
s
ev
en

w
h
en

o
n
ly

a
si
n
g
le
u
p
d
a
te

o
cc
u
rs
.
T
h
o
se

co
m
p
u
ta
ti
o
n
s
a
re

re
d
u
n
d
a
n
t.

W
h
en

⌧
(v
)
co
n
v
er
g
es

(v
)
fo
r

a
v
er
te
x
v
,
n
o
m
o
re

co
m
p
u
ta
ti
o
n
s
a
re

n
ee
d
ed

fo
r
v
in

th
e

fo
ll
ow

in
g
it
er
a
ti
o
n
s.

A
ls
o
,
a
v
er
te
x
ca
n

p
o
ss
ib
ly

m
a
in
ta
in

th
e
sa
m
e
⌧

in
d
ex

fo
r
a
n
u
m
b
er

o
f
it
er
a
ti
o
n
s,

re
a
ch
es

to
a

p
la
te
a
u
,
a
n
d
th
en

u
p
d
a
te
s
it
.
S
o
,
it
is
n
o
t
p
o
ss
ib
le

to
d
ed

u
ce

w
h
et
h
er

⌧
(v
)
h
a
s
co
n
v
er
g
ed

to

(v
)
b
y
ju
st

lo
o
k
in
g
a
t
⌧
(v
)

va
lu
es

o
f
a
n
y
v
er
te
x
v
.

In
o
rd
er

to
sk
ip

th
e
in
te
rm

ed
ia
te

o
r
fi
n
a
l
p
la
te
a
u
s
d
u
ri
n
g
th
e
co
n
v
er
g
en

ce
o
f
⌧
(v
)
to

(v
),

w
e

in
tr
o
d
u
ce

a
n
o
ti
fi
ca
ti
o
n
m
ec
h
a
n
is
m

w
h
er
e
a
v
er
te
x
n
o
ti
fi
es

it
s
n
ei
g
h
b
o
rs

w
h
en

it
s
⌧
in
d
ex

is
u
p
d
a
te
d
.

B
ro
w
n
li
n
es

in
A
lg
o
ri
th
m

?
?
su
m
m
a
ri
ze
s
th
e
n
o
ti
fi
ca
ti
o
n

m
ec
h
a
n
is
m

w
e
p
lu
g

in
to

th
e
a
sy
n
ch
ro
n
o
u
s
co
m
p
u
ta
ti
o
n
.

T
h
e
o
n
ly

ch
a
n
g
es

a
re

in
li
n
es

?
?
,
?
?
,
?
?
a
n
d
?
?
.
A
d
d
it
io
n
a
l

C(
·)

a
rr
ay

tr
a
ck
s
w
h
et
h
er

a
v
er
te
x
v
2
V

h
a
s
u
p
d
a
te
d
it
s
⌧

in
d
ex

o
r
n
o
t.

It
is

se
t
to

t
r
u
e
a
t
th
e
b
eg
in
n
in
g
to

in
it
ia
te

th
e
co
m
p
u
ta
ti
o
n
s
fo
r
a
ll
v
er
ti
ce
s.

O
n
ce

C(
v
)
b
ec
o
m
es

fa
l
se

,
i.
e.
,
m
a
in
ta
in
s
it
s
⌧
in
d
ex

,
w
e
av
o
id

th
e
co
m
p
u
ta
ti
o
n
.
N
o
te

th
a
t,
a
v
er
te
x
re
st
a
rt
s
it
s
co
m
p
u
ta
ti
o
n
o
n
ly

w
h
en

a
n
ei
g
h
b
o
r

v
er
te
x
h
a
s
a
n
u
p
d
a
te

(L
in
e
?
?
).

O
n
ce

a
v
er
te
x
co
m
p
le
te
s

th
e
co
m
p
u
ta
ti
o
n
,
it
is
se
t
to

b
e
n
o
t-
u
p
d
a
te
d
(l
in
e
?
?
)
so

th
a
t

n
o
co
m
p
u
ta
ti
o
n
o
cc
u
rs

u
n
ti
l
a
n
o
ti
fi
ca
ti
o
n
is

re
ce
iv
ed

fr
o
m

a
n
ei
g
h
b
o
r.

4.
3

Il
lu

st
ra

tiv
e

ex
am

pl
es

T
o
D
o
:
ex
p
la
in

fi
g
3
a
n
d
4

4.
4

H
eu

ri
st

ic
s a

nd
im

pl
em

en
ta

tio
n

H
er
e
w
e
in
tr
o
d
u
ce

a
n

im
p
o
rt
a
n
t
sc
h
ed

u
li
n
g
d
ec
is
io
n

fo
r

th
e
p
a
ra
ll
el
iz
a
ti
o
n
in

o
u
r
a
lg
o
ri
th
m
s,
a
n
d
a
h
eu

ri
st
ic

to
co
m
-

p
u
te

th
e
h
-i
n
d
ex

o
f
a
se
t
in

li
n
ea
r
ti
m
e.

W
e
im

p
le
m
en
te
d
o
u
r
a
lg
o
ri
th
m
s
b
y
u
si
n
g
O
p
en

M
P

[6
]
to

u
ti
li
ze

th
e
sh
a
re
d
-m

em
o
ry

a
rc
h
it
ec
tu
re
s.

T
h
e
lo
o
p
s,

a
n
n
o
-

ta
te
d
a
s
p
a
ra
ll
el

in
A
lg
o
ri
th
m

?
?
,
a
re

sh
a
re
d
a
m
o
n
g
th
re
a
d
s,

a
n
d
ea
ch

th
re
a
d
is

re
sp

o
n
si
b
le

fo
r
it
s
p
a
rt
it
io
n
o
f
v
er
ti
ce
s.

D
ef
a
u
lt

sc
h
ed

u
li
n
g
p
o
li
cy

in
O
p
en

M
P

is
st
a
ti
c
a
n
d

it
d
is
-

tr
ib
u
te
s
th
e
it
er
a
ti
o
n
s
o
f
th
e
lo
o
p
to

th
e
th
re
a
d
s
in

ch
u
n
k
s,

i.
e.
,
fo
r
tw

o
th
re
a
d
s,

o
n
e
ta
k
es

th
e
fi
rs
t
h
a
lf

a
n
d
th
e
o
th
er

ta
k
es

th
e
se
co
n
d
.
A
lt
h
o
u
g
h
th
is
p
o
li
cy

is
u
se
fu
l
fo
r
m
a
n
y
a
p
-

p
li
ca
ti
o
n
s,

it
w
il
l
n
o
t
w
o
rk

w
el
l
fo
r
o
u
r
a
lg
o
ri
th
m
s.

T
h
e
n
o
-

a i

d

f b

h

c
e

g 1
2

2

4

24

3

2 4
2

1
1

23

3

2 2
1st 2nd 3rd

st
ep

st
ep

st
ep

F
ig
u
re

3
:
C
o
re

ex
a
m
p
le

F
ig
u
re

2
:
W

e
a
p
p
ly

th
e

k
-c
o
re

d
e
c
o
m
p
o
si
ti
o
n

(r
=

1
,
s
=

2
).

S
o
,
w
e
n
e
e
d

to
fi
n
d

2
(e

d
g
e
is

2
-c
li
q
u
e
)

in
d
ic
e
s
o
f
v
e
rt
ic
e
s.

⌧
0
in
d
ic
e
s
a
re

in
it
ia
li
z
e
d

to
th

e
d
e
g
re

e
s
(d

2
s
in

b
lu
e
).

S
n
d

a
lg
o
ri
th

m
c
o
n
v
e
rg

e
s
in

tw
o
it
e
ra

ti
o
n
s
(⌧

1
s
in

re
d
,
⌧
2
=

2
s
in

g
re

e
n
).

S
a
m
e

h
a
p
p
e
n
s
w
h
e
n
w
e
u
se

A
n
d
a
lg
o
ri
th

m
a
n
d
p
ro

c
e
ss

th
e

v
e
rt
ic
e
s
in

th
e

a
lp
h
a
b
e
ti
c
a
l
o
rd

e
r.

H
o
w
e
v
e
r,

if
w
e

ch
o
o
se

{f
,e
,a
,b
,c
,d
}

o
rd

e
r,

w
h
ic
h

is
a
c
tu

a
ll
y

a
n
o
n
-

d
e
c
re

a
si
n
g

o
rd

e
r
o
n

2
in
d
ic
e
s,

A
n
d

c
o
n
v
e
rg

e
s
in

a
si
n
g
le

it
e
ra

ti
o
n
.

T
h
e
o
r
e
m

4
.
In

A
n
d
a
lg
o
ri
th
m
,
if
th
e
r-
cl
iq
u
es

a
re

p
ro
-

ce
ss
ed

in
th
e
n
o
n
-d
ec
re
a
si
n
g
o
rd
er

o
f
th
ei
r
fi
n
a
l

s
in
d
ic
es
,

co
n
ve
rg
en

ce
is

o
bt
a
in
ed

in
a
si
n
gl
e
it
er
a
ti
o
n
.

P
r
o
o
f
.
S
ay

s
(R

)
=

t
fo
r
a
n
r-
cl
iq
u
e
R
.
F
o
r
th
e
sa
k
e
o
f

co
n
tr
a
d
ic
ti
o
n
,
a
ss
u
m
e
th
a
t
it

ta
k
es

m
o
re

th
a
n
o
n
e
it
er
a
ti
o
n

fo
r
d
s
(R

)
to

co
n
v
er
g
e

s
(R

).
S
o
,
⌧ 0
(R

)
=

d
s
(R

)
a
n
d
⌧ 0
(R

)
�

⌧ 1
(R

)
>

s
(R

).
S
o
,
w
h
en

R
is

b
ei
n
g
p
ro
ce
ss
ed

,
H
(L

)
>

t
fo
r
L
=

{⇢
(S

)
:
S
3
R
}.

T
h
a
t
m
ea
n
s
th
er
e
a
re

a
t
le
a
st

t
+
1

s-
cl
iq
u
es

w
h
er
e
ea
ch

h
a
s
⇢
va
lu
e
o
f
a
t
le
a
st

t
+

1
.
H
ow

ev
er
,

th
is

im
p
li
es

th
a
t
R

is
a
p
a
rt

o
f
(t

+
1
)-
(r
, s
)
n
u
cl
eu

s,
w
h
ic
h

co
n
tr
a
d
ic
ts

w
it
h
th
e
in
it
ia
l
a
ss
u
m
p
ti
o
n
.

T
h
e
w
o
rs
t
ca
se

h
a
p
p
en

s
w
h
en

a
ll
th
e
r-
cl
iq
u
es

se
e
th
e
⌧

in
d
ic
es

o
f
th
ei
r
n
ei
g
h
b
o
rs

th
a
t
a
re

co
m
p
u
te
d
in

th
e
p
re
v
i-

o
u
s
it
er
a
ti
o
n
a
n
d
it

is
ex
a
ct
ly

th
e
S
N
D

a
lg
o
ri
th
m
.
E
rd
em

S
A
Y
S
:
I
a
ct
u
a
ll
y
b
el
ie
v
e
th
a
t
p
ro
ce
ss
in
g
th
e
v
er
ti
ce
s
in

n
o
n
-

in
cr
ea
si
n
g
o
rd
er

o
f
th
ei
r

in
d
ic
es

w
il
l
g
iv
e
th
e
w
o
rs
t
ca
se

fo
r
A
n
d
a
lg
o
ri
th
m
.
It
’s

ju
st

a
n
in
tu
it
io
n
b
a
se
d
o
n
th
e
b
es
t

ca
se

th
eo
re
m
,
n
o
t
su
re

if
I
ca
n
p
ro
v
e.

If
y
o
u
ca
n
p
ro
v
e,

I
ca
n
in
cl
u
d
e
so
m
e
w
o
rs
t
ca
se

n
u
m
b
er
s
in

ex
p
.
se
ct
io
n

F
ig
u
re

2
il
lu
st
ra
te
s
S
n
d
a
n
d
A
n
d
a
lg
o
ri
th
m
s
(w

it
h
d
i↵
er
-

en
t
o
rd
er
in
g
s)

o
n
th
e
k
-c
o
re

ca
se

(r
=

1
, s

=
2
).

O
u
r
fo
cu

s
is

o
n

v
er
ti
ce
s
(1
-c
li
q
u
es
)
a
n
d

th
ei
r
ed

g
e
(2
-c
li
q
u
e)

co
u
n
ts

(d
eg
re
es
).

W
e
fi
rs
t
a
p
p
ly

S
n
d
.
F
ir
st
,
v
er
te
x
d
eg
re
es

a
re

ca
l-

cu
la
te
d
a
s
⌧ 0

in
d
ic
es

(b
lu
e
n
u
m
b
er
s)
.
T
h
en

,
fo
r
ea
ch

v
er
te
x

u
w
e
co
m
p
u
te

th
e
⌧ 1
(u
)
=

H
({
⌧ 0
(v
)
:
v
2

N
2
(u
)}
,
i.
e.
,
h
-

in
d
ex

o
f
it
s
n
ei
g
h
b
o
rs
’
d
eg
re
es

(r
ed

n
u
m
b
er
s)
.
F
o
r
in
st
a
n
ce
,

v
er
te
x
a

h
a
s
tw

o
n
ei
g
h
b
o
rs
,
e
a
n
d

b
,
w
it
h

d
eg
re
es

2
a
n
d

3
.

S
in
ce

H
({
2
,3
})

=
2
,
w
e
g
et

⌧ 1
(a
)
=

2
.

F
o
r
v
er
te
x
b
,

w
e
g
et

⌧ 1
(b

)
=

H
({
2
,2
,2
})

=
2
.
O
n
ce

w
e
co
m
p
u
te

a
ll
⌧ 1

in
d
ic
es
,
w
e
it
er
a
te

a
g
a
in

b
ec
a
u
se

th
er
e
w
er
e
ch
a
n
g
es

in
⌧

in
d
ic
es
,
e.
g
,.

⌧ 1
(e
)
6=

⌧ 0
(e
)
(L

in
e
1
3
in

A
lg
o
ri
th
m

2
).

⌧ 2
in
d
ic
es

a
re

sh
ow

n
in

g
re
en

.
W
e
o
b
se
rv
e
a
n
u
p
d
a
te

o
n
ly

fo
r

th
e
v
er
te
x
a
;
⌧ 2
(a
)
=

H
({
⌧ 1
(e
),
⌧ 1
(b

)}
)
=

H
({
1
,2
})

=
1
.

W
h
en

w
e
it
er
a
te

a
g
a
in
,
n
o
u
p
d
a
te

is
o
b
se
rv
ed

in
⌧
in
d
ic
es
,

w
h
ic
h
m
ea
n
s

s
=

⌧ 2
fo
r
a
ll
v
er
ti
ce
s.

R
eg
a
rd
in
g
A
n
d
a
lg
o
-

ri
th
m
,
w
e
ch
o
o
se

to
fo
ll
ow

th
e
n
o
n
-d
ec
re
a
si
n
g
o
rd
er

o
f

s

in
d
ic
es
;
{f
,e
,a
,b
,c
,d
}.

C
o
m
p
u
ti
n
g
th
e
⌧ 1

in
d
ic
es

o
n
th
is

o
r-

d
er

en
a
b
le
s
u
s
to

re
a
ch

th
e
co
n
v
er
g
en

ce
in

a
si
n
g
le

it
er
a
ti
o
n
.

F
o
r
in
st
a
n
ce
,
⌧ 1
(a
)
=

H
({
⌧ 1
(e
),
⌧ 0
(b

)}
)
=

H
({
1
,2
})

=
1
.

 0 1
0

 2
0

 3
0

 4
0

 5
0

 6
0

 7
0

 8
0

 9
0 0

 2
 4

 6
 8

 1
0

 1
2

 1
4

 1
6

truss values

nu
m

be
r o

f i
te

ra
tio

ns

F
ig
u
re

3
:
a
sd

If
w
e
ch
o
o
se

to
p
ro
ce
ss

th
e
v
er
ti
ce
s
in

th
e
a
lp
h
a
b
et
ic
a
l
o
r-

d
er
,
{a

,b
,c
,d
,e
,f
},

w
e
h
av
e
⌧ 1
(a
)
=

H
({
⌧ 0
(e
),
⌧ 0
(b

)}
)
=

H
({
2
, 2
})

=
2
,
w
h
ic
h
im

p
li
es

th
a
t
w
e
n
ee
d
m
o
re

it
er
a
ti
o
n
(s
)

to
co
n
v
er
g
e.

In
d
ee
d
,
a

is
th
e

o
n
ly

v
er
te
x

th
a
t
h
a
s
n
o
t

re
a
ch
ed

it
s

2
va
lu
e.

W
e
g
et

⌧ 2
(a
)
=

H
({
⌧ 1
(e
),
⌧ 1
(b

)}
)
=

H
({
1
, 2
})

=
1
,
th
u
s
co
n
v
er
g
e
in

tw
o
it
er
a
ti
o
n
s.

4.
2.

1
Sk

ip
pi

ng
th

e
pl

at
ea

us
T
o
D
o
:
fi
g
fo
r
ta
u
ch
a
n
g
es

a
n
d
p
la
to
s
O
u
r
co
m
p
u
ta
ti
o
n
s

co
n
v
er
g
e
w
h
en

n
o
n
e
o
f
th
e
v
er
ti
ce
s
u
p
d
a
te

th
ei
r
⌧
in
d
ic
es

a
n
y
m
o
re
.
T
h
is
im

p
li
es

th
a
t
co
m
p
u
ta
ti
o
n
s
a
re

p
er
fo
rm

ed
fo
r

a
ll
th
e
v
er
ti
ce
s
ev
en

w
h
en

o
n
ly

a
si
n
g
le
u
p
d
a
te

o
cc
u
rs
.
T
h
o
se

co
m
p
u
ta
ti
o
n
s
a
re

re
d
u
n
d
a
n
t.

W
h
en

⌧
(v
)
co
n
v
er
g
es

(v
)
fo
r

a
v
er
te
x
v
,
n
o
m
o
re

co
m
p
u
ta
ti
o
n
s
a
re

n
ee
d
ed

fo
r
v
in

th
e

fo
ll
ow

in
g
it
er
a
ti
o
n
s.

A
ls
o
,
a
v
er
te
x
ca
n

p
o
ss
ib
ly

m
a
in
ta
in

th
e
sa
m
e
⌧

in
d
ex

fo
r
a
n
u
m
b
er

o
f
it
er
a
ti
o
n
s,

re
a
ch
es

to
a

p
la
te
a
u
,
a
n
d
th
en

u
p
d
a
te
s
it
.
S
o
,
it
is
n
o
t
p
o
ss
ib
le

to
d
ed

u
ce

w
h
et
h
er

⌧
(v
)
h
a
s
co
n
v
er
g
ed

to

(v
)
b
y
ju
st

lo
o
k
in
g
a
t
⌧
(v
)

in
d
ic
es

o
f
a
n
y
v
er
te
x
v
.
In

o
rd
er

to
sk
ip

th
e
in
te
rm

ed
ia
te

o
r
fi
n
a
l
p
la
te
a
u
s
d
u
ri
n
g
th
e
co
n
v
er
g
en

ce
o
f
⌧
(v
)
to

(v
),

w
e

in
tr
o
d
u
ce

a
n
o
ti
fi
ca
ti
o
n
m
ec
h
a
n
is
m

w
h
er
e
a
v
er
te
x
n
o
ti
fi
es

it
s
n
ei
g
h
b
o
rs

w
h
en

it
s
⌧
in
d
ex

is
u
p
d
a
te
d
.

B
ro
w
n
li
n
es

in
A
lg
o
ri
th
m

?
?
su
m
m
a
ri
ze
s
th
e
n
o
ti
fi
ca
ti
o
n

m
ec
h
a
n
is
m

w
e
p
lu
g

in
to

th
e
a
sy
n
ch
ro
n
o
u
s
co
m
p
u
ta
ti
o
n
.

T
h
e
o
n
ly

ch
a
n
g
es

a
re

in
li
n
es

?
?
,
?
?
,
?
?
a
n
d
?
?
.
A
d
d
it
io
n
a
l

C(
·)

a
rr
ay

tr
a
ck
s
w
h
et
h
er

a
v
er
te
x
v
2
V

h
a
s
u
p
d
a
te
d
it
s
⌧

in
d
ex

o
r
n
o
t.

It
is

se
t
to

t
r
u
e
a
t
th
e
b
eg
in
n
in
g
to

in
it
ia
te

th
e
co
m
p
u
ta
ti
o
n
s
fo
r
a
ll
v
er
ti
ce
s.

O
n
ce

C(
v
)
b
ec
o
m
es

fa
l
se

,
i.
e.
,
m
a
in
ta
in
s
it
s
⌧
in
d
ex
,
w
e
av
o
id

th
e
co
m
p
u
ta
ti
o
n
.
N
o
te

th
a
t,
a
v
er
te
x
re
st
a
rt
s
it
s
co
m
p
u
ta
ti
o
n
o
n
ly

w
h
en

a
n
ei
g
h
b
o
r

v
er
te
x
h
a
s
a
n
u
p
d
a
te

(L
in
e
?
?
).

O
n
ce

a
v
er
te
x
co
m
p
le
te
s

th
e
co
m
p
u
ta
ti
o
n
,
it
is
se
t
to

b
e
n
o
t-
u
p
d
a
te
d
(l
in
e
?
?
)
so

th
a
t

n
o
co
m
p
u
ta
ti
o
n
o
cc
u
rs

u
n
ti
l
a
n
o
ti
fi
ca
ti
o
n
is

re
ce
iv
ed

fr
o
m

a
n
ei
g
h
b
o
r.

4.
3

Il
lu

st
ra

tiv
e

ex
am

pl
es

T
o
D
o
:
ex
p
la
in

fi
g
3
a
n
d
4

4.
4

H
eu

ri
st

ic
s a

nd
im

pl
em

en
ta

tio
n

H
er
e
w
e
in
tr
o
d
u
ce

a
n

im
p
o
rt
a
n
t
sc
h
ed

u
li
n
g
d
ec
is
io
n

fo
r

th
e
p
a
ra
ll
el
iz
a
ti
o
n
in

o
u
r
a
lg
o
ri
th
m
s,
a
n
d
a
h
eu

ri
st
ic

to
co
m
-

p
u
te

th
e
h
-i
n
d
ex

o
f
a
se
t
in

li
n
ea
r
ti
m
e.

W
e
im

p
le
m
en
te
d
o
u
r
a
lg
o
ri
th
m
s
b
y
u
si
n
g
O
p
en

M
P

[6
]
to

u
ti
li
ze

th
e
sh
a
re
d
-m

em
o
ry

a
rc
h
it
ec
tu
re
s.

T
h
e
lo
o
p
s,

a
n
n
o
-

ta
te
d
a
s
p
a
ra
ll
el

in
A
lg
o
ri
th
m

?
?
,
a
re

sh
a
re
d
a
m
o
n
g
th
re
a
d
s,

a
n
d
ea
ch

th
re
a
d
is

re
sp

o
n
si
b
le

fo
r
it
s
p
a
rt
it
io
n
o
f
v
er
ti
ce
s.

D
ef
a
u
lt

sc
h
ed

u
li
n
g
p
o
li
cy

in
O
p
en

M
P

is
st
a
ti
c
a
n
d

it
d
is
-

tr
ib
u
te
s
th
e
it
er
a
ti
o
n
s
o
f
th
e
lo
o
p
to

th
e
th
re
a
d
s
in

ch
u
n
k
s,

i.
e.
,
fo
r
tw

o
th
re
a
d
s,

o
n
e
ta
k
es

th
e
fi
rs
t
h
a
lf

a
n
d
th
e
o
th
er

Figure 5: Changes in the ⌧ indices of some edges
in facebook graph during the k-truss decomposition
(r = 2, s = 3). Note that there are wide plateaus
during the convergence, especially at the end, where
edges do not change their ⌧ indices. Plateaus can be
also observed in the middle of the computation like
the top two lines.

⌧0 ⌧1
d2 2

Figure 2 illustrates the k-truss decomposition (r = 2, s =
3) on a toy graph. We follow the lexicographical order of
the edges (vertex pairs). Triangle counts (d3) of edges are
given in blue, which are used to initialize ⌧0 indices. We first
process edge ab. It has four triangles, abc, abd, abe, abi.
⇢ value of each triangle is calculated by taking the minimum
⌧0 value of the neighbor edges of ab (Line 11). Set of ⇢ values
is {min(⌧0(ac), ⌧0(bc)),min(⌧0(ad), ⌧0(bd)),min(⌧0(ae),
⌧0(be)),min(⌧0(ai), ⌧0(bi))}, which is L = {4, 3, 3, 2} and
⌧1(ab) = H(L) = 3. After computing ⌧1 indices of all the
edges in lexicographical order (ei edge is last),

4.3 Heuristics and implementation
Here we introduce an important scheduling decision for

the parallelization in our algorithms, and a heuristic to com-
pute the h-index of a set in linear time.

We implemented our algorithms by using OpenMP [6] to
utilize the shared-memory architectures. The loops, anno-
tated as parallel in Algorithm ??, are shared among threads,
and each thread is responsible for its partition of vertices.
Default scheduling policy in OpenMP is static and it dis-
tributes the iterations of the loop to the threads in chunks,
i.e., for two threads, one takes the first half and the other
takes the second. Although this policy is useful for many ap-
plications, it will not work well for our algorithms. The no-
tification mechanism to avoid the redundant computations
can result in significant load imbalance between threads. If
most of the converged vertices reside in a certain part, then
the thread that is responsible for that part becomes idle un-
til the end of computation. To prevent this, we embraced
the dynamic scheduling where each thread is given a new
workload once it is done. No thread stays idle this way, and
the overall computation is parallelized more e�ciently.

h-index computation of a list is done by sorting the items
in non-increasing order and checking the values from the
beginning of the list to find the largest h value for which at
least h items exist with at least h value. Main bottleneck is
the sorting operation which takes O(n.logn) time. However,
h-index can be computed without sorting. We initialize h
as zero and iterate over the items in the list. At each time,
we attempt to increase the current h value based on the
inspected item. For the current h value, we keep track of
the number of items that have equal value to h. We also
use a hashmap to keep track of the items that are greater
than the current h value, and we simply ignore the items
that are smaller than h. This enables the computation of
the h-index in linear time. In addition, for the non-initial
iterations of the convergence process, we simply check the
items if the current ⌧ index can be preserved. Once we see
� ⌧ items with at least ⌧ index, no more checks needed.

5. EXPERIMENTS
We evaluate our algorithms on three instances of the nu-

cleus decomposition: k-core (or (1, 2)), k-truss (or (2, 3)),
and (3, 4). Constructing the hypergraphs requires to store
all the s-cliques, which is infeasible for large networks. Thus
we do not construct the actual hypergraphs to compute
the indices. Instead, we find the participations of the
r-cliques in s-cliques on-the-fly. Details about the com-
parison between two approaches are given in [25]. Our

c

d

bf e a
1 1 1 1
SND & AND {a,b,c,d,e,f} :
 AND {f,e,a,b,d,c} :

degree, core number :

b

e

c

d

a g

h

i

f

2 2 2

2 2 2

2 2 2

2 2 2

2
2 2

2 2 2

1 1 1 1 1 1

1 1 1

1 1
 1 2 2 2

3
2

2

4 2 2

3 2
 2

3 2 2

3 2 2

4 2 2

4 3 2 3
2

2

⌧ ⌧ ⌧

4.3 Illustrative examples
ToDo: explain fig 3 and 4

4.4 Heuristics and implementation
Here we introduce an important scheduling decision for

the parallelization in our algorithms, and a heuristic to com-
pute the h-index of a set in linear time.

We implemented our algorithms by using OpenMP [6] to
utilize the shared-memory architectures. The loops, anno-
tated as parallel in Algorithm ??, are shared among threads,
and each thread is responsible for its partition of vertices.
Default scheduling policy in OpenMP is static and it dis-
tributes the iterations of the loop to the threads in chunks,
i.e., for two threads, one takes the first half and the other
takes the second. Although this policy is useful for many ap-
plications, it will not work well for our algorithms. The no-
tification mechanism to avoid the redundant computations
can result in significant load imbalance between threads. If
most of the converged vertices reside in a certain part, then
the thread that is responsible for that part becomes idle un-
til the end of computation. To prevent this, we embraced
the dynamic scheduling where each thread is given a new
workload once it is done. No thread stays idle this way, and
the overall computation is parallelized more e�ciently.

h-index computation of a list is done by sorting the items
in non-increasing order and checking the values from the
beginning of the list to find the largest h value for which at
least h items exist with at least h value. Main bottleneck is
the sorting operation which takes O(n.logn) time. However,
h-index can be computed without sorting. We initialize h
as zero and iterate over the items in the list. At each time,
we attempt to increase the current h value based on the
inspected item. For the current h value, we keep track of
the number of items that have equal value to h. We also

a

i

d

f

b

h

c e g
122

4

2

4

3

2

4 2

1 1

23

3

2

2
1st

2nd

3rd

step
step
step

Figure 4: Core example ToDo: put all step numbers, change
legend for taus

Table 3: Dataset statistics

|V | |E| |4| |K4|
as-skitter (ask) 1.7M 11.1M 28.8M 148.8M

facebook (fb) 4K 88.2K 1.6M 30.0M
soc-LiveJournal (slj) 4.8M 68.5M 285.7M 9.9B

soc-orkut (ork) 2.9M 106.3M 524.6M 2.4B
soc-sign-epinions (sse) 131.8K 711.2K 4.9M 58.6M
soc-twitter-higgs (hg) 456.6K 12.5M 83.0M 429.7M

twitter (tw) 81.3K 1.3M 13.1M 104.9M
web-Google (wgo) 916.4K 4.3M 13.4M 39.9M

web-NotreDame (wnd) 325.7K 1.1M 8.9M 231.9M
wikipedia-200611 (wiki) 3.1M 37.0M 88.8M 162.9M

use a hashmap to keep track of the items that are greater
than the current h value, and we simply ignore the items
that are smaller than h. This enables the computation of
the h-index in linear time. In addition, for the non-initial
iterations of the convergence process, we simply check the
items if the current ⌧ index can be preserved. Once we see
� ⌧ items with at least ⌧ index, no more checks needed.

5. EXPERIMENTS
We evaluate our algorithms on three instances of the nu-

cleus decomposition: k-core (or (1, 2)), k-truss (or (2, 3)),
and (3, 4). Constructing the hypergraphs requires to store
all the s-cliques, which is infeasible for large networks. Thus
we do not construct the actual hypergraphs to compute
the indices. Instead, we find the participations of the
r-cliques in s-cliques on-the-fly. Details about the com-
parison between two approaches are given in [25]. Our
dataset includes di↵erent types of real-world networks, such
as an internet topology network (as-skitter), online social
networks (facebook, soc-LiveJournal, soc-orkut), who-
trust-whom network (soc-sign-epinions), follower-followee

b

e

c

d

a g

h

i

f

4 3
2 3

4

3

3 1

11

1 2

2 3

4

2

2 2

2 3 2

22

2

2 2
2

2

Figure 5: Truss example

a i

d

f b

h

c

e

g2 2 2

3 2 2

4 3 2 2 2 2 2 2 1

4 2 2

4 3 2 1 1 1

2 1 1

0 1 2
(d2) (2)

22

c

d

bf e a
1

1

3

2

21 1 2

2

2

1 1 2 2

2

2

degrees

 1 indices in SND
core numbers

22

c

d

bf e a
1

1

3

2

21 1 2

2

2

1 1 2 2

2

2

degrees
core numbers
2nd step in lex. order

Figure 2: Async example

Theorem 4. In AND algorithm, if the r-cliques are pro-
cessed in the non-decreasing order of their final s indices,
convergence is obtained in a single iteration.

Proof. Say s(R) = t for an r-clique R. For the sake of
contradiction, assume that it takes more than one iteration
for ds(R) to converge s(R). So, ⌧0(R) = ds(R) and ⌧0(R) �
⌧1(R) > s(R). So, when R is being processed, H(L) > t
for L = {⇢(S) : S 3 R}. That means there are at least t+1
s-cliques where each has ⇢ value of at least t+ 1. However,
this implies that R is a part of (t + 1)-(r, s) nucleus, which
contradicts with the initial assumption.

The worst case happens when all the r-cliques see the ⌧
values of their neighbors that are computed in the previous
iteration and it is exactly the SND algorithm.

Figure 2 illustrates the di↵erence between Snd and And
algorithms (with di↵erent orderings) on the k-core case (r =
1, s = 2). Our focus is on vertices (1-cliques) and their re-
lations with edges (2-cliques). We first apply Snd. First,
vertex degrees are calculated as ⌧0 indices (blue numbers).
Then, for each vertex u we compute the ⌧1(u) = H({⌧0(v) :
v 2 N2(u)}, i.e., h-index of its neighbors’ degrees (red num-
bers). ⌧ For instance,

ToDo: should I include some numbers in exp, bounds part

4.2.1 Skipping the plateaus
ToDo: fig for tau changes and platos Our computations

converge when none of the vertices update their ⌧ indices
anymore. This implies that computations are performed for
all the vertices even when only a single update occurs. Those
computations are redundant. When ⌧(v) converges (v) for
a vertex v, no more computations are needed for v in the
following iterations. Also, a vertex can possibly maintain
the same ⌧ index for a number of iterations, reaches to a
plateau, and then updates it. So, it is not possible to deduce
whether ⌧(v) has converged to (v) by just looking at ⌧(v)
values of any vertex v. In order to skip the intermediate
or final plateaus during the convergence of ⌧(v) to (v), we
introduce a notification mechanism where a vertex notifies
its neighbors when its ⌧ index is updated.

Brown lines in Algorithm ?? summarizes the notification
mechanism we plug in to the asynchronous computation.
The only changes are in lines ??, ??, ?? and ??. Additional
C(·) array tracks whether a vertex v 2 V has updated its ⌧
index or not. It is set to true at the beginning to initiate
the computations for all vertices. Once C(v) becomes false,
i.e., maintains its ⌧ index, we avoid the computation. Note
that, a vertex restarts its computation only when a neighbor

vertex has an update (Line ??). Once a vertex completes
the computation, it is set to be not-updated (line ??) so that
no computation occurs until a notification is received from
a neighbor.

4.3 Illustrative examples
ToDo: explain fig 3 and 4

4.4 Heuristics and implementation
Here we introduce an important scheduling decision for

the parallelization in our algorithms, and a heuristic to com-
pute the h-index of a set in linear time.
We implemented our algorithms by using OpenMP [6] to

utilize the shared-memory architectures. The loops, anno-
tated as parallel in Algorithm ??, are shared among threads,
and each thread is responsible for its partition of vertices.
Default scheduling policy in OpenMP is static and it dis-
tributes the iterations of the loop to the threads in chunks,
i.e., for two threads, one takes the first half and the other
takes the second. Although this policy is useful for many ap-
plications, it will not work well for our algorithms. The no-
tification mechanism to avoid the redundant computations
can result in significant load imbalance between threads. If
most of the converged vertices reside in a certain part, then
the thread that is responsible for that part becomes idle un-
til the end of computation. To prevent this, we embraced
the dynamic scheduling where each thread is given a new
workload once it is done. No thread stays idle this way, and
the overall computation is parallelized more e�ciently.
h-index computation of a list is done by sorting the items

in non-increasing order and checking the values from the
beginning of the list to find the largest h value for which at
least h items exist with at least h value. Main bottleneck is
the sorting operation which takes O(n.logn) time. However,
h-index can be computed without sorting. We initialize h
as zero and iterate over the items in the list. At each time,
we attempt to increase the current h value based on the

a

i

d

f

b

h

c e g
122

4

2

4

3

2

4 2

1 1

23

3

2

2
1st

2nd

3rd

step
step
step

Figure 3: Core example

Figure 2: Async example

Theorem 4. In AND algorithm, if the r-cliques are pro-
cessed in the non-decreasing order of their final s indices,
convergence is obtained in a single iteration.

Proof. Say s(R) = t for an r-clique R. For the sake of
contradiction, assume that it takes more than one iteration
for ds(R) to converge s(R). So, ⌧0(R) = ds(R) and ⌧0(R) �
⌧1(R) > s(R). So, when R is being processed, H(L) > t
for L = {⇢(S) : S 3 R}. That means there are at least t+1
s-cliques where each has ⇢ value of at least t+ 1. However,
this implies that R is a part of (t + 1)-(r, s) nucleus, which
contradicts with the initial assumption.

The worst case happens when all the r-cliques see the ⌧
values of their neighbors that are computed in the previous
iteration and it is exactly the SND algorithm.

Figure 2 illustrates Snd and And algorithms (with di↵er-
ent orderings) on the k-core case (r = 1, s = 2). Our focus
is on vertices (1-cliques) and their edge (2-clique) counts
(degrees). We first apply Snd. First, vertex degrees are cal-
culated as ⌧0 indices (blue numbers). Then, for each vertex
u we compute the ⌧1(u) = H({⌧0(v) : v 2 N2(u)}, i.e., h-
index of its neighbors’ degrees (red numbers). For instance,
vertex a has two neighbors, e and b, with degrees 2 and
3. Since H({2, 3}) = 2, we get ⌧1(a) = 2. For vertex b,
we get ⌧1(b) = H({2, 2, 2}) = 2. Once we compute all ⌧1
indices, we iterate again because there were changes in ⌧
indices, e.g,. ⌧1(e) 6= ⌧0(e) (Line 13 in Algorithm 2). ⌧2
indices are shown in green. We observe an update only for
the vertex a; ⌧2(a) = H({⌧1(e), ⌧1(b)}) = H({1, 2}) = 1.
When we iterate again, no update is observed in ⌧ indices,
which means s = ⌧2 for all vertices. Regarding And algo-
rithm, we choose to follow the non-decreasing order of s

indices; {f,e,a,b,c,d}. Computing the ⌧1 indices on this or-
der enables us to reach the convergence in a single iteration.
For instance, ⌧1(a) = H({⌧1(e), ⌧0(b)}) = H({1, 2}) = 1.
If we choose to process the vertices in the alphabetical or-
der, {a,b,c,d,e,f}, we have ⌧1(a) = H({⌧0(e), ⌧0(b)}) =
H({2, 2}) = 2, which implies that we need more iteration(s)
to converge. Indeed ⌧2(a) = H({⌧1(e), ⌧1(b)}) = H({1, 2}) =
1

 ⌧1 ToDo: should I include some numbers in exp, bounds
part

4.2.1 Skipping the plateaus
ToDo: fig for tau changes and platos Our computations

converge when none of the vertices update their ⌧ indices
anymore. This implies that computations are performed for
all the vertices even when only a single update occurs. Those
computations are redundant. When ⌧(v) converges (v) for
a vertex v, no more computations are needed for v in the

following iterations. Also, a vertex can possibly maintain
the same ⌧ index for a number of iterations, reaches to a
plateau, and then updates it. So, it is not possible to deduce
whether ⌧(v) has converged to (v) by just looking at ⌧(v)
values of any vertex v. In order to skip the intermediate
or final plateaus during the convergence of ⌧(v) to (v), we
introduce a notification mechanism where a vertex notifies
its neighbors when its ⌧ index is updated.
Brown lines in Algorithm ?? summarizes the notification

mechanism we plug in to the asynchronous computation.
The only changes are in lines ??, ??, ?? and ??. Additional
C(·) array tracks whether a vertex v 2 V has updated its ⌧
index or not. It is set to true at the beginning to initiate
the computations for all vertices. Once C(v) becomes false,
i.e., maintains its ⌧ index, we avoid the computation. Note
that, a vertex restarts its computation only when a neighbor
vertex has an update (Line ??). Once a vertex completes
the computation, it is set to be not-updated (line ??) so that
no computation occurs until a notification is received from
a neighbor.

4.3 Illustrative examples
ToDo: explain fig 3 and 4

4.4 Heuristics and implementation
Here we introduce an important scheduling decision for

the parallelization in our algorithms, and a heuristic to com-
pute the h-index of a set in linear time.
We implemented our algorithms by using OpenMP [6] to

utilize the shared-memory architectures. The loops, anno-
tated as parallel in Algorithm ??, are shared among threads,
and each thread is responsible for its partition of vertices.
Default scheduling policy in OpenMP is static and it dis-
tributes the iterations of the loop to the threads in chunks,
i.e., for two threads, one takes the first half and the other
takes the second. Although this policy is useful for many ap-
plications, it will not work well for our algorithms. The no-

a

i

d

f

b

h

c e g
122

4

2

4

3

2

4 2

1 1

23

3

2

2
1st

2nd

3rd

step
step
step

Figure 3: Core example

Figure 4: Core example

⌧ ⌧ ⌧
⌧ ⌧

4.3 Illustrative examples
ToDo: explain fig 3 and 4 We present two examples to

illustrate the di↵erences between Snd and And algorithms.
Figure 4 presents the k-core decomposition process on a toy
graph.

4.4 Heuristics and implementation
Here we introduce an important scheduling decision for

the parallelization in our algorithms, and a heuristic to com-
pute the h-index of a set in linear time.

We implemented our algorithms by using OpenMP [6] to
utilize the shared-memory architectures. The loops, anno-
tated as parallel in Algorithm ??, are shared among threads,
and each thread is responsible for its partition of vertices.
Default scheduling policy in OpenMP is static and it dis-
tributes the iterations of the loop to the threads in chunks,
i.e., for two threads, one takes the first half and the other
takes the second. Although this policy is useful for many ap-
plications, it will not work well for our algorithms. The no-
tification mechanism to avoid the redundant computations
can result in significant load imbalance between threads. If
most of the converged vertices reside in a certain part, then
the thread that is responsible for that part becomes idle un-
til the end of computation. To prevent this, we embraced
the dynamic scheduling where each thread is given a new
workload once it is done. No thread stays idle this way, and
the overall computation is parallelized more e�ciently.

h-index computation of a list is done by sorting the items
in non-increasing order and checking the values from the
beginning of the list to find the largest h value for which at
least h items exist with at least h value. Main bottleneck is
the sorting operation which takes O(n.logn) time. However,
h-index can be computed without sorting. We initialize h
as zero and iterate over the items in the list. At each time,
we attempt to increase the current h value based on the
inspected item. For the current h value, we keep track of
the number of items that have equal value to h. We also

b

e

c

d

a g

h

i

f

2 2 2

2 2 2

2 2 2

2 2 2

2
2

2

2 2 2

1 1 1 1 1 1

1 1 1

1 1
 1 2 2 2

3
2

2

4 2 2

3 2
 2

3 2 2

3 2 2

4 2 2

4 3 2 3
2

2

⌧ ⌧ ⌧

4.3 Illustrative examples
ToDo: explain fig 3 and 4

4.4 Heuristics and implementation
Here we introduce an important scheduling decision for

the parallelization in our algorithms, and a heuristic to com-
pute the h-index of a set in linear time.

We implemented our algorithms by using OpenMP [6] to
utilize the shared-memory architectures. The loops, anno-
tated as parallel in Algorithm ??, are shared among threads,
and each thread is responsible for its partition of vertices.
Default scheduling policy in OpenMP is static and it dis-
tributes the iterations of the loop to the threads in chunks,
i.e., for two threads, one takes the first half and the other
takes the second. Although this policy is useful for many ap-
plications, it will not work well for our algorithms. The no-
tification mechanism to avoid the redundant computations
can result in significant load imbalance between threads. If
most of the converged vertices reside in a certain part, then
the thread that is responsible for that part becomes idle un-
til the end of computation. To prevent this, we embraced
the dynamic scheduling where each thread is given a new
workload once it is done. No thread stays idle this way, and
the overall computation is parallelized more e�ciently.

h-index computation of a list is done by sorting the items
in non-increasing order and checking the values from the
beginning of the list to find the largest h value for which at
least h items exist with at least h value. Main bottleneck is
the sorting operation which takes O(n.logn) time. However,
h-index can be computed without sorting. We initialize h
as zero and iterate over the items in the list. At each time,
we attempt to increase the current h value based on the
inspected item. For the current h value, we keep track of
the number of items that have equal value to h. We also

a

i

d

f

b

h

c e g
122

4

2

4

3

2

4 2

1 1

23

3

2

2
1st

2nd

3rd

step
step
step

Figure 4: Core example ToDo: put all step numbers, change
legend for taus

Table 3: Dataset statistics

|V | |E| |4| |K4|
as-skitter (ask) 1.7M 11.1M 28.8M 148.8M

facebook (fb) 4K 88.2K 1.6M 30.0M
soc-LiveJournal (slj) 4.8M 68.5M 285.7M 9.9B

soc-orkut (ork) 2.9M 106.3M 524.6M 2.4B
soc-sign-epinions (sse) 131.8K 711.2K 4.9M 58.6M
soc-twitter-higgs (hg) 456.6K 12.5M 83.0M 429.7M

twitter (tw) 81.3K 1.3M 13.1M 104.9M
web-Google (wgo) 916.4K 4.3M 13.4M 39.9M

web-NotreDame (wnd) 325.7K 1.1M 8.9M 231.9M
wikipedia-200611 (wiki) 3.1M 37.0M 88.8M 162.9M

use a hashmap to keep track of the items that are greater
than the current h value, and we simply ignore the items
that are smaller than h. This enables the computation of
the h-index in linear time. In addition, for the non-initial
iterations of the convergence process, we simply check the
items if the current ⌧ index can be preserved. Once we see
� ⌧ items with at least ⌧ index, no more checks needed.

5. EXPERIMENTS
We evaluate our algorithms on three instances of the nu-

cleus decomposition: k-core (or (1, 2)), k-truss (or (2, 3)),
and (3, 4). Constructing the hypergraphs requires to store
all the s-cliques, which is infeasible for large networks. Thus
we do not construct the actual hypergraphs to compute
the indices. Instead, we find the participations of the
r-cliques in s-cliques on-the-fly. Details about the com-
parison between two approaches are given in [25]. Our
dataset includes di↵erent types of real-world networks, such
as an internet topology network (as-skitter), online social
networks (facebook, soc-LiveJournal, soc-orkut), who-
trust-whom network (soc-sign-epinions), follower-followee

b

e

c

d

a g

h

i

f

4 3
2 3

4

3

3 1

11

1 2

2 3

4

2

2 2

2 3 2

22

2

2 2
2

2

Figure 5: Truss example

0 1 2
(d3) (3)

22

c

d

bf e a
1

1

3

2

21 1 2

2

2

1 1 2 2

2

2

degrees

 1 indices in SND
core numbers

22

c

d

bf e a
1

1

3

2

21 1 2

2

2

1 1 2 2

2

2

degrees
core numbers
2nd step in lex. order

Figure 2: Async example

Theorem 4. In AND algorithm, if the r-cliques are pro-
cessed in the non-decreasing order of their final s indices,
convergence is obtained in a single iteration.

Proof. Say s(R) = t for an r-clique R. For the sake of
contradiction, assume that it takes more than one iteration
for ds(R) to converge s(R). So, ⌧0(R) = ds(R) and ⌧0(R) �
⌧1(R) > s(R). So, when R is being processed, H(L) > t
for L = {⇢(S) : S 3 R}. That means there are at least t+1
s-cliques where each has ⇢ value of at least t+ 1. However,
this implies that R is a part of (t + 1)-(r, s) nucleus, which
contradicts with the initial assumption.

The worst case happens when all the r-cliques see the ⌧
values of their neighbors that are computed in the previous
iteration and it is exactly the SND algorithm.

Figure 2 illustrates the di↵erence between Snd and And
algorithms (with di↵erent orderings) on the k-core case (r =
1, s = 2). Our focus is on vertices (1-cliques) and their re-
lations with edges (2-cliques). We first apply Snd. First,
vertex degrees are calculated as ⌧0 indices (blue numbers).
Then, for each vertex u we compute the ⌧1(u) = H({⌧0(v) :
v 2 N2(u)}, i.e., h-index of its neighbors’ degrees (red num-
bers). ⌧ For instance,

ToDo: should I include some numbers in exp, bounds part

4.2.1 Skipping the plateaus
ToDo: fig for tau changes and platos Our computations

converge when none of the vertices update their ⌧ indices
anymore. This implies that computations are performed for
all the vertices even when only a single update occurs. Those
computations are redundant. When ⌧(v) converges (v) for
a vertex v, no more computations are needed for v in the
following iterations. Also, a vertex can possibly maintain
the same ⌧ index for a number of iterations, reaches to a
plateau, and then updates it. So, it is not possible to deduce
whether ⌧(v) has converged to (v) by just looking at ⌧(v)
values of any vertex v. In order to skip the intermediate
or final plateaus during the convergence of ⌧(v) to (v), we
introduce a notification mechanism where a vertex notifies
its neighbors when its ⌧ index is updated.

Brown lines in Algorithm ?? summarizes the notification
mechanism we plug in to the asynchronous computation.
The only changes are in lines ??, ??, ?? and ??. Additional
C(·) array tracks whether a vertex v 2 V has updated its ⌧
index or not. It is set to true at the beginning to initiate
the computations for all vertices. Once C(v) becomes false,
i.e., maintains its ⌧ index, we avoid the computation. Note
that, a vertex restarts its computation only when a neighbor

vertex has an update (Line ??). Once a vertex completes
the computation, it is set to be not-updated (line ??) so that
no computation occurs until a notification is received from
a neighbor.

4.3 Illustrative examples
ToDo: explain fig 3 and 4

4.4 Heuristics and implementation
Here we introduce an important scheduling decision for

the parallelization in our algorithms, and a heuristic to com-
pute the h-index of a set in linear time.
We implemented our algorithms by using OpenMP [6] to

utilize the shared-memory architectures. The loops, anno-
tated as parallel in Algorithm ??, are shared among threads,
and each thread is responsible for its partition of vertices.
Default scheduling policy in OpenMP is static and it dis-
tributes the iterations of the loop to the threads in chunks,
i.e., for two threads, one takes the first half and the other
takes the second. Although this policy is useful for many ap-
plications, it will not work well for our algorithms. The no-
tification mechanism to avoid the redundant computations
can result in significant load imbalance between threads. If
most of the converged vertices reside in a certain part, then
the thread that is responsible for that part becomes idle un-
til the end of computation. To prevent this, we embraced
the dynamic scheduling where each thread is given a new
workload once it is done. No thread stays idle this way, and
the overall computation is parallelized more e�ciently.
h-index computation of a list is done by sorting the items

in non-increasing order and checking the values from the
beginning of the list to find the largest h value for which at
least h items exist with at least h value. Main bottleneck is
the sorting operation which takes O(n.logn) time. However,
h-index can be computed without sorting. We initialize h
as zero and iterate over the items in the list. At each time,
we attempt to increase the current h value based on the

a

i

d

f

b

h

c e g
122

4

2

4

3

2

4 2

1 1

23

3

2

2
1st

2nd

3rd

step
step
step

Figure 3: Core example

Figure 2: Async example

Theorem 4. In AND algorithm, if the r-cliques are pro-
cessed in the non-decreasing order of their final s indices,
convergence is obtained in a single iteration.

Proof. Say s(R) = t for an r-clique R. For the sake of
contradiction, assume that it takes more than one iteration
for ds(R) to converge s(R). So, ⌧0(R) = ds(R) and ⌧0(R) �
⌧1(R) > s(R). So, when R is being processed, H(L) > t
for L = {⇢(S) : S 3 R}. That means there are at least t+1
s-cliques where each has ⇢ value of at least t+ 1. However,
this implies that R is a part of (t + 1)-(r, s) nucleus, which
contradicts with the initial assumption.

The worst case happens when all the r-cliques see the ⌧
values of their neighbors that are computed in the previous
iteration and it is exactly the SND algorithm.

Figure 2 illustrates Snd and And algorithms (with di↵er-
ent orderings) on the k-core case (r = 1, s = 2). Our focus
is on vertices (1-cliques) and their edge (2-clique) counts
(degrees). We first apply Snd. First, vertex degrees are cal-
culated as ⌧0 indices (blue numbers). Then, for each vertex
u we compute the ⌧1(u) = H({⌧0(v) : v 2 N2(u)}, i.e., h-
index of its neighbors’ degrees (red numbers). For instance,
vertex a has two neighbors, e and b, with degrees 2 and
3. Since H({2, 3}) = 2, we get ⌧1(a) = 2. For vertex b,
we get ⌧1(b) = H({2, 2, 2}) = 2. Once we compute all ⌧1
indices, we iterate again because there were changes in ⌧
indices, e.g,. ⌧1(e) 6= ⌧0(e) (Line 13 in Algorithm 2). ⌧2
indices are shown in green. We observe an update only for
the vertex a; ⌧2(a) = H({⌧1(e), ⌧1(b)}) = H({1, 2}) = 1.
When we iterate again, no update is observed in ⌧ indices,
which means s = ⌧2 for all vertices. Regarding And algo-
rithm, we choose to follow the non-decreasing order of s

indices; {f,e,a,b,c,d}. Computing the ⌧1 indices on this or-
der enables us to reach the convergence in a single iteration.
For instance, ⌧1(a) = H({⌧1(e), ⌧0(b)}) = H({1, 2}) = 1.
If we choose to process the vertices in the alphabetical or-
der, {a,b,c,d,e,f}, we have ⌧1(a) = H({⌧0(e), ⌧0(b)}) =
H({2, 2}) = 2, which implies that we need more iteration(s)
to converge. Indeed ⌧2(a) = H({⌧1(e), ⌧1(b)}) = H({1, 2}) =
1

 ⌧1 ToDo: should I include some numbers in exp, bounds
part

4.2.1 Skipping the plateaus
ToDo: fig for tau changes and platos Our computations

converge when none of the vertices update their ⌧ indices
anymore. This implies that computations are performed for
all the vertices even when only a single update occurs. Those
computations are redundant. When ⌧(v) converges (v) for
a vertex v, no more computations are needed for v in the

following iterations. Also, a vertex can possibly maintain
the same ⌧ index for a number of iterations, reaches to a
plateau, and then updates it. So, it is not possible to deduce
whether ⌧(v) has converged to (v) by just looking at ⌧(v)
values of any vertex v. In order to skip the intermediate
or final plateaus during the convergence of ⌧(v) to (v), we
introduce a notification mechanism where a vertex notifies
its neighbors when its ⌧ index is updated.
Brown lines in Algorithm ?? summarizes the notification

mechanism we plug in to the asynchronous computation.
The only changes are in lines ??, ??, ?? and ??. Additional
C(·) array tracks whether a vertex v 2 V has updated its ⌧
index or not. It is set to true at the beginning to initiate
the computations for all vertices. Once C(v) becomes false,
i.e., maintains its ⌧ index, we avoid the computation. Note
that, a vertex restarts its computation only when a neighbor
vertex has an update (Line ??). Once a vertex completes
the computation, it is set to be not-updated (line ??) so that
no computation occurs until a notification is received from
a neighbor.

4.3 Illustrative examples
ToDo: explain fig 3 and 4

4.4 Heuristics and implementation
Here we introduce an important scheduling decision for

the parallelization in our algorithms, and a heuristic to com-
pute the h-index of a set in linear time.
We implemented our algorithms by using OpenMP [6] to

utilize the shared-memory architectures. The loops, anno-
tated as parallel in Algorithm ??, are shared among threads,
and each thread is responsible for its partition of vertices.
Default scheduling policy in OpenMP is static and it dis-
tributes the iterations of the loop to the threads in chunks,
i.e., for two threads, one takes the first half and the other
takes the second. Although this policy is useful for many ap-
plications, it will not work well for our algorithms. The no-

a

i

d

f

b

h

c e g
122

4

2

4

3

2

4 2

1 1

23

3

2

2
1st

2nd

3rd

step
step
step

Figure 3: Core example

Figure 5: Truss example

Table 3: Dataset statistics

|V | |E| |4| |K4|
as-skitter (ask) 1.7M 11.1M 28.8M 148.8M

facebook (fb) 4K 88.2K 1.6M 30.0M
soc-LiveJournal (slj) 4.8M 68.5M 285.7M 9.9B

soc-orkut (ork) 2.9M 106.3M 524.6M 2.4B
soc-sign-epinions (sse) 131.8K 711.2K 4.9M 58.6M
soc-twitter-higgs (hg) 456.6K 12.5M 83.0M 429.7M

twitter (tw) 81.3K 1.3M 13.1M 104.9M
web-Google (wgo) 916.4K 4.3M 13.4M 39.9M

web-NotreDame (wnd) 325.7K 1.1M 8.9M 231.9M
wikipedia-200611 (wiki) 3.1M 37.0M 88.8M 162.9M

use a hashmap to keep track of the items that are greater
than the current h value, and we simply ignore the items
that are smaller than h. This enables the computation of
the h-index in linear time. In addition, for the non-initial
iterations of the convergence process, we simply check the
items if the current ⌧ index can be preserved. Once we see
� ⌧ items with at least ⌧ index, no more checks needed.

5. EXPERIMENTS
We evaluate our algorithms on three instances of the nu-

cleus decomposition: k-core (or (1, 2)), k-truss (or (2, 3)),
and (3, 4). Constructing the hypergraphs requires to store
all the s-cliques, which is infeasible for large networks. Thus
we do not construct the actual hypergraphs to compute
the indices. Instead, we find the participations of the
r-cliques in s-cliques on-the-fly. Details about the com-
parison between two approaches are given in [25]. Our
dataset includes di↵erent types of real-world networks, such
as an internet topology network (as-skitter), online social
networks (facebook, soc-LiveJournal, soc-orkut), who-
trust-whom network (soc-sign-epinions), follower-followee
Twitter networks (soc-twitter-higgs, twitter), web net-
works (web-Google,
web-NotreDame), and a network of wikipedia pages
(wikipedia-200611). Number of vertices, edges, triangles
and four-cliques in those graphs are given in Table 3.

22

c

d

bf e a
1

1

3

2

21 1 2

2

2

1 1 2 2

2

2

degrees

 1 indices in SND
core numbers

22

c

d

bf e a
1

1

3

2

21 1 2

2

2

1 1 2 2

2

2

degrees
core numbers
2nd step in lex. order

Figure 2: Async example

Theorem 4. In AND algorithm, if the r-cliques are pro-
cessed in the non-decreasing order of their final s indices,
convergence is obtained in a single iteration.

Proof. Say s(R) = t for an r-clique R. For the sake of
contradiction, assume that it takes more than one iteration
for ds(R) to converge s(R). So, ⌧0(R) = ds(R) and ⌧0(R) �
⌧1(R) > s(R). So, when R is being processed, H(L) > t
for L = {⇢(S) : S 3 R}. That means there are at least t+1
s-cliques where each has ⇢ value of at least t+ 1. However,
this implies that R is a part of (t + 1)-(r, s) nucleus, which
contradicts with the initial assumption.

The worst case happens when all the r-cliques see the ⌧
values of their neighbors that are computed in the previous
iteration and it is exactly the SND algorithm.

Figure 2 illustrates the di↵erence between Snd and And
algorithms (with di↵erent orderings) on the k-core case (r =
1, s = 2). Our focus is on vertices (1-cliques) and their re-
lations with edges (2-cliques). We first apply Snd. First,
vertex degrees are calculated as ⌧0 indices (blue numbers).
Then, for each vertex u we compute the ⌧1(u) = H({⌧0(v) :
v 2 N2(u)}, i.e., h-index of its neighbors’ degrees (red num-
bers). ⌧ For instance,

ToDo: should I include some numbers in exp, bounds part

4.2.1 Skipping the plateaus
ToDo: fig for tau changes and platos Our computations

converge when none of the vertices update their ⌧ indices
anymore. This implies that computations are performed for
all the vertices even when only a single update occurs. Those
computations are redundant. When ⌧(v) converges (v) for
a vertex v, no more computations are needed for v in the
following iterations. Also, a vertex can possibly maintain
the same ⌧ index for a number of iterations, reaches to a
plateau, and then updates it. So, it is not possible to deduce
whether ⌧(v) has converged to (v) by just looking at ⌧(v)
values of any vertex v. In order to skip the intermediate
or final plateaus during the convergence of ⌧(v) to (v), we
introduce a notification mechanism where a vertex notifies
its neighbors when its ⌧ index is updated.

Brown lines in Algorithm ?? summarizes the notification
mechanism we plug in to the asynchronous computation.
The only changes are in lines ??, ??, ?? and ??. Additional
C(·) array tracks whether a vertex v 2 V has updated its ⌧
index or not. It is set to true at the beginning to initiate
the computations for all vertices. Once C(v) becomes false,
i.e., maintains its ⌧ index, we avoid the computation. Note
that, a vertex restarts its computation only when a neighbor

vertex has an update (Line ??). Once a vertex completes
the computation, it is set to be not-updated (line ??) so that
no computation occurs until a notification is received from
a neighbor.

4.3 Illustrative examples
ToDo: explain fig 3 and 4

4.4 Heuristics and implementation
Here we introduce an important scheduling decision for

the parallelization in our algorithms, and a heuristic to com-
pute the h-index of a set in linear time.
We implemented our algorithms by using OpenMP [6] to

utilize the shared-memory architectures. The loops, anno-
tated as parallel in Algorithm ??, are shared among threads,
and each thread is responsible for its partition of vertices.
Default scheduling policy in OpenMP is static and it dis-
tributes the iterations of the loop to the threads in chunks,
i.e., for two threads, one takes the first half and the other
takes the second. Although this policy is useful for many ap-
plications, it will not work well for our algorithms. The no-
tification mechanism to avoid the redundant computations
can result in significant load imbalance between threads. If
most of the converged vertices reside in a certain part, then
the thread that is responsible for that part becomes idle un-
til the end of computation. To prevent this, we embraced
the dynamic scheduling where each thread is given a new
workload once it is done. No thread stays idle this way, and
the overall computation is parallelized more e�ciently.
h-index computation of a list is done by sorting the items

in non-increasing order and checking the values from the
beginning of the list to find the largest h value for which at
least h items exist with at least h value. Main bottleneck is
the sorting operation which takes O(n.logn) time. However,
h-index can be computed without sorting. We initialize h
as zero and iterate over the items in the list. At each time,
we attempt to increase the current h value based on the

a

i

d

f

b

h

c e g
122

4

2

4

3

2

4 2

1 1

23

3

2

2
1st

2nd

3rd

step
step
step

Figure 3: Core example

Figure 2: Async example

Theorem 4. In AND algorithm, if the r-cliques are pro-
cessed in the non-decreasing order of their final s indices,
convergence is obtained in a single iteration.

Proof. Say s(R) = t for an r-clique R. For the sake of
contradiction, assume that it takes more than one iteration
for ds(R) to converge s(R). So, ⌧0(R) = ds(R) and ⌧0(R) �
⌧1(R) > s(R). So, when R is being processed, H(L) > t
for L = {⇢(S) : S 3 R}. That means there are at least t+1
s-cliques where each has ⇢ value of at least t+ 1. However,
this implies that R is a part of (t + 1)-(r, s) nucleus, which
contradicts with the initial assumption.

The worst case happens when all the r-cliques see the ⌧
values of their neighbors that are computed in the previous
iteration and it is exactly the SND algorithm.

Figure 2 illustrates Snd and And algorithms (with di↵er-
ent orderings) on the k-core case (r = 1, s = 2). Our focus
is on vertices (1-cliques) and their edge (2-clique) counts
(degrees). We first apply Snd. First, vertex degrees are cal-
culated as ⌧0 indices (blue numbers). Then, for each vertex
u we compute the ⌧1(u) = H({⌧0(v) : v 2 N2(u)}, i.e., h-
index of its neighbors’ degrees (red numbers). For instance,
vertex a has two neighbors, e and b, with degrees 2 and
3. Since H({2, 3}) = 2, we get ⌧1(a) = 2. For vertex b,
we get ⌧1(b) = H({2, 2, 2}) = 2. Once we compute all ⌧1
indices, we iterate again because there were changes in ⌧
indices, e.g,. ⌧1(e) 6= ⌧0(e) (Line 13 in Algorithm 2). ⌧2
indices are shown in green. We observe an update only for
the vertex a; ⌧2(a) = H({⌧1(e), ⌧1(b)}) = H({1, 2}) = 1.
When we iterate again, no update is observed in ⌧ indices,
which means s = ⌧2 for all vertices. Regarding And algo-
rithm, we choose to follow the non-decreasing order of s

indices; {f,e,a,b,c,d}. Computing the ⌧1 indices on this or-
der enables us to reach the convergence in a single iteration.
For instance, ⌧1(a) = H({⌧1(e), ⌧0(b)}) = H({1, 2}) = 1.
If we choose to process the vertices in the alphabetical or-
der, {a,b,c,d,e,f}, we have ⌧1(a) = H({⌧0(e), ⌧0(b)}) =
H({2, 2}) = 2, which implies that we need more iteration(s)
to converge. Indeed ⌧2(a) = H({⌧1(e), ⌧1(b)}) = H({1, 2}) =
1

 ⌧1 ToDo: should I include some numbers in exp, bounds
part

4.2.1 Skipping the plateaus
ToDo: fig for tau changes and platos Our computations

converge when none of the vertices update their ⌧ indices
anymore. This implies that computations are performed for
all the vertices even when only a single update occurs. Those
computations are redundant. When ⌧(v) converges (v) for
a vertex v, no more computations are needed for v in the

following iterations. Also, a vertex can possibly maintain
the same ⌧ index for a number of iterations, reaches to a
plateau, and then updates it. So, it is not possible to deduce
whether ⌧(v) has converged to (v) by just looking at ⌧(v)
values of any vertex v. In order to skip the intermediate
or final plateaus during the convergence of ⌧(v) to (v), we
introduce a notification mechanism where a vertex notifies
its neighbors when its ⌧ index is updated.
Brown lines in Algorithm ?? summarizes the notification

mechanism we plug in to the asynchronous computation.
The only changes are in lines ??, ??, ?? and ??. Additional
C(·) array tracks whether a vertex v 2 V has updated its ⌧
index or not. It is set to true at the beginning to initiate
the computations for all vertices. Once C(v) becomes false,
i.e., maintains its ⌧ index, we avoid the computation. Note
that, a vertex restarts its computation only when a neighbor
vertex has an update (Line ??). Once a vertex completes
the computation, it is set to be not-updated (line ??) so that
no computation occurs until a notification is received from
a neighbor.

4.3 Illustrative examples
ToDo: explain fig 3 and 4

4.4 Heuristics and implementation
Here we introduce an important scheduling decision for

the parallelization in our algorithms, and a heuristic to com-
pute the h-index of a set in linear time.
We implemented our algorithms by using OpenMP [6] to

utilize the shared-memory architectures. The loops, anno-
tated as parallel in Algorithm ??, are shared among threads,
and each thread is responsible for its partition of vertices.
Default scheduling policy in OpenMP is static and it dis-
tributes the iterations of the loop to the threads in chunks,
i.e., for two threads, one takes the first half and the other
takes the second. Although this policy is useful for many ap-
plications, it will not work well for our algorithms. The no-

a

i

d

f

b

h

c e g
122

4

2

4

3

2

4 2

1 1

23

3

2

2
1st

2nd

3rd

step
step
step

Figure 3: Core example

d3

 0 1 2
 3

1 2 3 4

AND (lex. order) :

 no notification :
degree, core number :

1 2 3 4 with notification :

Figure 4: Truss example

⌧0 ⌧1 ⌧2 ⌧3
⌧0 ⌧1 ⌧2
⌧0 ⌧1
d2 2

Figure 4 illustrates the k-truss decomposition (r = 2, s =
3) on a toy graph. We follow the lexicographical order of
the edges (vertex pairs). Triangle counts (d3) of edges are
given in blue, which are used to initialize ⌧0 indices. We first
process edge ab. It has four triangles, abc, abd, abe, abi.
⇢ value of each triangle is calculated by taking the minimum
⌧0 value of the neighbor edges of ab (Line 11). Set of ⇢ values
is {min(⌧0(ac), ⌧0(bc)),min(⌧0(ad), ⌧0(bd)),min(⌧0(ae),
⌧0(be)),min(⌧0(ai), ⌧0(bi))}, which is L = {4, 3, 3, 2} and
⌧1(ab) = H(L) = 3. After computing ⌧1 indices of all the
edges in lexicographical order (ei edge is last),

4.3 Heuristics and implementation
Here we introduce an important scheduling decision for

the parallelization in our algorithms, and a heuristic to com-
pute the h-index of a set in linear time.

We implemented our algorithms by using OpenMP [6] to
utilize the shared-memory architectures. The loops, anno-
tated as parallel in Algorithm ??, are shared among threads,
and each thread is responsible for its partition of vertices.
Default scheduling policy in OpenMP is static and it dis-
tributes the iterations of the loop to the threads in chunks,
i.e., for two threads, one takes the first half and the other
takes the second. Although this policy is useful for many ap-
plications, it will not work well for our algorithms. The no-
tification mechanism to avoid the redundant computations
can result in significant load imbalance between threads. If
most of the converged vertices reside in a certain part, then
the thread that is responsible for that part becomes idle un-
til the end of computation. To prevent this, we embraced
the dynamic scheduling where each thread is given a new
workload once it is done. No thread stays idle this way, and
the overall computation is parallelized more e�ciently.

h-index computation of a list is done by sorting the items
in non-increasing order and checking the values from the
beginning of the list to find the largest h value for which at

Table 3: Dataset statistics

|V | |E| |4| |K4|
as-skitter (ask) 1.7M 11.1M 28.8M 148.8M

facebook (fb) 4K 88.2K 1.6M 30.0M
soc-LiveJournal (slj) 4.8M 68.5M 285.7M 9.9B

soc-orkut (ork) 2.9M 106.3M 524.6M 2.4B
soc-sign-epinions (sse) 131.8K 711.2K 4.9M 58.6M
soc-twitter-higgs (hg) 456.6K 12.5M 83.0M 429.7M

twitter (tw) 81.3K 1.3M 13.1M 104.9M
web-Google (wgo) 916.4K 4.3M 13.4M 39.9M

web-NotreDame (wnd) 325.7K 1.1M 8.9M 231.9M
wikipedia-200611 (wiki) 3.1M 37.0M 88.8M 162.9M

least h items exist with at least h value. Main bottleneck is
the sorting operation which takes O(n.logn) time. However,
h-index can be computed without sorting. We initialize h
as zero and iterate over the items in the list. At each time,
we attempt to increase the current h value based on the
inspected item. For the current h value, we keep track of
the number of items that have equal value to h. We also
use a hashmap to keep track of the items that are greater
than the current h value, and we simply ignore the items
that are smaller than h. This enables the computation of
the h-index in linear time. In addition, for the non-initial
iterations of the convergence process, we simply check the
items if the current ⌧ index can be preserved. Once we see
� ⌧ items with at least ⌧ index, no more checks needed.

5. EXPERIMENTS
We evaluate our algorithms on three instances of the nu-

cleus decomposition: k-core (or (1, 2)), k-truss (or (2, 3)),
and (3, 4). Constructing the hypergraphs requires to store
all the s-cliques, which is infeasible for large networks. Thus
we do not construct the actual hypergraphs to compute
the indices. Instead, we find the participations of the
r-cliques in s-cliques on-the-fly. Details about the com-
parison between two approaches are given in [25]. Our
dataset includes di↵erent types of real-world networks, such
as an internet topology network (as-skitter), online social
networks (facebook, soc-LiveJournal, soc-orkut), who-
trust-whom network (soc-sign-epinions), follower-followee
Twitter networks (soc-twitter-higgs, twitter), web net-
works (web-Google,
web-NotreDame), and a network of wikipedia pages
(wikipedia-200611). Number of vertices, edges, triangles
and four-cliques in those graphs are given in Table 3.
All experiments are performed on a Linux operating sys-

tem running on a machine with Intel Ivy Bridge processor at
2.4 GHz with 64 GB DDR3 1866 MHz memory. There are
two sockets on the machine and each has twelve cores, mak-
ing 24 cores in total. Algorithms are implemented in C++
and compiled using gcc 6.1.0 at -O2 optimization level. We
used OpenMP v4.5 for the shared-memory parallelization.
We start with comparing the number of iterations that

our synchronous (Algorithm ??) and asynchronous (Algo-
rithm ??) algorithms need to converge. Then, we investi-
gate how much the ⌧ indices can approach to indices at
each iteration. Regarding the performance, we compare the
runtimes of our algorithms with respect to the peeling, and
also discuss the scalability of our implementations.

b

e

c

d

a g

h

i

f

2 2 2

2 2 2

2 2 2

2 2 2

2
2 2

2 2 2

1 1 1 1 1 1

1 1 1

1 1
 1 2 2 2

3
2

2

4 2 2

3 2
 2

3 2 2

3 2 2

4 2 2

4 3 2 3
2

2

⌧ ⌧ ⌧

4.3 Illustrative examples
ToDo: explain fig 3 and 4

4.4 Heuristics and implementation
Here we introduce an important scheduling decision for

the parallelization in our algorithms, and a heuristic to com-
pute the h-index of a set in linear time.

We implemented our algorithms by using OpenMP [6] to
utilize the shared-memory architectures. The loops, anno-
tated as parallel in Algorithm ??, are shared among threads,
and each thread is responsible for its partition of vertices.
Default scheduling policy in OpenMP is static and it dis-
tributes the iterations of the loop to the threads in chunks,
i.e., for two threads, one takes the first half and the other
takes the second. Although this policy is useful for many ap-
plications, it will not work well for our algorithms. The no-
tification mechanism to avoid the redundant computations
can result in significant load imbalance between threads. If
most of the converged vertices reside in a certain part, then
the thread that is responsible for that part becomes idle un-
til the end of computation. To prevent this, we embraced
the dynamic scheduling where each thread is given a new
workload once it is done. No thread stays idle this way, and
the overall computation is parallelized more e�ciently.

h-index computation of a list is done by sorting the items
in non-increasing order and checking the values from the
beginning of the list to find the largest h value for which at
least h items exist with at least h value. Main bottleneck is
the sorting operation which takes O(n.logn) time. However,
h-index can be computed without sorting. We initialize h
as zero and iterate over the items in the list. At each time,
we attempt to increase the current h value based on the
inspected item. For the current h value, we keep track of
the number of items that have equal value to h. We also

a

i

d

f

b

h

c e g
122

4

2

4

3

2

4 2

1 1

23

3

2

2
1st

2nd

3rd

step
step
step

Figure 4: Core example ToDo: put all step numbers, change
legend for taus

Table 3: Dataset statistics

|V | |E| |4| |K4|
as-skitter (ask) 1.7M 11.1M 28.8M 148.8M

facebook (fb) 4K 88.2K 1.6M 30.0M
soc-LiveJournal (slj) 4.8M 68.5M 285.7M 9.9B

soc-orkut (ork) 2.9M 106.3M 524.6M 2.4B
soc-sign-epinions (sse) 131.8K 711.2K 4.9M 58.6M
soc-twitter-higgs (hg) 456.6K 12.5M 83.0M 429.7M

twitter (tw) 81.3K 1.3M 13.1M 104.9M
web-Google (wgo) 916.4K 4.3M 13.4M 39.9M

web-NotreDame (wnd) 325.7K 1.1M 8.9M 231.9M
wikipedia-200611 (wiki) 3.1M 37.0M 88.8M 162.9M

use a hashmap to keep track of the items that are greater
than the current h value, and we simply ignore the items
that are smaller than h. This enables the computation of
the h-index in linear time. In addition, for the non-initial
iterations of the convergence process, we simply check the
items if the current ⌧ index can be preserved. Once we see
� ⌧ items with at least ⌧ index, no more checks needed.

5. EXPERIMENTS
We evaluate our algorithms on three instances of the nu-

cleus decomposition: k-core (or (1, 2)), k-truss (or (2, 3)),
and (3, 4). Constructing the hypergraphs requires to store
all the s-cliques, which is infeasible for large networks. Thus
we do not construct the actual hypergraphs to compute
the indices. Instead, we find the participations of the
r-cliques in s-cliques on-the-fly. Details about the com-
parison between two approaches are given in [25]. Our
dataset includes di↵erent types of real-world networks, such
as an internet topology network (as-skitter), online social
networks (facebook, soc-LiveJournal, soc-orkut), who-
trust-whom network (soc-sign-epinions), follower-followee

b

e

c

d

a g

h

i

f

4 3
2 3

4

3

3 1

11

1 2

2 3

4

2

2 2

2 3 2

22

2

2 2
2

2

Figure 5: Truss example

a i

d

f b

h

c

e

g2 2 2

3 2 2

4 3 2 2 2 2 2 2 1

4 2 2

4 3 2 1 1 1

2 1 1

0 1 2
(d2) (2)

22

c

d

bf e a
1

1

3

2

21 1 2

2

2

1 1 2 2

2

2

degrees

 1 indices in SND
core numbers

22

c

d

bf e a
1

1

3

2

21 1 2

2

2

1 1 2 2

2

2

degrees
core numbers
2nd step in lex. order

Figure 2: Async example

Theorem 4. In AND algorithm, if the r-cliques are pro-
cessed in the non-decreasing order of their final s indices,
convergence is obtained in a single iteration.

Proof. Say s(R) = t for an r-clique R. For the sake of
contradiction, assume that it takes more than one iteration
for ds(R) to converge s(R). So, ⌧0(R) = ds(R) and ⌧0(R) �
⌧1(R) > s(R). So, when R is being processed, H(L) > t
for L = {⇢(S) : S 3 R}. That means there are at least t+1
s-cliques where each has ⇢ value of at least t+ 1. However,
this implies that R is a part of (t + 1)-(r, s) nucleus, which
contradicts with the initial assumption.

The worst case happens when all the r-cliques see the ⌧
values of their neighbors that are computed in the previous
iteration and it is exactly the SND algorithm.

Figure 2 illustrates the di↵erence between Snd and And
algorithms (with di↵erent orderings) on the k-core case (r =
1, s = 2). Our focus is on vertices (1-cliques) and their re-
lations with edges (2-cliques). We first apply Snd. First,
vertex degrees are calculated as ⌧0 indices (blue numbers).
Then, for each vertex u we compute the ⌧1(u) = H({⌧0(v) :
v 2 N2(u)}, i.e., h-index of its neighbors’ degrees (red num-
bers). ⌧ For instance,

ToDo: should I include some numbers in exp, bounds part

4.2.1 Skipping the plateaus
ToDo: fig for tau changes and platos Our computations

converge when none of the vertices update their ⌧ indices
anymore. This implies that computations are performed for
all the vertices even when only a single update occurs. Those
computations are redundant. When ⌧(v) converges (v) for
a vertex v, no more computations are needed for v in the
following iterations. Also, a vertex can possibly maintain
the same ⌧ index for a number of iterations, reaches to a
plateau, and then updates it. So, it is not possible to deduce
whether ⌧(v) has converged to (v) by just looking at ⌧(v)
values of any vertex v. In order to skip the intermediate
or final plateaus during the convergence of ⌧(v) to (v), we
introduce a notification mechanism where a vertex notifies
its neighbors when its ⌧ index is updated.

Brown lines in Algorithm ?? summarizes the notification
mechanism we plug in to the asynchronous computation.
The only changes are in lines ??, ??, ?? and ??. Additional
C(·) array tracks whether a vertex v 2 V has updated its ⌧
index or not. It is set to true at the beginning to initiate
the computations for all vertices. Once C(v) becomes false,
i.e., maintains its ⌧ index, we avoid the computation. Note
that, a vertex restarts its computation only when a neighbor

vertex has an update (Line ??). Once a vertex completes
the computation, it is set to be not-updated (line ??) so that
no computation occurs until a notification is received from
a neighbor.

4.3 Illustrative examples
ToDo: explain fig 3 and 4

4.4 Heuristics and implementation
Here we introduce an important scheduling decision for

the parallelization in our algorithms, and a heuristic to com-
pute the h-index of a set in linear time.
We implemented our algorithms by using OpenMP [6] to

utilize the shared-memory architectures. The loops, anno-
tated as parallel in Algorithm ??, are shared among threads,
and each thread is responsible for its partition of vertices.
Default scheduling policy in OpenMP is static and it dis-
tributes the iterations of the loop to the threads in chunks,
i.e., for two threads, one takes the first half and the other
takes the second. Although this policy is useful for many ap-
plications, it will not work well for our algorithms. The no-
tification mechanism to avoid the redundant computations
can result in significant load imbalance between threads. If
most of the converged vertices reside in a certain part, then
the thread that is responsible for that part becomes idle un-
til the end of computation. To prevent this, we embraced
the dynamic scheduling where each thread is given a new
workload once it is done. No thread stays idle this way, and
the overall computation is parallelized more e�ciently.
h-index computation of a list is done by sorting the items

in non-increasing order and checking the values from the
beginning of the list to find the largest h value for which at
least h items exist with at least h value. Main bottleneck is
the sorting operation which takes O(n.logn) time. However,
h-index can be computed without sorting. We initialize h
as zero and iterate over the items in the list. At each time,
we attempt to increase the current h value based on the

a

i

d

f

b

h

c e g
122

4

2

4

3

2

4 2

1 1

23

3

2

2
1st

2nd

3rd

step
step
step

Figure 3: Core example

Figure 2: Async example

Theorem 4. In AND algorithm, if the r-cliques are pro-
cessed in the non-decreasing order of their final s indices,
convergence is obtained in a single iteration.

Proof. Say s(R) = t for an r-clique R. For the sake of
contradiction, assume that it takes more than one iteration
for ds(R) to converge s(R). So, ⌧0(R) = ds(R) and ⌧0(R) �
⌧1(R) > s(R). So, when R is being processed, H(L) > t
for L = {⇢(S) : S 3 R}. That means there are at least t+1
s-cliques where each has ⇢ value of at least t+ 1. However,
this implies that R is a part of (t + 1)-(r, s) nucleus, which
contradicts with the initial assumption.

The worst case happens when all the r-cliques see the ⌧
values of their neighbors that are computed in the previous
iteration and it is exactly the SND algorithm.

Figure 2 illustrates Snd and And algorithms (with di↵er-
ent orderings) on the k-core case (r = 1, s = 2). Our focus
is on vertices (1-cliques) and their edge (2-clique) counts
(degrees). We first apply Snd. First, vertex degrees are cal-
culated as ⌧0 indices (blue numbers). Then, for each vertex
u we compute the ⌧1(u) = H({⌧0(v) : v 2 N2(u)}, i.e., h-
index of its neighbors’ degrees (red numbers). For instance,
vertex a has two neighbors, e and b, with degrees 2 and
3. Since H({2, 3}) = 2, we get ⌧1(a) = 2. For vertex b,
we get ⌧1(b) = H({2, 2, 2}) = 2. Once we compute all ⌧1
indices, we iterate again because there were changes in ⌧
indices, e.g,. ⌧1(e) 6= ⌧0(e) (Line 13 in Algorithm 2). ⌧2
indices are shown in green. We observe an update only for
the vertex a; ⌧2(a) = H({⌧1(e), ⌧1(b)}) = H({1, 2}) = 1.
When we iterate again, no update is observed in ⌧ indices,
which means s = ⌧2 for all vertices. Regarding And algo-
rithm, we choose to follow the non-decreasing order of s

indices; {f,e,a,b,c,d}. Computing the ⌧1 indices on this or-
der enables us to reach the convergence in a single iteration.
For instance, ⌧1(a) = H({⌧1(e), ⌧0(b)}) = H({1, 2}) = 1.
If we choose to process the vertices in the alphabetical or-
der, {a,b,c,d,e,f}, we have ⌧1(a) = H({⌧0(e), ⌧0(b)}) =
H({2, 2}) = 2, which implies that we need more iteration(s)
to converge. Indeed ⌧2(a) = H({⌧1(e), ⌧1(b)}) = H({1, 2}) =
1

 ⌧1 ToDo: should I include some numbers in exp, bounds
part

4.2.1 Skipping the plateaus
ToDo: fig for tau changes and platos Our computations

converge when none of the vertices update their ⌧ indices
anymore. This implies that computations are performed for
all the vertices even when only a single update occurs. Those
computations are redundant. When ⌧(v) converges (v) for
a vertex v, no more computations are needed for v in the

following iterations. Also, a vertex can possibly maintain
the same ⌧ index for a number of iterations, reaches to a
plateau, and then updates it. So, it is not possible to deduce
whether ⌧(v) has converged to (v) by just looking at ⌧(v)
values of any vertex v. In order to skip the intermediate
or final plateaus during the convergence of ⌧(v) to (v), we
introduce a notification mechanism where a vertex notifies
its neighbors when its ⌧ index is updated.
Brown lines in Algorithm ?? summarizes the notification

mechanism we plug in to the asynchronous computation.
The only changes are in lines ??, ??, ?? and ??. Additional
C(·) array tracks whether a vertex v 2 V has updated its ⌧
index or not. It is set to true at the beginning to initiate
the computations for all vertices. Once C(v) becomes false,
i.e., maintains its ⌧ index, we avoid the computation. Note
that, a vertex restarts its computation only when a neighbor
vertex has an update (Line ??). Once a vertex completes
the computation, it is set to be not-updated (line ??) so that
no computation occurs until a notification is received from
a neighbor.

4.3 Illustrative examples
ToDo: explain fig 3 and 4

4.4 Heuristics and implementation
Here we introduce an important scheduling decision for

the parallelization in our algorithms, and a heuristic to com-
pute the h-index of a set in linear time.
We implemented our algorithms by using OpenMP [6] to

utilize the shared-memory architectures. The loops, anno-
tated as parallel in Algorithm ??, are shared among threads,
and each thread is responsible for its partition of vertices.
Default scheduling policy in OpenMP is static and it dis-
tributes the iterations of the loop to the threads in chunks,
i.e., for two threads, one takes the first half and the other
takes the second. Although this policy is useful for many ap-
plications, it will not work well for our algorithms. The no-

a

i

d

f

b

h

c e g
122

4

2

4

3

2

4 2

1 1

23

3

2

2
1st

2nd

3rd

step
step
step

Figure 3: Core example

Figure 4: Core example

⌧ ⌧ ⌧
⌧ ⌧

4.3 Illustrative examples
ToDo: explain fig 3 and 4 We present two examples to

illustrate the di↵erences between Snd and And algorithms.
Figure 4 presents the k-core decomposition process on a toy
graph.

4.4 Heuristics and implementation
Here we introduce an important scheduling decision for

the parallelization in our algorithms, and a heuristic to com-
pute the h-index of a set in linear time.

We implemented our algorithms by using OpenMP [6] to
utilize the shared-memory architectures. The loops, anno-
tated as parallel in Algorithm ??, are shared among threads,
and each thread is responsible for its partition of vertices.
Default scheduling policy in OpenMP is static and it dis-
tributes the iterations of the loop to the threads in chunks,
i.e., for two threads, one takes the first half and the other
takes the second. Although this policy is useful for many ap-
plications, it will not work well for our algorithms. The no-
tification mechanism to avoid the redundant computations
can result in significant load imbalance between threads. If
most of the converged vertices reside in a certain part, then
the thread that is responsible for that part becomes idle un-
til the end of computation. To prevent this, we embraced
the dynamic scheduling where each thread is given a new
workload once it is done. No thread stays idle this way, and
the overall computation is parallelized more e�ciently.

h-index computation of a list is done by sorting the items
in non-increasing order and checking the values from the
beginning of the list to find the largest h value for which at
least h items exist with at least h value. Main bottleneck is
the sorting operation which takes O(n.logn) time. However,
h-index can be computed without sorting. We initialize h
as zero and iterate over the items in the list. At each time,
we attempt to increase the current h value based on the
inspected item. For the current h value, we keep track of
the number of items that have equal value to h. We also

b

e

c

d

a g

h

i

f

2 2 2

2 2 2

2 2 2

2 2 2

2
2

2

2 2 2

1 1 1 1 1 1

1 1 1

1 1
 1 2 2 2

3
2

2

4 2 2

3 2
 2

3 2 2

3 2 2

4 2 2

4 3 2 3
2

2

⌧ ⌧ ⌧

4.3 Illustrative examples
ToDo: explain fig 3 and 4

4.4 Heuristics and implementation
Here we introduce an important scheduling decision for

the parallelization in our algorithms, and a heuristic to com-
pute the h-index of a set in linear time.

We implemented our algorithms by using OpenMP [6] to
utilize the shared-memory architectures. The loops, anno-
tated as parallel in Algorithm ??, are shared among threads,
and each thread is responsible for its partition of vertices.
Default scheduling policy in OpenMP is static and it dis-
tributes the iterations of the loop to the threads in chunks,
i.e., for two threads, one takes the first half and the other
takes the second. Although this policy is useful for many ap-
plications, it will not work well for our algorithms. The no-
tification mechanism to avoid the redundant computations
can result in significant load imbalance between threads. If
most of the converged vertices reside in a certain part, then
the thread that is responsible for that part becomes idle un-
til the end of computation. To prevent this, we embraced
the dynamic scheduling where each thread is given a new
workload once it is done. No thread stays idle this way, and
the overall computation is parallelized more e�ciently.

h-index computation of a list is done by sorting the items
in non-increasing order and checking the values from the
beginning of the list to find the largest h value for which at
least h items exist with at least h value. Main bottleneck is
the sorting operation which takes O(n.logn) time. However,
h-index can be computed without sorting. We initialize h
as zero and iterate over the items in the list. At each time,
we attempt to increase the current h value based on the
inspected item. For the current h value, we keep track of
the number of items that have equal value to h. We also

a

i

d

f

b

h

c e g
122

4

2

4

3

2

4 2

1 1

23

3

2

2
1st

2nd

3rd

step
step
step

Figure 4: Core example ToDo: put all step numbers, change
legend for taus

Table 3: Dataset statistics

|V | |E| |4| |K4|
as-skitter (ask) 1.7M 11.1M 28.8M 148.8M

facebook (fb) 4K 88.2K 1.6M 30.0M
soc-LiveJournal (slj) 4.8M 68.5M 285.7M 9.9B

soc-orkut (ork) 2.9M 106.3M 524.6M 2.4B
soc-sign-epinions (sse) 131.8K 711.2K 4.9M 58.6M
soc-twitter-higgs (hg) 456.6K 12.5M 83.0M 429.7M

twitter (tw) 81.3K 1.3M 13.1M 104.9M
web-Google (wgo) 916.4K 4.3M 13.4M 39.9M

web-NotreDame (wnd) 325.7K 1.1M 8.9M 231.9M
wikipedia-200611 (wiki) 3.1M 37.0M 88.8M 162.9M

use a hashmap to keep track of the items that are greater
than the current h value, and we simply ignore the items
that are smaller than h. This enables the computation of
the h-index in linear time. In addition, for the non-initial
iterations of the convergence process, we simply check the
items if the current ⌧ index can be preserved. Once we see
� ⌧ items with at least ⌧ index, no more checks needed.

5. EXPERIMENTS
We evaluate our algorithms on three instances of the nu-

cleus decomposition: k-core (or (1, 2)), k-truss (or (2, 3)),
and (3, 4). Constructing the hypergraphs requires to store
all the s-cliques, which is infeasible for large networks. Thus
we do not construct the actual hypergraphs to compute
the indices. Instead, we find the participations of the
r-cliques in s-cliques on-the-fly. Details about the com-
parison between two approaches are given in [25]. Our
dataset includes di↵erent types of real-world networks, such
as an internet topology network (as-skitter), online social
networks (facebook, soc-LiveJournal, soc-orkut), who-
trust-whom network (soc-sign-epinions), follower-followee

b

e

c

d

a g

h

i

f

4 3
2 3

4

3

3 1

11

1 2

2 3

4

2

2 2

2 3 2

22

2

2 2
2

2

Figure 5: Truss example

0 1 2
(d3) (3)

22

c

d

bf e a
1

1

3

2

21 1 2

2

2

1 1 2 2

2

2

degrees

 1 indices in SND
core numbers

22

c

d

bf e a
1

1

3

2

21 1 2

2

2

1 1 2 2

2

2

degrees
core numbers
2nd step in lex. order

Figure 2: Async example

Theorem 4. In AND algorithm, if the r-cliques are pro-
cessed in the non-decreasing order of their final s indices,
convergence is obtained in a single iteration.

Proof. Say s(R) = t for an r-clique R. For the sake of
contradiction, assume that it takes more than one iteration
for ds(R) to converge s(R). So, ⌧0(R) = ds(R) and ⌧0(R) �
⌧1(R) > s(R). So, when R is being processed, H(L) > t
for L = {⇢(S) : S 3 R}. That means there are at least t+1
s-cliques where each has ⇢ value of at least t+ 1. However,
this implies that R is a part of (t + 1)-(r, s) nucleus, which
contradicts with the initial assumption.

The worst case happens when all the r-cliques see the ⌧
values of their neighbors that are computed in the previous
iteration and it is exactly the SND algorithm.

Figure 2 illustrates the di↵erence between Snd and And
algorithms (with di↵erent orderings) on the k-core case (r =
1, s = 2). Our focus is on vertices (1-cliques) and their re-
lations with edges (2-cliques). We first apply Snd. First,
vertex degrees are calculated as ⌧0 indices (blue numbers).
Then, for each vertex u we compute the ⌧1(u) = H({⌧0(v) :
v 2 N2(u)}, i.e., h-index of its neighbors’ degrees (red num-
bers). ⌧ For instance,

ToDo: should I include some numbers in exp, bounds part

4.2.1 Skipping the plateaus
ToDo: fig for tau changes and platos Our computations

converge when none of the vertices update their ⌧ indices
anymore. This implies that computations are performed for
all the vertices even when only a single update occurs. Those
computations are redundant. When ⌧(v) converges (v) for
a vertex v, no more computations are needed for v in the
following iterations. Also, a vertex can possibly maintain
the same ⌧ index for a number of iterations, reaches to a
plateau, and then updates it. So, it is not possible to deduce
whether ⌧(v) has converged to (v) by just looking at ⌧(v)
values of any vertex v. In order to skip the intermediate
or final plateaus during the convergence of ⌧(v) to (v), we
introduce a notification mechanism where a vertex notifies
its neighbors when its ⌧ index is updated.

Brown lines in Algorithm ?? summarizes the notification
mechanism we plug in to the asynchronous computation.
The only changes are in lines ??, ??, ?? and ??. Additional
C(·) array tracks whether a vertex v 2 V has updated its ⌧
index or not. It is set to true at the beginning to initiate
the computations for all vertices. Once C(v) becomes false,
i.e., maintains its ⌧ index, we avoid the computation. Note
that, a vertex restarts its computation only when a neighbor

vertex has an update (Line ??). Once a vertex completes
the computation, it is set to be not-updated (line ??) so that
no computation occurs until a notification is received from
a neighbor.

4.3 Illustrative examples
ToDo: explain fig 3 and 4

4.4 Heuristics and implementation
Here we introduce an important scheduling decision for

the parallelization in our algorithms, and a heuristic to com-
pute the h-index of a set in linear time.
We implemented our algorithms by using OpenMP [6] to

utilize the shared-memory architectures. The loops, anno-
tated as parallel in Algorithm ??, are shared among threads,
and each thread is responsible for its partition of vertices.
Default scheduling policy in OpenMP is static and it dis-
tributes the iterations of the loop to the threads in chunks,
i.e., for two threads, one takes the first half and the other
takes the second. Although this policy is useful for many ap-
plications, it will not work well for our algorithms. The no-
tification mechanism to avoid the redundant computations
can result in significant load imbalance between threads. If
most of the converged vertices reside in a certain part, then
the thread that is responsible for that part becomes idle un-
til the end of computation. To prevent this, we embraced
the dynamic scheduling where each thread is given a new
workload once it is done. No thread stays idle this way, and
the overall computation is parallelized more e�ciently.
h-index computation of a list is done by sorting the items

in non-increasing order and checking the values from the
beginning of the list to find the largest h value for which at
least h items exist with at least h value. Main bottleneck is
the sorting operation which takes O(n.logn) time. However,
h-index can be computed without sorting. We initialize h
as zero and iterate over the items in the list. At each time,
we attempt to increase the current h value based on the

a

i

d

f

b

h

c e g
122

4

2

4

3

2

4 2

1 1

23

3

2

2
1st

2nd

3rd

step
step
step

Figure 3: Core example

Figure 2: Async example

Theorem 4. In AND algorithm, if the r-cliques are pro-
cessed in the non-decreasing order of their final s indices,
convergence is obtained in a single iteration.

Proof. Say s(R) = t for an r-clique R. For the sake of
contradiction, assume that it takes more than one iteration
for ds(R) to converge s(R). So, ⌧0(R) = ds(R) and ⌧0(R) �
⌧1(R) > s(R). So, when R is being processed, H(L) > t
for L = {⇢(S) : S 3 R}. That means there are at least t+1
s-cliques where each has ⇢ value of at least t+ 1. However,
this implies that R is a part of (t + 1)-(r, s) nucleus, which
contradicts with the initial assumption.

The worst case happens when all the r-cliques see the ⌧
values of their neighbors that are computed in the previous
iteration and it is exactly the SND algorithm.

Figure 2 illustrates Snd and And algorithms (with di↵er-
ent orderings) on the k-core case (r = 1, s = 2). Our focus
is on vertices (1-cliques) and their edge (2-clique) counts
(degrees). We first apply Snd. First, vertex degrees are cal-
culated as ⌧0 indices (blue numbers). Then, for each vertex
u we compute the ⌧1(u) = H({⌧0(v) : v 2 N2(u)}, i.e., h-
index of its neighbors’ degrees (red numbers). For instance,
vertex a has two neighbors, e and b, with degrees 2 and
3. Since H({2, 3}) = 2, we get ⌧1(a) = 2. For vertex b,
we get ⌧1(b) = H({2, 2, 2}) = 2. Once we compute all ⌧1
indices, we iterate again because there were changes in ⌧
indices, e.g,. ⌧1(e) 6= ⌧0(e) (Line 13 in Algorithm 2). ⌧2
indices are shown in green. We observe an update only for
the vertex a; ⌧2(a) = H({⌧1(e), ⌧1(b)}) = H({1, 2}) = 1.
When we iterate again, no update is observed in ⌧ indices,
which means s = ⌧2 for all vertices. Regarding And algo-
rithm, we choose to follow the non-decreasing order of s

indices; {f,e,a,b,c,d}. Computing the ⌧1 indices on this or-
der enables us to reach the convergence in a single iteration.
For instance, ⌧1(a) = H({⌧1(e), ⌧0(b)}) = H({1, 2}) = 1.
If we choose to process the vertices in the alphabetical or-
der, {a,b,c,d,e,f}, we have ⌧1(a) = H({⌧0(e), ⌧0(b)}) =
H({2, 2}) = 2, which implies that we need more iteration(s)
to converge. Indeed ⌧2(a) = H({⌧1(e), ⌧1(b)}) = H({1, 2}) =
1

 ⌧1 ToDo: should I include some numbers in exp, bounds
part

4.2.1 Skipping the plateaus
ToDo: fig for tau changes and platos Our computations

converge when none of the vertices update their ⌧ indices
anymore. This implies that computations are performed for
all the vertices even when only a single update occurs. Those
computations are redundant. When ⌧(v) converges (v) for
a vertex v, no more computations are needed for v in the

following iterations. Also, a vertex can possibly maintain
the same ⌧ index for a number of iterations, reaches to a
plateau, and then updates it. So, it is not possible to deduce
whether ⌧(v) has converged to (v) by just looking at ⌧(v)
values of any vertex v. In order to skip the intermediate
or final plateaus during the convergence of ⌧(v) to (v), we
introduce a notification mechanism where a vertex notifies
its neighbors when its ⌧ index is updated.
Brown lines in Algorithm ?? summarizes the notification

mechanism we plug in to the asynchronous computation.
The only changes are in lines ??, ??, ?? and ??. Additional
C(·) array tracks whether a vertex v 2 V has updated its ⌧
index or not. It is set to true at the beginning to initiate
the computations for all vertices. Once C(v) becomes false,
i.e., maintains its ⌧ index, we avoid the computation. Note
that, a vertex restarts its computation only when a neighbor
vertex has an update (Line ??). Once a vertex completes
the computation, it is set to be not-updated (line ??) so that
no computation occurs until a notification is received from
a neighbor.

4.3 Illustrative examples
ToDo: explain fig 3 and 4

4.4 Heuristics and implementation
Here we introduce an important scheduling decision for

the parallelization in our algorithms, and a heuristic to com-
pute the h-index of a set in linear time.
We implemented our algorithms by using OpenMP [6] to

utilize the shared-memory architectures. The loops, anno-
tated as parallel in Algorithm ??, are shared among threads,
and each thread is responsible for its partition of vertices.
Default scheduling policy in OpenMP is static and it dis-
tributes the iterations of the loop to the threads in chunks,
i.e., for two threads, one takes the first half and the other
takes the second. Although this policy is useful for many ap-
plications, it will not work well for our algorithms. The no-

a

i

d

f

b

h

c e g
122

4

2

4

3

2

4 2

1 1

23

3

2

2
1st

2nd

3rd

step
step
step

Figure 3: Core example

Figure 5: Truss example

Table 3: Dataset statistics

|V | |E| |4| |K4|
as-skitter (ask) 1.7M 11.1M 28.8M 148.8M

facebook (fb) 4K 88.2K 1.6M 30.0M
soc-LiveJournal (slj) 4.8M 68.5M 285.7M 9.9B

soc-orkut (ork) 2.9M 106.3M 524.6M 2.4B
soc-sign-epinions (sse) 131.8K 711.2K 4.9M 58.6M
soc-twitter-higgs (hg) 456.6K 12.5M 83.0M 429.7M

twitter (tw) 81.3K 1.3M 13.1M 104.9M
web-Google (wgo) 916.4K 4.3M 13.4M 39.9M

web-NotreDame (wnd) 325.7K 1.1M 8.9M 231.9M
wikipedia-200611 (wiki) 3.1M 37.0M 88.8M 162.9M

use a hashmap to keep track of the items that are greater
than the current h value, and we simply ignore the items
that are smaller than h. This enables the computation of
the h-index in linear time. In addition, for the non-initial
iterations of the convergence process, we simply check the
items if the current ⌧ index can be preserved. Once we see
� ⌧ items with at least ⌧ index, no more checks needed.

5. EXPERIMENTS
We evaluate our algorithms on three instances of the nu-

cleus decomposition: k-core (or (1, 2)), k-truss (or (2, 3)),
and (3, 4). Constructing the hypergraphs requires to store
all the s-cliques, which is infeasible for large networks. Thus
we do not construct the actual hypergraphs to compute
the indices. Instead, we find the participations of the
r-cliques in s-cliques on-the-fly. Details about the com-
parison between two approaches are given in [25]. Our
dataset includes di↵erent types of real-world networks, such
as an internet topology network (as-skitter), online social
networks (facebook, soc-LiveJournal, soc-orkut), who-
trust-whom network (soc-sign-epinions), follower-followee
Twitter networks (soc-twitter-higgs, twitter), web net-
works (web-Google,
web-NotreDame), and a network of wikipedia pages
(wikipedia-200611). Number of vertices, edges, triangles
and four-cliques in those graphs are given in Table 3.

22

c

d

bf e a
1

1

3

2

21 1 2

2

2

1 1 2 2

2

2

degrees

 1 indices in SND
core numbers

22

c

d

bf e a
1

1

3

2

21 1 2

2

2

1 1 2 2

2

2

degrees
core numbers
2nd step in lex. order

Figure 2: Async example

Theorem 4. In AND algorithm, if the r-cliques are pro-
cessed in the non-decreasing order of their final s indices,
convergence is obtained in a single iteration.

Proof. Say s(R) = t for an r-clique R. For the sake of
contradiction, assume that it takes more than one iteration
for ds(R) to converge s(R). So, ⌧0(R) = ds(R) and ⌧0(R) �
⌧1(R) > s(R). So, when R is being processed, H(L) > t
for L = {⇢(S) : S 3 R}. That means there are at least t+1
s-cliques where each has ⇢ value of at least t+ 1. However,
this implies that R is a part of (t + 1)-(r, s) nucleus, which
contradicts with the initial assumption.

The worst case happens when all the r-cliques see the ⌧
values of their neighbors that are computed in the previous
iteration and it is exactly the SND algorithm.

Figure 2 illustrates the di↵erence between Snd and And
algorithms (with di↵erent orderings) on the k-core case (r =
1, s = 2). Our focus is on vertices (1-cliques) and their re-
lations with edges (2-cliques). We first apply Snd. First,
vertex degrees are calculated as ⌧0 indices (blue numbers).
Then, for each vertex u we compute the ⌧1(u) = H({⌧0(v) :
v 2 N2(u)}, i.e., h-index of its neighbors’ degrees (red num-
bers). ⌧ For instance,

ToDo: should I include some numbers in exp, bounds part

4.2.1 Skipping the plateaus
ToDo: fig for tau changes and platos Our computations

converge when none of the vertices update their ⌧ indices
anymore. This implies that computations are performed for
all the vertices even when only a single update occurs. Those
computations are redundant. When ⌧(v) converges (v) for
a vertex v, no more computations are needed for v in the
following iterations. Also, a vertex can possibly maintain
the same ⌧ index for a number of iterations, reaches to a
plateau, and then updates it. So, it is not possible to deduce
whether ⌧(v) has converged to (v) by just looking at ⌧(v)
values of any vertex v. In order to skip the intermediate
or final plateaus during the convergence of ⌧(v) to (v), we
introduce a notification mechanism where a vertex notifies
its neighbors when its ⌧ index is updated.

Brown lines in Algorithm ?? summarizes the notification
mechanism we plug in to the asynchronous computation.
The only changes are in lines ??, ??, ?? and ??. Additional
C(·) array tracks whether a vertex v 2 V has updated its ⌧
index or not. It is set to true at the beginning to initiate
the computations for all vertices. Once C(v) becomes false,
i.e., maintains its ⌧ index, we avoid the computation. Note
that, a vertex restarts its computation only when a neighbor

vertex has an update (Line ??). Once a vertex completes
the computation, it is set to be not-updated (line ??) so that
no computation occurs until a notification is received from
a neighbor.

4.3 Illustrative examples
ToDo: explain fig 3 and 4

4.4 Heuristics and implementation
Here we introduce an important scheduling decision for

the parallelization in our algorithms, and a heuristic to com-
pute the h-index of a set in linear time.
We implemented our algorithms by using OpenMP [6] to

utilize the shared-memory architectures. The loops, anno-
tated as parallel in Algorithm ??, are shared among threads,
and each thread is responsible for its partition of vertices.
Default scheduling policy in OpenMP is static and it dis-
tributes the iterations of the loop to the threads in chunks,
i.e., for two threads, one takes the first half and the other
takes the second. Although this policy is useful for many ap-
plications, it will not work well for our algorithms. The no-
tification mechanism to avoid the redundant computations
can result in significant load imbalance between threads. If
most of the converged vertices reside in a certain part, then
the thread that is responsible for that part becomes idle un-
til the end of computation. To prevent this, we embraced
the dynamic scheduling where each thread is given a new
workload once it is done. No thread stays idle this way, and
the overall computation is parallelized more e�ciently.
h-index computation of a list is done by sorting the items

in non-increasing order and checking the values from the
beginning of the list to find the largest h value for which at
least h items exist with at least h value. Main bottleneck is
the sorting operation which takes O(n.logn) time. However,
h-index can be computed without sorting. We initialize h
as zero and iterate over the items in the list. At each time,
we attempt to increase the current h value based on the

a

i

d

f

b

h

c e g
122

4

2

4

3

2

4 2

1 1

23

3

2

2
1st

2nd

3rd

step
step
step

Figure 3: Core example

Figure 2: Async example

Theorem 4. In AND algorithm, if the r-cliques are pro-
cessed in the non-decreasing order of their final s indices,
convergence is obtained in a single iteration.

Proof. Say s(R) = t for an r-clique R. For the sake of
contradiction, assume that it takes more than one iteration
for ds(R) to converge s(R). So, ⌧0(R) = ds(R) and ⌧0(R) �
⌧1(R) > s(R). So, when R is being processed, H(L) > t
for L = {⇢(S) : S 3 R}. That means there are at least t+1
s-cliques where each has ⇢ value of at least t+ 1. However,
this implies that R is a part of (t + 1)-(r, s) nucleus, which
contradicts with the initial assumption.

The worst case happens when all the r-cliques see the ⌧
values of their neighbors that are computed in the previous
iteration and it is exactly the SND algorithm.

Figure 2 illustrates Snd and And algorithms (with di↵er-
ent orderings) on the k-core case (r = 1, s = 2). Our focus
is on vertices (1-cliques) and their edge (2-clique) counts
(degrees). We first apply Snd. First, vertex degrees are cal-
culated as ⌧0 indices (blue numbers). Then, for each vertex
u we compute the ⌧1(u) = H({⌧0(v) : v 2 N2(u)}, i.e., h-
index of its neighbors’ degrees (red numbers). For instance,
vertex a has two neighbors, e and b, with degrees 2 and
3. Since H({2, 3}) = 2, we get ⌧1(a) = 2. For vertex b,
we get ⌧1(b) = H({2, 2, 2}) = 2. Once we compute all ⌧1
indices, we iterate again because there were changes in ⌧
indices, e.g,. ⌧1(e) 6= ⌧0(e) (Line 13 in Algorithm 2). ⌧2
indices are shown in green. We observe an update only for
the vertex a; ⌧2(a) = H({⌧1(e), ⌧1(b)}) = H({1, 2}) = 1.
When we iterate again, no update is observed in ⌧ indices,
which means s = ⌧2 for all vertices. Regarding And algo-
rithm, we choose to follow the non-decreasing order of s

indices; {f,e,a,b,c,d}. Computing the ⌧1 indices on this or-
der enables us to reach the convergence in a single iteration.
For instance, ⌧1(a) = H({⌧1(e), ⌧0(b)}) = H({1, 2}) = 1.
If we choose to process the vertices in the alphabetical or-
der, {a,b,c,d,e,f}, we have ⌧1(a) = H({⌧0(e), ⌧0(b)}) =
H({2, 2}) = 2, which implies that we need more iteration(s)
to converge. Indeed ⌧2(a) = H({⌧1(e), ⌧1(b)}) = H({1, 2}) =
1

 ⌧1 ToDo: should I include some numbers in exp, bounds
part

4.2.1 Skipping the plateaus
ToDo: fig for tau changes and platos Our computations

converge when none of the vertices update their ⌧ indices
anymore. This implies that computations are performed for
all the vertices even when only a single update occurs. Those
computations are redundant. When ⌧(v) converges (v) for
a vertex v, no more computations are needed for v in the

following iterations. Also, a vertex can possibly maintain
the same ⌧ index for a number of iterations, reaches to a
plateau, and then updates it. So, it is not possible to deduce
whether ⌧(v) has converged to (v) by just looking at ⌧(v)
values of any vertex v. In order to skip the intermediate
or final plateaus during the convergence of ⌧(v) to (v), we
introduce a notification mechanism where a vertex notifies
its neighbors when its ⌧ index is updated.
Brown lines in Algorithm ?? summarizes the notification

mechanism we plug in to the asynchronous computation.
The only changes are in lines ??, ??, ?? and ??. Additional
C(·) array tracks whether a vertex v 2 V has updated its ⌧
index or not. It is set to true at the beginning to initiate
the computations for all vertices. Once C(v) becomes false,
i.e., maintains its ⌧ index, we avoid the computation. Note
that, a vertex restarts its computation only when a neighbor
vertex has an update (Line ??). Once a vertex completes
the computation, it is set to be not-updated (line ??) so that
no computation occurs until a notification is received from
a neighbor.

4.3 Illustrative examples
ToDo: explain fig 3 and 4

4.4 Heuristics and implementation
Here we introduce an important scheduling decision for

the parallelization in our algorithms, and a heuristic to com-
pute the h-index of a set in linear time.
We implemented our algorithms by using OpenMP [6] to

utilize the shared-memory architectures. The loops, anno-
tated as parallel in Algorithm ??, are shared among threads,
and each thread is responsible for its partition of vertices.
Default scheduling policy in OpenMP is static and it dis-
tributes the iterations of the loop to the threads in chunks,
i.e., for two threads, one takes the first half and the other
takes the second. Although this policy is useful for many ap-
plications, it will not work well for our algorithms. The no-

a

i

d

f

b

h

c e g
122

4

2

4

3

2

4 2

1 1

23

3

2

2
1st

2nd

3rd

step
step
step

Figure 3: Core example

d3

 0 1 2
 3

1 2 3 4

AND (lex. order) :

 no notification :
degree, core number :

1 2 3 4 with notification :

Figure 4: Truss example

⌧0 ⌧1 ⌧2 ⌧3
⌧0 ⌧1 ⌧2
⌧0 ⌧1
d2 2

Figure 4 illustrates the k-truss decomposition (r = 2, s =
3) on a toy graph. We follow the lexicographical order of
the edges (vertex pairs). Triangle counts (d3) of edges are
given in blue, which are used to initialize ⌧0 indices. We first
process edge ab. It has four triangles, abc, abd, abe, abi.
⇢ value of each triangle is calculated by taking the minimum
⌧0 value of the neighbor edges of ab (Line 11). Set of ⇢ values
is {min(⌧0(ac), ⌧0(bc)),min(⌧0(ad), ⌧0(bd)),min(⌧0(ae),
⌧0(be)),min(⌧0(ai), ⌧0(bi))}, which is L = {4, 3, 3, 2} and
⌧1(ab) = H(L) = 3. After computing ⌧1 indices of all the
edges in lexicographical order (ei edge is last),

4.3 Heuristics and implementation
Here we introduce an important scheduling decision for

the parallelization in our algorithms, and a heuristic to com-
pute the h-index of a set in linear time.

We implemented our algorithms by using OpenMP [6] to
utilize the shared-memory architectures. The loops, anno-
tated as parallel in Algorithm ??, are shared among threads,
and each thread is responsible for its partition of vertices.
Default scheduling policy in OpenMP is static and it dis-
tributes the iterations of the loop to the threads in chunks,
i.e., for two threads, one takes the first half and the other
takes the second. Although this policy is useful for many ap-
plications, it will not work well for our algorithms. The no-
tification mechanism to avoid the redundant computations
can result in significant load imbalance between threads. If
most of the converged vertices reside in a certain part, then
the thread that is responsible for that part becomes idle un-
til the end of computation. To prevent this, we embraced
the dynamic scheduling where each thread is given a new
workload once it is done. No thread stays idle this way, and
the overall computation is parallelized more e�ciently.

h-index computation of a list is done by sorting the items
in non-increasing order and checking the values from the
beginning of the list to find the largest h value for which at

Table 3: Dataset statistics

|V | |E| |4| |K4|
as-skitter (ask) 1.7M 11.1M 28.8M 148.8M

facebook (fb) 4K 88.2K 1.6M 30.0M
soc-LiveJournal (slj) 4.8M 68.5M 285.7M 9.9B

soc-orkut (ork) 2.9M 106.3M 524.6M 2.4B
soc-sign-epinions (sse) 131.8K 711.2K 4.9M 58.6M
soc-twitter-higgs (hg) 456.6K 12.5M 83.0M 429.7M

twitter (tw) 81.3K 1.3M 13.1M 104.9M
web-Google (wgo) 916.4K 4.3M 13.4M 39.9M

web-NotreDame (wnd) 325.7K 1.1M 8.9M 231.9M
wikipedia-200611 (wiki) 3.1M 37.0M 88.8M 162.9M

least h items exist with at least h value. Main bottleneck is
the sorting operation which takes O(n.logn) time. However,
h-index can be computed without sorting. We initialize h
as zero and iterate over the items in the list. At each time,
we attempt to increase the current h value based on the
inspected item. For the current h value, we keep track of
the number of items that have equal value to h. We also
use a hashmap to keep track of the items that are greater
than the current h value, and we simply ignore the items
that are smaller than h. This enables the computation of
the h-index in linear time. In addition, for the non-initial
iterations of the convergence process, we simply check the
items if the current ⌧ index can be preserved. Once we see
� ⌧ items with at least ⌧ index, no more checks needed.

5. EXPERIMENTS
We evaluate our algorithms on three instances of the nu-

cleus decomposition: k-core (or (1, 2)), k-truss (or (2, 3)),
and (3, 4). Constructing the hypergraphs requires to store
all the s-cliques, which is infeasible for large networks. Thus
we do not construct the actual hypergraphs to compute
the indices. Instead, we find the participations of the
r-cliques in s-cliques on-the-fly. Details about the com-
parison between two approaches are given in [25]. Our
dataset includes di↵erent types of real-world networks, such
as an internet topology network (as-skitter), online social
networks (facebook, soc-LiveJournal, soc-orkut), who-
trust-whom network (soc-sign-epinions), follower-followee
Twitter networks (soc-twitter-higgs, twitter), web net-
works (web-Google,
web-NotreDame), and a network of wikipedia pages
(wikipedia-200611). Number of vertices, edges, triangles
and four-cliques in those graphs are given in Table 3.
All experiments are performed on a Linux operating sys-

tem running on a machine with Intel Ivy Bridge processor at
2.4 GHz with 64 GB DDR3 1866 MHz memory. There are
two sockets on the machine and each has twelve cores, mak-
ing 24 cores in total. Algorithms are implemented in C++
and compiled using gcc 6.1.0 at -O2 optimization level. We
used OpenMP v4.5 for the shared-memory parallelization.
We start with comparing the number of iterations that

our synchronous (Algorithm ??) and asynchronous (Algo-
rithm ??) algorithms need to converge. Then, we investi-
gate how much the ⌧ indices can approach to indices at
each iteration. Regarding the performance, we compare the
runtimes of our algorithms with respect to the peeling, and
also discuss the scalability of our implementations.

2 1 1 1 2 2 1 1 3 2 2 2

2 2 2 2

2 2 2 2

b

e

c

d

a g

h

i

f

2 2 2

2 2 2

2 2 2

2 2 2

2
2 2

2 2 2

1 1 1 1 1 1

1 1 1

1 1
 1 2 2 2

3
2

2

4 2 2

3 2
 2

3 2 2

3 2 2

4 2 2

4 3 2 3
2

2

⌧ ⌧ ⌧

4.3 Illustrative examples
ToDo: explain fig 3 and 4

4.4 Heuristics and implementation
Here we introduce an important scheduling decision for

the parallelization in our algorithms, and a heuristic to com-
pute the h-index of a set in linear time.

We implemented our algorithms by using OpenMP [6] to
utilize the shared-memory architectures. The loops, anno-
tated as parallel in Algorithm ??, are shared among threads,
and each thread is responsible for its partition of vertices.
Default scheduling policy in OpenMP is static and it dis-
tributes the iterations of the loop to the threads in chunks,
i.e., for two threads, one takes the first half and the other
takes the second. Although this policy is useful for many ap-
plications, it will not work well for our algorithms. The no-
tification mechanism to avoid the redundant computations
can result in significant load imbalance between threads. If
most of the converged vertices reside in a certain part, then
the thread that is responsible for that part becomes idle un-
til the end of computation. To prevent this, we embraced
the dynamic scheduling where each thread is given a new
workload once it is done. No thread stays idle this way, and
the overall computation is parallelized more e�ciently.

h-index computation of a list is done by sorting the items
in non-increasing order and checking the values from the
beginning of the list to find the largest h value for which at
least h items exist with at least h value. Main bottleneck is
the sorting operation which takes O(n.logn) time. However,
h-index can be computed without sorting. We initialize h
as zero and iterate over the items in the list. At each time,
we attempt to increase the current h value based on the
inspected item. For the current h value, we keep track of
the number of items that have equal value to h. We also

a

i

d

f

b

h

c e g
122

4

2

4

3

2

4 2

1 1

23

3

2

2
1st

2nd

3rd

step
step
step

Figure 4: Core example ToDo: put all step numbers, change
legend for taus

Table 3: Dataset statistics

|V | |E| |4| |K4|
as-skitter (ask) 1.7M 11.1M 28.8M 148.8M

facebook (fb) 4K 88.2K 1.6M 30.0M
soc-LiveJournal (slj) 4.8M 68.5M 285.7M 9.9B

soc-orkut (ork) 2.9M 106.3M 524.6M 2.4B
soc-sign-epinions (sse) 131.8K 711.2K 4.9M 58.6M
soc-twitter-higgs (hg) 456.6K 12.5M 83.0M 429.7M

twitter (tw) 81.3K 1.3M 13.1M 104.9M
web-Google (wgo) 916.4K 4.3M 13.4M 39.9M

web-NotreDame (wnd) 325.7K 1.1M 8.9M 231.9M
wikipedia-200611 (wiki) 3.1M 37.0M 88.8M 162.9M

use a hashmap to keep track of the items that are greater
than the current h value, and we simply ignore the items
that are smaller than h. This enables the computation of
the h-index in linear time. In addition, for the non-initial
iterations of the convergence process, we simply check the
items if the current ⌧ index can be preserved. Once we see
� ⌧ items with at least ⌧ index, no more checks needed.

5. EXPERIMENTS
We evaluate our algorithms on three instances of the nu-

cleus decomposition: k-core (or (1, 2)), k-truss (or (2, 3)),
and (3, 4). Constructing the hypergraphs requires to store
all the s-cliques, which is infeasible for large networks. Thus
we do not construct the actual hypergraphs to compute
the indices. Instead, we find the participations of the
r-cliques in s-cliques on-the-fly. Details about the com-
parison between two approaches are given in [25]. Our
dataset includes di↵erent types of real-world networks, such
as an internet topology network (as-skitter), online social
networks (facebook, soc-LiveJournal, soc-orkut), who-
trust-whom network (soc-sign-epinions), follower-followee

b

e

c

d

a g

h

i

f

4 3
2 3

4

3

3 1

11

1 2

2 3

4

2

2 2

2 3 2

22

2

2 2
2

2

Figure 5: Truss example

a i

d

f b

h

c

e

g2 2 2

3 2 2

4 3 2 2 2 2 2 2 1

4 2 2

4 3 2 1 1 1

2 1 1

0 1 2
(d2) (2)

22

c

d

bf e a
1

1

3

2

21 1 2

2

2

1 1 2 2

2

2

degrees

 1 indices in SND
core numbers

22

c

d

bf e a
1

1

3

2

21 1 2

2

2

1 1 2 2

2

2

degrees
core numbers
2nd step in lex. order

Figure 2: Async example

Theorem 4. In AND algorithm, if the r-cliques are pro-
cessed in the non-decreasing order of their final s indices,
convergence is obtained in a single iteration.

Proof. Say s(R) = t for an r-clique R. For the sake of
contradiction, assume that it takes more than one iteration
for ds(R) to converge s(R). So, ⌧0(R) = ds(R) and ⌧0(R) �
⌧1(R) > s(R). So, when R is being processed, H(L) > t
for L = {⇢(S) : S 3 R}. That means there are at least t+1
s-cliques where each has ⇢ value of at least t+ 1. However,
this implies that R is a part of (t + 1)-(r, s) nucleus, which
contradicts with the initial assumption.

The worst case happens when all the r-cliques see the ⌧
values of their neighbors that are computed in the previous
iteration and it is exactly the SND algorithm.

Figure 2 illustrates the di↵erence between Snd and And
algorithms (with di↵erent orderings) on the k-core case (r =
1, s = 2). Our focus is on vertices (1-cliques) and their re-
lations with edges (2-cliques). We first apply Snd. First,
vertex degrees are calculated as ⌧0 indices (blue numbers).
Then, for each vertex u we compute the ⌧1(u) = H({⌧0(v) :
v 2 N2(u)}, i.e., h-index of its neighbors’ degrees (red num-
bers). ⌧ For instance,

ToDo: should I include some numbers in exp, bounds part

4.2.1 Skipping the plateaus
ToDo: fig for tau changes and platos Our computations

converge when none of the vertices update their ⌧ indices
anymore. This implies that computations are performed for
all the vertices even when only a single update occurs. Those
computations are redundant. When ⌧(v) converges (v) for
a vertex v, no more computations are needed for v in the
following iterations. Also, a vertex can possibly maintain
the same ⌧ index for a number of iterations, reaches to a
plateau, and then updates it. So, it is not possible to deduce
whether ⌧(v) has converged to (v) by just looking at ⌧(v)
values of any vertex v. In order to skip the intermediate
or final plateaus during the convergence of ⌧(v) to (v), we
introduce a notification mechanism where a vertex notifies
its neighbors when its ⌧ index is updated.

Brown lines in Algorithm ?? summarizes the notification
mechanism we plug in to the asynchronous computation.
The only changes are in lines ??, ??, ?? and ??. Additional
C(·) array tracks whether a vertex v 2 V has updated its ⌧
index or not. It is set to true at the beginning to initiate
the computations for all vertices. Once C(v) becomes false,
i.e., maintains its ⌧ index, we avoid the computation. Note
that, a vertex restarts its computation only when a neighbor

vertex has an update (Line ??). Once a vertex completes
the computation, it is set to be not-updated (line ??) so that
no computation occurs until a notification is received from
a neighbor.

4.3 Illustrative examples
ToDo: explain fig 3 and 4

4.4 Heuristics and implementation
Here we introduce an important scheduling decision for

the parallelization in our algorithms, and a heuristic to com-
pute the h-index of a set in linear time.
We implemented our algorithms by using OpenMP [6] to

utilize the shared-memory architectures. The loops, anno-
tated as parallel in Algorithm ??, are shared among threads,
and each thread is responsible for its partition of vertices.
Default scheduling policy in OpenMP is static and it dis-
tributes the iterations of the loop to the threads in chunks,
i.e., for two threads, one takes the first half and the other
takes the second. Although this policy is useful for many ap-
plications, it will not work well for our algorithms. The no-
tification mechanism to avoid the redundant computations
can result in significant load imbalance between threads. If
most of the converged vertices reside in a certain part, then
the thread that is responsible for that part becomes idle un-
til the end of computation. To prevent this, we embraced
the dynamic scheduling where each thread is given a new
workload once it is done. No thread stays idle this way, and
the overall computation is parallelized more e�ciently.
h-index computation of a list is done by sorting the items

in non-increasing order and checking the values from the
beginning of the list to find the largest h value for which at
least h items exist with at least h value. Main bottleneck is
the sorting operation which takes O(n.logn) time. However,
h-index can be computed without sorting. We initialize h
as zero and iterate over the items in the list. At each time,
we attempt to increase the current h value based on the

a

i

d

f

b

h

c e g
122

4

2

4

3

2

4 2

1 1

23

3

2

2
1st

2nd

3rd

step
step
step

Figure 3: Core example

Figure 2: Async example

Theorem 4. In AND algorithm, if the r-cliques are pro-
cessed in the non-decreasing order of their final s indices,
convergence is obtained in a single iteration.

Proof. Say s(R) = t for an r-clique R. For the sake of
contradiction, assume that it takes more than one iteration
for ds(R) to converge s(R). So, ⌧0(R) = ds(R) and ⌧0(R) �
⌧1(R) > s(R). So, when R is being processed, H(L) > t
for L = {⇢(S) : S 3 R}. That means there are at least t+1
s-cliques where each has ⇢ value of at least t+ 1. However,
this implies that R is a part of (t + 1)-(r, s) nucleus, which
contradicts with the initial assumption.

The worst case happens when all the r-cliques see the ⌧
values of their neighbors that are computed in the previous
iteration and it is exactly the SND algorithm.

Figure 2 illustrates Snd and And algorithms (with di↵er-
ent orderings) on the k-core case (r = 1, s = 2). Our focus
is on vertices (1-cliques) and their edge (2-clique) counts
(degrees). We first apply Snd. First, vertex degrees are cal-
culated as ⌧0 indices (blue numbers). Then, for each vertex
u we compute the ⌧1(u) = H({⌧0(v) : v 2 N2(u)}, i.e., h-
index of its neighbors’ degrees (red numbers). For instance,
vertex a has two neighbors, e and b, with degrees 2 and
3. Since H({2, 3}) = 2, we get ⌧1(a) = 2. For vertex b,
we get ⌧1(b) = H({2, 2, 2}) = 2. Once we compute all ⌧1
indices, we iterate again because there were changes in ⌧
indices, e.g,. ⌧1(e) 6= ⌧0(e) (Line 13 in Algorithm 2). ⌧2
indices are shown in green. We observe an update only for
the vertex a; ⌧2(a) = H({⌧1(e), ⌧1(b)}) = H({1, 2}) = 1.
When we iterate again, no update is observed in ⌧ indices,
which means s = ⌧2 for all vertices. Regarding And algo-
rithm, we choose to follow the non-decreasing order of s

indices; {f,e,a,b,c,d}. Computing the ⌧1 indices on this or-
der enables us to reach the convergence in a single iteration.
For instance, ⌧1(a) = H({⌧1(e), ⌧0(b)}) = H({1, 2}) = 1.
If we choose to process the vertices in the alphabetical or-
der, {a,b,c,d,e,f}, we have ⌧1(a) = H({⌧0(e), ⌧0(b)}) =
H({2, 2}) = 2, which implies that we need more iteration(s)
to converge. Indeed ⌧2(a) = H({⌧1(e), ⌧1(b)}) = H({1, 2}) =
1

 ⌧1 ToDo: should I include some numbers in exp, bounds
part

4.2.1 Skipping the plateaus
ToDo: fig for tau changes and platos Our computations

converge when none of the vertices update their ⌧ indices
anymore. This implies that computations are performed for
all the vertices even when only a single update occurs. Those
computations are redundant. When ⌧(v) converges (v) for
a vertex v, no more computations are needed for v in the

following iterations. Also, a vertex can possibly maintain
the same ⌧ index for a number of iterations, reaches to a
plateau, and then updates it. So, it is not possible to deduce
whether ⌧(v) has converged to (v) by just looking at ⌧(v)
values of any vertex v. In order to skip the intermediate
or final plateaus during the convergence of ⌧(v) to (v), we
introduce a notification mechanism where a vertex notifies
its neighbors when its ⌧ index is updated.
Brown lines in Algorithm ?? summarizes the notification

mechanism we plug in to the asynchronous computation.
The only changes are in lines ??, ??, ?? and ??. Additional
C(·) array tracks whether a vertex v 2 V has updated its ⌧
index or not. It is set to true at the beginning to initiate
the computations for all vertices. Once C(v) becomes false,
i.e., maintains its ⌧ index, we avoid the computation. Note
that, a vertex restarts its computation only when a neighbor
vertex has an update (Line ??). Once a vertex completes
the computation, it is set to be not-updated (line ??) so that
no computation occurs until a notification is received from
a neighbor.

4.3 Illustrative examples
ToDo: explain fig 3 and 4

4.4 Heuristics and implementation
Here we introduce an important scheduling decision for

the parallelization in our algorithms, and a heuristic to com-
pute the h-index of a set in linear time.
We implemented our algorithms by using OpenMP [6] to

utilize the shared-memory architectures. The loops, anno-
tated as parallel in Algorithm ??, are shared among threads,
and each thread is responsible for its partition of vertices.
Default scheduling policy in OpenMP is static and it dis-
tributes the iterations of the loop to the threads in chunks,
i.e., for two threads, one takes the first half and the other
takes the second. Although this policy is useful for many ap-
plications, it will not work well for our algorithms. The no-

a

i

d

f

b

h

c e g
122

4

2

4

3

2

4 2

1 1

23

3

2

2
1st

2nd

3rd

step
step
step

Figure 3: Core example

Figure 4: Core example

⌧ ⌧ ⌧
⌧ ⌧

4.3 Illustrative examples
ToDo: explain fig 3 and 4 We present two examples to

illustrate the di↵erences between Snd and And algorithms.
Figure 4 presents the k-core decomposition process on a toy
graph.

4.4 Heuristics and implementation
Here we introduce an important scheduling decision for

the parallelization in our algorithms, and a heuristic to com-
pute the h-index of a set in linear time.

We implemented our algorithms by using OpenMP [6] to
utilize the shared-memory architectures. The loops, anno-
tated as parallel in Algorithm ??, are shared among threads,
and each thread is responsible for its partition of vertices.
Default scheduling policy in OpenMP is static and it dis-
tributes the iterations of the loop to the threads in chunks,
i.e., for two threads, one takes the first half and the other
takes the second. Although this policy is useful for many ap-
plications, it will not work well for our algorithms. The no-
tification mechanism to avoid the redundant computations
can result in significant load imbalance between threads. If
most of the converged vertices reside in a certain part, then
the thread that is responsible for that part becomes idle un-
til the end of computation. To prevent this, we embraced
the dynamic scheduling where each thread is given a new
workload once it is done. No thread stays idle this way, and
the overall computation is parallelized more e�ciently.

h-index computation of a list is done by sorting the items
in non-increasing order and checking the values from the
beginning of the list to find the largest h value for which at
least h items exist with at least h value. Main bottleneck is
the sorting operation which takes O(n.logn) time. However,
h-index can be computed without sorting. We initialize h
as zero and iterate over the items in the list. At each time,
we attempt to increase the current h value based on the
inspected item. For the current h value, we keep track of
the number of items that have equal value to h. We also

b

e

c

d

a g

h

i

f

2 2 2

2 2 2

2 2 2

2 2 2

2
2

2

2 2 2

1 1 1 1 1 1

1 1 1

1 1
 1 2 2 2

3
2

2

4 2 2

3 2
 2

3 2 2

3 2 2

4 2 2

4 3 2 3
2

2

⌧ ⌧ ⌧

4.3 Illustrative examples
ToDo: explain fig 3 and 4

4.4 Heuristics and implementation
Here we introduce an important scheduling decision for

the parallelization in our algorithms, and a heuristic to com-
pute the h-index of a set in linear time.

We implemented our algorithms by using OpenMP [6] to
utilize the shared-memory architectures. The loops, anno-
tated as parallel in Algorithm ??, are shared among threads,
and each thread is responsible for its partition of vertices.
Default scheduling policy in OpenMP is static and it dis-
tributes the iterations of the loop to the threads in chunks,
i.e., for two threads, one takes the first half and the other
takes the second. Although this policy is useful for many ap-
plications, it will not work well for our algorithms. The no-
tification mechanism to avoid the redundant computations
can result in significant load imbalance between threads. If
most of the converged vertices reside in a certain part, then
the thread that is responsible for that part becomes idle un-
til the end of computation. To prevent this, we embraced
the dynamic scheduling where each thread is given a new
workload once it is done. No thread stays idle this way, and
the overall computation is parallelized more e�ciently.

h-index computation of a list is done by sorting the items
in non-increasing order and checking the values from the
beginning of the list to find the largest h value for which at
least h items exist with at least h value. Main bottleneck is
the sorting operation which takes O(n.logn) time. However,
h-index can be computed without sorting. We initialize h
as zero and iterate over the items in the list. At each time,
we attempt to increase the current h value based on the
inspected item. For the current h value, we keep track of
the number of items that have equal value to h. We also

a

i

d

f

b

h

c e g
122

4

2

4

3

2

4 2

1 1

23

3

2

2
1st

2nd

3rd

step
step
step

Figure 4: Core example ToDo: put all step numbers, change
legend for taus

Table 3: Dataset statistics

|V | |E| |4| |K4|
as-skitter (ask) 1.7M 11.1M 28.8M 148.8M

facebook (fb) 4K 88.2K 1.6M 30.0M
soc-LiveJournal (slj) 4.8M 68.5M 285.7M 9.9B

soc-orkut (ork) 2.9M 106.3M 524.6M 2.4B
soc-sign-epinions (sse) 131.8K 711.2K 4.9M 58.6M
soc-twitter-higgs (hg) 456.6K 12.5M 83.0M 429.7M

twitter (tw) 81.3K 1.3M 13.1M 104.9M
web-Google (wgo) 916.4K 4.3M 13.4M 39.9M

web-NotreDame (wnd) 325.7K 1.1M 8.9M 231.9M
wikipedia-200611 (wiki) 3.1M 37.0M 88.8M 162.9M

use a hashmap to keep track of the items that are greater
than the current h value, and we simply ignore the items
that are smaller than h. This enables the computation of
the h-index in linear time. In addition, for the non-initial
iterations of the convergence process, we simply check the
items if the current ⌧ index can be preserved. Once we see
� ⌧ items with at least ⌧ index, no more checks needed.

5. EXPERIMENTS
We evaluate our algorithms on three instances of the nu-

cleus decomposition: k-core (or (1, 2)), k-truss (or (2, 3)),
and (3, 4). Constructing the hypergraphs requires to store
all the s-cliques, which is infeasible for large networks. Thus
we do not construct the actual hypergraphs to compute
the indices. Instead, we find the participations of the
r-cliques in s-cliques on-the-fly. Details about the com-
parison between two approaches are given in [25]. Our
dataset includes di↵erent types of real-world networks, such
as an internet topology network (as-skitter), online social
networks (facebook, soc-LiveJournal, soc-orkut), who-
trust-whom network (soc-sign-epinions), follower-followee

b

e

c

d

a g

h

i

f

4 3
2 3

4

3

3 1

11

1 2

2 3

4

2

2 2

2 3 2

22

2

2 2
2

2

Figure 5: Truss example

0 1 2
(d3) (3)

22

c

d

bf e a
1

1

3

2

21 1 2

2

2

1 1 2 2

2

2

degrees

 1 indices in SND
core numbers

22

c

d

bf e a
1

1

3

2

21 1 2

2

2

1 1 2 2

2

2

degrees
core numbers
2nd step in lex. order

Figure 2: Async example

Theorem 4. In AND algorithm, if the r-cliques are pro-
cessed in the non-decreasing order of their final s indices,
convergence is obtained in a single iteration.

Proof. Say s(R) = t for an r-clique R. For the sake of
contradiction, assume that it takes more than one iteration
for ds(R) to converge s(R). So, ⌧0(R) = ds(R) and ⌧0(R) �
⌧1(R) > s(R). So, when R is being processed, H(L) > t
for L = {⇢(S) : S 3 R}. That means there are at least t+1
s-cliques where each has ⇢ value of at least t+ 1. However,
this implies that R is a part of (t + 1)-(r, s) nucleus, which
contradicts with the initial assumption.

The worst case happens when all the r-cliques see the ⌧
values of their neighbors that are computed in the previous
iteration and it is exactly the SND algorithm.

Figure 2 illustrates the di↵erence between Snd and And
algorithms (with di↵erent orderings) on the k-core case (r =
1, s = 2). Our focus is on vertices (1-cliques) and their re-
lations with edges (2-cliques). We first apply Snd. First,
vertex degrees are calculated as ⌧0 indices (blue numbers).
Then, for each vertex u we compute the ⌧1(u) = H({⌧0(v) :
v 2 N2(u)}, i.e., h-index of its neighbors’ degrees (red num-
bers). ⌧ For instance,

ToDo: should I include some numbers in exp, bounds part

4.2.1 Skipping the plateaus
ToDo: fig for tau changes and platos Our computations

converge when none of the vertices update their ⌧ indices
anymore. This implies that computations are performed for
all the vertices even when only a single update occurs. Those
computations are redundant. When ⌧(v) converges (v) for
a vertex v, no more computations are needed for v in the
following iterations. Also, a vertex can possibly maintain
the same ⌧ index for a number of iterations, reaches to a
plateau, and then updates it. So, it is not possible to deduce
whether ⌧(v) has converged to (v) by just looking at ⌧(v)
values of any vertex v. In order to skip the intermediate
or final plateaus during the convergence of ⌧(v) to (v), we
introduce a notification mechanism where a vertex notifies
its neighbors when its ⌧ index is updated.

Brown lines in Algorithm ?? summarizes the notification
mechanism we plug in to the asynchronous computation.
The only changes are in lines ??, ??, ?? and ??. Additional
C(·) array tracks whether a vertex v 2 V has updated its ⌧
index or not. It is set to true at the beginning to initiate
the computations for all vertices. Once C(v) becomes false,
i.e., maintains its ⌧ index, we avoid the computation. Note
that, a vertex restarts its computation only when a neighbor

vertex has an update (Line ??). Once a vertex completes
the computation, it is set to be not-updated (line ??) so that
no computation occurs until a notification is received from
a neighbor.

4.3 Illustrative examples
ToDo: explain fig 3 and 4

4.4 Heuristics and implementation
Here we introduce an important scheduling decision for

the parallelization in our algorithms, and a heuristic to com-
pute the h-index of a set in linear time.
We implemented our algorithms by using OpenMP [6] to

utilize the shared-memory architectures. The loops, anno-
tated as parallel in Algorithm ??, are shared among threads,
and each thread is responsible for its partition of vertices.
Default scheduling policy in OpenMP is static and it dis-
tributes the iterations of the loop to the threads in chunks,
i.e., for two threads, one takes the first half and the other
takes the second. Although this policy is useful for many ap-
plications, it will not work well for our algorithms. The no-
tification mechanism to avoid the redundant computations
can result in significant load imbalance between threads. If
most of the converged vertices reside in a certain part, then
the thread that is responsible for that part becomes idle un-
til the end of computation. To prevent this, we embraced
the dynamic scheduling where each thread is given a new
workload once it is done. No thread stays idle this way, and
the overall computation is parallelized more e�ciently.
h-index computation of a list is done by sorting the items

in non-increasing order and checking the values from the
beginning of the list to find the largest h value for which at
least h items exist with at least h value. Main bottleneck is
the sorting operation which takes O(n.logn) time. However,
h-index can be computed without sorting. We initialize h
as zero and iterate over the items in the list. At each time,
we attempt to increase the current h value based on the

a

i

d

f

b

h

c e g
122

4

2

4

3

2

4 2

1 1

23

3

2

2
1st

2nd

3rd

step
step
step

Figure 3: Core example

Figure 2: Async example

Theorem 4. In AND algorithm, if the r-cliques are pro-
cessed in the non-decreasing order of their final s indices,
convergence is obtained in a single iteration.

Proof. Say s(R) = t for an r-clique R. For the sake of
contradiction, assume that it takes more than one iteration
for ds(R) to converge s(R). So, ⌧0(R) = ds(R) and ⌧0(R) �
⌧1(R) > s(R). So, when R is being processed, H(L) > t
for L = {⇢(S) : S 3 R}. That means there are at least t+1
s-cliques where each has ⇢ value of at least t+ 1. However,
this implies that R is a part of (t + 1)-(r, s) nucleus, which
contradicts with the initial assumption.

The worst case happens when all the r-cliques see the ⌧
values of their neighbors that are computed in the previous
iteration and it is exactly the SND algorithm.

Figure 2 illustrates Snd and And algorithms (with di↵er-
ent orderings) on the k-core case (r = 1, s = 2). Our focus
is on vertices (1-cliques) and their edge (2-clique) counts
(degrees). We first apply Snd. First, vertex degrees are cal-
culated as ⌧0 indices (blue numbers). Then, for each vertex
u we compute the ⌧1(u) = H({⌧0(v) : v 2 N2(u)}, i.e., h-
index of its neighbors’ degrees (red numbers). For instance,
vertex a has two neighbors, e and b, with degrees 2 and
3. Since H({2, 3}) = 2, we get ⌧1(a) = 2. For vertex b,
we get ⌧1(b) = H({2, 2, 2}) = 2. Once we compute all ⌧1
indices, we iterate again because there were changes in ⌧
indices, e.g,. ⌧1(e) 6= ⌧0(e) (Line 13 in Algorithm 2). ⌧2
indices are shown in green. We observe an update only for
the vertex a; ⌧2(a) = H({⌧1(e), ⌧1(b)}) = H({1, 2}) = 1.
When we iterate again, no update is observed in ⌧ indices,
which means s = ⌧2 for all vertices. Regarding And algo-
rithm, we choose to follow the non-decreasing order of s

indices; {f,e,a,b,c,d}. Computing the ⌧1 indices on this or-
der enables us to reach the convergence in a single iteration.
For instance, ⌧1(a) = H({⌧1(e), ⌧0(b)}) = H({1, 2}) = 1.
If we choose to process the vertices in the alphabetical or-
der, {a,b,c,d,e,f}, we have ⌧1(a) = H({⌧0(e), ⌧0(b)}) =
H({2, 2}) = 2, which implies that we need more iteration(s)
to converge. Indeed ⌧2(a) = H({⌧1(e), ⌧1(b)}) = H({1, 2}) =
1

 ⌧1 ToDo: should I include some numbers in exp, bounds
part

4.2.1 Skipping the plateaus
ToDo: fig for tau changes and platos Our computations

converge when none of the vertices update their ⌧ indices
anymore. This implies that computations are performed for
all the vertices even when only a single update occurs. Those
computations are redundant. When ⌧(v) converges (v) for
a vertex v, no more computations are needed for v in the

following iterations. Also, a vertex can possibly maintain
the same ⌧ index for a number of iterations, reaches to a
plateau, and then updates it. So, it is not possible to deduce
whether ⌧(v) has converged to (v) by just looking at ⌧(v)
values of any vertex v. In order to skip the intermediate
or final plateaus during the convergence of ⌧(v) to (v), we
introduce a notification mechanism where a vertex notifies
its neighbors when its ⌧ index is updated.
Brown lines in Algorithm ?? summarizes the notification

mechanism we plug in to the asynchronous computation.
The only changes are in lines ??, ??, ?? and ??. Additional
C(·) array tracks whether a vertex v 2 V has updated its ⌧
index or not. It is set to true at the beginning to initiate
the computations for all vertices. Once C(v) becomes false,
i.e., maintains its ⌧ index, we avoid the computation. Note
that, a vertex restarts its computation only when a neighbor
vertex has an update (Line ??). Once a vertex completes
the computation, it is set to be not-updated (line ??) so that
no computation occurs until a notification is received from
a neighbor.

4.3 Illustrative examples
ToDo: explain fig 3 and 4

4.4 Heuristics and implementation
Here we introduce an important scheduling decision for

the parallelization in our algorithms, and a heuristic to com-
pute the h-index of a set in linear time.
We implemented our algorithms by using OpenMP [6] to

utilize the shared-memory architectures. The loops, anno-
tated as parallel in Algorithm ??, are shared among threads,
and each thread is responsible for its partition of vertices.
Default scheduling policy in OpenMP is static and it dis-
tributes the iterations of the loop to the threads in chunks,
i.e., for two threads, one takes the first half and the other
takes the second. Although this policy is useful for many ap-
plications, it will not work well for our algorithms. The no-

a

i

d

f

b

h

c e g
122

4

2

4

3

2

4 2

1 1

23

3

2

2
1st

2nd

3rd

step
step
step

Figure 3: Core example

Figure 5: Truss example

Table 3: Dataset statistics

|V | |E| |4| |K4|
as-skitter (ask) 1.7M 11.1M 28.8M 148.8M

facebook (fb) 4K 88.2K 1.6M 30.0M
soc-LiveJournal (slj) 4.8M 68.5M 285.7M 9.9B

soc-orkut (ork) 2.9M 106.3M 524.6M 2.4B
soc-sign-epinions (sse) 131.8K 711.2K 4.9M 58.6M
soc-twitter-higgs (hg) 456.6K 12.5M 83.0M 429.7M

twitter (tw) 81.3K 1.3M 13.1M 104.9M
web-Google (wgo) 916.4K 4.3M 13.4M 39.9M

web-NotreDame (wnd) 325.7K 1.1M 8.9M 231.9M
wikipedia-200611 (wiki) 3.1M 37.0M 88.8M 162.9M

use a hashmap to keep track of the items that are greater
than the current h value, and we simply ignore the items
that are smaller than h. This enables the computation of
the h-index in linear time. In addition, for the non-initial
iterations of the convergence process, we simply check the
items if the current ⌧ index can be preserved. Once we see
� ⌧ items with at least ⌧ index, no more checks needed.

5. EXPERIMENTS
We evaluate our algorithms on three instances of the nu-

cleus decomposition: k-core (or (1, 2)), k-truss (or (2, 3)),
and (3, 4). Constructing the hypergraphs requires to store
all the s-cliques, which is infeasible for large networks. Thus
we do not construct the actual hypergraphs to compute
the indices. Instead, we find the participations of the
r-cliques in s-cliques on-the-fly. Details about the com-
parison between two approaches are given in [25]. Our
dataset includes di↵erent types of real-world networks, such
as an internet topology network (as-skitter), online social
networks (facebook, soc-LiveJournal, soc-orkut), who-
trust-whom network (soc-sign-epinions), follower-followee
Twitter networks (soc-twitter-higgs, twitter), web net-
works (web-Google,
web-NotreDame), and a network of wikipedia pages
(wikipedia-200611). Number of vertices, edges, triangles
and four-cliques in those graphs are given in Table 3.

22

c

d

bf e a
1

1

3

2

21 1 2

2

2

1 1 2 2

2

2

degrees

 1 indices in SND
core numbers

22

c

d

bf e a
1

1

3

2

21 1 2

2

2

1 1 2 2

2

2

degrees
core numbers
2nd step in lex. order

Figure 2: Async example

Theorem 4. In AND algorithm, if the r-cliques are pro-
cessed in the non-decreasing order of their final s indices,
convergence is obtained in a single iteration.

Proof. Say s(R) = t for an r-clique R. For the sake of
contradiction, assume that it takes more than one iteration
for ds(R) to converge s(R). So, ⌧0(R) = ds(R) and ⌧0(R) �
⌧1(R) > s(R). So, when R is being processed, H(L) > t
for L = {⇢(S) : S 3 R}. That means there are at least t+1
s-cliques where each has ⇢ value of at least t+ 1. However,
this implies that R is a part of (t + 1)-(r, s) nucleus, which
contradicts with the initial assumption.

The worst case happens when all the r-cliques see the ⌧
values of their neighbors that are computed in the previous
iteration and it is exactly the SND algorithm.

Figure 2 illustrates the di↵erence between Snd and And
algorithms (with di↵erent orderings) on the k-core case (r =
1, s = 2). Our focus is on vertices (1-cliques) and their re-
lations with edges (2-cliques). We first apply Snd. First,
vertex degrees are calculated as ⌧0 indices (blue numbers).
Then, for each vertex u we compute the ⌧1(u) = H({⌧0(v) :
v 2 N2(u)}, i.e., h-index of its neighbors’ degrees (red num-
bers). ⌧ For instance,

ToDo: should I include some numbers in exp, bounds part

4.2.1 Skipping the plateaus
ToDo: fig for tau changes and platos Our computations

converge when none of the vertices update their ⌧ indices
anymore. This implies that computations are performed for
all the vertices even when only a single update occurs. Those
computations are redundant. When ⌧(v) converges (v) for
a vertex v, no more computations are needed for v in the
following iterations. Also, a vertex can possibly maintain
the same ⌧ index for a number of iterations, reaches to a
plateau, and then updates it. So, it is not possible to deduce
whether ⌧(v) has converged to (v) by just looking at ⌧(v)
values of any vertex v. In order to skip the intermediate
or final plateaus during the convergence of ⌧(v) to (v), we
introduce a notification mechanism where a vertex notifies
its neighbors when its ⌧ index is updated.

Brown lines in Algorithm ?? summarizes the notification
mechanism we plug in to the asynchronous computation.
The only changes are in lines ??, ??, ?? and ??. Additional
C(·) array tracks whether a vertex v 2 V has updated its ⌧
index or not. It is set to true at the beginning to initiate
the computations for all vertices. Once C(v) becomes false,
i.e., maintains its ⌧ index, we avoid the computation. Note
that, a vertex restarts its computation only when a neighbor

vertex has an update (Line ??). Once a vertex completes
the computation, it is set to be not-updated (line ??) so that
no computation occurs until a notification is received from
a neighbor.

4.3 Illustrative examples
ToDo: explain fig 3 and 4

4.4 Heuristics and implementation
Here we introduce an important scheduling decision for

the parallelization in our algorithms, and a heuristic to com-
pute the h-index of a set in linear time.
We implemented our algorithms by using OpenMP [6] to

utilize the shared-memory architectures. The loops, anno-
tated as parallel in Algorithm ??, are shared among threads,
and each thread is responsible for its partition of vertices.
Default scheduling policy in OpenMP is static and it dis-
tributes the iterations of the loop to the threads in chunks,
i.e., for two threads, one takes the first half and the other
takes the second. Although this policy is useful for many ap-
plications, it will not work well for our algorithms. The no-
tification mechanism to avoid the redundant computations
can result in significant load imbalance between threads. If
most of the converged vertices reside in a certain part, then
the thread that is responsible for that part becomes idle un-
til the end of computation. To prevent this, we embraced
the dynamic scheduling where each thread is given a new
workload once it is done. No thread stays idle this way, and
the overall computation is parallelized more e�ciently.
h-index computation of a list is done by sorting the items

in non-increasing order and checking the values from the
beginning of the list to find the largest h value for which at
least h items exist with at least h value. Main bottleneck is
the sorting operation which takes O(n.logn) time. However,
h-index can be computed without sorting. We initialize h
as zero and iterate over the items in the list. At each time,
we attempt to increase the current h value based on the

a

i

d

f

b

h

c e g
122

4

2

4

3

2

4 2

1 1

23

3

2

2
1st

2nd

3rd

step
step
step

Figure 3: Core example

Figure 2: Async example

Theorem 4. In AND algorithm, if the r-cliques are pro-
cessed in the non-decreasing order of their final s indices,
convergence is obtained in a single iteration.

Proof. Say s(R) = t for an r-clique R. For the sake of
contradiction, assume that it takes more than one iteration
for ds(R) to converge s(R). So, ⌧0(R) = ds(R) and ⌧0(R) �
⌧1(R) > s(R). So, when R is being processed, H(L) > t
for L = {⇢(S) : S 3 R}. That means there are at least t+1
s-cliques where each has ⇢ value of at least t+ 1. However,
this implies that R is a part of (t + 1)-(r, s) nucleus, which
contradicts with the initial assumption.

The worst case happens when all the r-cliques see the ⌧
values of their neighbors that are computed in the previous
iteration and it is exactly the SND algorithm.

Figure 2 illustrates Snd and And algorithms (with di↵er-
ent orderings) on the k-core case (r = 1, s = 2). Our focus
is on vertices (1-cliques) and their edge (2-clique) counts
(degrees). We first apply Snd. First, vertex degrees are cal-
culated as ⌧0 indices (blue numbers). Then, for each vertex
u we compute the ⌧1(u) = H({⌧0(v) : v 2 N2(u)}, i.e., h-
index of its neighbors’ degrees (red numbers). For instance,
vertex a has two neighbors, e and b, with degrees 2 and
3. Since H({2, 3}) = 2, we get ⌧1(a) = 2. For vertex b,
we get ⌧1(b) = H({2, 2, 2}) = 2. Once we compute all ⌧1
indices, we iterate again because there were changes in ⌧
indices, e.g,. ⌧1(e) 6= ⌧0(e) (Line 13 in Algorithm 2). ⌧2
indices are shown in green. We observe an update only for
the vertex a; ⌧2(a) = H({⌧1(e), ⌧1(b)}) = H({1, 2}) = 1.
When we iterate again, no update is observed in ⌧ indices,
which means s = ⌧2 for all vertices. Regarding And algo-
rithm, we choose to follow the non-decreasing order of s

indices; {f,e,a,b,c,d}. Computing the ⌧1 indices on this or-
der enables us to reach the convergence in a single iteration.
For instance, ⌧1(a) = H({⌧1(e), ⌧0(b)}) = H({1, 2}) = 1.
If we choose to process the vertices in the alphabetical or-
der, {a,b,c,d,e,f}, we have ⌧1(a) = H({⌧0(e), ⌧0(b)}) =
H({2, 2}) = 2, which implies that we need more iteration(s)
to converge. Indeed ⌧2(a) = H({⌧1(e), ⌧1(b)}) = H({1, 2}) =
1

 ⌧1 ToDo: should I include some numbers in exp, bounds
part

4.2.1 Skipping the plateaus
ToDo: fig for tau changes and platos Our computations

converge when none of the vertices update their ⌧ indices
anymore. This implies that computations are performed for
all the vertices even when only a single update occurs. Those
computations are redundant. When ⌧(v) converges (v) for
a vertex v, no more computations are needed for v in the

following iterations. Also, a vertex can possibly maintain
the same ⌧ index for a number of iterations, reaches to a
plateau, and then updates it. So, it is not possible to deduce
whether ⌧(v) has converged to (v) by just looking at ⌧(v)
values of any vertex v. In order to skip the intermediate
or final plateaus during the convergence of ⌧(v) to (v), we
introduce a notification mechanism where a vertex notifies
its neighbors when its ⌧ index is updated.
Brown lines in Algorithm ?? summarizes the notification

mechanism we plug in to the asynchronous computation.
The only changes are in lines ??, ??, ?? and ??. Additional
C(·) array tracks whether a vertex v 2 V has updated its ⌧
index or not. It is set to true at the beginning to initiate
the computations for all vertices. Once C(v) becomes false,
i.e., maintains its ⌧ index, we avoid the computation. Note
that, a vertex restarts its computation only when a neighbor
vertex has an update (Line ??). Once a vertex completes
the computation, it is set to be not-updated (line ??) so that
no computation occurs until a notification is received from
a neighbor.

4.3 Illustrative examples
ToDo: explain fig 3 and 4

4.4 Heuristics and implementation
Here we introduce an important scheduling decision for

the parallelization in our algorithms, and a heuristic to com-
pute the h-index of a set in linear time.
We implemented our algorithms by using OpenMP [6] to

utilize the shared-memory architectures. The loops, anno-
tated as parallel in Algorithm ??, are shared among threads,
and each thread is responsible for its partition of vertices.
Default scheduling policy in OpenMP is static and it dis-
tributes the iterations of the loop to the threads in chunks,
i.e., for two threads, one takes the first half and the other
takes the second. Although this policy is useful for many ap-
plications, it will not work well for our algorithms. The no-

a

i

d

f

b

h

c e g
122

4

2

4

3

2

4 2

1 1

23

3

2

2
1st

2nd

3rd

step
step
step

Figure 3: Core example

d3

 0 1 2
 3

1 2 3 4

AND (lex. order) :

 no notification :
degree, core number :

1 2 3 4 with notification :

Figure 4: Truss example

⌧0 ⌧1 ⌧2 ⌧3
⌧0 ⌧1 ⌧2
⌧0 ⌧1
d2 2

Figure 4 illustrates the k-truss decomposition (r = 2, s =
3) on a toy graph. We follow the lexicographical order of
the edges (vertex pairs). Triangle counts (d3) of edges are
given in blue, which are used to initialize ⌧0 indices. We first
process edge ab. It has four triangles, abc, abd, abe, abi.
⇢ value of each triangle is calculated by taking the minimum
⌧0 value of the neighbor edges of ab (Line 11). Set of ⇢ values
is {min(⌧0(ac), ⌧0(bc)),min(⌧0(ad), ⌧0(bd)),min(⌧0(ae),
⌧0(be)),min(⌧0(ai), ⌧0(bi))}, which is L = {4, 3, 3, 2} and
⌧1(ab) = H(L) = 3. After computing ⌧1 indices of all the
edges in lexicographical order (ei edge is last),

4.3 Heuristics and implementation
Here we introduce an important scheduling decision for

the parallelization in our algorithms, and a heuristic to com-
pute the h-index of a set in linear time.

We implemented our algorithms by using OpenMP [6] to
utilize the shared-memory architectures. The loops, anno-
tated as parallel in Algorithm ??, are shared among threads,
and each thread is responsible for its partition of vertices.
Default scheduling policy in OpenMP is static and it dis-
tributes the iterations of the loop to the threads in chunks,
i.e., for two threads, one takes the first half and the other
takes the second. Although this policy is useful for many ap-
plications, it will not work well for our algorithms. The no-
tification mechanism to avoid the redundant computations
can result in significant load imbalance between threads. If
most of the converged vertices reside in a certain part, then
the thread that is responsible for that part becomes idle un-
til the end of computation. To prevent this, we embraced
the dynamic scheduling where each thread is given a new
workload once it is done. No thread stays idle this way, and
the overall computation is parallelized more e�ciently.

h-index computation of a list is done by sorting the items
in non-increasing order and checking the values from the
beginning of the list to find the largest h value for which at

Table 3: Dataset statistics

|V | |E| |4| |K4|
as-skitter (ask) 1.7M 11.1M 28.8M 148.8M

facebook (fb) 4K 88.2K 1.6M 30.0M
soc-LiveJournal (slj) 4.8M 68.5M 285.7M 9.9B

soc-orkut (ork) 2.9M 106.3M 524.6M 2.4B
soc-sign-epinions (sse) 131.8K 711.2K 4.9M 58.6M
soc-twitter-higgs (hg) 456.6K 12.5M 83.0M 429.7M

twitter (tw) 81.3K 1.3M 13.1M 104.9M
web-Google (wgo) 916.4K 4.3M 13.4M 39.9M

web-NotreDame (wnd) 325.7K 1.1M 8.9M 231.9M
wikipedia-200611 (wiki) 3.1M 37.0M 88.8M 162.9M

least h items exist with at least h value. Main bottleneck is
the sorting operation which takes O(n.logn) time. However,
h-index can be computed without sorting. We initialize h
as zero and iterate over the items in the list. At each time,
we attempt to increase the current h value based on the
inspected item. For the current h value, we keep track of
the number of items that have equal value to h. We also
use a hashmap to keep track of the items that are greater
than the current h value, and we simply ignore the items
that are smaller than h. This enables the computation of
the h-index in linear time. In addition, for the non-initial
iterations of the convergence process, we simply check the
items if the current ⌧ index can be preserved. Once we see
� ⌧ items with at least ⌧ index, no more checks needed.

5. EXPERIMENTS
We evaluate our algorithms on three instances of the nu-

cleus decomposition: k-core (or (1, 2)), k-truss (or (2, 3)),
and (3, 4). Constructing the hypergraphs requires to store
all the s-cliques, which is infeasible for large networks. Thus
we do not construct the actual hypergraphs to compute
the indices. Instead, we find the participations of the
r-cliques in s-cliques on-the-fly. Details about the com-
parison between two approaches are given in [25]. Our
dataset includes di↵erent types of real-world networks, such
as an internet topology network (as-skitter), online social
networks (facebook, soc-LiveJournal, soc-orkut), who-
trust-whom network (soc-sign-epinions), follower-followee
Twitter networks (soc-twitter-higgs, twitter), web net-
works (web-Google,
web-NotreDame), and a network of wikipedia pages
(wikipedia-200611). Number of vertices, edges, triangles
and four-cliques in those graphs are given in Table 3.
All experiments are performed on a Linux operating sys-

tem running on a machine with Intel Ivy Bridge processor at
2.4 GHz with 64 GB DDR3 1866 MHz memory. There are
two sockets on the machine and each has twelve cores, mak-
ing 24 cores in total. Algorithms are implemented in C++
and compiled using gcc 6.1.0 at -O2 optimization level. We
used OpenMP v4.5 for the shared-memory parallelization.
We start with comparing the number of iterations that

our synchronous (Algorithm ??) and asynchronous (Algo-
rithm ??) algorithms need to converge. Then, we investi-
gate how much the ⌧ indices can approach to indices at
each iteration. Regarding the performance, we compare the
runtimes of our algorithms with respect to the peeling, and
also discuss the scalability of our implementations.

Figure 3: We do the k-core decomposition (r = 1, s =
2). So, we need to find 2 (edge is 2-clique) indices
of vertices. ⌧0 indices are initialized to the degrees
(d2s in blue). SND algorithm converges in two it-
erations (⌧1s in red, ⌧2s in green). Same happens
when we use the AND algorithm and process the
vertices in the alphabetical order. However, if we
choose {f,e,a,b,c,d} order, which is actually a non-
decreasing order on 2 indices, AND converges in a
single iteration.

So, set L = {(min (⌧0(eb), ⌧0(ab)), min (⌧0(ec), ⌧0(ac)),
min (⌧0(eg), ⌧0(ag)), min (⌧0(ef), ⌧0(af))} = {2, 2, 1, 1}
and ⌧1(ae) = H(L) = 2 (line 14). Since the ⌧ index is
updated, we set flag F true to continue iterations. Af-
ter completing ⌧1 computations, we go for ⌧2 indices (in
green) and observe that there is no update in any edge, i.e.,
⌧2(e) = ⌧1(e) for all edges, thus completing the algorithm.
One iteration is enough for the convergence and we have
3 = ⌧1 for all edges.

4.2 Asynchronous Nucleus Decomposition (AND)
In Snd algorithm, updates on the ⌧ indices are synchronous

and all the r-cliques are processed based on the same snap-
shot of ⌧ indices. However, when an r-clique R is being
processed in iteration i, another r-clique R0 participating in
the same s-clique with R (i.e., S 3 R ^ R0 2 S) might have
already completed its computation in that iteration and up-
dated its ⌧ index. By Theorem 1, we know that the ⌧ index
can only decrease by the time. Lower ⌧(R0) indices in set
L might decrease H(L), and it can help ⌧(R) to converge
s(R) faster. So, it is better to use the up-to-date ⌧ indices
for faster convergence. In addition, there would be no need
to store the ⌧ indices computed in the previous iteration,
saving |R(G)| space.

We introduce And algorithm (Algorithm 3) to leverage
the up-to-date ⌧ indices for faster convergence (Orange lines
can be ignored for now). At each iteration, we propose to
use the latest available information around an r-clique. Re-
moving the green lines in Snd algorithm and putting the
blue lines in And algorithm are su�cient to switch from
synchronous to asynchronous computation. We do not need
to use the ⌧p(·) to back up the indices in the previous itera-
tion anymore, so lines 4 and 7 in Algorithm 2 are removed.
Computation is done on the latest ⌧ indices, so we adjust
the lines 11 and 13 (in Algorithm 2 and 3) accordingly, to
use the up-to-date ⌧ indices.

In the same iteration, each r-clique can have a di↵erent
view of the ⌧(·) and updates are done asynchronously in
some order. The convergence length, Lr,s(G), depends on
the computation order of the r-cliques, which is used in line 7
in Algorithm 3. Considering the sequential computation, we

have the following theorem regarding the best ordering that
will result in convergence.

Theorem 4. In And algorithm, if the r-cliques are pro-
cessed in the non-decreasing order of their final s indices,
convergence is obtained in a single iteration.

Proof. Say s(R) = t for an r-clique R. For the sake of
contradiction, assume that it takes more than one iteration
for ds(R) to converge s(R). So, ⌧0(R) = ds(R) and ⌧0(R) �
⌧1(R) > s(R). So, when R is being processed, H(L) > t
for L = {⇢(S) : S 3 R}. That means there are at least t+1
s-cliques where each has ⇢ value of at least t+ 1. However,
this implies that R is a part of (t + 1)-(r, s) nucleus, which
contradicts with the initial assumption.
The worst case happens when all the r-cliques see the ⌧

indices of their neighbors that are computed in the previous
iteration and it is exactly the SND algorithm.
Figure 3 illustrates Snd and And algorithms (with di↵er-

ent orderings) on the k-core case (r = 1, s = 2). Our focus is
on vertices (1-cliques) and their edge (2-clique) counts (de-
grees). We first apply Snd. Vertex degrees are set as ⌧0
indices (blue). For each vertex u we compute the ⌧1(u) =
H({⌧0(v) : v 2 N2(u)}, i.e., h-index of its neighbors’ de-
grees, (red). For instance, vertex a has two neighbors, e
and b, with degrees 2 and 3. Since H({2, 3}) = 2, we get
⌧1(a) = 2. For vertex b, we get ⌧1(b) = H({2, 2, 2}) = 2.
Once we compute all ⌧1 indices, we iterate again since some
updates happened in ⌧ indices. ⌧2 indices are shown in
green. We observe an update only for the vertex a; ⌧2(a) =
H({⌧1(e), ⌧1(b)}) = H({1, 2}) = 1 and continue iterations.
No update is observed in ⌧3 indices (yellow), which means
s = ⌧2 for all vertices and Snd converges in two itera-
tions. Regarding the And algorithm, say we choose to fol-
low the non-decreasing order of s indices; {f,e,a,b,c,d}.
Computing the ⌧1 indices on this order enables us to reach
the convergence in a single iteration. For instance, ⌧1(a) =
H({⌧1(e), ⌧0(b)}) = H({1, 3}) = 1. However, if we choose to
process the vertices in the alphabetical order, {a,b,c,d,e,f},
we have ⌧1(a) = H({⌧0(e), ⌧0(b)}) = H({2, 3}) = 2, and
need more iteration(s) to converge. Indeed, a is the only
vertex that has not reached its 2 value at the end of first
iteration. In the second iteration, we get ⌧2(a) = H({⌧1(e)
, ⌧1(b)}) = H({1, 2}) = 1, an update, thus continue iterat-
ing. Third iteration does not change the ⌧ indices, so And
with {a,b,c,d,e,f} order converges in two iterations, same
as Snd.
(3)

4.2.1 Skipping the plateaus
Snd and And algorithms converge when none of the r-
cliques update their ⌧ indices anymore. Consequently, com-
putations continue to be performed for all the r-cliques even
when only one update occurs and we also need an extra itera-
tion to infer the convergence. Figure 4 shows the ⌧ indices of
some edges in the facebook graph during the k-truss decom-
position (r = 2, s = 3). There are plenty of wide plateaus
where ⌧ indices stay constant. However, those computations
are redundant. For example, when ⌧(R) converges to s(R)
for an r-clique R, no more computations are needed for R
anymore. But we do not know if the ⌧(R) has converged or
not by looking at the repeating ⌧ indices or watching the
plateaus. Because it can maintain the same ⌧ index for a
number of iterations, creating a plateau, and then update.
In order to infer the convergence e�ciently and skip any

Figure 5: Snd (Algorithm 2) for the k-truss decomposition
(r = 2, s = 3). We find the κ3 indices. Triangle counts
of all the edges are computed (d3) and set as their τ0 val-
ues (blue). For each edge, we first compute τ1 indices (red)
based on the τ0 indices. The bc edge, for instance, has three
triangles and for each of those we find the neighbor with the
minimum τ0 index and compute the h-index. So, τ1(bc) =
H{min(τ0(ba), τ0(ca)),min(τ0(bd), τ0(cd)),min(τ0(be),
τ0(ce))} = H{3, 2, 2} = 2. No updates happen in the sec-
ond iteration (green), so convergence is obtained in a single
iteration.

Algorithm 3: And: Asynchronous Nucleus Decomp.

Input: G: graph, r, s: positive integers (r < s)
Output: κs(·): array of κs indices for r-cliques

1 τ(·)← indices ∀ R ∈ R(G) // current iteration

2 τ(R)← ds(R) ∀ R ∈ R(G) // set to the S-degrees
3 F ← true // stays true if any τ(R) is updated

4 c(R)← true ∀ R ∈ R(G)
5 while F do
6 F ← false
7 for each R ∈ R(G) in parallel do
8 if c(R) is false then cont. else c(R)← false
9 L← empty set

10 for each s-clique S ⊃ R do
11 ρ← minR′∈Ns(R) τ(R′)
12 L . add (ρ)

13 if τ(R) 6= H(L) then
14 F ← true, c(R)← true
15 for each R′ ∈ Ns(R) do
16 if H(L) ≤ τ(R′) then
17 c(R′)← true

18 τ(R)← H(L)

19 κs(·)← τ(·)
20 return array κs(·)

O
(
RTr(G) + t

(∑
v∈V

dR(v)d(v)s−r)/p) (1)

When t = p, complexity is same as the sequential peeling
algorithm’s (Algorithm 1) and Snd is work-efficient.

Space complexity: In addition to the space that is
needed to store r-cliques (taking O(r |R(G)|)), we need to
store τ indices for the current and the previous iterations,
which takes O(|R(G)|) space, i.e., number of r-cliques. ρ
values are not need to be stored in set L since the h-index
computation can be done incrementally. So, the total space
complexity is O(|R(G)|) (since r = O(1)).

Figure 5 illustrates the Snd algorithm for k-truss decom-
position (r = 2, s = 3) on a toy graph, where the partici-
pations of edges (2-cliques) in triangles (3-cliques) are ex-
amined. Triangle counts of all the edges (d3) are computed
and set as their τ0 values (in blue). For each edge, first we
compute τ1 indices (in red) based on the τ0 indices (Lines 5
to 15). For instance, the ae edge has four triangles and for
each of those we find the neighbor with minimum τ0 index
(Lines 10 to 12); thus L = {(min(τ0(eb), τ0(ab)),min(τ0(ec),
τ0(ac)),min(τ0(eg) , τ0(ag)),min(τ0(ef), τ0(af))} = {2, 2, 1,
1} and τ1(ae) = H(L) = 2 (Line 15). Since the τ in-
dex is updated, we set flag F true to continue iterations.
In the second iteration (τ2 indices), no update occurs, i.e.,
τ2(e) = τ1(e) for all edges, thus the algorithm termnates.
So, one iteration is enough for the convergence and we have
κ3 = τ1 for all the edges.

4.2 Asynchronous Nucleus Decomposition (And)
In the Snd algorithm, updates on the τ indices are syn-
chronous and all the r-cliques are processed by using the
same snapshot of τ indices. However, when an r-clique R
is being processed in iteration i, a neighbor r-clique R′ ∈
Ns(R) might have already completed its computation in that
iteration and updated its τ index. By Theorem 1, we know
that the τ index can only decrease as the algorithm pro-
ceeds. Lower τ(R′) indices in set L can decrease H(L), and

48

c

d

bf e a
1 1 1 1
SND & AND {a,b,c,d,e,f} :
 AND {f,e,a,b,d,c} :

degree, core number :

b

e

c

d

a g

h

i

f

2 2 2

2 2 2

2 2 2

2 2 2

2
2 2

2 2 2

1 1 1 1 1 1

1 1 1

1 1
 1 2 2 2

3
2

2

4 2 2

3 2
 2

3 2 2

3 2 2

4 2 2

4 3 2 3
2

2

⌧ ⌧ ⌧

4.3 Illustrative examples
ToDo: explain fig 3 and 4

4.4 Heuristics and implementation
Here we introduce an important scheduling decision for

the parallelization in our algorithms, and a heuristic to com-
pute the h-index of a set in linear time.

We implemented our algorithms by using OpenMP [6] to
utilize the shared-memory architectures. The loops, anno-
tated as parallel in Algorithm ??, are shared among threads,
and each thread is responsible for its partition of vertices.
Default scheduling policy in OpenMP is static and it dis-
tributes the iterations of the loop to the threads in chunks,
i.e., for two threads, one takes the first half and the other
takes the second. Although this policy is useful for many ap-
plications, it will not work well for our algorithms. The no-
tification mechanism to avoid the redundant computations
can result in significant load imbalance between threads. If
most of the converged vertices reside in a certain part, then
the thread that is responsible for that part becomes idle un-
til the end of computation. To prevent this, we embraced
the dynamic scheduling where each thread is given a new
workload once it is done. No thread stays idle this way, and
the overall computation is parallelized more e�ciently.

h-index computation of a list is done by sorting the items
in non-increasing order and checking the values from the
beginning of the list to find the largest h value for which at
least h items exist with at least h value. Main bottleneck is
the sorting operation which takes O(n.logn) time. However,
h-index can be computed without sorting. We initialize h
as zero and iterate over the items in the list. At each time,
we attempt to increase the current h value based on the
inspected item. For the current h value, we keep track of
the number of items that have equal value to h. We also

a

i

d

f

b

h

c e g
122

4

2

4

3

2

4 2

1 1

23

3

2

2
1st

2nd

3rd

step
step
step

Figure 4: Core example ToDo: put all step numbers, change
legend for taus

Table 3: Dataset statistics

|V | |E| |4| |K4|
as-skitter (ask) 1.7M 11.1M 28.8M 148.8M

facebook (fb) 4K 88.2K 1.6M 30.0M
soc-LiveJournal (slj) 4.8M 68.5M 285.7M 9.9B

soc-orkut (ork) 2.9M 106.3M 524.6M 2.4B
soc-sign-epinions (sse) 131.8K 711.2K 4.9M 58.6M
soc-twitter-higgs (hg) 456.6K 12.5M 83.0M 429.7M

twitter (tw) 81.3K 1.3M 13.1M 104.9M
web-Google (wgo) 916.4K 4.3M 13.4M 39.9M

web-NotreDame (wnd) 325.7K 1.1M 8.9M 231.9M
wikipedia-200611 (wiki) 3.1M 37.0M 88.8M 162.9M

use a hashmap to keep track of the items that are greater
than the current h value, and we simply ignore the items
that are smaller than h. This enables the computation of
the h-index in linear time. In addition, for the non-initial
iterations of the convergence process, we simply check the
items if the current ⌧ index can be preserved. Once we see
� ⌧ items with at least ⌧ index, no more checks needed.

5. EXPERIMENTS
We evaluate our algorithms on three instances of the nu-

cleus decomposition: k-core (or (1, 2)), k-truss (or (2, 3)),
and (3, 4). Constructing the hypergraphs requires to store
all the s-cliques, which is infeasible for large networks. Thus
we do not construct the actual hypergraphs to compute
the indices. Instead, we find the participations of the
r-cliques in s-cliques on-the-fly. Details about the com-
parison between two approaches are given in [25]. Our
dataset includes di↵erent types of real-world networks, such
as an internet topology network (as-skitter), online social
networks (facebook, soc-LiveJournal, soc-orkut), who-
trust-whom network (soc-sign-epinions), follower-followee

b

e

c

d

a g

h

i

f

4 3
2 3

4

3

3 1

11

1 2

2 3

4

2

2 2

2 3 2

22

2

2 2
2

2

Figure 5: Truss example

a i

d

f b

h

c

e

g2 2 2

3 2 2

4 3 2 2 2 2 2 2 1

4 2 2

4 3 2 1 1 1

2 1 1

0 1 2
(d2) (2)

22

c

d

bf e a
1

1

3

2

21 1 2

2

2

1 1 2 2

2

2

degrees

 1 indices in SND
core numbers

22

c

d

bf e a
1

1

3

2

21 1 2

2

2

1 1 2 2

2

2

degrees
core numbers
2nd step in lex. order

Figure 2: Async example

Theorem 4. In AND algorithm, if the r-cliques are pro-
cessed in the non-decreasing order of their final s indices,
convergence is obtained in a single iteration.

Proof. Say s(R) = t for an r-clique R. For the sake of
contradiction, assume that it takes more than one iteration
for ds(R) to converge s(R). So, ⌧0(R) = ds(R) and ⌧0(R) �
⌧1(R) > s(R). So, when R is being processed, H(L) > t
for L = {⇢(S) : S 3 R}. That means there are at least t+1
s-cliques where each has ⇢ value of at least t+ 1. However,
this implies that R is a part of (t + 1)-(r, s) nucleus, which
contradicts with the initial assumption.

The worst case happens when all the r-cliques see the ⌧
values of their neighbors that are computed in the previous
iteration and it is exactly the SND algorithm.

Figure 2 illustrates the di↵erence between Snd and And
algorithms (with di↵erent orderings) on the k-core case (r =
1, s = 2). Our focus is on vertices (1-cliques) and their re-
lations with edges (2-cliques). We first apply Snd. First,
vertex degrees are calculated as ⌧0 indices (blue numbers).
Then, for each vertex u we compute the ⌧1(u) = H({⌧0(v) :
v 2 N2(u)}, i.e., h-index of its neighbors’ degrees (red num-
bers). ⌧ For instance,

ToDo: should I include some numbers in exp, bounds part

4.2.1 Skipping the plateaus
ToDo: fig for tau changes and platos Our computations

converge when none of the vertices update their ⌧ indices
anymore. This implies that computations are performed for
all the vertices even when only a single update occurs. Those
computations are redundant. When ⌧(v) converges (v) for
a vertex v, no more computations are needed for v in the
following iterations. Also, a vertex can possibly maintain
the same ⌧ index for a number of iterations, reaches to a
plateau, and then updates it. So, it is not possible to deduce
whether ⌧(v) has converged to (v) by just looking at ⌧(v)
values of any vertex v. In order to skip the intermediate
or final plateaus during the convergence of ⌧(v) to (v), we
introduce a notification mechanism where a vertex notifies
its neighbors when its ⌧ index is updated.

Brown lines in Algorithm ?? summarizes the notification
mechanism we plug in to the asynchronous computation.
The only changes are in lines ??, ??, ?? and ??. Additional
C(·) array tracks whether a vertex v 2 V has updated its ⌧
index or not. It is set to true at the beginning to initiate
the computations for all vertices. Once C(v) becomes false,
i.e., maintains its ⌧ index, we avoid the computation. Note
that, a vertex restarts its computation only when a neighbor

vertex has an update (Line ??). Once a vertex completes
the computation, it is set to be not-updated (line ??) so that
no computation occurs until a notification is received from
a neighbor.

4.3 Illustrative examples
ToDo: explain fig 3 and 4

4.4 Heuristics and implementation
Here we introduce an important scheduling decision for

the parallelization in our algorithms, and a heuristic to com-
pute the h-index of a set in linear time.
We implemented our algorithms by using OpenMP [6] to

utilize the shared-memory architectures. The loops, anno-
tated as parallel in Algorithm ??, are shared among threads,
and each thread is responsible for its partition of vertices.
Default scheduling policy in OpenMP is static and it dis-
tributes the iterations of the loop to the threads in chunks,
i.e., for two threads, one takes the first half and the other
takes the second. Although this policy is useful for many ap-
plications, it will not work well for our algorithms. The no-
tification mechanism to avoid the redundant computations
can result in significant load imbalance between threads. If
most of the converged vertices reside in a certain part, then
the thread that is responsible for that part becomes idle un-
til the end of computation. To prevent this, we embraced
the dynamic scheduling where each thread is given a new
workload once it is done. No thread stays idle this way, and
the overall computation is parallelized more e�ciently.
h-index computation of a list is done by sorting the items

in non-increasing order and checking the values from the
beginning of the list to find the largest h value for which at
least h items exist with at least h value. Main bottleneck is
the sorting operation which takes O(n.logn) time. However,
h-index can be computed without sorting. We initialize h
as zero and iterate over the items in the list. At each time,
we attempt to increase the current h value based on the

a

i

d

f

b

h

c e g
122

4

2

4

3

2

4 2

1 1

23

3

2

2
1st

2nd

3rd

step
step
step

Figure 3: Core example

Figure 2: Async example

Theorem 4. In AND algorithm, if the r-cliques are pro-
cessed in the non-decreasing order of their final s indices,
convergence is obtained in a single iteration.

Proof. Say s(R) = t for an r-clique R. For the sake of
contradiction, assume that it takes more than one iteration
for ds(R) to converge s(R). So, ⌧0(R) = ds(R) and ⌧0(R) �
⌧1(R) > s(R). So, when R is being processed, H(L) > t
for L = {⇢(S) : S 3 R}. That means there are at least t+1
s-cliques where each has ⇢ value of at least t+ 1. However,
this implies that R is a part of (t + 1)-(r, s) nucleus, which
contradicts with the initial assumption.

The worst case happens when all the r-cliques see the ⌧
values of their neighbors that are computed in the previous
iteration and it is exactly the SND algorithm.

Figure 2 illustrates Snd and And algorithms (with di↵er-
ent orderings) on the k-core case (r = 1, s = 2). Our focus
is on vertices (1-cliques) and their edge (2-clique) counts
(degrees). We first apply Snd. First, vertex degrees are cal-
culated as ⌧0 indices (blue numbers). Then, for each vertex
u we compute the ⌧1(u) = H({⌧0(v) : v 2 N2(u)}, i.e., h-
index of its neighbors’ degrees (red numbers). For instance,
vertex a has two neighbors, e and b, with degrees 2 and
3. Since H({2, 3}) = 2, we get ⌧1(a) = 2. For vertex b,
we get ⌧1(b) = H({2, 2, 2}) = 2. Once we compute all ⌧1
indices, we iterate again because there were changes in ⌧
indices, e.g,. ⌧1(e) 6= ⌧0(e) (Line 13 in Algorithm 2). ⌧2
indices are shown in green. We observe an update only for
the vertex a; ⌧2(a) = H({⌧1(e), ⌧1(b)}) = H({1, 2}) = 1.
When we iterate again, no update is observed in ⌧ indices,
which means s = ⌧2 for all vertices. Regarding And algo-
rithm, we choose to follow the non-decreasing order of s

indices; {f,e,a,b,c,d}. Computing the ⌧1 indices on this or-
der enables us to reach the convergence in a single iteration.
For instance, ⌧1(a) = H({⌧1(e), ⌧0(b)}) = H({1, 2}) = 1.
If we choose to process the vertices in the alphabetical or-
der, {a,b,c,d,e,f}, we have ⌧1(a) = H({⌧0(e), ⌧0(b)}) =
H({2, 2}) = 2, which implies that we need more iteration(s)
to converge. Indeed ⌧2(a) = H({⌧1(e), ⌧1(b)}) = H({1, 2}) =
1

 ⌧1 ToDo: should I include some numbers in exp, bounds
part

4.2.1 Skipping the plateaus
ToDo: fig for tau changes and platos Our computations

converge when none of the vertices update their ⌧ indices
anymore. This implies that computations are performed for
all the vertices even when only a single update occurs. Those
computations are redundant. When ⌧(v) converges (v) for
a vertex v, no more computations are needed for v in the

following iterations. Also, a vertex can possibly maintain
the same ⌧ index for a number of iterations, reaches to a
plateau, and then updates it. So, it is not possible to deduce
whether ⌧(v) has converged to (v) by just looking at ⌧(v)
values of any vertex v. In order to skip the intermediate
or final plateaus during the convergence of ⌧(v) to (v), we
introduce a notification mechanism where a vertex notifies
its neighbors when its ⌧ index is updated.
Brown lines in Algorithm ?? summarizes the notification

mechanism we plug in to the asynchronous computation.
The only changes are in lines ??, ??, ?? and ??. Additional
C(·) array tracks whether a vertex v 2 V has updated its ⌧
index or not. It is set to true at the beginning to initiate
the computations for all vertices. Once C(v) becomes false,
i.e., maintains its ⌧ index, we avoid the computation. Note
that, a vertex restarts its computation only when a neighbor
vertex has an update (Line ??). Once a vertex completes
the computation, it is set to be not-updated (line ??) so that
no computation occurs until a notification is received from
a neighbor.

4.3 Illustrative examples
ToDo: explain fig 3 and 4

4.4 Heuristics and implementation
Here we introduce an important scheduling decision for

the parallelization in our algorithms, and a heuristic to com-
pute the h-index of a set in linear time.
We implemented our algorithms by using OpenMP [6] to

utilize the shared-memory architectures. The loops, anno-
tated as parallel in Algorithm ??, are shared among threads,
and each thread is responsible for its partition of vertices.
Default scheduling policy in OpenMP is static and it dis-
tributes the iterations of the loop to the threads in chunks,
i.e., for two threads, one takes the first half and the other
takes the second. Although this policy is useful for many ap-
plications, it will not work well for our algorithms. The no-

a

i

d

f

b

h

c e g
122

4

2

4

3

2

4 2

1 1

23

3

2

2
1st

2nd

3rd

step
step
step

Figure 3: Core example

Figure 4: Core example

⌧ ⌧ ⌧
⌧ ⌧

4.3 Illustrative examples
ToDo: explain fig 3 and 4 We present two examples to

illustrate the di↵erences between Snd and And algorithms.
Figure 4 presents the k-core decomposition process on a toy
graph.

4.4 Heuristics and implementation
Here we introduce an important scheduling decision for

the parallelization in our algorithms, and a heuristic to com-
pute the h-index of a set in linear time.

We implemented our algorithms by using OpenMP [6] to
utilize the shared-memory architectures. The loops, anno-
tated as parallel in Algorithm ??, are shared among threads,
and each thread is responsible for its partition of vertices.
Default scheduling policy in OpenMP is static and it dis-
tributes the iterations of the loop to the threads in chunks,
i.e., for two threads, one takes the first half and the other
takes the second. Although this policy is useful for many ap-
plications, it will not work well for our algorithms. The no-
tification mechanism to avoid the redundant computations
can result in significant load imbalance between threads. If
most of the converged vertices reside in a certain part, then
the thread that is responsible for that part becomes idle un-
til the end of computation. To prevent this, we embraced
the dynamic scheduling where each thread is given a new
workload once it is done. No thread stays idle this way, and
the overall computation is parallelized more e�ciently.

h-index computation of a list is done by sorting the items
in non-increasing order and checking the values from the
beginning of the list to find the largest h value for which at
least h items exist with at least h value. Main bottleneck is
the sorting operation which takes O(n.logn) time. However,
h-index can be computed without sorting. We initialize h
as zero and iterate over the items in the list. At each time,
we attempt to increase the current h value based on the
inspected item. For the current h value, we keep track of
the number of items that have equal value to h. We also

b

e

c

d

a g

h

i

f

2 2 2

2 2 2

2 2 2

2 2 2

2
2

2

2 2 2

1 1 1 1 1 1

1 1 1

1 1
 1 2 2 2

3
2

2

4 2 2

3 2
 2

3 2 2

3 2 2

4 2 2

4 3 2 3
2

2

⌧ ⌧ ⌧

4.3 Illustrative examples
ToDo: explain fig 3 and 4

4.4 Heuristics and implementation
Here we introduce an important scheduling decision for

the parallelization in our algorithms, and a heuristic to com-
pute the h-index of a set in linear time.

We implemented our algorithms by using OpenMP [6] to
utilize the shared-memory architectures. The loops, anno-
tated as parallel in Algorithm ??, are shared among threads,
and each thread is responsible for its partition of vertices.
Default scheduling policy in OpenMP is static and it dis-
tributes the iterations of the loop to the threads in chunks,
i.e., for two threads, one takes the first half and the other
takes the second. Although this policy is useful for many ap-
plications, it will not work well for our algorithms. The no-
tification mechanism to avoid the redundant computations
can result in significant load imbalance between threads. If
most of the converged vertices reside in a certain part, then
the thread that is responsible for that part becomes idle un-
til the end of computation. To prevent this, we embraced
the dynamic scheduling where each thread is given a new
workload once it is done. No thread stays idle this way, and
the overall computation is parallelized more e�ciently.

h-index computation of a list is done by sorting the items
in non-increasing order and checking the values from the
beginning of the list to find the largest h value for which at
least h items exist with at least h value. Main bottleneck is
the sorting operation which takes O(n.logn) time. However,
h-index can be computed without sorting. We initialize h
as zero and iterate over the items in the list. At each time,
we attempt to increase the current h value based on the
inspected item. For the current h value, we keep track of
the number of items that have equal value to h. We also

a

i

d

f

b

h

c e g
122

4

2

4

3

2

4 2

1 1

23

3

2

2
1st

2nd

3rd

step
step
step

Figure 4: Core example ToDo: put all step numbers, change
legend for taus

Table 3: Dataset statistics

|V | |E| |4| |K4|
as-skitter (ask) 1.7M 11.1M 28.8M 148.8M

facebook (fb) 4K 88.2K 1.6M 30.0M
soc-LiveJournal (slj) 4.8M 68.5M 285.7M 9.9B

soc-orkut (ork) 2.9M 106.3M 524.6M 2.4B
soc-sign-epinions (sse) 131.8K 711.2K 4.9M 58.6M
soc-twitter-higgs (hg) 456.6K 12.5M 83.0M 429.7M

twitter (tw) 81.3K 1.3M 13.1M 104.9M
web-Google (wgo) 916.4K 4.3M 13.4M 39.9M

web-NotreDame (wnd) 325.7K 1.1M 8.9M 231.9M
wikipedia-200611 (wiki) 3.1M 37.0M 88.8M 162.9M

use a hashmap to keep track of the items that are greater
than the current h value, and we simply ignore the items
that are smaller than h. This enables the computation of
the h-index in linear time. In addition, for the non-initial
iterations of the convergence process, we simply check the
items if the current ⌧ index can be preserved. Once we see
� ⌧ items with at least ⌧ index, no more checks needed.

5. EXPERIMENTS
We evaluate our algorithms on three instances of the nu-

cleus decomposition: k-core (or (1, 2)), k-truss (or (2, 3)),
and (3, 4). Constructing the hypergraphs requires to store
all the s-cliques, which is infeasible for large networks. Thus
we do not construct the actual hypergraphs to compute
the indices. Instead, we find the participations of the
r-cliques in s-cliques on-the-fly. Details about the com-
parison between two approaches are given in [25]. Our
dataset includes di↵erent types of real-world networks, such
as an internet topology network (as-skitter), online social
networks (facebook, soc-LiveJournal, soc-orkut), who-
trust-whom network (soc-sign-epinions), follower-followee

b

e

c

d

a g

h

i

f

4 3
2 3

4

3

3 1

11

1 2

2 3

4

2

2 2

2 3 2

22

2

2 2
2

2

Figure 5: Truss example

0 1 2
(d3) (3)

22

c

d

bf e a
1

1

3

2

21 1 2

2

2

1 1 2 2

2

2

degrees

 1 indices in SND
core numbers

22

c

d

bf e a
1

1

3

2

21 1 2

2

2

1 1 2 2

2

2

degrees
core numbers
2nd step in lex. order

Figure 2: Async example

Theorem 4. In AND algorithm, if the r-cliques are pro-
cessed in the non-decreasing order of their final s indices,
convergence is obtained in a single iteration.

Proof. Say s(R) = t for an r-clique R. For the sake of
contradiction, assume that it takes more than one iteration
for ds(R) to converge s(R). So, ⌧0(R) = ds(R) and ⌧0(R) �
⌧1(R) > s(R). So, when R is being processed, H(L) > t
for L = {⇢(S) : S 3 R}. That means there are at least t+1
s-cliques where each has ⇢ value of at least t+ 1. However,
this implies that R is a part of (t + 1)-(r, s) nucleus, which
contradicts with the initial assumption.

The worst case happens when all the r-cliques see the ⌧
values of their neighbors that are computed in the previous
iteration and it is exactly the SND algorithm.

Figure 2 illustrates the di↵erence between Snd and And
algorithms (with di↵erent orderings) on the k-core case (r =
1, s = 2). Our focus is on vertices (1-cliques) and their re-
lations with edges (2-cliques). We first apply Snd. First,
vertex degrees are calculated as ⌧0 indices (blue numbers).
Then, for each vertex u we compute the ⌧1(u) = H({⌧0(v) :
v 2 N2(u)}, i.e., h-index of its neighbors’ degrees (red num-
bers). ⌧ For instance,

ToDo: should I include some numbers in exp, bounds part

4.2.1 Skipping the plateaus
ToDo: fig for tau changes and platos Our computations

converge when none of the vertices update their ⌧ indices
anymore. This implies that computations are performed for
all the vertices even when only a single update occurs. Those
computations are redundant. When ⌧(v) converges (v) for
a vertex v, no more computations are needed for v in the
following iterations. Also, a vertex can possibly maintain
the same ⌧ index for a number of iterations, reaches to a
plateau, and then updates it. So, it is not possible to deduce
whether ⌧(v) has converged to (v) by just looking at ⌧(v)
values of any vertex v. In order to skip the intermediate
or final plateaus during the convergence of ⌧(v) to (v), we
introduce a notification mechanism where a vertex notifies
its neighbors when its ⌧ index is updated.

Brown lines in Algorithm ?? summarizes the notification
mechanism we plug in to the asynchronous computation.
The only changes are in lines ??, ??, ?? and ??. Additional
C(·) array tracks whether a vertex v 2 V has updated its ⌧
index or not. It is set to true at the beginning to initiate
the computations for all vertices. Once C(v) becomes false,
i.e., maintains its ⌧ index, we avoid the computation. Note
that, a vertex restarts its computation only when a neighbor

vertex has an update (Line ??). Once a vertex completes
the computation, it is set to be not-updated (line ??) so that
no computation occurs until a notification is received from
a neighbor.

4.3 Illustrative examples
ToDo: explain fig 3 and 4

4.4 Heuristics and implementation
Here we introduce an important scheduling decision for

the parallelization in our algorithms, and a heuristic to com-
pute the h-index of a set in linear time.
We implemented our algorithms by using OpenMP [6] to

utilize the shared-memory architectures. The loops, anno-
tated as parallel in Algorithm ??, are shared among threads,
and each thread is responsible for its partition of vertices.
Default scheduling policy in OpenMP is static and it dis-
tributes the iterations of the loop to the threads in chunks,
i.e., for two threads, one takes the first half and the other
takes the second. Although this policy is useful for many ap-
plications, it will not work well for our algorithms. The no-
tification mechanism to avoid the redundant computations
can result in significant load imbalance between threads. If
most of the converged vertices reside in a certain part, then
the thread that is responsible for that part becomes idle un-
til the end of computation. To prevent this, we embraced
the dynamic scheduling where each thread is given a new
workload once it is done. No thread stays idle this way, and
the overall computation is parallelized more e�ciently.
h-index computation of a list is done by sorting the items

in non-increasing order and checking the values from the
beginning of the list to find the largest h value for which at
least h items exist with at least h value. Main bottleneck is
the sorting operation which takes O(n.logn) time. However,
h-index can be computed without sorting. We initialize h
as zero and iterate over the items in the list. At each time,
we attempt to increase the current h value based on the

a

i

d

f

b

h

c e g
122

4

2

4

3

2

4 2

1 1

23

3

2

2
1st

2nd

3rd

step
step
step

Figure 3: Core example

Figure 2: Async example

Theorem 4. In AND algorithm, if the r-cliques are pro-
cessed in the non-decreasing order of their final s indices,
convergence is obtained in a single iteration.

Proof. Say s(R) = t for an r-clique R. For the sake of
contradiction, assume that it takes more than one iteration
for ds(R) to converge s(R). So, ⌧0(R) = ds(R) and ⌧0(R) �
⌧1(R) > s(R). So, when R is being processed, H(L) > t
for L = {⇢(S) : S 3 R}. That means there are at least t+1
s-cliques where each has ⇢ value of at least t+ 1. However,
this implies that R is a part of (t + 1)-(r, s) nucleus, which
contradicts with the initial assumption.

The worst case happens when all the r-cliques see the ⌧
values of their neighbors that are computed in the previous
iteration and it is exactly the SND algorithm.

Figure 2 illustrates Snd and And algorithms (with di↵er-
ent orderings) on the k-core case (r = 1, s = 2). Our focus
is on vertices (1-cliques) and their edge (2-clique) counts
(degrees). We first apply Snd. First, vertex degrees are cal-
culated as ⌧0 indices (blue numbers). Then, for each vertex
u we compute the ⌧1(u) = H({⌧0(v) : v 2 N2(u)}, i.e., h-
index of its neighbors’ degrees (red numbers). For instance,
vertex a has two neighbors, e and b, with degrees 2 and
3. Since H({2, 3}) = 2, we get ⌧1(a) = 2. For vertex b,
we get ⌧1(b) = H({2, 2, 2}) = 2. Once we compute all ⌧1
indices, we iterate again because there were changes in ⌧
indices, e.g,. ⌧1(e) 6= ⌧0(e) (Line 13 in Algorithm 2). ⌧2
indices are shown in green. We observe an update only for
the vertex a; ⌧2(a) = H({⌧1(e), ⌧1(b)}) = H({1, 2}) = 1.
When we iterate again, no update is observed in ⌧ indices,
which means s = ⌧2 for all vertices. Regarding And algo-
rithm, we choose to follow the non-decreasing order of s

indices; {f,e,a,b,c,d}. Computing the ⌧1 indices on this or-
der enables us to reach the convergence in a single iteration.
For instance, ⌧1(a) = H({⌧1(e), ⌧0(b)}) = H({1, 2}) = 1.
If we choose to process the vertices in the alphabetical or-
der, {a,b,c,d,e,f}, we have ⌧1(a) = H({⌧0(e), ⌧0(b)}) =
H({2, 2}) = 2, which implies that we need more iteration(s)
to converge. Indeed ⌧2(a) = H({⌧1(e), ⌧1(b)}) = H({1, 2}) =
1

 ⌧1 ToDo: should I include some numbers in exp, bounds
part

4.2.1 Skipping the plateaus
ToDo: fig for tau changes and platos Our computations

converge when none of the vertices update their ⌧ indices
anymore. This implies that computations are performed for
all the vertices even when only a single update occurs. Those
computations are redundant. When ⌧(v) converges (v) for
a vertex v, no more computations are needed for v in the

following iterations. Also, a vertex can possibly maintain
the same ⌧ index for a number of iterations, reaches to a
plateau, and then updates it. So, it is not possible to deduce
whether ⌧(v) has converged to (v) by just looking at ⌧(v)
values of any vertex v. In order to skip the intermediate
or final plateaus during the convergence of ⌧(v) to (v), we
introduce a notification mechanism where a vertex notifies
its neighbors when its ⌧ index is updated.
Brown lines in Algorithm ?? summarizes the notification

mechanism we plug in to the asynchronous computation.
The only changes are in lines ??, ??, ?? and ??. Additional
C(·) array tracks whether a vertex v 2 V has updated its ⌧
index or not. It is set to true at the beginning to initiate
the computations for all vertices. Once C(v) becomes false,
i.e., maintains its ⌧ index, we avoid the computation. Note
that, a vertex restarts its computation only when a neighbor
vertex has an update (Line ??). Once a vertex completes
the computation, it is set to be not-updated (line ??) so that
no computation occurs until a notification is received from
a neighbor.

4.3 Illustrative examples
ToDo: explain fig 3 and 4

4.4 Heuristics and implementation
Here we introduce an important scheduling decision for

the parallelization in our algorithms, and a heuristic to com-
pute the h-index of a set in linear time.
We implemented our algorithms by using OpenMP [6] to

utilize the shared-memory architectures. The loops, anno-
tated as parallel in Algorithm ??, are shared among threads,
and each thread is responsible for its partition of vertices.
Default scheduling policy in OpenMP is static and it dis-
tributes the iterations of the loop to the threads in chunks,
i.e., for two threads, one takes the first half and the other
takes the second. Although this policy is useful for many ap-
plications, it will not work well for our algorithms. The no-

a

i

d

f

b

h

c e g
122

4

2

4

3

2

4 2

1 1

23

3

2

2
1st

2nd

3rd

step
step
step

Figure 3: Core example

Figure 5: Truss example

Table 3: Dataset statistics

|V | |E| |4| |K4|
as-skitter (ask) 1.7M 11.1M 28.8M 148.8M

facebook (fb) 4K 88.2K 1.6M 30.0M
soc-LiveJournal (slj) 4.8M 68.5M 285.7M 9.9B

soc-orkut (ork) 2.9M 106.3M 524.6M 2.4B
soc-sign-epinions (sse) 131.8K 711.2K 4.9M 58.6M
soc-twitter-higgs (hg) 456.6K 12.5M 83.0M 429.7M

twitter (tw) 81.3K 1.3M 13.1M 104.9M
web-Google (wgo) 916.4K 4.3M 13.4M 39.9M

web-NotreDame (wnd) 325.7K 1.1M 8.9M 231.9M
wikipedia-200611 (wiki) 3.1M 37.0M 88.8M 162.9M

use a hashmap to keep track of the items that are greater
than the current h value, and we simply ignore the items
that are smaller than h. This enables the computation of
the h-index in linear time. In addition, for the non-initial
iterations of the convergence process, we simply check the
items if the current ⌧ index can be preserved. Once we see
� ⌧ items with at least ⌧ index, no more checks needed.

5. EXPERIMENTS
We evaluate our algorithms on three instances of the nu-

cleus decomposition: k-core (or (1, 2)), k-truss (or (2, 3)),
and (3, 4). Constructing the hypergraphs requires to store
all the s-cliques, which is infeasible for large networks. Thus
we do not construct the actual hypergraphs to compute
the indices. Instead, we find the participations of the
r-cliques in s-cliques on-the-fly. Details about the com-
parison between two approaches are given in [25]. Our
dataset includes di↵erent types of real-world networks, such
as an internet topology network (as-skitter), online social
networks (facebook, soc-LiveJournal, soc-orkut), who-
trust-whom network (soc-sign-epinions), follower-followee
Twitter networks (soc-twitter-higgs, twitter), web net-
works (web-Google,
web-NotreDame), and a network of wikipedia pages
(wikipedia-200611). Number of vertices, edges, triangles
and four-cliques in those graphs are given in Table 3.

22

c

d

bf e a
1

1

3

2

21 1 2

2

2

1 1 2 2

2

2

degrees

 1 indices in SND
core numbers

22

c

d

bf e a
1

1

3

2

21 1 2

2

2

1 1 2 2

2

2

degrees
core numbers
2nd step in lex. order

Figure 2: Async example

Theorem 4. In AND algorithm, if the r-cliques are pro-
cessed in the non-decreasing order of their final s indices,
convergence is obtained in a single iteration.

Proof. Say s(R) = t for an r-clique R. For the sake of
contradiction, assume that it takes more than one iteration
for ds(R) to converge s(R). So, ⌧0(R) = ds(R) and ⌧0(R) �
⌧1(R) > s(R). So, when R is being processed, H(L) > t
for L = {⇢(S) : S 3 R}. That means there are at least t+1
s-cliques where each has ⇢ value of at least t+ 1. However,
this implies that R is a part of (t + 1)-(r, s) nucleus, which
contradicts with the initial assumption.

The worst case happens when all the r-cliques see the ⌧
values of their neighbors that are computed in the previous
iteration and it is exactly the SND algorithm.

Figure 2 illustrates the di↵erence between Snd and And
algorithms (with di↵erent orderings) on the k-core case (r =
1, s = 2). Our focus is on vertices (1-cliques) and their re-
lations with edges (2-cliques). We first apply Snd. First,
vertex degrees are calculated as ⌧0 indices (blue numbers).
Then, for each vertex u we compute the ⌧1(u) = H({⌧0(v) :
v 2 N2(u)}, i.e., h-index of its neighbors’ degrees (red num-
bers). ⌧ For instance,

ToDo: should I include some numbers in exp, bounds part

4.2.1 Skipping the plateaus
ToDo: fig for tau changes and platos Our computations

converge when none of the vertices update their ⌧ indices
anymore. This implies that computations are performed for
all the vertices even when only a single update occurs. Those
computations are redundant. When ⌧(v) converges (v) for
a vertex v, no more computations are needed for v in the
following iterations. Also, a vertex can possibly maintain
the same ⌧ index for a number of iterations, reaches to a
plateau, and then updates it. So, it is not possible to deduce
whether ⌧(v) has converged to (v) by just looking at ⌧(v)
values of any vertex v. In order to skip the intermediate
or final plateaus during the convergence of ⌧(v) to (v), we
introduce a notification mechanism where a vertex notifies
its neighbors when its ⌧ index is updated.

Brown lines in Algorithm ?? summarizes the notification
mechanism we plug in to the asynchronous computation.
The only changes are in lines ??, ??, ?? and ??. Additional
C(·) array tracks whether a vertex v 2 V has updated its ⌧
index or not. It is set to true at the beginning to initiate
the computations for all vertices. Once C(v) becomes false,
i.e., maintains its ⌧ index, we avoid the computation. Note
that, a vertex restarts its computation only when a neighbor

vertex has an update (Line ??). Once a vertex completes
the computation, it is set to be not-updated (line ??) so that
no computation occurs until a notification is received from
a neighbor.

4.3 Illustrative examples
ToDo: explain fig 3 and 4

4.4 Heuristics and implementation
Here we introduce an important scheduling decision for

the parallelization in our algorithms, and a heuristic to com-
pute the h-index of a set in linear time.
We implemented our algorithms by using OpenMP [6] to

utilize the shared-memory architectures. The loops, anno-
tated as parallel in Algorithm ??, are shared among threads,
and each thread is responsible for its partition of vertices.
Default scheduling policy in OpenMP is static and it dis-
tributes the iterations of the loop to the threads in chunks,
i.e., for two threads, one takes the first half and the other
takes the second. Although this policy is useful for many ap-
plications, it will not work well for our algorithms. The no-
tification mechanism to avoid the redundant computations
can result in significant load imbalance between threads. If
most of the converged vertices reside in a certain part, then
the thread that is responsible for that part becomes idle un-
til the end of computation. To prevent this, we embraced
the dynamic scheduling where each thread is given a new
workload once it is done. No thread stays idle this way, and
the overall computation is parallelized more e�ciently.
h-index computation of a list is done by sorting the items

in non-increasing order and checking the values from the
beginning of the list to find the largest h value for which at
least h items exist with at least h value. Main bottleneck is
the sorting operation which takes O(n.logn) time. However,
h-index can be computed without sorting. We initialize h
as zero and iterate over the items in the list. At each time,
we attempt to increase the current h value based on the

a

i

d

f

b

h

c e g
122

4

2

4

3

2

4 2

1 1

23

3

2

2
1st

2nd

3rd

step
step
step

Figure 3: Core example

Figure 2: Async example

Theorem 4. In AND algorithm, if the r-cliques are pro-
cessed in the non-decreasing order of their final s indices,
convergence is obtained in a single iteration.

Proof. Say s(R) = t for an r-clique R. For the sake of
contradiction, assume that it takes more than one iteration
for ds(R) to converge s(R). So, ⌧0(R) = ds(R) and ⌧0(R) �
⌧1(R) > s(R). So, when R is being processed, H(L) > t
for L = {⇢(S) : S 3 R}. That means there are at least t+1
s-cliques where each has ⇢ value of at least t+ 1. However,
this implies that R is a part of (t + 1)-(r, s) nucleus, which
contradicts with the initial assumption.

The worst case happens when all the r-cliques see the ⌧
values of their neighbors that are computed in the previous
iteration and it is exactly the SND algorithm.

Figure 2 illustrates Snd and And algorithms (with di↵er-
ent orderings) on the k-core case (r = 1, s = 2). Our focus
is on vertices (1-cliques) and their edge (2-clique) counts
(degrees). We first apply Snd. First, vertex degrees are cal-
culated as ⌧0 indices (blue numbers). Then, for each vertex
u we compute the ⌧1(u) = H({⌧0(v) : v 2 N2(u)}, i.e., h-
index of its neighbors’ degrees (red numbers). For instance,
vertex a has two neighbors, e and b, with degrees 2 and
3. Since H({2, 3}) = 2, we get ⌧1(a) = 2. For vertex b,
we get ⌧1(b) = H({2, 2, 2}) = 2. Once we compute all ⌧1
indices, we iterate again because there were changes in ⌧
indices, e.g,. ⌧1(e) 6= ⌧0(e) (Line 13 in Algorithm 2). ⌧2
indices are shown in green. We observe an update only for
the vertex a; ⌧2(a) = H({⌧1(e), ⌧1(b)}) = H({1, 2}) = 1.
When we iterate again, no update is observed in ⌧ indices,
which means s = ⌧2 for all vertices. Regarding And algo-
rithm, we choose to follow the non-decreasing order of s

indices; {f,e,a,b,c,d}. Computing the ⌧1 indices on this or-
der enables us to reach the convergence in a single iteration.
For instance, ⌧1(a) = H({⌧1(e), ⌧0(b)}) = H({1, 2}) = 1.
If we choose to process the vertices in the alphabetical or-
der, {a,b,c,d,e,f}, we have ⌧1(a) = H({⌧0(e), ⌧0(b)}) =
H({2, 2}) = 2, which implies that we need more iteration(s)
to converge. Indeed ⌧2(a) = H({⌧1(e), ⌧1(b)}) = H({1, 2}) =
1

 ⌧1 ToDo: should I include some numbers in exp, bounds
part

4.2.1 Skipping the plateaus
ToDo: fig for tau changes and platos Our computations

converge when none of the vertices update their ⌧ indices
anymore. This implies that computations are performed for
all the vertices even when only a single update occurs. Those
computations are redundant. When ⌧(v) converges (v) for
a vertex v, no more computations are needed for v in the

following iterations. Also, a vertex can possibly maintain
the same ⌧ index for a number of iterations, reaches to a
plateau, and then updates it. So, it is not possible to deduce
whether ⌧(v) has converged to (v) by just looking at ⌧(v)
values of any vertex v. In order to skip the intermediate
or final plateaus during the convergence of ⌧(v) to (v), we
introduce a notification mechanism where a vertex notifies
its neighbors when its ⌧ index is updated.
Brown lines in Algorithm ?? summarizes the notification

mechanism we plug in to the asynchronous computation.
The only changes are in lines ??, ??, ?? and ??. Additional
C(·) array tracks whether a vertex v 2 V has updated its ⌧
index or not. It is set to true at the beginning to initiate
the computations for all vertices. Once C(v) becomes false,
i.e., maintains its ⌧ index, we avoid the computation. Note
that, a vertex restarts its computation only when a neighbor
vertex has an update (Line ??). Once a vertex completes
the computation, it is set to be not-updated (line ??) so that
no computation occurs until a notification is received from
a neighbor.

4.3 Illustrative examples
ToDo: explain fig 3 and 4

4.4 Heuristics and implementation
Here we introduce an important scheduling decision for

the parallelization in our algorithms, and a heuristic to com-
pute the h-index of a set in linear time.
We implemented our algorithms by using OpenMP [6] to

utilize the shared-memory architectures. The loops, anno-
tated as parallel in Algorithm ??, are shared among threads,
and each thread is responsible for its partition of vertices.
Default scheduling policy in OpenMP is static and it dis-
tributes the iterations of the loop to the threads in chunks,
i.e., for two threads, one takes the first half and the other
takes the second. Although this policy is useful for many ap-
plications, it will not work well for our algorithms. The no-

a

i

d

f

b

h

c e g
122

4

2

4

3

2

4 2

1 1

23

3

2

2
1st

2nd

3rd

step
step
step

Figure 3: Core example

d3

 0 1 2
 3

1 2 3 4

AND (lex. order) :

 no notification :
degree, core number :

1 2 3 4 with notification :

Figure 4: Truss example

⌧0 ⌧1 ⌧2 ⌧3
⌧0 ⌧1 ⌧2
⌧0 ⌧1
d2 2

Figure 4 illustrates the k-truss decomposition (r = 2, s =
3) on a toy graph. We follow the lexicographical order of
the edges (vertex pairs). Triangle counts (d3) of edges are
given in blue, which are used to initialize ⌧0 indices. We first
process edge ab. It has four triangles, abc, abd, abe, abi.
⇢ value of each triangle is calculated by taking the minimum
⌧0 value of the neighbor edges of ab (Line 11). Set of ⇢ values
is {min(⌧0(ac), ⌧0(bc)),min(⌧0(ad), ⌧0(bd)),min(⌧0(ae),
⌧0(be)),min(⌧0(ai), ⌧0(bi))}, which is L = {4, 3, 3, 2} and
⌧1(ab) = H(L) = 3. After computing ⌧1 indices of all the
edges in lexicographical order (ei edge is last),

4.3 Heuristics and implementation
Here we introduce an important scheduling decision for

the parallelization in our algorithms, and a heuristic to com-
pute the h-index of a set in linear time.

We implemented our algorithms by using OpenMP [6] to
utilize the shared-memory architectures. The loops, anno-
tated as parallel in Algorithm ??, are shared among threads,
and each thread is responsible for its partition of vertices.
Default scheduling policy in OpenMP is static and it dis-
tributes the iterations of the loop to the threads in chunks,
i.e., for two threads, one takes the first half and the other
takes the second. Although this policy is useful for many ap-
plications, it will not work well for our algorithms. The no-
tification mechanism to avoid the redundant computations
can result in significant load imbalance between threads. If
most of the converged vertices reside in a certain part, then
the thread that is responsible for that part becomes idle un-
til the end of computation. To prevent this, we embraced
the dynamic scheduling where each thread is given a new
workload once it is done. No thread stays idle this way, and
the overall computation is parallelized more e�ciently.

h-index computation of a list is done by sorting the items
in non-increasing order and checking the values from the
beginning of the list to find the largest h value for which at

Table 3: Dataset statistics

|V | |E| |4| |K4|
as-skitter (ask) 1.7M 11.1M 28.8M 148.8M

facebook (fb) 4K 88.2K 1.6M 30.0M
soc-LiveJournal (slj) 4.8M 68.5M 285.7M 9.9B

soc-orkut (ork) 2.9M 106.3M 524.6M 2.4B
soc-sign-epinions (sse) 131.8K 711.2K 4.9M 58.6M
soc-twitter-higgs (hg) 456.6K 12.5M 83.0M 429.7M

twitter (tw) 81.3K 1.3M 13.1M 104.9M
web-Google (wgo) 916.4K 4.3M 13.4M 39.9M

web-NotreDame (wnd) 325.7K 1.1M 8.9M 231.9M
wikipedia-200611 (wiki) 3.1M 37.0M 88.8M 162.9M

least h items exist with at least h value. Main bottleneck is
the sorting operation which takes O(n.logn) time. However,
h-index can be computed without sorting. We initialize h
as zero and iterate over the items in the list. At each time,
we attempt to increase the current h value based on the
inspected item. For the current h value, we keep track of
the number of items that have equal value to h. We also
use a hashmap to keep track of the items that are greater
than the current h value, and we simply ignore the items
that are smaller than h. This enables the computation of
the h-index in linear time. In addition, for the non-initial
iterations of the convergence process, we simply check the
items if the current ⌧ index can be preserved. Once we see
� ⌧ items with at least ⌧ index, no more checks needed.

5. EXPERIMENTS
We evaluate our algorithms on three instances of the nu-

cleus decomposition: k-core (or (1, 2)), k-truss (or (2, 3)),
and (3, 4). Constructing the hypergraphs requires to store
all the s-cliques, which is infeasible for large networks. Thus
we do not construct the actual hypergraphs to compute
the indices. Instead, we find the participations of the
r-cliques in s-cliques on-the-fly. Details about the com-
parison between two approaches are given in [25]. Our
dataset includes di↵erent types of real-world networks, such
as an internet topology network (as-skitter), online social
networks (facebook, soc-LiveJournal, soc-orkut), who-
trust-whom network (soc-sign-epinions), follower-followee
Twitter networks (soc-twitter-higgs, twitter), web net-
works (web-Google,
web-NotreDame), and a network of wikipedia pages
(wikipedia-200611). Number of vertices, edges, triangles
and four-cliques in those graphs are given in Table 3.
All experiments are performed on a Linux operating sys-

tem running on a machine with Intel Ivy Bridge processor at
2.4 GHz with 64 GB DDR3 1866 MHz memory. There are
two sockets on the machine and each has twelve cores, mak-
ing 24 cores in total. Algorithms are implemented in C++
and compiled using gcc 6.1.0 at -O2 optimization level. We
used OpenMP v4.5 for the shared-memory parallelization.
We start with comparing the number of iterations that

our synchronous (Algorithm ??) and asynchronous (Algo-
rithm ??) algorithms need to converge. Then, we investi-
gate how much the ⌧ indices can approach to indices at
each iteration. Regarding the performance, we compare the
runtimes of our algorithms with respect to the peeling, and
also discuss the scalability of our implementations.

b

e

c

d

a g

h

i

f

2 2 2

2 2 2

2 2 2

2 2 2

2
2 2

2 2 2

1 1 1 1 1 1

1 1 1

1 1
 1 2 2 2

3
2

2

4 2 2

3 2
 2

3 2 2

3 2 2

4 2 2

4 3 2 3
2

2

⌧ ⌧ ⌧

4.3 Illustrative examples
ToDo: explain fig 3 and 4

4.4 Heuristics and implementation
Here we introduce an important scheduling decision for

the parallelization in our algorithms, and a heuristic to com-
pute the h-index of a set in linear time.

We implemented our algorithms by using OpenMP [6] to
utilize the shared-memory architectures. The loops, anno-
tated as parallel in Algorithm ??, are shared among threads,
and each thread is responsible for its partition of vertices.
Default scheduling policy in OpenMP is static and it dis-
tributes the iterations of the loop to the threads in chunks,
i.e., for two threads, one takes the first half and the other
takes the second. Although this policy is useful for many ap-
plications, it will not work well for our algorithms. The no-
tification mechanism to avoid the redundant computations
can result in significant load imbalance between threads. If
most of the converged vertices reside in a certain part, then
the thread that is responsible for that part becomes idle un-
til the end of computation. To prevent this, we embraced
the dynamic scheduling where each thread is given a new
workload once it is done. No thread stays idle this way, and
the overall computation is parallelized more e�ciently.

h-index computation of a list is done by sorting the items
in non-increasing order and checking the values from the
beginning of the list to find the largest h value for which at
least h items exist with at least h value. Main bottleneck is
the sorting operation which takes O(n.logn) time. However,
h-index can be computed without sorting. We initialize h
as zero and iterate over the items in the list. At each time,
we attempt to increase the current h value based on the
inspected item. For the current h value, we keep track of
the number of items that have equal value to h. We also

a

i

d

f

b

h

c e g
122

4

2

4

3

2

4 2

1 1

23

3

2

2
1st

2nd

3rd

step
step
step

Figure 4: Core example ToDo: put all step numbers, change
legend for taus

Table 3: Dataset statistics

|V | |E| |4| |K4|
as-skitter (ask) 1.7M 11.1M 28.8M 148.8M

facebook (fb) 4K 88.2K 1.6M 30.0M
soc-LiveJournal (slj) 4.8M 68.5M 285.7M 9.9B

soc-orkut (ork) 2.9M 106.3M 524.6M 2.4B
soc-sign-epinions (sse) 131.8K 711.2K 4.9M 58.6M
soc-twitter-higgs (hg) 456.6K 12.5M 83.0M 429.7M

twitter (tw) 81.3K 1.3M 13.1M 104.9M
web-Google (wgo) 916.4K 4.3M 13.4M 39.9M

web-NotreDame (wnd) 325.7K 1.1M 8.9M 231.9M
wikipedia-200611 (wiki) 3.1M 37.0M 88.8M 162.9M

use a hashmap to keep track of the items that are greater
than the current h value, and we simply ignore the items
that are smaller than h. This enables the computation of
the h-index in linear time. In addition, for the non-initial
iterations of the convergence process, we simply check the
items if the current ⌧ index can be preserved. Once we see
� ⌧ items with at least ⌧ index, no more checks needed.

5. EXPERIMENTS
We evaluate our algorithms on three instances of the nu-

cleus decomposition: k-core (or (1, 2)), k-truss (or (2, 3)),
and (3, 4). Constructing the hypergraphs requires to store
all the s-cliques, which is infeasible for large networks. Thus
we do not construct the actual hypergraphs to compute
the indices. Instead, we find the participations of the
r-cliques in s-cliques on-the-fly. Details about the com-
parison between two approaches are given in [25]. Our
dataset includes di↵erent types of real-world networks, such
as an internet topology network (as-skitter), online social
networks (facebook, soc-LiveJournal, soc-orkut), who-
trust-whom network (soc-sign-epinions), follower-followee

b

e

c

d

a g

h

i

f

4 3
2 3

4

3

3 1

11

1 2

2 3

4

2

2 2

2 3 2

22

2

2 2
2

2

Figure 5: Truss example

a i

d

f b

h

c

e

g2 2 2

3 2 2

4 3 2 2 2 2 2 2 1

4 2 2

4 3 2 1 1 1

2 1 1

0 1 2
(d2) (2)

22

c

d

bf e a
1

1

3

2

21 1 2

2

2

1 1 2 2

2

2

degrees

 1 indices in SND
core numbers

22

c

d

bf e a
1

1

3

2

21 1 2

2

2

1 1 2 2

2

2

degrees
core numbers
2nd step in lex. order

Figure 2: Async example

Theorem 4. In AND algorithm, if the r-cliques are pro-
cessed in the non-decreasing order of their final s indices,
convergence is obtained in a single iteration.

Proof. Say s(R) = t for an r-clique R. For the sake of
contradiction, assume that it takes more than one iteration
for ds(R) to converge s(R). So, ⌧0(R) = ds(R) and ⌧0(R) �
⌧1(R) > s(R). So, when R is being processed, H(L) > t
for L = {⇢(S) : S 3 R}. That means there are at least t+1
s-cliques where each has ⇢ value of at least t+ 1. However,
this implies that R is a part of (t + 1)-(r, s) nucleus, which
contradicts with the initial assumption.

The worst case happens when all the r-cliques see the ⌧
values of their neighbors that are computed in the previous
iteration and it is exactly the SND algorithm.

Figure 2 illustrates the di↵erence between Snd and And
algorithms (with di↵erent orderings) on the k-core case (r =
1, s = 2). Our focus is on vertices (1-cliques) and their re-
lations with edges (2-cliques). We first apply Snd. First,
vertex degrees are calculated as ⌧0 indices (blue numbers).
Then, for each vertex u we compute the ⌧1(u) = H({⌧0(v) :
v 2 N2(u)}, i.e., h-index of its neighbors’ degrees (red num-
bers). ⌧ For instance,

ToDo: should I include some numbers in exp, bounds part

4.2.1 Skipping the plateaus
ToDo: fig for tau changes and platos Our computations

converge when none of the vertices update their ⌧ indices
anymore. This implies that computations are performed for
all the vertices even when only a single update occurs. Those
computations are redundant. When ⌧(v) converges (v) for
a vertex v, no more computations are needed for v in the
following iterations. Also, a vertex can possibly maintain
the same ⌧ index for a number of iterations, reaches to a
plateau, and then updates it. So, it is not possible to deduce
whether ⌧(v) has converged to (v) by just looking at ⌧(v)
values of any vertex v. In order to skip the intermediate
or final plateaus during the convergence of ⌧(v) to (v), we
introduce a notification mechanism where a vertex notifies
its neighbors when its ⌧ index is updated.

Brown lines in Algorithm ?? summarizes the notification
mechanism we plug in to the asynchronous computation.
The only changes are in lines ??, ??, ?? and ??. Additional
C(·) array tracks whether a vertex v 2 V has updated its ⌧
index or not. It is set to true at the beginning to initiate
the computations for all vertices. Once C(v) becomes false,
i.e., maintains its ⌧ index, we avoid the computation. Note
that, a vertex restarts its computation only when a neighbor

vertex has an update (Line ??). Once a vertex completes
the computation, it is set to be not-updated (line ??) so that
no computation occurs until a notification is received from
a neighbor.

4.3 Illustrative examples
ToDo: explain fig 3 and 4

4.4 Heuristics and implementation
Here we introduce an important scheduling decision for

the parallelization in our algorithms, and a heuristic to com-
pute the h-index of a set in linear time.
We implemented our algorithms by using OpenMP [6] to

utilize the shared-memory architectures. The loops, anno-
tated as parallel in Algorithm ??, are shared among threads,
and each thread is responsible for its partition of vertices.
Default scheduling policy in OpenMP is static and it dis-
tributes the iterations of the loop to the threads in chunks,
i.e., for two threads, one takes the first half and the other
takes the second. Although this policy is useful for many ap-
plications, it will not work well for our algorithms. The no-
tification mechanism to avoid the redundant computations
can result in significant load imbalance between threads. If
most of the converged vertices reside in a certain part, then
the thread that is responsible for that part becomes idle un-
til the end of computation. To prevent this, we embraced
the dynamic scheduling where each thread is given a new
workload once it is done. No thread stays idle this way, and
the overall computation is parallelized more e�ciently.
h-index computation of a list is done by sorting the items

in non-increasing order and checking the values from the
beginning of the list to find the largest h value for which at
least h items exist with at least h value. Main bottleneck is
the sorting operation which takes O(n.logn) time. However,
h-index can be computed without sorting. We initialize h
as zero and iterate over the items in the list. At each time,
we attempt to increase the current h value based on the

a

i

d

f

b

h

c e g
122

4

2

4

3

2

4 2

1 1

23

3

2

2
1st

2nd

3rd

step
step
step

Figure 3: Core example

Figure 2: Async example

Theorem 4. In AND algorithm, if the r-cliques are pro-
cessed in the non-decreasing order of their final s indices,
convergence is obtained in a single iteration.

Proof. Say s(R) = t for an r-clique R. For the sake of
contradiction, assume that it takes more than one iteration
for ds(R) to converge s(R). So, ⌧0(R) = ds(R) and ⌧0(R) �
⌧1(R) > s(R). So, when R is being processed, H(L) > t
for L = {⇢(S) : S 3 R}. That means there are at least t+1
s-cliques where each has ⇢ value of at least t+ 1. However,
this implies that R is a part of (t + 1)-(r, s) nucleus, which
contradicts with the initial assumption.

The worst case happens when all the r-cliques see the ⌧
values of their neighbors that are computed in the previous
iteration and it is exactly the SND algorithm.

Figure 2 illustrates Snd and And algorithms (with di↵er-
ent orderings) on the k-core case (r = 1, s = 2). Our focus
is on vertices (1-cliques) and their edge (2-clique) counts
(degrees). We first apply Snd. First, vertex degrees are cal-
culated as ⌧0 indices (blue numbers). Then, for each vertex
u we compute the ⌧1(u) = H({⌧0(v) : v 2 N2(u)}, i.e., h-
index of its neighbors’ degrees (red numbers). For instance,
vertex a has two neighbors, e and b, with degrees 2 and
3. Since H({2, 3}) = 2, we get ⌧1(a) = 2. For vertex b,
we get ⌧1(b) = H({2, 2, 2}) = 2. Once we compute all ⌧1
indices, we iterate again because there were changes in ⌧
indices, e.g,. ⌧1(e) 6= ⌧0(e) (Line 13 in Algorithm 2). ⌧2
indices are shown in green. We observe an update only for
the vertex a; ⌧2(a) = H({⌧1(e), ⌧1(b)}) = H({1, 2}) = 1.
When we iterate again, no update is observed in ⌧ indices,
which means s = ⌧2 for all vertices. Regarding And algo-
rithm, we choose to follow the non-decreasing order of s

indices; {f,e,a,b,c,d}. Computing the ⌧1 indices on this or-
der enables us to reach the convergence in a single iteration.
For instance, ⌧1(a) = H({⌧1(e), ⌧0(b)}) = H({1, 2}) = 1.
If we choose to process the vertices in the alphabetical or-
der, {a,b,c,d,e,f}, we have ⌧1(a) = H({⌧0(e), ⌧0(b)}) =
H({2, 2}) = 2, which implies that we need more iteration(s)
to converge. Indeed ⌧2(a) = H({⌧1(e), ⌧1(b)}) = H({1, 2}) =
1

 ⌧1 ToDo: should I include some numbers in exp, bounds
part

4.2.1 Skipping the plateaus
ToDo: fig for tau changes and platos Our computations

converge when none of the vertices update their ⌧ indices
anymore. This implies that computations are performed for
all the vertices even when only a single update occurs. Those
computations are redundant. When ⌧(v) converges (v) for
a vertex v, no more computations are needed for v in the

following iterations. Also, a vertex can possibly maintain
the same ⌧ index for a number of iterations, reaches to a
plateau, and then updates it. So, it is not possible to deduce
whether ⌧(v) has converged to (v) by just looking at ⌧(v)
values of any vertex v. In order to skip the intermediate
or final plateaus during the convergence of ⌧(v) to (v), we
introduce a notification mechanism where a vertex notifies
its neighbors when its ⌧ index is updated.
Brown lines in Algorithm ?? summarizes the notification

mechanism we plug in to the asynchronous computation.
The only changes are in lines ??, ??, ?? and ??. Additional
C(·) array tracks whether a vertex v 2 V has updated its ⌧
index or not. It is set to true at the beginning to initiate
the computations for all vertices. Once C(v) becomes false,
i.e., maintains its ⌧ index, we avoid the computation. Note
that, a vertex restarts its computation only when a neighbor
vertex has an update (Line ??). Once a vertex completes
the computation, it is set to be not-updated (line ??) so that
no computation occurs until a notification is received from
a neighbor.

4.3 Illustrative examples
ToDo: explain fig 3 and 4

4.4 Heuristics and implementation
Here we introduce an important scheduling decision for

the parallelization in our algorithms, and a heuristic to com-
pute the h-index of a set in linear time.
We implemented our algorithms by using OpenMP [6] to

utilize the shared-memory architectures. The loops, anno-
tated as parallel in Algorithm ??, are shared among threads,
and each thread is responsible for its partition of vertices.
Default scheduling policy in OpenMP is static and it dis-
tributes the iterations of the loop to the threads in chunks,
i.e., for two threads, one takes the first half and the other
takes the second. Although this policy is useful for many ap-
plications, it will not work well for our algorithms. The no-

a

i

d

f

b

h

c e g
122

4

2

4

3

2

4 2

1 1

23

3

2

2
1st

2nd

3rd

step
step
step

Figure 3: Core example

Figure 4: Core example

⌧ ⌧ ⌧
⌧ ⌧

4.3 Illustrative examples
ToDo: explain fig 3 and 4 We present two examples to

illustrate the di↵erences between Snd and And algorithms.
Figure 4 presents the k-core decomposition process on a toy
graph.

4.4 Heuristics and implementation
Here we introduce an important scheduling decision for

the parallelization in our algorithms, and a heuristic to com-
pute the h-index of a set in linear time.

We implemented our algorithms by using OpenMP [6] to
utilize the shared-memory architectures. The loops, anno-
tated as parallel in Algorithm ??, are shared among threads,
and each thread is responsible for its partition of vertices.
Default scheduling policy in OpenMP is static and it dis-
tributes the iterations of the loop to the threads in chunks,
i.e., for two threads, one takes the first half and the other
takes the second. Although this policy is useful for many ap-
plications, it will not work well for our algorithms. The no-
tification mechanism to avoid the redundant computations
can result in significant load imbalance between threads. If
most of the converged vertices reside in a certain part, then
the thread that is responsible for that part becomes idle un-
til the end of computation. To prevent this, we embraced
the dynamic scheduling where each thread is given a new
workload once it is done. No thread stays idle this way, and
the overall computation is parallelized more e�ciently.

h-index computation of a list is done by sorting the items
in non-increasing order and checking the values from the
beginning of the list to find the largest h value for which at
least h items exist with at least h value. Main bottleneck is
the sorting operation which takes O(n.logn) time. However,
h-index can be computed without sorting. We initialize h
as zero and iterate over the items in the list. At each time,
we attempt to increase the current h value based on the
inspected item. For the current h value, we keep track of
the number of items that have equal value to h. We also

b

e

c

d

a g

h

i

f

2 2 2

2 2 2

2 2 2

2 2 2

2
2

2

2 2 2

1 1 1 1 1 1

1 1 1

1 1
 1 2 2 2

3
2

2

4 2 2

3 2
 2

3 2 2

3 2 2

4 2 2

4 3 2 3
2

2

⌧ ⌧ ⌧

4.3 Illustrative examples
ToDo: explain fig 3 and 4

4.4 Heuristics and implementation
Here we introduce an important scheduling decision for

the parallelization in our algorithms, and a heuristic to com-
pute the h-index of a set in linear time.

We implemented our algorithms by using OpenMP [6] to
utilize the shared-memory architectures. The loops, anno-
tated as parallel in Algorithm ??, are shared among threads,
and each thread is responsible for its partition of vertices.
Default scheduling policy in OpenMP is static and it dis-
tributes the iterations of the loop to the threads in chunks,
i.e., for two threads, one takes the first half and the other
takes the second. Although this policy is useful for many ap-
plications, it will not work well for our algorithms. The no-
tification mechanism to avoid the redundant computations
can result in significant load imbalance between threads. If
most of the converged vertices reside in a certain part, then
the thread that is responsible for that part becomes idle un-
til the end of computation. To prevent this, we embraced
the dynamic scheduling where each thread is given a new
workload once it is done. No thread stays idle this way, and
the overall computation is parallelized more e�ciently.

h-index computation of a list is done by sorting the items
in non-increasing order and checking the values from the
beginning of the list to find the largest h value for which at
least h items exist with at least h value. Main bottleneck is
the sorting operation which takes O(n.logn) time. However,
h-index can be computed without sorting. We initialize h
as zero and iterate over the items in the list. At each time,
we attempt to increase the current h value based on the
inspected item. For the current h value, we keep track of
the number of items that have equal value to h. We also

a

i

d

f

b

h

c e g
122

4

2

4

3

2

4 2

1 1

23

3

2

2
1st

2nd

3rd

step
step
step

Figure 4: Core example ToDo: put all step numbers, change
legend for taus

Table 3: Dataset statistics

|V | |E| |4| |K4|
as-skitter (ask) 1.7M 11.1M 28.8M 148.8M

facebook (fb) 4K 88.2K 1.6M 30.0M
soc-LiveJournal (slj) 4.8M 68.5M 285.7M 9.9B

soc-orkut (ork) 2.9M 106.3M 524.6M 2.4B
soc-sign-epinions (sse) 131.8K 711.2K 4.9M 58.6M
soc-twitter-higgs (hg) 456.6K 12.5M 83.0M 429.7M

twitter (tw) 81.3K 1.3M 13.1M 104.9M
web-Google (wgo) 916.4K 4.3M 13.4M 39.9M

web-NotreDame (wnd) 325.7K 1.1M 8.9M 231.9M
wikipedia-200611 (wiki) 3.1M 37.0M 88.8M 162.9M

use a hashmap to keep track of the items that are greater
than the current h value, and we simply ignore the items
that are smaller than h. This enables the computation of
the h-index in linear time. In addition, for the non-initial
iterations of the convergence process, we simply check the
items if the current ⌧ index can be preserved. Once we see
� ⌧ items with at least ⌧ index, no more checks needed.

5. EXPERIMENTS
We evaluate our algorithms on three instances of the nu-

cleus decomposition: k-core (or (1, 2)), k-truss (or (2, 3)),
and (3, 4). Constructing the hypergraphs requires to store
all the s-cliques, which is infeasible for large networks. Thus
we do not construct the actual hypergraphs to compute
the indices. Instead, we find the participations of the
r-cliques in s-cliques on-the-fly. Details about the com-
parison between two approaches are given in [25]. Our
dataset includes di↵erent types of real-world networks, such
as an internet topology network (as-skitter), online social
networks (facebook, soc-LiveJournal, soc-orkut), who-
trust-whom network (soc-sign-epinions), follower-followee

b

e

c

d

a g

h

i

f

4 3
2 3

4

3

3 1

11

1 2

2 3

4

2

2 2

2 3 2

22

2

2 2
2

2

Figure 5: Truss example

0 1 2
(d3) (3)

22

c

d

bf e a
1

1

3

2

21 1 2

2

2

1 1 2 2

2

2

degrees

 1 indices in SND
core numbers

22

c

d

bf e a
1

1

3

2

21 1 2

2

2

1 1 2 2

2

2

degrees
core numbers
2nd step in lex. order

Figure 2: Async example

Theorem 4. In AND algorithm, if the r-cliques are pro-
cessed in the non-decreasing order of their final s indices,
convergence is obtained in a single iteration.

Proof. Say s(R) = t for an r-clique R. For the sake of
contradiction, assume that it takes more than one iteration
for ds(R) to converge s(R). So, ⌧0(R) = ds(R) and ⌧0(R) �
⌧1(R) > s(R). So, when R is being processed, H(L) > t
for L = {⇢(S) : S 3 R}. That means there are at least t+1
s-cliques where each has ⇢ value of at least t+ 1. However,
this implies that R is a part of (t + 1)-(r, s) nucleus, which
contradicts with the initial assumption.

The worst case happens when all the r-cliques see the ⌧
values of their neighbors that are computed in the previous
iteration and it is exactly the SND algorithm.

Figure 2 illustrates the di↵erence between Snd and And
algorithms (with di↵erent orderings) on the k-core case (r =
1, s = 2). Our focus is on vertices (1-cliques) and their re-
lations with edges (2-cliques). We first apply Snd. First,
vertex degrees are calculated as ⌧0 indices (blue numbers).
Then, for each vertex u we compute the ⌧1(u) = H({⌧0(v) :
v 2 N2(u)}, i.e., h-index of its neighbors’ degrees (red num-
bers). ⌧ For instance,

ToDo: should I include some numbers in exp, bounds part

4.2.1 Skipping the plateaus
ToDo: fig for tau changes and platos Our computations

converge when none of the vertices update their ⌧ indices
anymore. This implies that computations are performed for
all the vertices even when only a single update occurs. Those
computations are redundant. When ⌧(v) converges (v) for
a vertex v, no more computations are needed for v in the
following iterations. Also, a vertex can possibly maintain
the same ⌧ index for a number of iterations, reaches to a
plateau, and then updates it. So, it is not possible to deduce
whether ⌧(v) has converged to (v) by just looking at ⌧(v)
values of any vertex v. In order to skip the intermediate
or final plateaus during the convergence of ⌧(v) to (v), we
introduce a notification mechanism where a vertex notifies
its neighbors when its ⌧ index is updated.

Brown lines in Algorithm ?? summarizes the notification
mechanism we plug in to the asynchronous computation.
The only changes are in lines ??, ??, ?? and ??. Additional
C(·) array tracks whether a vertex v 2 V has updated its ⌧
index or not. It is set to true at the beginning to initiate
the computations for all vertices. Once C(v) becomes false,
i.e., maintains its ⌧ index, we avoid the computation. Note
that, a vertex restarts its computation only when a neighbor

vertex has an update (Line ??). Once a vertex completes
the computation, it is set to be not-updated (line ??) so that
no computation occurs until a notification is received from
a neighbor.

4.3 Illustrative examples
ToDo: explain fig 3 and 4

4.4 Heuristics and implementation
Here we introduce an important scheduling decision for

the parallelization in our algorithms, and a heuristic to com-
pute the h-index of a set in linear time.
We implemented our algorithms by using OpenMP [6] to

utilize the shared-memory architectures. The loops, anno-
tated as parallel in Algorithm ??, are shared among threads,
and each thread is responsible for its partition of vertices.
Default scheduling policy in OpenMP is static and it dis-
tributes the iterations of the loop to the threads in chunks,
i.e., for two threads, one takes the first half and the other
takes the second. Although this policy is useful for many ap-
plications, it will not work well for our algorithms. The no-
tification mechanism to avoid the redundant computations
can result in significant load imbalance between threads. If
most of the converged vertices reside in a certain part, then
the thread that is responsible for that part becomes idle un-
til the end of computation. To prevent this, we embraced
the dynamic scheduling where each thread is given a new
workload once it is done. No thread stays idle this way, and
the overall computation is parallelized more e�ciently.
h-index computation of a list is done by sorting the items

in non-increasing order and checking the values from the
beginning of the list to find the largest h value for which at
least h items exist with at least h value. Main bottleneck is
the sorting operation which takes O(n.logn) time. However,
h-index can be computed without sorting. We initialize h
as zero and iterate over the items in the list. At each time,
we attempt to increase the current h value based on the

a

i

d

f

b

h

c e g
122

4

2

4

3

2

4 2

1 1

23

3

2

2
1st

2nd

3rd

step
step
step

Figure 3: Core example

Figure 2: Async example

Theorem 4. In AND algorithm, if the r-cliques are pro-
cessed in the non-decreasing order of their final s indices,
convergence is obtained in a single iteration.

Proof. Say s(R) = t for an r-clique R. For the sake of
contradiction, assume that it takes more than one iteration
for ds(R) to converge s(R). So, ⌧0(R) = ds(R) and ⌧0(R) �
⌧1(R) > s(R). So, when R is being processed, H(L) > t
for L = {⇢(S) : S 3 R}. That means there are at least t+1
s-cliques where each has ⇢ value of at least t+ 1. However,
this implies that R is a part of (t + 1)-(r, s) nucleus, which
contradicts with the initial assumption.

The worst case happens when all the r-cliques see the ⌧
values of their neighbors that are computed in the previous
iteration and it is exactly the SND algorithm.

Figure 2 illustrates Snd and And algorithms (with di↵er-
ent orderings) on the k-core case (r = 1, s = 2). Our focus
is on vertices (1-cliques) and their edge (2-clique) counts
(degrees). We first apply Snd. First, vertex degrees are cal-
culated as ⌧0 indices (blue numbers). Then, for each vertex
u we compute the ⌧1(u) = H({⌧0(v) : v 2 N2(u)}, i.e., h-
index of its neighbors’ degrees (red numbers). For instance,
vertex a has two neighbors, e and b, with degrees 2 and
3. Since H({2, 3}) = 2, we get ⌧1(a) = 2. For vertex b,
we get ⌧1(b) = H({2, 2, 2}) = 2. Once we compute all ⌧1
indices, we iterate again because there were changes in ⌧
indices, e.g,. ⌧1(e) 6= ⌧0(e) (Line 13 in Algorithm 2). ⌧2
indices are shown in green. We observe an update only for
the vertex a; ⌧2(a) = H({⌧1(e), ⌧1(b)}) = H({1, 2}) = 1.
When we iterate again, no update is observed in ⌧ indices,
which means s = ⌧2 for all vertices. Regarding And algo-
rithm, we choose to follow the non-decreasing order of s

indices; {f,e,a,b,c,d}. Computing the ⌧1 indices on this or-
der enables us to reach the convergence in a single iteration.
For instance, ⌧1(a) = H({⌧1(e), ⌧0(b)}) = H({1, 2}) = 1.
If we choose to process the vertices in the alphabetical or-
der, {a,b,c,d,e,f}, we have ⌧1(a) = H({⌧0(e), ⌧0(b)}) =
H({2, 2}) = 2, which implies that we need more iteration(s)
to converge. Indeed ⌧2(a) = H({⌧1(e), ⌧1(b)}) = H({1, 2}) =
1

 ⌧1 ToDo: should I include some numbers in exp, bounds
part

4.2.1 Skipping the plateaus
ToDo: fig for tau changes and platos Our computations

converge when none of the vertices update their ⌧ indices
anymore. This implies that computations are performed for
all the vertices even when only a single update occurs. Those
computations are redundant. When ⌧(v) converges (v) for
a vertex v, no more computations are needed for v in the

following iterations. Also, a vertex can possibly maintain
the same ⌧ index for a number of iterations, reaches to a
plateau, and then updates it. So, it is not possible to deduce
whether ⌧(v) has converged to (v) by just looking at ⌧(v)
values of any vertex v. In order to skip the intermediate
or final plateaus during the convergence of ⌧(v) to (v), we
introduce a notification mechanism where a vertex notifies
its neighbors when its ⌧ index is updated.
Brown lines in Algorithm ?? summarizes the notification

mechanism we plug in to the asynchronous computation.
The only changes are in lines ??, ??, ?? and ??. Additional
C(·) array tracks whether a vertex v 2 V has updated its ⌧
index or not. It is set to true at the beginning to initiate
the computations for all vertices. Once C(v) becomes false,
i.e., maintains its ⌧ index, we avoid the computation. Note
that, a vertex restarts its computation only when a neighbor
vertex has an update (Line ??). Once a vertex completes
the computation, it is set to be not-updated (line ??) so that
no computation occurs until a notification is received from
a neighbor.

4.3 Illustrative examples
ToDo: explain fig 3 and 4

4.4 Heuristics and implementation
Here we introduce an important scheduling decision for

the parallelization in our algorithms, and a heuristic to com-
pute the h-index of a set in linear time.
We implemented our algorithms by using OpenMP [6] to

utilize the shared-memory architectures. The loops, anno-
tated as parallel in Algorithm ??, are shared among threads,
and each thread is responsible for its partition of vertices.
Default scheduling policy in OpenMP is static and it dis-
tributes the iterations of the loop to the threads in chunks,
i.e., for two threads, one takes the first half and the other
takes the second. Although this policy is useful for many ap-
plications, it will not work well for our algorithms. The no-

a

i

d

f

b

h

c e g
122

4

2

4

3

2

4 2

1 1

23

3

2

2
1st

2nd

3rd

step
step
step

Figure 3: Core example

Figure 5: Truss example

Table 3: Dataset statistics

|V | |E| |4| |K4|
as-skitter (ask) 1.7M 11.1M 28.8M 148.8M

facebook (fb) 4K 88.2K 1.6M 30.0M
soc-LiveJournal (slj) 4.8M 68.5M 285.7M 9.9B

soc-orkut (ork) 2.9M 106.3M 524.6M 2.4B
soc-sign-epinions (sse) 131.8K 711.2K 4.9M 58.6M
soc-twitter-higgs (hg) 456.6K 12.5M 83.0M 429.7M

twitter (tw) 81.3K 1.3M 13.1M 104.9M
web-Google (wgo) 916.4K 4.3M 13.4M 39.9M

web-NotreDame (wnd) 325.7K 1.1M 8.9M 231.9M
wikipedia-200611 (wiki) 3.1M 37.0M 88.8M 162.9M

use a hashmap to keep track of the items that are greater
than the current h value, and we simply ignore the items
that are smaller than h. This enables the computation of
the h-index in linear time. In addition, for the non-initial
iterations of the convergence process, we simply check the
items if the current ⌧ index can be preserved. Once we see
� ⌧ items with at least ⌧ index, no more checks needed.

5. EXPERIMENTS
We evaluate our algorithms on three instances of the nu-

cleus decomposition: k-core (or (1, 2)), k-truss (or (2, 3)),
and (3, 4). Constructing the hypergraphs requires to store
all the s-cliques, which is infeasible for large networks. Thus
we do not construct the actual hypergraphs to compute
the indices. Instead, we find the participations of the
r-cliques in s-cliques on-the-fly. Details about the com-
parison between two approaches are given in [25]. Our
dataset includes di↵erent types of real-world networks, such
as an internet topology network (as-skitter), online social
networks (facebook, soc-LiveJournal, soc-orkut), who-
trust-whom network (soc-sign-epinions), follower-followee
Twitter networks (soc-twitter-higgs, twitter), web net-
works (web-Google,
web-NotreDame), and a network of wikipedia pages
(wikipedia-200611). Number of vertices, edges, triangles
and four-cliques in those graphs are given in Table 3.

22

c

d

bf e a
1

1

3

2

21 1 2

2

2

1 1 2 2

2

2

degrees

 1 indices in SND
core numbers

22

c

d

bf e a
1

1

3

2

21 1 2

2

2

1 1 2 2

2

2

degrees
core numbers
2nd step in lex. order

Figure 2: Async example

Theorem 4. In AND algorithm, if the r-cliques are pro-
cessed in the non-decreasing order of their final s indices,
convergence is obtained in a single iteration.

Proof. Say s(R) = t for an r-clique R. For the sake of
contradiction, assume that it takes more than one iteration
for ds(R) to converge s(R). So, ⌧0(R) = ds(R) and ⌧0(R) �
⌧1(R) > s(R). So, when R is being processed, H(L) > t
for L = {⇢(S) : S 3 R}. That means there are at least t+1
s-cliques where each has ⇢ value of at least t+ 1. However,
this implies that R is a part of (t + 1)-(r, s) nucleus, which
contradicts with the initial assumption.

The worst case happens when all the r-cliques see the ⌧
values of their neighbors that are computed in the previous
iteration and it is exactly the SND algorithm.

Figure 2 illustrates the di↵erence between Snd and And
algorithms (with di↵erent orderings) on the k-core case (r =
1, s = 2). Our focus is on vertices (1-cliques) and their re-
lations with edges (2-cliques). We first apply Snd. First,
vertex degrees are calculated as ⌧0 indices (blue numbers).
Then, for each vertex u we compute the ⌧1(u) = H({⌧0(v) :
v 2 N2(u)}, i.e., h-index of its neighbors’ degrees (red num-
bers). ⌧ For instance,

ToDo: should I include some numbers in exp, bounds part

4.2.1 Skipping the plateaus
ToDo: fig for tau changes and platos Our computations

converge when none of the vertices update their ⌧ indices
anymore. This implies that computations are performed for
all the vertices even when only a single update occurs. Those
computations are redundant. When ⌧(v) converges (v) for
a vertex v, no more computations are needed for v in the
following iterations. Also, a vertex can possibly maintain
the same ⌧ index for a number of iterations, reaches to a
plateau, and then updates it. So, it is not possible to deduce
whether ⌧(v) has converged to (v) by just looking at ⌧(v)
values of any vertex v. In order to skip the intermediate
or final plateaus during the convergence of ⌧(v) to (v), we
introduce a notification mechanism where a vertex notifies
its neighbors when its ⌧ index is updated.

Brown lines in Algorithm ?? summarizes the notification
mechanism we plug in to the asynchronous computation.
The only changes are in lines ??, ??, ?? and ??. Additional
C(·) array tracks whether a vertex v 2 V has updated its ⌧
index or not. It is set to true at the beginning to initiate
the computations for all vertices. Once C(v) becomes false,
i.e., maintains its ⌧ index, we avoid the computation. Note
that, a vertex restarts its computation only when a neighbor

vertex has an update (Line ??). Once a vertex completes
the computation, it is set to be not-updated (line ??) so that
no computation occurs until a notification is received from
a neighbor.

4.3 Illustrative examples
ToDo: explain fig 3 and 4

4.4 Heuristics and implementation
Here we introduce an important scheduling decision for

the parallelization in our algorithms, and a heuristic to com-
pute the h-index of a set in linear time.
We implemented our algorithms by using OpenMP [6] to

utilize the shared-memory architectures. The loops, anno-
tated as parallel in Algorithm ??, are shared among threads,
and each thread is responsible for its partition of vertices.
Default scheduling policy in OpenMP is static and it dis-
tributes the iterations of the loop to the threads in chunks,
i.e., for two threads, one takes the first half and the other
takes the second. Although this policy is useful for many ap-
plications, it will not work well for our algorithms. The no-
tification mechanism to avoid the redundant computations
can result in significant load imbalance between threads. If
most of the converged vertices reside in a certain part, then
the thread that is responsible for that part becomes idle un-
til the end of computation. To prevent this, we embraced
the dynamic scheduling where each thread is given a new
workload once it is done. No thread stays idle this way, and
the overall computation is parallelized more e�ciently.
h-index computation of a list is done by sorting the items

in non-increasing order and checking the values from the
beginning of the list to find the largest h value for which at
least h items exist with at least h value. Main bottleneck is
the sorting operation which takes O(n.logn) time. However,
h-index can be computed without sorting. We initialize h
as zero and iterate over the items in the list. At each time,
we attempt to increase the current h value based on the

a

i

d

f

b

h

c e g
122

4

2

4

3

2

4 2

1 1

23

3

2

2
1st

2nd

3rd

step
step
step

Figure 3: Core example

Figure 2: Async example

Theorem 4. In AND algorithm, if the r-cliques are pro-
cessed in the non-decreasing order of their final s indices,
convergence is obtained in a single iteration.

Proof. Say s(R) = t for an r-clique R. For the sake of
contradiction, assume that it takes more than one iteration
for ds(R) to converge s(R). So, ⌧0(R) = ds(R) and ⌧0(R) �
⌧1(R) > s(R). So, when R is being processed, H(L) > t
for L = {⇢(S) : S 3 R}. That means there are at least t+1
s-cliques where each has ⇢ value of at least t+ 1. However,
this implies that R is a part of (t + 1)-(r, s) nucleus, which
contradicts with the initial assumption.

The worst case happens when all the r-cliques see the ⌧
values of their neighbors that are computed in the previous
iteration and it is exactly the SND algorithm.

Figure 2 illustrates Snd and And algorithms (with di↵er-
ent orderings) on the k-core case (r = 1, s = 2). Our focus
is on vertices (1-cliques) and their edge (2-clique) counts
(degrees). We first apply Snd. First, vertex degrees are cal-
culated as ⌧0 indices (blue numbers). Then, for each vertex
u we compute the ⌧1(u) = H({⌧0(v) : v 2 N2(u)}, i.e., h-
index of its neighbors’ degrees (red numbers). For instance,
vertex a has two neighbors, e and b, with degrees 2 and
3. Since H({2, 3}) = 2, we get ⌧1(a) = 2. For vertex b,
we get ⌧1(b) = H({2, 2, 2}) = 2. Once we compute all ⌧1
indices, we iterate again because there were changes in ⌧
indices, e.g,. ⌧1(e) 6= ⌧0(e) (Line 13 in Algorithm 2). ⌧2
indices are shown in green. We observe an update only for
the vertex a; ⌧2(a) = H({⌧1(e), ⌧1(b)}) = H({1, 2}) = 1.
When we iterate again, no update is observed in ⌧ indices,
which means s = ⌧2 for all vertices. Regarding And algo-
rithm, we choose to follow the non-decreasing order of s

indices; {f,e,a,b,c,d}. Computing the ⌧1 indices on this or-
der enables us to reach the convergence in a single iteration.
For instance, ⌧1(a) = H({⌧1(e), ⌧0(b)}) = H({1, 2}) = 1.
If we choose to process the vertices in the alphabetical or-
der, {a,b,c,d,e,f}, we have ⌧1(a) = H({⌧0(e), ⌧0(b)}) =
H({2, 2}) = 2, which implies that we need more iteration(s)
to converge. Indeed ⌧2(a) = H({⌧1(e), ⌧1(b)}) = H({1, 2}) =
1

 ⌧1 ToDo: should I include some numbers in exp, bounds
part

4.2.1 Skipping the plateaus
ToDo: fig for tau changes and platos Our computations

converge when none of the vertices update their ⌧ indices
anymore. This implies that computations are performed for
all the vertices even when only a single update occurs. Those
computations are redundant. When ⌧(v) converges (v) for
a vertex v, no more computations are needed for v in the

following iterations. Also, a vertex can possibly maintain
the same ⌧ index for a number of iterations, reaches to a
plateau, and then updates it. So, it is not possible to deduce
whether ⌧(v) has converged to (v) by just looking at ⌧(v)
values of any vertex v. In order to skip the intermediate
or final plateaus during the convergence of ⌧(v) to (v), we
introduce a notification mechanism where a vertex notifies
its neighbors when its ⌧ index is updated.
Brown lines in Algorithm ?? summarizes the notification

mechanism we plug in to the asynchronous computation.
The only changes are in lines ??, ??, ?? and ??. Additional
C(·) array tracks whether a vertex v 2 V has updated its ⌧
index or not. It is set to true at the beginning to initiate
the computations for all vertices. Once C(v) becomes false,
i.e., maintains its ⌧ index, we avoid the computation. Note
that, a vertex restarts its computation only when a neighbor
vertex has an update (Line ??). Once a vertex completes
the computation, it is set to be not-updated (line ??) so that
no computation occurs until a notification is received from
a neighbor.

4.3 Illustrative examples
ToDo: explain fig 3 and 4

4.4 Heuristics and implementation
Here we introduce an important scheduling decision for

the parallelization in our algorithms, and a heuristic to com-
pute the h-index of a set in linear time.
We implemented our algorithms by using OpenMP [6] to

utilize the shared-memory architectures. The loops, anno-
tated as parallel in Algorithm ??, are shared among threads,
and each thread is responsible for its partition of vertices.
Default scheduling policy in OpenMP is static and it dis-
tributes the iterations of the loop to the threads in chunks,
i.e., for two threads, one takes the first half and the other
takes the second. Although this policy is useful for many ap-
plications, it will not work well for our algorithms. The no-

a

i

d

f

b

h

c e g
122

4

2

4

3

2

4 2

1 1

23

3

2

2
1st

2nd

3rd

step
step
step

Figure 3: Core example

d3

 0 1 2
 3

1 2 3 4

AND (lex. order) :

 no notification :
degree, core number :

1 2 3 4 with notification :

Figure 4: Truss example

⌧0 ⌧1 ⌧2 ⌧3
⌧0 ⌧1 ⌧2
⌧0 ⌧1
d2 2

Figure 4 illustrates the k-truss decomposition (r = 2, s =
3) on a toy graph. We follow the lexicographical order of
the edges (vertex pairs). Triangle counts (d3) of edges are
given in blue, which are used to initialize ⌧0 indices. We first
process edge ab. It has four triangles, abc, abd, abe, abi.
⇢ value of each triangle is calculated by taking the minimum
⌧0 value of the neighbor edges of ab (Line 11). Set of ⇢ values
is {min(⌧0(ac), ⌧0(bc)),min(⌧0(ad), ⌧0(bd)),min(⌧0(ae),
⌧0(be)),min(⌧0(ai), ⌧0(bi))}, which is L = {4, 3, 3, 2} and
⌧1(ab) = H(L) = 3. After computing ⌧1 indices of all the
edges in lexicographical order (ei edge is last),

4.3 Heuristics and implementation
Here we introduce an important scheduling decision for

the parallelization in our algorithms, and a heuristic to com-
pute the h-index of a set in linear time.

We implemented our algorithms by using OpenMP [6] to
utilize the shared-memory architectures. The loops, anno-
tated as parallel in Algorithm ??, are shared among threads,
and each thread is responsible for its partition of vertices.
Default scheduling policy in OpenMP is static and it dis-
tributes the iterations of the loop to the threads in chunks,
i.e., for two threads, one takes the first half and the other
takes the second. Although this policy is useful for many ap-
plications, it will not work well for our algorithms. The no-
tification mechanism to avoid the redundant computations
can result in significant load imbalance between threads. If
most of the converged vertices reside in a certain part, then
the thread that is responsible for that part becomes idle un-
til the end of computation. To prevent this, we embraced
the dynamic scheduling where each thread is given a new
workload once it is done. No thread stays idle this way, and
the overall computation is parallelized more e�ciently.

h-index computation of a list is done by sorting the items
in non-increasing order and checking the values from the
beginning of the list to find the largest h value for which at

Table 3: Dataset statistics

|V | |E| |4| |K4|
as-skitter (ask) 1.7M 11.1M 28.8M 148.8M

facebook (fb) 4K 88.2K 1.6M 30.0M
soc-LiveJournal (slj) 4.8M 68.5M 285.7M 9.9B

soc-orkut (ork) 2.9M 106.3M 524.6M 2.4B
soc-sign-epinions (sse) 131.8K 711.2K 4.9M 58.6M
soc-twitter-higgs (hg) 456.6K 12.5M 83.0M 429.7M

twitter (tw) 81.3K 1.3M 13.1M 104.9M
web-Google (wgo) 916.4K 4.3M 13.4M 39.9M

web-NotreDame (wnd) 325.7K 1.1M 8.9M 231.9M
wikipedia-200611 (wiki) 3.1M 37.0M 88.8M 162.9M

least h items exist with at least h value. Main bottleneck is
the sorting operation which takes O(n.logn) time. However,
h-index can be computed without sorting. We initialize h
as zero and iterate over the items in the list. At each time,
we attempt to increase the current h value based on the
inspected item. For the current h value, we keep track of
the number of items that have equal value to h. We also
use a hashmap to keep track of the items that are greater
than the current h value, and we simply ignore the items
that are smaller than h. This enables the computation of
the h-index in linear time. In addition, for the non-initial
iterations of the convergence process, we simply check the
items if the current ⌧ index can be preserved. Once we see
� ⌧ items with at least ⌧ index, no more checks needed.

5. EXPERIMENTS
We evaluate our algorithms on three instances of the nu-

cleus decomposition: k-core (or (1, 2)), k-truss (or (2, 3)),
and (3, 4). Constructing the hypergraphs requires to store
all the s-cliques, which is infeasible for large networks. Thus
we do not construct the actual hypergraphs to compute
the indices. Instead, we find the participations of the
r-cliques in s-cliques on-the-fly. Details about the com-
parison between two approaches are given in [25]. Our
dataset includes di↵erent types of real-world networks, such
as an internet topology network (as-skitter), online social
networks (facebook, soc-LiveJournal, soc-orkut), who-
trust-whom network (soc-sign-epinions), follower-followee
Twitter networks (soc-twitter-higgs, twitter), web net-
works (web-Google,
web-NotreDame), and a network of wikipedia pages
(wikipedia-200611). Number of vertices, edges, triangles
and four-cliques in those graphs are given in Table 3.
All experiments are performed on a Linux operating sys-

tem running on a machine with Intel Ivy Bridge processor at
2.4 GHz with 64 GB DDR3 1866 MHz memory. There are
two sockets on the machine and each has twelve cores, mak-
ing 24 cores in total. Algorithms are implemented in C++
and compiled using gcc 6.1.0 at -O2 optimization level. We
used OpenMP v4.5 for the shared-memory parallelization.
We start with comparing the number of iterations that

our synchronous (Algorithm ??) and asynchronous (Algo-
rithm ??) algorithms need to converge. Then, we investi-
gate how much the ⌧ indices can approach to indices at
each iteration. Regarding the performance, we compare the
runtimes of our algorithms with respect to the peeling, and
also discuss the scalability of our implementations.

2 1 1 1 2 2 1 1 3 2 2 2

2 2 2 2

2 2 2 2

b

e

c

d

a g

h

i

f

2 2 2

2 2 2

2 2 2

2 2 2

2
2 2

2 2 2

1 1 1 1 1 1

1 1 1

1 1
 1 2 2 2

3
2

2

4 2 2

3 2
 2

3 2 2

3 2 2

4 2 2

4 3 2 3
2

2

⌧ ⌧ ⌧

4.3 Illustrative examples
ToDo: explain fig 3 and 4

4.4 Heuristics and implementation
Here we introduce an important scheduling decision for

the parallelization in our algorithms, and a heuristic to com-
pute the h-index of a set in linear time.

We implemented our algorithms by using OpenMP [6] to
utilize the shared-memory architectures. The loops, anno-
tated as parallel in Algorithm ??, are shared among threads,
and each thread is responsible for its partition of vertices.
Default scheduling policy in OpenMP is static and it dis-
tributes the iterations of the loop to the threads in chunks,
i.e., for two threads, one takes the first half and the other
takes the second. Although this policy is useful for many ap-
plications, it will not work well for our algorithms. The no-
tification mechanism to avoid the redundant computations
can result in significant load imbalance between threads. If
most of the converged vertices reside in a certain part, then
the thread that is responsible for that part becomes idle un-
til the end of computation. To prevent this, we embraced
the dynamic scheduling where each thread is given a new
workload once it is done. No thread stays idle this way, and
the overall computation is parallelized more e�ciently.

h-index computation of a list is done by sorting the items
in non-increasing order and checking the values from the
beginning of the list to find the largest h value for which at
least h items exist with at least h value. Main bottleneck is
the sorting operation which takes O(n.logn) time. However,
h-index can be computed without sorting. We initialize h
as zero and iterate over the items in the list. At each time,
we attempt to increase the current h value based on the
inspected item. For the current h value, we keep track of
the number of items that have equal value to h. We also

a

i

d

f

b

h

c e g
122

4

2

4

3

2

4 2

1 1

23

3

2

2
1st

2nd

3rd

step
step
step

Figure 4: Core example ToDo: put all step numbers, change
legend for taus

Table 3: Dataset statistics

|V | |E| |4| |K4|
as-skitter (ask) 1.7M 11.1M 28.8M 148.8M

facebook (fb) 4K 88.2K 1.6M 30.0M
soc-LiveJournal (slj) 4.8M 68.5M 285.7M 9.9B

soc-orkut (ork) 2.9M 106.3M 524.6M 2.4B
soc-sign-epinions (sse) 131.8K 711.2K 4.9M 58.6M
soc-twitter-higgs (hg) 456.6K 12.5M 83.0M 429.7M

twitter (tw) 81.3K 1.3M 13.1M 104.9M
web-Google (wgo) 916.4K 4.3M 13.4M 39.9M

web-NotreDame (wnd) 325.7K 1.1M 8.9M 231.9M
wikipedia-200611 (wiki) 3.1M 37.0M 88.8M 162.9M

use a hashmap to keep track of the items that are greater
than the current h value, and we simply ignore the items
that are smaller than h. This enables the computation of
the h-index in linear time. In addition, for the non-initial
iterations of the convergence process, we simply check the
items if the current ⌧ index can be preserved. Once we see
� ⌧ items with at least ⌧ index, no more checks needed.

5. EXPERIMENTS
We evaluate our algorithms on three instances of the nu-

cleus decomposition: k-core (or (1, 2)), k-truss (or (2, 3)),
and (3, 4). Constructing the hypergraphs requires to store
all the s-cliques, which is infeasible for large networks. Thus
we do not construct the actual hypergraphs to compute
the indices. Instead, we find the participations of the
r-cliques in s-cliques on-the-fly. Details about the com-
parison between two approaches are given in [25]. Our
dataset includes di↵erent types of real-world networks, such
as an internet topology network (as-skitter), online social
networks (facebook, soc-LiveJournal, soc-orkut), who-
trust-whom network (soc-sign-epinions), follower-followee

b

e

c

d

a g

h

i

f

4 3
2 3

4

3

3 1

11

1 2

2 3

4

2

2 2

2 3 2

22

2

2 2
2

2

Figure 5: Truss example

a i

d

f b

h

c

e

g2 2 2

3 2 2

4 3 2 2 2 2 2 2 1

4 2 2

4 3 2 1 1 1

2 1 1

0 1 2
(d2) (2)

22

c

d

bf e a
1

1

3

2

21 1 2

2

2

1 1 2 2

2

2

degrees

 1 indices in SND
core numbers

22

c

d

bf e a
1

1

3

2

21 1 2

2

2

1 1 2 2

2

2

degrees
core numbers
2nd step in lex. order

Figure 2: Async example

Theorem 4. In AND algorithm, if the r-cliques are pro-
cessed in the non-decreasing order of their final s indices,
convergence is obtained in a single iteration.

Proof. Say s(R) = t for an r-clique R. For the sake of
contradiction, assume that it takes more than one iteration
for ds(R) to converge s(R). So, ⌧0(R) = ds(R) and ⌧0(R) �
⌧1(R) > s(R). So, when R is being processed, H(L) > t
for L = {⇢(S) : S 3 R}. That means there are at least t+1
s-cliques where each has ⇢ value of at least t+ 1. However,
this implies that R is a part of (t + 1)-(r, s) nucleus, which
contradicts with the initial assumption.

The worst case happens when all the r-cliques see the ⌧
values of their neighbors that are computed in the previous
iteration and it is exactly the SND algorithm.

Figure 2 illustrates the di↵erence between Snd and And
algorithms (with di↵erent orderings) on the k-core case (r =
1, s = 2). Our focus is on vertices (1-cliques) and their re-
lations with edges (2-cliques). We first apply Snd. First,
vertex degrees are calculated as ⌧0 indices (blue numbers).
Then, for each vertex u we compute the ⌧1(u) = H({⌧0(v) :
v 2 N2(u)}, i.e., h-index of its neighbors’ degrees (red num-
bers). ⌧ For instance,

ToDo: should I include some numbers in exp, bounds part

4.2.1 Skipping the plateaus
ToDo: fig for tau changes and platos Our computations

converge when none of the vertices update their ⌧ indices
anymore. This implies that computations are performed for
all the vertices even when only a single update occurs. Those
computations are redundant. When ⌧(v) converges (v) for
a vertex v, no more computations are needed for v in the
following iterations. Also, a vertex can possibly maintain
the same ⌧ index for a number of iterations, reaches to a
plateau, and then updates it. So, it is not possible to deduce
whether ⌧(v) has converged to (v) by just looking at ⌧(v)
values of any vertex v. In order to skip the intermediate
or final plateaus during the convergence of ⌧(v) to (v), we
introduce a notification mechanism where a vertex notifies
its neighbors when its ⌧ index is updated.

Brown lines in Algorithm ?? summarizes the notification
mechanism we plug in to the asynchronous computation.
The only changes are in lines ??, ??, ?? and ??. Additional
C(·) array tracks whether a vertex v 2 V has updated its ⌧
index or not. It is set to true at the beginning to initiate
the computations for all vertices. Once C(v) becomes false,
i.e., maintains its ⌧ index, we avoid the computation. Note
that, a vertex restarts its computation only when a neighbor

vertex has an update (Line ??). Once a vertex completes
the computation, it is set to be not-updated (line ??) so that
no computation occurs until a notification is received from
a neighbor.

4.3 Illustrative examples
ToDo: explain fig 3 and 4

4.4 Heuristics and implementation
Here we introduce an important scheduling decision for

the parallelization in our algorithms, and a heuristic to com-
pute the h-index of a set in linear time.
We implemented our algorithms by using OpenMP [6] to

utilize the shared-memory architectures. The loops, anno-
tated as parallel in Algorithm ??, are shared among threads,
and each thread is responsible for its partition of vertices.
Default scheduling policy in OpenMP is static and it dis-
tributes the iterations of the loop to the threads in chunks,
i.e., for two threads, one takes the first half and the other
takes the second. Although this policy is useful for many ap-
plications, it will not work well for our algorithms. The no-
tification mechanism to avoid the redundant computations
can result in significant load imbalance between threads. If
most of the converged vertices reside in a certain part, then
the thread that is responsible for that part becomes idle un-
til the end of computation. To prevent this, we embraced
the dynamic scheduling where each thread is given a new
workload once it is done. No thread stays idle this way, and
the overall computation is parallelized more e�ciently.
h-index computation of a list is done by sorting the items

in non-increasing order and checking the values from the
beginning of the list to find the largest h value for which at
least h items exist with at least h value. Main bottleneck is
the sorting operation which takes O(n.logn) time. However,
h-index can be computed without sorting. We initialize h
as zero and iterate over the items in the list. At each time,
we attempt to increase the current h value based on the

a

i

d

f

b

h

c e g
122

4

2

4

3

2

4 2

1 1

23

3

2

2
1st

2nd

3rd

step
step
step

Figure 3: Core example

Figure 2: Async example

Theorem 4. In AND algorithm, if the r-cliques are pro-
cessed in the non-decreasing order of their final s indices,
convergence is obtained in a single iteration.

Proof. Say s(R) = t for an r-clique R. For the sake of
contradiction, assume that it takes more than one iteration
for ds(R) to converge s(R). So, ⌧0(R) = ds(R) and ⌧0(R) �
⌧1(R) > s(R). So, when R is being processed, H(L) > t
for L = {⇢(S) : S 3 R}. That means there are at least t+1
s-cliques where each has ⇢ value of at least t+ 1. However,
this implies that R is a part of (t + 1)-(r, s) nucleus, which
contradicts with the initial assumption.

The worst case happens when all the r-cliques see the ⌧
values of their neighbors that are computed in the previous
iteration and it is exactly the SND algorithm.

Figure 2 illustrates Snd and And algorithms (with di↵er-
ent orderings) on the k-core case (r = 1, s = 2). Our focus
is on vertices (1-cliques) and their edge (2-clique) counts
(degrees). We first apply Snd. First, vertex degrees are cal-
culated as ⌧0 indices (blue numbers). Then, for each vertex
u we compute the ⌧1(u) = H({⌧0(v) : v 2 N2(u)}, i.e., h-
index of its neighbors’ degrees (red numbers). For instance,
vertex a has two neighbors, e and b, with degrees 2 and
3. Since H({2, 3}) = 2, we get ⌧1(a) = 2. For vertex b,
we get ⌧1(b) = H({2, 2, 2}) = 2. Once we compute all ⌧1
indices, we iterate again because there were changes in ⌧
indices, e.g,. ⌧1(e) 6= ⌧0(e) (Line 13 in Algorithm 2). ⌧2
indices are shown in green. We observe an update only for
the vertex a; ⌧2(a) = H({⌧1(e), ⌧1(b)}) = H({1, 2}) = 1.
When we iterate again, no update is observed in ⌧ indices,
which means s = ⌧2 for all vertices. Regarding And algo-
rithm, we choose to follow the non-decreasing order of s

indices; {f,e,a,b,c,d}. Computing the ⌧1 indices on this or-
der enables us to reach the convergence in a single iteration.
For instance, ⌧1(a) = H({⌧1(e), ⌧0(b)}) = H({1, 2}) = 1.
If we choose to process the vertices in the alphabetical or-
der, {a,b,c,d,e,f}, we have ⌧1(a) = H({⌧0(e), ⌧0(b)}) =
H({2, 2}) = 2, which implies that we need more iteration(s)
to converge. Indeed ⌧2(a) = H({⌧1(e), ⌧1(b)}) = H({1, 2}) =
1

 ⌧1 ToDo: should I include some numbers in exp, bounds
part

4.2.1 Skipping the plateaus
ToDo: fig for tau changes and platos Our computations

converge when none of the vertices update their ⌧ indices
anymore. This implies that computations are performed for
all the vertices even when only a single update occurs. Those
computations are redundant. When ⌧(v) converges (v) for
a vertex v, no more computations are needed for v in the

following iterations. Also, a vertex can possibly maintain
the same ⌧ index for a number of iterations, reaches to a
plateau, and then updates it. So, it is not possible to deduce
whether ⌧(v) has converged to (v) by just looking at ⌧(v)
values of any vertex v. In order to skip the intermediate
or final plateaus during the convergence of ⌧(v) to (v), we
introduce a notification mechanism where a vertex notifies
its neighbors when its ⌧ index is updated.
Brown lines in Algorithm ?? summarizes the notification

mechanism we plug in to the asynchronous computation.
The only changes are in lines ??, ??, ?? and ??. Additional
C(·) array tracks whether a vertex v 2 V has updated its ⌧
index or not. It is set to true at the beginning to initiate
the computations for all vertices. Once C(v) becomes false,
i.e., maintains its ⌧ index, we avoid the computation. Note
that, a vertex restarts its computation only when a neighbor
vertex has an update (Line ??). Once a vertex completes
the computation, it is set to be not-updated (line ??) so that
no computation occurs until a notification is received from
a neighbor.

4.3 Illustrative examples
ToDo: explain fig 3 and 4

4.4 Heuristics and implementation
Here we introduce an important scheduling decision for

the parallelization in our algorithms, and a heuristic to com-
pute the h-index of a set in linear time.
We implemented our algorithms by using OpenMP [6] to

utilize the shared-memory architectures. The loops, anno-
tated as parallel in Algorithm ??, are shared among threads,
and each thread is responsible for its partition of vertices.
Default scheduling policy in OpenMP is static and it dis-
tributes the iterations of the loop to the threads in chunks,
i.e., for two threads, one takes the first half and the other
takes the second. Although this policy is useful for many ap-
plications, it will not work well for our algorithms. The no-

a

i

d

f

b

h

c e g
122

4

2

4

3

2

4 2

1 1

23

3

2

2
1st

2nd

3rd

step
step
step

Figure 3: Core example

Figure 4: Core example

⌧ ⌧ ⌧
⌧ ⌧

4.3 Illustrative examples
ToDo: explain fig 3 and 4 We present two examples to

illustrate the di↵erences between Snd and And algorithms.
Figure 4 presents the k-core decomposition process on a toy
graph.

4.4 Heuristics and implementation
Here we introduce an important scheduling decision for

the parallelization in our algorithms, and a heuristic to com-
pute the h-index of a set in linear time.

We implemented our algorithms by using OpenMP [6] to
utilize the shared-memory architectures. The loops, anno-
tated as parallel in Algorithm ??, are shared among threads,
and each thread is responsible for its partition of vertices.
Default scheduling policy in OpenMP is static and it dis-
tributes the iterations of the loop to the threads in chunks,
i.e., for two threads, one takes the first half and the other
takes the second. Although this policy is useful for many ap-
plications, it will not work well for our algorithms. The no-
tification mechanism to avoid the redundant computations
can result in significant load imbalance between threads. If
most of the converged vertices reside in a certain part, then
the thread that is responsible for that part becomes idle un-
til the end of computation. To prevent this, we embraced
the dynamic scheduling where each thread is given a new
workload once it is done. No thread stays idle this way, and
the overall computation is parallelized more e�ciently.

h-index computation of a list is done by sorting the items
in non-increasing order and checking the values from the
beginning of the list to find the largest h value for which at
least h items exist with at least h value. Main bottleneck is
the sorting operation which takes O(n.logn) time. However,
h-index can be computed without sorting. We initialize h
as zero and iterate over the items in the list. At each time,
we attempt to increase the current h value based on the
inspected item. For the current h value, we keep track of
the number of items that have equal value to h. We also

b

e

c

d

a g

h

i

f

2 2 2

2 2 2

2 2 2

2 2 2

2
2

2

2 2 2

1 1 1 1 1 1

1 1 1

1 1
 1 2 2 2

3
2

2

4 2 2

3 2
 2

3 2 2

3 2 2

4 2 2

4 3 2 3
2

2

⌧ ⌧ ⌧

4.3 Illustrative examples
ToDo: explain fig 3 and 4

4.4 Heuristics and implementation
Here we introduce an important scheduling decision for

the parallelization in our algorithms, and a heuristic to com-
pute the h-index of a set in linear time.

We implemented our algorithms by using OpenMP [6] to
utilize the shared-memory architectures. The loops, anno-
tated as parallel in Algorithm ??, are shared among threads,
and each thread is responsible for its partition of vertices.
Default scheduling policy in OpenMP is static and it dis-
tributes the iterations of the loop to the threads in chunks,
i.e., for two threads, one takes the first half and the other
takes the second. Although this policy is useful for many ap-
plications, it will not work well for our algorithms. The no-
tification mechanism to avoid the redundant computations
can result in significant load imbalance between threads. If
most of the converged vertices reside in a certain part, then
the thread that is responsible for that part becomes idle un-
til the end of computation. To prevent this, we embraced
the dynamic scheduling where each thread is given a new
workload once it is done. No thread stays idle this way, and
the overall computation is parallelized more e�ciently.

h-index computation of a list is done by sorting the items
in non-increasing order and checking the values from the
beginning of the list to find the largest h value for which at
least h items exist with at least h value. Main bottleneck is
the sorting operation which takes O(n.logn) time. However,
h-index can be computed without sorting. We initialize h
as zero and iterate over the items in the list. At each time,
we attempt to increase the current h value based on the
inspected item. For the current h value, we keep track of
the number of items that have equal value to h. We also

a

i

d

f

b

h

c e g
122

4

2

4

3

2

4 2

1 1

23

3

2

2
1st

2nd

3rd

step
step
step

Figure 4: Core example ToDo: put all step numbers, change
legend for taus

Table 3: Dataset statistics

|V | |E| |4| |K4|
as-skitter (ask) 1.7M 11.1M 28.8M 148.8M

facebook (fb) 4K 88.2K 1.6M 30.0M
soc-LiveJournal (slj) 4.8M 68.5M 285.7M 9.9B

soc-orkut (ork) 2.9M 106.3M 524.6M 2.4B
soc-sign-epinions (sse) 131.8K 711.2K 4.9M 58.6M
soc-twitter-higgs (hg) 456.6K 12.5M 83.0M 429.7M

twitter (tw) 81.3K 1.3M 13.1M 104.9M
web-Google (wgo) 916.4K 4.3M 13.4M 39.9M

web-NotreDame (wnd) 325.7K 1.1M 8.9M 231.9M
wikipedia-200611 (wiki) 3.1M 37.0M 88.8M 162.9M

use a hashmap to keep track of the items that are greater
than the current h value, and we simply ignore the items
that are smaller than h. This enables the computation of
the h-index in linear time. In addition, for the non-initial
iterations of the convergence process, we simply check the
items if the current ⌧ index can be preserved. Once we see
� ⌧ items with at least ⌧ index, no more checks needed.

5. EXPERIMENTS
We evaluate our algorithms on three instances of the nu-

cleus decomposition: k-core (or (1, 2)), k-truss (or (2, 3)),
and (3, 4). Constructing the hypergraphs requires to store
all the s-cliques, which is infeasible for large networks. Thus
we do not construct the actual hypergraphs to compute
the indices. Instead, we find the participations of the
r-cliques in s-cliques on-the-fly. Details about the com-
parison between two approaches are given in [25]. Our
dataset includes di↵erent types of real-world networks, such
as an internet topology network (as-skitter), online social
networks (facebook, soc-LiveJournal, soc-orkut), who-
trust-whom network (soc-sign-epinions), follower-followee

b

e

c

d

a g

h

i

f

4 3
2 3

4

3

3 1

11

1 2

2 3

4

2

2 2

2 3 2

22

2

2 2
2

2

Figure 5: Truss example

0 1 2
(d3) (3)

22

c

d

bf e a
1

1

3

2

21 1 2

2

2

1 1 2 2

2

2

degrees

 1 indices in SND
core numbers

22

c

d

bf e a
1

1

3

2

21 1 2

2

2

1 1 2 2

2

2

degrees
core numbers
2nd step in lex. order

Figure 2: Async example

Theorem 4. In AND algorithm, if the r-cliques are pro-
cessed in the non-decreasing order of their final s indices,
convergence is obtained in a single iteration.

Proof. Say s(R) = t for an r-clique R. For the sake of
contradiction, assume that it takes more than one iteration
for ds(R) to converge s(R). So, ⌧0(R) = ds(R) and ⌧0(R) �
⌧1(R) > s(R). So, when R is being processed, H(L) > t
for L = {⇢(S) : S 3 R}. That means there are at least t+1
s-cliques where each has ⇢ value of at least t+ 1. However,
this implies that R is a part of (t + 1)-(r, s) nucleus, which
contradicts with the initial assumption.

The worst case happens when all the r-cliques see the ⌧
values of their neighbors that are computed in the previous
iteration and it is exactly the SND algorithm.

Figure 2 illustrates the di↵erence between Snd and And
algorithms (with di↵erent orderings) on the k-core case (r =
1, s = 2). Our focus is on vertices (1-cliques) and their re-
lations with edges (2-cliques). We first apply Snd. First,
vertex degrees are calculated as ⌧0 indices (blue numbers).
Then, for each vertex u we compute the ⌧1(u) = H({⌧0(v) :
v 2 N2(u)}, i.e., h-index of its neighbors’ degrees (red num-
bers). ⌧ For instance,

ToDo: should I include some numbers in exp, bounds part

4.2.1 Skipping the plateaus
ToDo: fig for tau changes and platos Our computations

converge when none of the vertices update their ⌧ indices
anymore. This implies that computations are performed for
all the vertices even when only a single update occurs. Those
computations are redundant. When ⌧(v) converges (v) for
a vertex v, no more computations are needed for v in the
following iterations. Also, a vertex can possibly maintain
the same ⌧ index for a number of iterations, reaches to a
plateau, and then updates it. So, it is not possible to deduce
whether ⌧(v) has converged to (v) by just looking at ⌧(v)
values of any vertex v. In order to skip the intermediate
or final plateaus during the convergence of ⌧(v) to (v), we
introduce a notification mechanism where a vertex notifies
its neighbors when its ⌧ index is updated.

Brown lines in Algorithm ?? summarizes the notification
mechanism we plug in to the asynchronous computation.
The only changes are in lines ??, ??, ?? and ??. Additional
C(·) array tracks whether a vertex v 2 V has updated its ⌧
index or not. It is set to true at the beginning to initiate
the computations for all vertices. Once C(v) becomes false,
i.e., maintains its ⌧ index, we avoid the computation. Note
that, a vertex restarts its computation only when a neighbor

vertex has an update (Line ??). Once a vertex completes
the computation, it is set to be not-updated (line ??) so that
no computation occurs until a notification is received from
a neighbor.

4.3 Illustrative examples
ToDo: explain fig 3 and 4

4.4 Heuristics and implementation
Here we introduce an important scheduling decision for

the parallelization in our algorithms, and a heuristic to com-
pute the h-index of a set in linear time.
We implemented our algorithms by using OpenMP [6] to

utilize the shared-memory architectures. The loops, anno-
tated as parallel in Algorithm ??, are shared among threads,
and each thread is responsible for its partition of vertices.
Default scheduling policy in OpenMP is static and it dis-
tributes the iterations of the loop to the threads in chunks,
i.e., for two threads, one takes the first half and the other
takes the second. Although this policy is useful for many ap-
plications, it will not work well for our algorithms. The no-
tification mechanism to avoid the redundant computations
can result in significant load imbalance between threads. If
most of the converged vertices reside in a certain part, then
the thread that is responsible for that part becomes idle un-
til the end of computation. To prevent this, we embraced
the dynamic scheduling where each thread is given a new
workload once it is done. No thread stays idle this way, and
the overall computation is parallelized more e�ciently.
h-index computation of a list is done by sorting the items

in non-increasing order and checking the values from the
beginning of the list to find the largest h value for which at
least h items exist with at least h value. Main bottleneck is
the sorting operation which takes O(n.logn) time. However,
h-index can be computed without sorting. We initialize h
as zero and iterate over the items in the list. At each time,
we attempt to increase the current h value based on the

a

i

d

f

b

h

c e g
122

4

2

4

3

2

4 2

1 1

23

3

2

2
1st

2nd

3rd

step
step
step

Figure 3: Core example

Figure 2: Async example

Theorem 4. In AND algorithm, if the r-cliques are pro-
cessed in the non-decreasing order of their final s indices,
convergence is obtained in a single iteration.

Proof. Say s(R) = t for an r-clique R. For the sake of
contradiction, assume that it takes more than one iteration
for ds(R) to converge s(R). So, ⌧0(R) = ds(R) and ⌧0(R) �
⌧1(R) > s(R). So, when R is being processed, H(L) > t
for L = {⇢(S) : S 3 R}. That means there are at least t+1
s-cliques where each has ⇢ value of at least t+ 1. However,
this implies that R is a part of (t + 1)-(r, s) nucleus, which
contradicts with the initial assumption.

The worst case happens when all the r-cliques see the ⌧
values of their neighbors that are computed in the previous
iteration and it is exactly the SND algorithm.

Figure 2 illustrates Snd and And algorithms (with di↵er-
ent orderings) on the k-core case (r = 1, s = 2). Our focus
is on vertices (1-cliques) and their edge (2-clique) counts
(degrees). We first apply Snd. First, vertex degrees are cal-
culated as ⌧0 indices (blue numbers). Then, for each vertex
u we compute the ⌧1(u) = H({⌧0(v) : v 2 N2(u)}, i.e., h-
index of its neighbors’ degrees (red numbers). For instance,
vertex a has two neighbors, e and b, with degrees 2 and
3. Since H({2, 3}) = 2, we get ⌧1(a) = 2. For vertex b,
we get ⌧1(b) = H({2, 2, 2}) = 2. Once we compute all ⌧1
indices, we iterate again because there were changes in ⌧
indices, e.g,. ⌧1(e) 6= ⌧0(e) (Line 13 in Algorithm 2). ⌧2
indices are shown in green. We observe an update only for
the vertex a; ⌧2(a) = H({⌧1(e), ⌧1(b)}) = H({1, 2}) = 1.
When we iterate again, no update is observed in ⌧ indices,
which means s = ⌧2 for all vertices. Regarding And algo-
rithm, we choose to follow the non-decreasing order of s

indices; {f,e,a,b,c,d}. Computing the ⌧1 indices on this or-
der enables us to reach the convergence in a single iteration.
For instance, ⌧1(a) = H({⌧1(e), ⌧0(b)}) = H({1, 2}) = 1.
If we choose to process the vertices in the alphabetical or-
der, {a,b,c,d,e,f}, we have ⌧1(a) = H({⌧0(e), ⌧0(b)}) =
H({2, 2}) = 2, which implies that we need more iteration(s)
to converge. Indeed ⌧2(a) = H({⌧1(e), ⌧1(b)}) = H({1, 2}) =
1

 ⌧1 ToDo: should I include some numbers in exp, bounds
part

4.2.1 Skipping the plateaus
ToDo: fig for tau changes and platos Our computations

converge when none of the vertices update their ⌧ indices
anymore. This implies that computations are performed for
all the vertices even when only a single update occurs. Those
computations are redundant. When ⌧(v) converges (v) for
a vertex v, no more computations are needed for v in the

following iterations. Also, a vertex can possibly maintain
the same ⌧ index for a number of iterations, reaches to a
plateau, and then updates it. So, it is not possible to deduce
whether ⌧(v) has converged to (v) by just looking at ⌧(v)
values of any vertex v. In order to skip the intermediate
or final plateaus during the convergence of ⌧(v) to (v), we
introduce a notification mechanism where a vertex notifies
its neighbors when its ⌧ index is updated.
Brown lines in Algorithm ?? summarizes the notification

mechanism we plug in to the asynchronous computation.
The only changes are in lines ??, ??, ?? and ??. Additional
C(·) array tracks whether a vertex v 2 V has updated its ⌧
index or not. It is set to true at the beginning to initiate
the computations for all vertices. Once C(v) becomes false,
i.e., maintains its ⌧ index, we avoid the computation. Note
that, a vertex restarts its computation only when a neighbor
vertex has an update (Line ??). Once a vertex completes
the computation, it is set to be not-updated (line ??) so that
no computation occurs until a notification is received from
a neighbor.

4.3 Illustrative examples
ToDo: explain fig 3 and 4

4.4 Heuristics and implementation
Here we introduce an important scheduling decision for

the parallelization in our algorithms, and a heuristic to com-
pute the h-index of a set in linear time.
We implemented our algorithms by using OpenMP [6] to

utilize the shared-memory architectures. The loops, anno-
tated as parallel in Algorithm ??, are shared among threads,
and each thread is responsible for its partition of vertices.
Default scheduling policy in OpenMP is static and it dis-
tributes the iterations of the loop to the threads in chunks,
i.e., for two threads, one takes the first half and the other
takes the second. Although this policy is useful for many ap-
plications, it will not work well for our algorithms. The no-

a

i

d

f

b

h

c e g
122

4

2

4

3

2

4 2

1 1

23

3

2

2
1st

2nd

3rd

step
step
step

Figure 3: Core example

Figure 5: Truss example

Table 3: Dataset statistics

|V | |E| |4| |K4|
as-skitter (ask) 1.7M 11.1M 28.8M 148.8M

facebook (fb) 4K 88.2K 1.6M 30.0M
soc-LiveJournal (slj) 4.8M 68.5M 285.7M 9.9B

soc-orkut (ork) 2.9M 106.3M 524.6M 2.4B
soc-sign-epinions (sse) 131.8K 711.2K 4.9M 58.6M
soc-twitter-higgs (hg) 456.6K 12.5M 83.0M 429.7M

twitter (tw) 81.3K 1.3M 13.1M 104.9M
web-Google (wgo) 916.4K 4.3M 13.4M 39.9M

web-NotreDame (wnd) 325.7K 1.1M 8.9M 231.9M
wikipedia-200611 (wiki) 3.1M 37.0M 88.8M 162.9M

use a hashmap to keep track of the items that are greater
than the current h value, and we simply ignore the items
that are smaller than h. This enables the computation of
the h-index in linear time. In addition, for the non-initial
iterations of the convergence process, we simply check the
items if the current ⌧ index can be preserved. Once we see
� ⌧ items with at least ⌧ index, no more checks needed.

5. EXPERIMENTS
We evaluate our algorithms on three instances of the nu-

cleus decomposition: k-core (or (1, 2)), k-truss (or (2, 3)),
and (3, 4). Constructing the hypergraphs requires to store
all the s-cliques, which is infeasible for large networks. Thus
we do not construct the actual hypergraphs to compute
the indices. Instead, we find the participations of the
r-cliques in s-cliques on-the-fly. Details about the com-
parison between two approaches are given in [25]. Our
dataset includes di↵erent types of real-world networks, such
as an internet topology network (as-skitter), online social
networks (facebook, soc-LiveJournal, soc-orkut), who-
trust-whom network (soc-sign-epinions), follower-followee
Twitter networks (soc-twitter-higgs, twitter), web net-
works (web-Google,
web-NotreDame), and a network of wikipedia pages
(wikipedia-200611). Number of vertices, edges, triangles
and four-cliques in those graphs are given in Table 3.

22

c

d

bf e a
1

1

3

2

21 1 2

2

2

1 1 2 2

2

2

degrees

 1 indices in SND
core numbers

22

c

d

bf e a
1

1

3

2

21 1 2

2

2

1 1 2 2

2

2

degrees
core numbers
2nd step in lex. order

Figure 2: Async example

Theorem 4. In AND algorithm, if the r-cliques are pro-
cessed in the non-decreasing order of their final s indices,
convergence is obtained in a single iteration.

Proof. Say s(R) = t for an r-clique R. For the sake of
contradiction, assume that it takes more than one iteration
for ds(R) to converge s(R). So, ⌧0(R) = ds(R) and ⌧0(R) �
⌧1(R) > s(R). So, when R is being processed, H(L) > t
for L = {⇢(S) : S 3 R}. That means there are at least t+1
s-cliques where each has ⇢ value of at least t+ 1. However,
this implies that R is a part of (t + 1)-(r, s) nucleus, which
contradicts with the initial assumption.

The worst case happens when all the r-cliques see the ⌧
values of their neighbors that are computed in the previous
iteration and it is exactly the SND algorithm.

Figure 2 illustrates the di↵erence between Snd and And
algorithms (with di↵erent orderings) on the k-core case (r =
1, s = 2). Our focus is on vertices (1-cliques) and their re-
lations with edges (2-cliques). We first apply Snd. First,
vertex degrees are calculated as ⌧0 indices (blue numbers).
Then, for each vertex u we compute the ⌧1(u) = H({⌧0(v) :
v 2 N2(u)}, i.e., h-index of its neighbors’ degrees (red num-
bers). ⌧ For instance,

ToDo: should I include some numbers in exp, bounds part

4.2.1 Skipping the plateaus
ToDo: fig for tau changes and platos Our computations

converge when none of the vertices update their ⌧ indices
anymore. This implies that computations are performed for
all the vertices even when only a single update occurs. Those
computations are redundant. When ⌧(v) converges (v) for
a vertex v, no more computations are needed for v in the
following iterations. Also, a vertex can possibly maintain
the same ⌧ index for a number of iterations, reaches to a
plateau, and then updates it. So, it is not possible to deduce
whether ⌧(v) has converged to (v) by just looking at ⌧(v)
values of any vertex v. In order to skip the intermediate
or final plateaus during the convergence of ⌧(v) to (v), we
introduce a notification mechanism where a vertex notifies
its neighbors when its ⌧ index is updated.

Brown lines in Algorithm ?? summarizes the notification
mechanism we plug in to the asynchronous computation.
The only changes are in lines ??, ??, ?? and ??. Additional
C(·) array tracks whether a vertex v 2 V has updated its ⌧
index or not. It is set to true at the beginning to initiate
the computations for all vertices. Once C(v) becomes false,
i.e., maintains its ⌧ index, we avoid the computation. Note
that, a vertex restarts its computation only when a neighbor

vertex has an update (Line ??). Once a vertex completes
the computation, it is set to be not-updated (line ??) so that
no computation occurs until a notification is received from
a neighbor.

4.3 Illustrative examples
ToDo: explain fig 3 and 4

4.4 Heuristics and implementation
Here we introduce an important scheduling decision for

the parallelization in our algorithms, and a heuristic to com-
pute the h-index of a set in linear time.
We implemented our algorithms by using OpenMP [6] to

utilize the shared-memory architectures. The loops, anno-
tated as parallel in Algorithm ??, are shared among threads,
and each thread is responsible for its partition of vertices.
Default scheduling policy in OpenMP is static and it dis-
tributes the iterations of the loop to the threads in chunks,
i.e., for two threads, one takes the first half and the other
takes the second. Although this policy is useful for many ap-
plications, it will not work well for our algorithms. The no-
tification mechanism to avoid the redundant computations
can result in significant load imbalance between threads. If
most of the converged vertices reside in a certain part, then
the thread that is responsible for that part becomes idle un-
til the end of computation. To prevent this, we embraced
the dynamic scheduling where each thread is given a new
workload once it is done. No thread stays idle this way, and
the overall computation is parallelized more e�ciently.
h-index computation of a list is done by sorting the items

in non-increasing order and checking the values from the
beginning of the list to find the largest h value for which at
least h items exist with at least h value. Main bottleneck is
the sorting operation which takes O(n.logn) time. However,
h-index can be computed without sorting. We initialize h
as zero and iterate over the items in the list. At each time,
we attempt to increase the current h value based on the

a

i

d

f

b

h

c e g
122

4

2

4

3

2

4 2

1 1

23

3

2

2
1st

2nd

3rd

step
step
step

Figure 3: Core example

Figure 2: Async example

Theorem 4. In AND algorithm, if the r-cliques are pro-
cessed in the non-decreasing order of their final s indices,
convergence is obtained in a single iteration.

Proof. Say s(R) = t for an r-clique R. For the sake of
contradiction, assume that it takes more than one iteration
for ds(R) to converge s(R). So, ⌧0(R) = ds(R) and ⌧0(R) �
⌧1(R) > s(R). So, when R is being processed, H(L) > t
for L = {⇢(S) : S 3 R}. That means there are at least t+1
s-cliques where each has ⇢ value of at least t+ 1. However,
this implies that R is a part of (t + 1)-(r, s) nucleus, which
contradicts with the initial assumption.

The worst case happens when all the r-cliques see the ⌧
values of their neighbors that are computed in the previous
iteration and it is exactly the SND algorithm.

Figure 2 illustrates Snd and And algorithms (with di↵er-
ent orderings) on the k-core case (r = 1, s = 2). Our focus
is on vertices (1-cliques) and their edge (2-clique) counts
(degrees). We first apply Snd. First, vertex degrees are cal-
culated as ⌧0 indices (blue numbers). Then, for each vertex
u we compute the ⌧1(u) = H({⌧0(v) : v 2 N2(u)}, i.e., h-
index of its neighbors’ degrees (red numbers). For instance,
vertex a has two neighbors, e and b, with degrees 2 and
3. Since H({2, 3}) = 2, we get ⌧1(a) = 2. For vertex b,
we get ⌧1(b) = H({2, 2, 2}) = 2. Once we compute all ⌧1
indices, we iterate again because there were changes in ⌧
indices, e.g,. ⌧1(e) 6= ⌧0(e) (Line 13 in Algorithm 2). ⌧2
indices are shown in green. We observe an update only for
the vertex a; ⌧2(a) = H({⌧1(e), ⌧1(b)}) = H({1, 2}) = 1.
When we iterate again, no update is observed in ⌧ indices,
which means s = ⌧2 for all vertices. Regarding And algo-
rithm, we choose to follow the non-decreasing order of s

indices; {f,e,a,b,c,d}. Computing the ⌧1 indices on this or-
der enables us to reach the convergence in a single iteration.
For instance, ⌧1(a) = H({⌧1(e), ⌧0(b)}) = H({1, 2}) = 1.
If we choose to process the vertices in the alphabetical or-
der, {a,b,c,d,e,f}, we have ⌧1(a) = H({⌧0(e), ⌧0(b)}) =
H({2, 2}) = 2, which implies that we need more iteration(s)
to converge. Indeed ⌧2(a) = H({⌧1(e), ⌧1(b)}) = H({1, 2}) =
1

 ⌧1 ToDo: should I include some numbers in exp, bounds
part

4.2.1 Skipping the plateaus
ToDo: fig for tau changes and platos Our computations

converge when none of the vertices update their ⌧ indices
anymore. This implies that computations are performed for
all the vertices even when only a single update occurs. Those
computations are redundant. When ⌧(v) converges (v) for
a vertex v, no more computations are needed for v in the

following iterations. Also, a vertex can possibly maintain
the same ⌧ index for a number of iterations, reaches to a
plateau, and then updates it. So, it is not possible to deduce
whether ⌧(v) has converged to (v) by just looking at ⌧(v)
values of any vertex v. In order to skip the intermediate
or final plateaus during the convergence of ⌧(v) to (v), we
introduce a notification mechanism where a vertex notifies
its neighbors when its ⌧ index is updated.
Brown lines in Algorithm ?? summarizes the notification

mechanism we plug in to the asynchronous computation.
The only changes are in lines ??, ??, ?? and ??. Additional
C(·) array tracks whether a vertex v 2 V has updated its ⌧
index or not. It is set to true at the beginning to initiate
the computations for all vertices. Once C(v) becomes false,
i.e., maintains its ⌧ index, we avoid the computation. Note
that, a vertex restarts its computation only when a neighbor
vertex has an update (Line ??). Once a vertex completes
the computation, it is set to be not-updated (line ??) so that
no computation occurs until a notification is received from
a neighbor.

4.3 Illustrative examples
ToDo: explain fig 3 and 4

4.4 Heuristics and implementation
Here we introduce an important scheduling decision for

the parallelization in our algorithms, and a heuristic to com-
pute the h-index of a set in linear time.
We implemented our algorithms by using OpenMP [6] to

utilize the shared-memory architectures. The loops, anno-
tated as parallel in Algorithm ??, are shared among threads,
and each thread is responsible for its partition of vertices.
Default scheduling policy in OpenMP is static and it dis-
tributes the iterations of the loop to the threads in chunks,
i.e., for two threads, one takes the first half and the other
takes the second. Although this policy is useful for many ap-
plications, it will not work well for our algorithms. The no-

a

i

d

f

b

h

c e g
122

4

2

4

3

2

4 2

1 1

23

3

2

2
1st

2nd

3rd

step
step
step

Figure 3: Core example

d3

 0 1 2
 3

1 2 3 4

AND (lex. order) :

 no notification :
degree, core number :

1 2 3 4 with notification :

Figure 4: Truss example

⌧0 ⌧1 ⌧2 ⌧3
⌧0 ⌧1 ⌧2
⌧0 ⌧1
d2 2

Figure 4 illustrates the k-truss decomposition (r = 2, s =
3) on a toy graph. We follow the lexicographical order of
the edges (vertex pairs). Triangle counts (d3) of edges are
given in blue, which are used to initialize ⌧0 indices. We first
process edge ab. It has four triangles, abc, abd, abe, abi.
⇢ value of each triangle is calculated by taking the minimum
⌧0 value of the neighbor edges of ab (Line 11). Set of ⇢ values
is {min(⌧0(ac), ⌧0(bc)),min(⌧0(ad), ⌧0(bd)),min(⌧0(ae),
⌧0(be)),min(⌧0(ai), ⌧0(bi))}, which is L = {4, 3, 3, 2} and
⌧1(ab) = H(L) = 3. After computing ⌧1 indices of all the
edges in lexicographical order (ei edge is last),

4.3 Heuristics and implementation
Here we introduce an important scheduling decision for

the parallelization in our algorithms, and a heuristic to com-
pute the h-index of a set in linear time.

We implemented our algorithms by using OpenMP [6] to
utilize the shared-memory architectures. The loops, anno-
tated as parallel in Algorithm ??, are shared among threads,
and each thread is responsible for its partition of vertices.
Default scheduling policy in OpenMP is static and it dis-
tributes the iterations of the loop to the threads in chunks,
i.e., for two threads, one takes the first half and the other
takes the second. Although this policy is useful for many ap-
plications, it will not work well for our algorithms. The no-
tification mechanism to avoid the redundant computations
can result in significant load imbalance between threads. If
most of the converged vertices reside in a certain part, then
the thread that is responsible for that part becomes idle un-
til the end of computation. To prevent this, we embraced
the dynamic scheduling where each thread is given a new
workload once it is done. No thread stays idle this way, and
the overall computation is parallelized more e�ciently.

h-index computation of a list is done by sorting the items
in non-increasing order and checking the values from the
beginning of the list to find the largest h value for which at

Table 3: Dataset statistics

|V | |E| |4| |K4|
as-skitter (ask) 1.7M 11.1M 28.8M 148.8M

facebook (fb) 4K 88.2K 1.6M 30.0M
soc-LiveJournal (slj) 4.8M 68.5M 285.7M 9.9B

soc-orkut (ork) 2.9M 106.3M 524.6M 2.4B
soc-sign-epinions (sse) 131.8K 711.2K 4.9M 58.6M
soc-twitter-higgs (hg) 456.6K 12.5M 83.0M 429.7M

twitter (tw) 81.3K 1.3M 13.1M 104.9M
web-Google (wgo) 916.4K 4.3M 13.4M 39.9M

web-NotreDame (wnd) 325.7K 1.1M 8.9M 231.9M
wikipedia-200611 (wiki) 3.1M 37.0M 88.8M 162.9M

least h items exist with at least h value. Main bottleneck is
the sorting operation which takes O(n.logn) time. However,
h-index can be computed without sorting. We initialize h
as zero and iterate over the items in the list. At each time,
we attempt to increase the current h value based on the
inspected item. For the current h value, we keep track of
the number of items that have equal value to h. We also
use a hashmap to keep track of the items that are greater
than the current h value, and we simply ignore the items
that are smaller than h. This enables the computation of
the h-index in linear time. In addition, for the non-initial
iterations of the convergence process, we simply check the
items if the current ⌧ index can be preserved. Once we see
� ⌧ items with at least ⌧ index, no more checks needed.

5. EXPERIMENTS
We evaluate our algorithms on three instances of the nu-

cleus decomposition: k-core (or (1, 2)), k-truss (or (2, 3)),
and (3, 4). Constructing the hypergraphs requires to store
all the s-cliques, which is infeasible for large networks. Thus
we do not construct the actual hypergraphs to compute
the indices. Instead, we find the participations of the
r-cliques in s-cliques on-the-fly. Details about the com-
parison between two approaches are given in [25]. Our
dataset includes di↵erent types of real-world networks, such
as an internet topology network (as-skitter), online social
networks (facebook, soc-LiveJournal, soc-orkut), who-
trust-whom network (soc-sign-epinions), follower-followee
Twitter networks (soc-twitter-higgs, twitter), web net-
works (web-Google,
web-NotreDame), and a network of wikipedia pages
(wikipedia-200611). Number of vertices, edges, triangles
and four-cliques in those graphs are given in Table 3.
All experiments are performed on a Linux operating sys-

tem running on a machine with Intel Ivy Bridge processor at
2.4 GHz with 64 GB DDR3 1866 MHz memory. There are
two sockets on the machine and each has twelve cores, mak-
ing 24 cores in total. Algorithms are implemented in C++
and compiled using gcc 6.1.0 at -O2 optimization level. We
used OpenMP v4.5 for the shared-memory parallelization.
We start with comparing the number of iterations that

our synchronous (Algorithm ??) and asynchronous (Algo-
rithm ??) algorithms need to converge. Then, we investi-
gate how much the ⌧ indices can approach to indices at
each iteration. Regarding the performance, we compare the
runtimes of our algorithms with respect to the peeling, and
also discuss the scalability of our implementations.

L0 L1 L2
L3

Figure 6: Snd (Algorithm 2) and And (Algorithm 3, w/o
orange lines) for the k-core decomposition (r = 1, s = 2).
We find the κ2 indices (core numbers) of vertices (edge is 2-
clique). τ0 indices are initialized to the degrees (d2 in blue).
Snd algorithm uses the τi−1 indices to compute the τi indices
and converges in two iterations (τ1 in red, τ2 in green, τ3
in orange). Same happens when we use And and follow
the {a,b,c,d,e,f} order to process the vertices. On the other
hand, if we choose the order by degree levels, {f,e,a,b,c,d},
convergence is obtained in a single iteration.

it can help τ(R) to converge faster. So, it is better to use
the up-to-date τ indices for faster convergence. In addition,
there would be no need to store the τ indices computed in
the previous iteration, saving |R(G)| space.

We introduce the And algorithm (Algorithm 3) to lever-
age the up-to-date τ indices for faster convergence (ignore
the orange lines for now). At each iteration, we propose
to use the latest available information in the neighborhood
of an r-clique. Removing the green lines in the Snd algo-
rithm and inserting the blue lines in the And algorithm are
sufficient to switch from synchronous to asynchronous com-
putation. We do not need to use the τp(·) to back up the
indices in the previous iteration anymore, so Lines 4 and 7 in
Algorithm 2 are removed. Computation is done on the latest
τ indices, so we adjust the Lines 11 and 13 in Algorithm 2
accordingly, to use the up-to-date τ indices.

In the same iteration, each r-clique can have a different
view of the τ(·) and updates are done asynchronously in
an arbitrary order. Number of iterations for convergence
depends on the processing order (Line 7 in Algorithm 3)
and never more than the Snd algorithm.

Time complexity: The worst case for And happens
when all the r-cliques see the τ indices of their neighbors
that are computed in the previous iteration, which exactly
corresponds to the Snd algorithm. Thus the time complex-
ity of And is same as Snd’s (Equation (1)). However, in
practice we expect fewer iterations.
Space complexity: The only difference with Snd is that

we do not need to store the τ values in the previous iteration
anymore. So, it is still O(|R(G)|).

Figure 6 illustrates And algorithm with two different or-
derings and the Snd algorithm on the k-core case (r =
1, s = 2). Focus is on vertices (1-cliques) and their edge
(2-clique) counts (degrees). We start with Snd. Vertex de-
grees are set as τ0 indices (blue). For each vertex u we
compute the τ1(u) = H({τ0(v) : v ∈ N2(u)} (red), i.e.,
h-index of its neighbors’ degrees. For instance, vertex a
has two neighbors, e and b, with degrees 2 and 3. Since
H({2, 3}) = 2, we get τ1(a) = 2. For vertex b, we get
τ1(b) = H({2, 2, 2}) = 2. After computing all the τ1 indices,
τ values of vertices e and b are updated, thus we compute
the τ2 indices, shown in green. We observe an update for
the vertex a; τ2(a) = H({τ1(e), τ1(b)}) = H({1, 2}) = 1 and

 0
 20
 40
 60
 80

 0 2 4 6 8 10 12 14 16

ta
u

in
di

ce
s

number of iterations

Figure 7: Changes in τ indices of randomly selected edges
in facebook graph during the k-truss decomposition. Wide
plateaus appear during the convergence, especially at the end.

continue computation. For τ3 indices (orange), no update is
observed which means that κs = τ2, and Snd converges in
two iterations. Regarding the And algorithm, say we choose
to follow the increasing order of degree levels (noted in pur-
ple) where L0 = {f}, L1 = {e}, L2 = {a}, L3 = {b,c,d}.
Computing the τ1 indices on this order enables us to reach
the convergence in a single iteration. For instance, τ1(a) =
H({τ1(e), τ0(b)}) = H({1, 3}) = 1. However, if we choose to
process the vertices in a different order than the degree lev-
els, say {a,b,c,d,e,f}, we have τ1(a) = H({τ0(e), τ0(b)}) =
H({2, 3}) = 2, and need more iteration(s) to converge. In-
deed, a is the only updated vertex. In the second itera-
tion, we get τ2(a) = H({τ1(e), τ1(b)}) = H({1, 2}) = 1, an
update, thus continue iterating. Third iteration does not
change the τ indices, so And with {a,b,c,d,e,f} order con-
verges in two iterations, just as the Snd.

4.3 Avoiding redundant work by notifications
Snd and And algorithms converge when no r-clique updates
its τ index anymore. Consequently, update on all r-cliques
continue even when only one update occurs and we need an
extra iteration to detect convergence. Figure 7 shows the
τ indices of randomly selected edges in the facebook graph
during k-truss decomposition (r = 2, s = 3). There are
plenty of wide plateaus where τ indices stay constant, which
implies redundant computations. How can we avoid this re-
dundancy? Observe that repeating τ indices or plateaus are
not sufficient, because an update can still occur after main-
taining the same τ index for a number of iterations, creating
a plateau. In order to efficiently detect the convergence and
skip any plateaus during the computation, we introduce a
notification mechanism where an r-clique is notified to re-
compute its τ index, if any of its neighbors has an update.

Orange lines in Algorithm 3 present the notification mech-
anism added to And. c(·) array is declared in (Line 4)
to track whether an R ∈ R(G) has updated its τ index.
c(R) = false means R did not update its τ index, it is an
idle r-clique, and there is no need to recompute its τ value
for that iteration (Line 8). A non-idle r-clique is called ac-
tive. Thus, all c(·) is set to true at the beginning to initiate
the computations for all r-cliques. Each r-clique marks itself
idle at the beginning of an iteration (Line 8) and waits for
an update in a neighbor. When the τ(R) is updated, τ in-
dices of some neighbor r-cliques in Ns(R) might be affected
and they should be notified. If R′ ∈ Ns(R), if τ(R′) < H(L)
(new τ(R)) then τ(R′) ≤ τ(R) already in the previous iter-
ation (Theorem 1), and thus no change can happen in the
h-index computation. Therefore, we only need to notify the
neighbors that have τ indices greater than or equal to H(L)
(Lines 15 to 17). This version of our algorithm requires an
additional O(|R(G)|) space for c(·) array and does not of-
fer a theoretical improvement in time-complexity. However,

49

c

d

bf e a
1 1 1 2 1 1 2 2 1 3 2 2

2 2 2

2 2 2

AND with notification {a,b,c,d,e,f}

b

e

c

d

a g

h

i

f

2 2 2

2 2 2

2 2 2

2 2 2

2
2 2

2 2 2

1 1 1 1 1 1

1 1 1

1 1
 1 2 2 2

3
2

2

4 2 2

3 2
 2

3 2 2

3 2 2

4 2 2

4 3 2 3
2

2

⌧ ⌧ ⌧

4.3 Illustrative examples
ToDo: explain fig 3 and 4

4.4 Heuristics and implementation
Here we introduce an important scheduling decision for

the parallelization in our algorithms, and a heuristic to com-
pute the h-index of a set in linear time.

We implemented our algorithms by using OpenMP [6] to
utilize the shared-memory architectures. The loops, anno-
tated as parallel in Algorithm ??, are shared among threads,
and each thread is responsible for its partition of vertices.
Default scheduling policy in OpenMP is static and it dis-
tributes the iterations of the loop to the threads in chunks,
i.e., for two threads, one takes the first half and the other
takes the second. Although this policy is useful for many ap-
plications, it will not work well for our algorithms. The no-
tification mechanism to avoid the redundant computations
can result in significant load imbalance between threads. If
most of the converged vertices reside in a certain part, then
the thread that is responsible for that part becomes idle un-
til the end of computation. To prevent this, we embraced
the dynamic scheduling where each thread is given a new
workload once it is done. No thread stays idle this way, and
the overall computation is parallelized more e�ciently.

h-index computation of a list is done by sorting the items
in non-increasing order and checking the values from the
beginning of the list to find the largest h value for which at
least h items exist with at least h value. Main bottleneck is
the sorting operation which takes O(n.logn) time. However,
h-index can be computed without sorting. We initialize h
as zero and iterate over the items in the list. At each time,
we attempt to increase the current h value based on the
inspected item. For the current h value, we keep track of
the number of items that have equal value to h. We also

a

i

d

f

b

h

c e g
122

4

2

4

3

2

4 2

1 1

23

3

2

2
1st

2nd

3rd

step
step
step

Figure 4: Core example ToDo: put all step numbers, change
legend for taus

Table 3: Dataset statistics

|V | |E| |4| |K4|
as-skitter (ask) 1.7M 11.1M 28.8M 148.8M

facebook (fb) 4K 88.2K 1.6M 30.0M
soc-LiveJournal (slj) 4.8M 68.5M 285.7M 9.9B

soc-orkut (ork) 2.9M 106.3M 524.6M 2.4B
soc-sign-epinions (sse) 131.8K 711.2K 4.9M 58.6M
soc-twitter-higgs (hg) 456.6K 12.5M 83.0M 429.7M

twitter (tw) 81.3K 1.3M 13.1M 104.9M
web-Google (wgo) 916.4K 4.3M 13.4M 39.9M

web-NotreDame (wnd) 325.7K 1.1M 8.9M 231.9M
wikipedia-200611 (wiki) 3.1M 37.0M 88.8M 162.9M

use a hashmap to keep track of the items that are greater
than the current h value, and we simply ignore the items
that are smaller than h. This enables the computation of
the h-index in linear time. In addition, for the non-initial
iterations of the convergence process, we simply check the
items if the current ⌧ index can be preserved. Once we see
� ⌧ items with at least ⌧ index, no more checks needed.

5. EXPERIMENTS
We evaluate our algorithms on three instances of the nu-

cleus decomposition: k-core (or (1, 2)), k-truss (or (2, 3)),
and (3, 4). Constructing the hypergraphs requires to store
all the s-cliques, which is infeasible for large networks. Thus
we do not construct the actual hypergraphs to compute
the indices. Instead, we find the participations of the
r-cliques in s-cliques on-the-fly. Details about the com-
parison between two approaches are given in [25]. Our
dataset includes di↵erent types of real-world networks, such
as an internet topology network (as-skitter), online social
networks (facebook, soc-LiveJournal, soc-orkut), who-
trust-whom network (soc-sign-epinions), follower-followee

b

e

c

d

a g

h

i

f

4 3
2 3

4

3

3 1

11

1 2

2 3

4

2

2 2

2 3 2

22

2

2 2
2

2

Figure 5: Truss example

a i

d

f b

h

c

e

g2 2 2

3 2 2

4 3 2 2 2 2 2 2 1

4 2 2

4 3 2 1 1 1

2 1 1

0 1 2
(d2) (2)

22

c

d

bf e a
1

1

3

2

21 1 2

2

2

1 1 2 2

2

2

degrees

 1 indices in SND
core numbers

22

c

d

bf e a
1

1

3

2

21 1 2

2

2

1 1 2 2

2

2

degrees
core numbers
2nd step in lex. order

Figure 2: Async example

Theorem 4. In AND algorithm, if the r-cliques are pro-
cessed in the non-decreasing order of their final s indices,
convergence is obtained in a single iteration.

Proof. Say s(R) = t for an r-clique R. For the sake of
contradiction, assume that it takes more than one iteration
for ds(R) to converge s(R). So, ⌧0(R) = ds(R) and ⌧0(R) �
⌧1(R) > s(R). So, when R is being processed, H(L) > t
for L = {⇢(S) : S 3 R}. That means there are at least t+1
s-cliques where each has ⇢ value of at least t+ 1. However,
this implies that R is a part of (t + 1)-(r, s) nucleus, which
contradicts with the initial assumption.

The worst case happens when all the r-cliques see the ⌧
values of their neighbors that are computed in the previous
iteration and it is exactly the SND algorithm.

Figure 2 illustrates the di↵erence between Snd and And
algorithms (with di↵erent orderings) on the k-core case (r =
1, s = 2). Our focus is on vertices (1-cliques) and their re-
lations with edges (2-cliques). We first apply Snd. First,
vertex degrees are calculated as ⌧0 indices (blue numbers).
Then, for each vertex u we compute the ⌧1(u) = H({⌧0(v) :
v 2 N2(u)}, i.e., h-index of its neighbors’ degrees (red num-
bers). ⌧ For instance,

ToDo: should I include some numbers in exp, bounds part

4.2.1 Skipping the plateaus
ToDo: fig for tau changes and platos Our computations

converge when none of the vertices update their ⌧ indices
anymore. This implies that computations are performed for
all the vertices even when only a single update occurs. Those
computations are redundant. When ⌧(v) converges (v) for
a vertex v, no more computations are needed for v in the
following iterations. Also, a vertex can possibly maintain
the same ⌧ index for a number of iterations, reaches to a
plateau, and then updates it. So, it is not possible to deduce
whether ⌧(v) has converged to (v) by just looking at ⌧(v)
values of any vertex v. In order to skip the intermediate
or final plateaus during the convergence of ⌧(v) to (v), we
introduce a notification mechanism where a vertex notifies
its neighbors when its ⌧ index is updated.

Brown lines in Algorithm ?? summarizes the notification
mechanism we plug in to the asynchronous computation.
The only changes are in lines ??, ??, ?? and ??. Additional
C(·) array tracks whether a vertex v 2 V has updated its ⌧
index or not. It is set to true at the beginning to initiate
the computations for all vertices. Once C(v) becomes false,
i.e., maintains its ⌧ index, we avoid the computation. Note
that, a vertex restarts its computation only when a neighbor

vertex has an update (Line ??). Once a vertex completes
the computation, it is set to be not-updated (line ??) so that
no computation occurs until a notification is received from
a neighbor.

4.3 Illustrative examples
ToDo: explain fig 3 and 4

4.4 Heuristics and implementation
Here we introduce an important scheduling decision for

the parallelization in our algorithms, and a heuristic to com-
pute the h-index of a set in linear time.
We implemented our algorithms by using OpenMP [6] to

utilize the shared-memory architectures. The loops, anno-
tated as parallel in Algorithm ??, are shared among threads,
and each thread is responsible for its partition of vertices.
Default scheduling policy in OpenMP is static and it dis-
tributes the iterations of the loop to the threads in chunks,
i.e., for two threads, one takes the first half and the other
takes the second. Although this policy is useful for many ap-
plications, it will not work well for our algorithms. The no-
tification mechanism to avoid the redundant computations
can result in significant load imbalance between threads. If
most of the converged vertices reside in a certain part, then
the thread that is responsible for that part becomes idle un-
til the end of computation. To prevent this, we embraced
the dynamic scheduling where each thread is given a new
workload once it is done. No thread stays idle this way, and
the overall computation is parallelized more e�ciently.
h-index computation of a list is done by sorting the items

in non-increasing order and checking the values from the
beginning of the list to find the largest h value for which at
least h items exist with at least h value. Main bottleneck is
the sorting operation which takes O(n.logn) time. However,
h-index can be computed without sorting. We initialize h
as zero and iterate over the items in the list. At each time,
we attempt to increase the current h value based on the

a

i

d

f

b

h

c e g
122

4

2

4

3

2

4 2

1 1

23

3

2

2
1st

2nd

3rd

step
step
step

Figure 3: Core example

Figure 2: Async example

Theorem 4. In AND algorithm, if the r-cliques are pro-
cessed in the non-decreasing order of their final s indices,
convergence is obtained in a single iteration.

Proof. Say s(R) = t for an r-clique R. For the sake of
contradiction, assume that it takes more than one iteration
for ds(R) to converge s(R). So, ⌧0(R) = ds(R) and ⌧0(R) �
⌧1(R) > s(R). So, when R is being processed, H(L) > t
for L = {⇢(S) : S 3 R}. That means there are at least t+1
s-cliques where each has ⇢ value of at least t+ 1. However,
this implies that R is a part of (t + 1)-(r, s) nucleus, which
contradicts with the initial assumption.

The worst case happens when all the r-cliques see the ⌧
values of their neighbors that are computed in the previous
iteration and it is exactly the SND algorithm.

Figure 2 illustrates Snd and And algorithms (with di↵er-
ent orderings) on the k-core case (r = 1, s = 2). Our focus
is on vertices (1-cliques) and their edge (2-clique) counts
(degrees). We first apply Snd. First, vertex degrees are cal-
culated as ⌧0 indices (blue numbers). Then, for each vertex
u we compute the ⌧1(u) = H({⌧0(v) : v 2 N2(u)}, i.e., h-
index of its neighbors’ degrees (red numbers). For instance,
vertex a has two neighbors, e and b, with degrees 2 and
3. Since H({2, 3}) = 2, we get ⌧1(a) = 2. For vertex b,
we get ⌧1(b) = H({2, 2, 2}) = 2. Once we compute all ⌧1
indices, we iterate again because there were changes in ⌧
indices, e.g,. ⌧1(e) 6= ⌧0(e) (Line 13 in Algorithm 2). ⌧2
indices are shown in green. We observe an update only for
the vertex a; ⌧2(a) = H({⌧1(e), ⌧1(b)}) = H({1, 2}) = 1.
When we iterate again, no update is observed in ⌧ indices,
which means s = ⌧2 for all vertices. Regarding And algo-
rithm, we choose to follow the non-decreasing order of s

indices; {f,e,a,b,c,d}. Computing the ⌧1 indices on this or-
der enables us to reach the convergence in a single iteration.
For instance, ⌧1(a) = H({⌧1(e), ⌧0(b)}) = H({1, 2}) = 1.
If we choose to process the vertices in the alphabetical or-
der, {a,b,c,d,e,f}, we have ⌧1(a) = H({⌧0(e), ⌧0(b)}) =
H({2, 2}) = 2, which implies that we need more iteration(s)
to converge. Indeed ⌧2(a) = H({⌧1(e), ⌧1(b)}) = H({1, 2}) =
1

 ⌧1 ToDo: should I include some numbers in exp, bounds
part

4.2.1 Skipping the plateaus
ToDo: fig for tau changes and platos Our computations

converge when none of the vertices update their ⌧ indices
anymore. This implies that computations are performed for
all the vertices even when only a single update occurs. Those
computations are redundant. When ⌧(v) converges (v) for
a vertex v, no more computations are needed for v in the

following iterations. Also, a vertex can possibly maintain
the same ⌧ index for a number of iterations, reaches to a
plateau, and then updates it. So, it is not possible to deduce
whether ⌧(v) has converged to (v) by just looking at ⌧(v)
values of any vertex v. In order to skip the intermediate
or final plateaus during the convergence of ⌧(v) to (v), we
introduce a notification mechanism where a vertex notifies
its neighbors when its ⌧ index is updated.
Brown lines in Algorithm ?? summarizes the notification

mechanism we plug in to the asynchronous computation.
The only changes are in lines ??, ??, ?? and ??. Additional
C(·) array tracks whether a vertex v 2 V has updated its ⌧
index or not. It is set to true at the beginning to initiate
the computations for all vertices. Once C(v) becomes false,
i.e., maintains its ⌧ index, we avoid the computation. Note
that, a vertex restarts its computation only when a neighbor
vertex has an update (Line ??). Once a vertex completes
the computation, it is set to be not-updated (line ??) so that
no computation occurs until a notification is received from
a neighbor.

4.3 Illustrative examples
ToDo: explain fig 3 and 4

4.4 Heuristics and implementation
Here we introduce an important scheduling decision for

the parallelization in our algorithms, and a heuristic to com-
pute the h-index of a set in linear time.
We implemented our algorithms by using OpenMP [6] to

utilize the shared-memory architectures. The loops, anno-
tated as parallel in Algorithm ??, are shared among threads,
and each thread is responsible for its partition of vertices.
Default scheduling policy in OpenMP is static and it dis-
tributes the iterations of the loop to the threads in chunks,
i.e., for two threads, one takes the first half and the other
takes the second. Although this policy is useful for many ap-
plications, it will not work well for our algorithms. The no-

a

i

d

f

b

h

c e g
122

4

2

4

3

2

4 2

1 1

23

3

2

2
1st

2nd

3rd

step
step
step

Figure 3: Core example

Figure 4: Core example

⌧ ⌧ ⌧
⌧ ⌧

4.3 Illustrative examples
ToDo: explain fig 3 and 4 We present two examples to

illustrate the di↵erences between Snd and And algorithms.
Figure 4 presents the k-core decomposition process on a toy
graph.

4.4 Heuristics and implementation
Here we introduce an important scheduling decision for

the parallelization in our algorithms, and a heuristic to com-
pute the h-index of a set in linear time.

We implemented our algorithms by using OpenMP [6] to
utilize the shared-memory architectures. The loops, anno-
tated as parallel in Algorithm ??, are shared among threads,
and each thread is responsible for its partition of vertices.
Default scheduling policy in OpenMP is static and it dis-
tributes the iterations of the loop to the threads in chunks,
i.e., for two threads, one takes the first half and the other
takes the second. Although this policy is useful for many ap-
plications, it will not work well for our algorithms. The no-
tification mechanism to avoid the redundant computations
can result in significant load imbalance between threads. If
most of the converged vertices reside in a certain part, then
the thread that is responsible for that part becomes idle un-
til the end of computation. To prevent this, we embraced
the dynamic scheduling where each thread is given a new
workload once it is done. No thread stays idle this way, and
the overall computation is parallelized more e�ciently.

h-index computation of a list is done by sorting the items
in non-increasing order and checking the values from the
beginning of the list to find the largest h value for which at
least h items exist with at least h value. Main bottleneck is
the sorting operation which takes O(n.logn) time. However,
h-index can be computed without sorting. We initialize h
as zero and iterate over the items in the list. At each time,
we attempt to increase the current h value based on the
inspected item. For the current h value, we keep track of
the number of items that have equal value to h. We also

b

e

c

d

a g

h

i

f

2 2 2

2 2 2

2 2 2

2 2 2

2
2

2

2 2 2

1 1 1 1 1 1

1 1 1

1 1
 1 2 2 2

3
2

2

4 2 2

3 2
 2

3 2 2

3 2 2

4 2 2
4 3 2 3

2
2

⌧ ⌧ ⌧

4.3 Illustrative examples
ToDo: explain fig 3 and 4

4.4 Heuristics and implementation
Here we introduce an important scheduling decision for

the parallelization in our algorithms, and a heuristic to com-
pute the h-index of a set in linear time.

We implemented our algorithms by using OpenMP [6] to
utilize the shared-memory architectures. The loops, anno-
tated as parallel in Algorithm ??, are shared among threads,
and each thread is responsible for its partition of vertices.
Default scheduling policy in OpenMP is static and it dis-
tributes the iterations of the loop to the threads in chunks,
i.e., for two threads, one takes the first half and the other
takes the second. Although this policy is useful for many ap-
plications, it will not work well for our algorithms. The no-
tification mechanism to avoid the redundant computations
can result in significant load imbalance between threads. If
most of the converged vertices reside in a certain part, then
the thread that is responsible for that part becomes idle un-
til the end of computation. To prevent this, we embraced
the dynamic scheduling where each thread is given a new
workload once it is done. No thread stays idle this way, and
the overall computation is parallelized more e�ciently.

h-index computation of a list is done by sorting the items
in non-increasing order and checking the values from the
beginning of the list to find the largest h value for which at
least h items exist with at least h value. Main bottleneck is
the sorting operation which takes O(n.logn) time. However,
h-index can be computed without sorting. We initialize h
as zero and iterate over the items in the list. At each time,
we attempt to increase the current h value based on the
inspected item. For the current h value, we keep track of
the number of items that have equal value to h. We also

a

i

d

f

b

h

c e g
122

4

2

4

3

2

4 2

1 1

23

3

2

2
1st

2nd

3rd

step
step
step

Figure 4: Core example ToDo: put all step numbers, change
legend for taus

Table 3: Dataset statistics

|V | |E| |4| |K4|
as-skitter (ask) 1.7M 11.1M 28.8M 148.8M

facebook (fb) 4K 88.2K 1.6M 30.0M
soc-LiveJournal (slj) 4.8M 68.5M 285.7M 9.9B

soc-orkut (ork) 2.9M 106.3M 524.6M 2.4B
soc-sign-epinions (sse) 131.8K 711.2K 4.9M 58.6M
soc-twitter-higgs (hg) 456.6K 12.5M 83.0M 429.7M

twitter (tw) 81.3K 1.3M 13.1M 104.9M
web-Google (wgo) 916.4K 4.3M 13.4M 39.9M

web-NotreDame (wnd) 325.7K 1.1M 8.9M 231.9M
wikipedia-200611 (wiki) 3.1M 37.0M 88.8M 162.9M

use a hashmap to keep track of the items that are greater
than the current h value, and we simply ignore the items
that are smaller than h. This enables the computation of
the h-index in linear time. In addition, for the non-initial
iterations of the convergence process, we simply check the
items if the current ⌧ index can be preserved. Once we see
� ⌧ items with at least ⌧ index, no more checks needed.

5. EXPERIMENTS
We evaluate our algorithms on three instances of the nu-

cleus decomposition: k-core (or (1, 2)), k-truss (or (2, 3)),
and (3, 4). Constructing the hypergraphs requires to store
all the s-cliques, which is infeasible for large networks. Thus
we do not construct the actual hypergraphs to compute
the indices. Instead, we find the participations of the
r-cliques in s-cliques on-the-fly. Details about the com-
parison between two approaches are given in [25]. Our
dataset includes di↵erent types of real-world networks, such
as an internet topology network (as-skitter), online social
networks (facebook, soc-LiveJournal, soc-orkut), who-
trust-whom network (soc-sign-epinions), follower-followee

b

e

c

d

a g

h

i

f

4 3
2 3

4

3

3 1

11

1 2

2 3

4

2

2 2

2 3 2

22

2

2 2
2

2

Figure 5: Truss example

0 1 2
(d3) (3)

22

c

d

bf e a
1

1

3

2

21 1 2

2

2

1 1 2 2

2

2

degrees

 1 indices in SND
core numbers

22

c

d

bf e a
1

1

3

2

21 1 2

2

2

1 1 2 2

2

2

degrees
core numbers
2nd step in lex. order

Figure 2: Async example

Theorem 4. In AND algorithm, if the r-cliques are pro-
cessed in the non-decreasing order of their final s indices,
convergence is obtained in a single iteration.

Proof. Say s(R) = t for an r-clique R. For the sake of
contradiction, assume that it takes more than one iteration
for ds(R) to converge s(R). So, ⌧0(R) = ds(R) and ⌧0(R) �
⌧1(R) > s(R). So, when R is being processed, H(L) > t
for L = {⇢(S) : S 3 R}. That means there are at least t+1
s-cliques where each has ⇢ value of at least t+ 1. However,
this implies that R is a part of (t + 1)-(r, s) nucleus, which
contradicts with the initial assumption.

The worst case happens when all the r-cliques see the ⌧
values of their neighbors that are computed in the previous
iteration and it is exactly the SND algorithm.

Figure 2 illustrates the di↵erence between Snd and And
algorithms (with di↵erent orderings) on the k-core case (r =
1, s = 2). Our focus is on vertices (1-cliques) and their re-
lations with edges (2-cliques). We first apply Snd. First,
vertex degrees are calculated as ⌧0 indices (blue numbers).
Then, for each vertex u we compute the ⌧1(u) = H({⌧0(v) :
v 2 N2(u)}, i.e., h-index of its neighbors’ degrees (red num-
bers). ⌧ For instance,

ToDo: should I include some numbers in exp, bounds part

4.2.1 Skipping the plateaus
ToDo: fig for tau changes and platos Our computations

converge when none of the vertices update their ⌧ indices
anymore. This implies that computations are performed for
all the vertices even when only a single update occurs. Those
computations are redundant. When ⌧(v) converges (v) for
a vertex v, no more computations are needed for v in the
following iterations. Also, a vertex can possibly maintain
the same ⌧ index for a number of iterations, reaches to a
plateau, and then updates it. So, it is not possible to deduce
whether ⌧(v) has converged to (v) by just looking at ⌧(v)
values of any vertex v. In order to skip the intermediate
or final plateaus during the convergence of ⌧(v) to (v), we
introduce a notification mechanism where a vertex notifies
its neighbors when its ⌧ index is updated.

Brown lines in Algorithm ?? summarizes the notification
mechanism we plug in to the asynchronous computation.
The only changes are in lines ??, ??, ?? and ??. Additional
C(·) array tracks whether a vertex v 2 V has updated its ⌧
index or not. It is set to true at the beginning to initiate
the computations for all vertices. Once C(v) becomes false,
i.e., maintains its ⌧ index, we avoid the computation. Note
that, a vertex restarts its computation only when a neighbor

vertex has an update (Line ??). Once a vertex completes
the computation, it is set to be not-updated (line ??) so that
no computation occurs until a notification is received from
a neighbor.

4.3 Illustrative examples
ToDo: explain fig 3 and 4

4.4 Heuristics and implementation
Here we introduce an important scheduling decision for

the parallelization in our algorithms, and a heuristic to com-
pute the h-index of a set in linear time.
We implemented our algorithms by using OpenMP [6] to

utilize the shared-memory architectures. The loops, anno-
tated as parallel in Algorithm ??, are shared among threads,
and each thread is responsible for its partition of vertices.
Default scheduling policy in OpenMP is static and it dis-
tributes the iterations of the loop to the threads in chunks,
i.e., for two threads, one takes the first half and the other
takes the second. Although this policy is useful for many ap-
plications, it will not work well for our algorithms. The no-
tification mechanism to avoid the redundant computations
can result in significant load imbalance between threads. If
most of the converged vertices reside in a certain part, then
the thread that is responsible for that part becomes idle un-
til the end of computation. To prevent this, we embraced
the dynamic scheduling where each thread is given a new
workload once it is done. No thread stays idle this way, and
the overall computation is parallelized more e�ciently.
h-index computation of a list is done by sorting the items

in non-increasing order and checking the values from the
beginning of the list to find the largest h value for which at
least h items exist with at least h value. Main bottleneck is
the sorting operation which takes O(n.logn) time. However,
h-index can be computed without sorting. We initialize h
as zero and iterate over the items in the list. At each time,
we attempt to increase the current h value based on the

a

i

d

f

b

h

c e g
122

4

2

4

3

2

4 2

1 1

23

3

2

2
1st

2nd

3rd

step
step
step

Figure 3: Core example

Figure 2: Async example

Theorem 4. In AND algorithm, if the r-cliques are pro-
cessed in the non-decreasing order of their final s indices,
convergence is obtained in a single iteration.

Proof. Say s(R) = t for an r-clique R. For the sake of
contradiction, assume that it takes more than one iteration
for ds(R) to converge s(R). So, ⌧0(R) = ds(R) and ⌧0(R) �
⌧1(R) > s(R). So, when R is being processed, H(L) > t
for L = {⇢(S) : S 3 R}. That means there are at least t+1
s-cliques where each has ⇢ value of at least t+ 1. However,
this implies that R is a part of (t + 1)-(r, s) nucleus, which
contradicts with the initial assumption.

The worst case happens when all the r-cliques see the ⌧
values of their neighbors that are computed in the previous
iteration and it is exactly the SND algorithm.

Figure 2 illustrates Snd and And algorithms (with di↵er-
ent orderings) on the k-core case (r = 1, s = 2). Our focus
is on vertices (1-cliques) and their edge (2-clique) counts
(degrees). We first apply Snd. First, vertex degrees are cal-
culated as ⌧0 indices (blue numbers). Then, for each vertex
u we compute the ⌧1(u) = H({⌧0(v) : v 2 N2(u)}, i.e., h-
index of its neighbors’ degrees (red numbers). For instance,
vertex a has two neighbors, e and b, with degrees 2 and
3. Since H({2, 3}) = 2, we get ⌧1(a) = 2. For vertex b,
we get ⌧1(b) = H({2, 2, 2}) = 2. Once we compute all ⌧1
indices, we iterate again because there were changes in ⌧
indices, e.g,. ⌧1(e) 6= ⌧0(e) (Line 13 in Algorithm 2). ⌧2
indices are shown in green. We observe an update only for
the vertex a; ⌧2(a) = H({⌧1(e), ⌧1(b)}) = H({1, 2}) = 1.
When we iterate again, no update is observed in ⌧ indices,
which means s = ⌧2 for all vertices. Regarding And algo-
rithm, we choose to follow the non-decreasing order of s

indices; {f,e,a,b,c,d}. Computing the ⌧1 indices on this or-
der enables us to reach the convergence in a single iteration.
For instance, ⌧1(a) = H({⌧1(e), ⌧0(b)}) = H({1, 2}) = 1.
If we choose to process the vertices in the alphabetical or-
der, {a,b,c,d,e,f}, we have ⌧1(a) = H({⌧0(e), ⌧0(b)}) =
H({2, 2}) = 2, which implies that we need more iteration(s)
to converge. Indeed ⌧2(a) = H({⌧1(e), ⌧1(b)}) = H({1, 2}) =
1

 ⌧1 ToDo: should I include some numbers in exp, bounds
part

4.2.1 Skipping the plateaus
ToDo: fig for tau changes and platos Our computations

converge when none of the vertices update their ⌧ indices
anymore. This implies that computations are performed for
all the vertices even when only a single update occurs. Those
computations are redundant. When ⌧(v) converges (v) for
a vertex v, no more computations are needed for v in the

following iterations. Also, a vertex can possibly maintain
the same ⌧ index for a number of iterations, reaches to a
plateau, and then updates it. So, it is not possible to deduce
whether ⌧(v) has converged to (v) by just looking at ⌧(v)
values of any vertex v. In order to skip the intermediate
or final plateaus during the convergence of ⌧(v) to (v), we
introduce a notification mechanism where a vertex notifies
its neighbors when its ⌧ index is updated.
Brown lines in Algorithm ?? summarizes the notification

mechanism we plug in to the asynchronous computation.
The only changes are in lines ??, ??, ?? and ??. Additional
C(·) array tracks whether a vertex v 2 V has updated its ⌧
index or not. It is set to true at the beginning to initiate
the computations for all vertices. Once C(v) becomes false,
i.e., maintains its ⌧ index, we avoid the computation. Note
that, a vertex restarts its computation only when a neighbor
vertex has an update (Line ??). Once a vertex completes
the computation, it is set to be not-updated (line ??) so that
no computation occurs until a notification is received from
a neighbor.

4.3 Illustrative examples
ToDo: explain fig 3 and 4

4.4 Heuristics and implementation
Here we introduce an important scheduling decision for

the parallelization in our algorithms, and a heuristic to com-
pute the h-index of a set in linear time.
We implemented our algorithms by using OpenMP [6] to

utilize the shared-memory architectures. The loops, anno-
tated as parallel in Algorithm ??, are shared among threads,
and each thread is responsible for its partition of vertices.
Default scheduling policy in OpenMP is static and it dis-
tributes the iterations of the loop to the threads in chunks,
i.e., for two threads, one takes the first half and the other
takes the second. Although this policy is useful for many ap-
plications, it will not work well for our algorithms. The no-

a

i

d

f

b

h

c e g
122

4

2

4

3

2

4 2

1 1

23

3

2

2
1st

2nd

3rd

step
step
step

Figure 3: Core example

Figure 5: Truss example

Table 3: Dataset statistics

|V | |E| |4| |K4|
as-skitter (ask) 1.7M 11.1M 28.8M 148.8M

facebook (fb) 4K 88.2K 1.6M 30.0M
soc-LiveJournal (slj) 4.8M 68.5M 285.7M 9.9B

soc-orkut (ork) 2.9M 106.3M 524.6M 2.4B
soc-sign-epinions (sse) 131.8K 711.2K 4.9M 58.6M
soc-twitter-higgs (hg) 456.6K 12.5M 83.0M 429.7M

twitter (tw) 81.3K 1.3M 13.1M 104.9M
web-Google (wgo) 916.4K 4.3M 13.4M 39.9M

web-NotreDame (wnd) 325.7K 1.1M 8.9M 231.9M
wikipedia-200611 (wiki) 3.1M 37.0M 88.8M 162.9M

use a hashmap to keep track of the items that are greater
than the current h value, and we simply ignore the items
that are smaller than h. This enables the computation of
the h-index in linear time. In addition, for the non-initial
iterations of the convergence process, we simply check the
items if the current ⌧ index can be preserved. Once we see
� ⌧ items with at least ⌧ index, no more checks needed.

5. EXPERIMENTS
We evaluate our algorithms on three instances of the nu-

cleus decomposition: k-core (or (1, 2)), k-truss (or (2, 3)),
and (3, 4). Constructing the hypergraphs requires to store
all the s-cliques, which is infeasible for large networks. Thus
we do not construct the actual hypergraphs to compute
the indices. Instead, we find the participations of the
r-cliques in s-cliques on-the-fly. Details about the com-
parison between two approaches are given in [25]. Our
dataset includes di↵erent types of real-world networks, such
as an internet topology network (as-skitter), online social
networks (facebook, soc-LiveJournal, soc-orkut), who-
trust-whom network (soc-sign-epinions), follower-followee
Twitter networks (soc-twitter-higgs, twitter), web net-
works (web-Google,
web-NotreDame), and a network of wikipedia pages
(wikipedia-200611). Number of vertices, edges, triangles
and four-cliques in those graphs are given in Table 3.

22

c

d

bf e a
1

1

3

2

21 1 2

2

2

1 1 2 2

2

2

degrees

 1 indices in SND
core numbers

22

c

d

bf e a
1

1

3

2

21 1 2

2

2

1 1 2 2

2

2

degrees
core numbers
2nd step in lex. order

Figure 2: Async example

Theorem 4. In AND algorithm, if the r-cliques are pro-
cessed in the non-decreasing order of their final s indices,
convergence is obtained in a single iteration.

Proof. Say s(R) = t for an r-clique R. For the sake of
contradiction, assume that it takes more than one iteration
for ds(R) to converge s(R). So, ⌧0(R) = ds(R) and ⌧0(R) �
⌧1(R) > s(R). So, when R is being processed, H(L) > t
for L = {⇢(S) : S 3 R}. That means there are at least t+1
s-cliques where each has ⇢ value of at least t+ 1. However,
this implies that R is a part of (t + 1)-(r, s) nucleus, which
contradicts with the initial assumption.

The worst case happens when all the r-cliques see the ⌧
values of their neighbors that are computed in the previous
iteration and it is exactly the SND algorithm.

Figure 2 illustrates the di↵erence between Snd and And
algorithms (with di↵erent orderings) on the k-core case (r =
1, s = 2). Our focus is on vertices (1-cliques) and their re-
lations with edges (2-cliques). We first apply Snd. First,
vertex degrees are calculated as ⌧0 indices (blue numbers).
Then, for each vertex u we compute the ⌧1(u) = H({⌧0(v) :
v 2 N2(u)}, i.e., h-index of its neighbors’ degrees (red num-
bers). ⌧ For instance,

ToDo: should I include some numbers in exp, bounds part

4.2.1 Skipping the plateaus
ToDo: fig for tau changes and platos Our computations

converge when none of the vertices update their ⌧ indices
anymore. This implies that computations are performed for
all the vertices even when only a single update occurs. Those
computations are redundant. When ⌧(v) converges (v) for
a vertex v, no more computations are needed for v in the
following iterations. Also, a vertex can possibly maintain
the same ⌧ index for a number of iterations, reaches to a
plateau, and then updates it. So, it is not possible to deduce
whether ⌧(v) has converged to (v) by just looking at ⌧(v)
values of any vertex v. In order to skip the intermediate
or final plateaus during the convergence of ⌧(v) to (v), we
introduce a notification mechanism where a vertex notifies
its neighbors when its ⌧ index is updated.

Brown lines in Algorithm ?? summarizes the notification
mechanism we plug in to the asynchronous computation.
The only changes are in lines ??, ??, ?? and ??. Additional
C(·) array tracks whether a vertex v 2 V has updated its ⌧
index or not. It is set to true at the beginning to initiate
the computations for all vertices. Once C(v) becomes false,
i.e., maintains its ⌧ index, we avoid the computation. Note
that, a vertex restarts its computation only when a neighbor

vertex has an update (Line ??). Once a vertex completes
the computation, it is set to be not-updated (line ??) so that
no computation occurs until a notification is received from
a neighbor.

4.3 Illustrative examples
ToDo: explain fig 3 and 4

4.4 Heuristics and implementation
Here we introduce an important scheduling decision for

the parallelization in our algorithms, and a heuristic to com-
pute the h-index of a set in linear time.
We implemented our algorithms by using OpenMP [6] to

utilize the shared-memory architectures. The loops, anno-
tated as parallel in Algorithm ??, are shared among threads,
and each thread is responsible for its partition of vertices.
Default scheduling policy in OpenMP is static and it dis-
tributes the iterations of the loop to the threads in chunks,
i.e., for two threads, one takes the first half and the other
takes the second. Although this policy is useful for many ap-
plications, it will not work well for our algorithms. The no-
tification mechanism to avoid the redundant computations
can result in significant load imbalance between threads. If
most of the converged vertices reside in a certain part, then
the thread that is responsible for that part becomes idle un-
til the end of computation. To prevent this, we embraced
the dynamic scheduling where each thread is given a new
workload once it is done. No thread stays idle this way, and
the overall computation is parallelized more e�ciently.
h-index computation of a list is done by sorting the items

in non-increasing order and checking the values from the
beginning of the list to find the largest h value for which at
least h items exist with at least h value. Main bottleneck is
the sorting operation which takes O(n.logn) time. However,
h-index can be computed without sorting. We initialize h
as zero and iterate over the items in the list. At each time,
we attempt to increase the current h value based on the

a

i

d

f

b

h

c e g
122

4

2

4

3

2

4 2

1 1

23

3

2

2
1st

2nd

3rd

step
step
step

Figure 3: Core example

Figure 2: Async example

Theorem 4. In AND algorithm, if the r-cliques are pro-
cessed in the non-decreasing order of their final s indices,
convergence is obtained in a single iteration.

Proof. Say s(R) = t for an r-clique R. For the sake of
contradiction, assume that it takes more than one iteration
for ds(R) to converge s(R). So, ⌧0(R) = ds(R) and ⌧0(R) �
⌧1(R) > s(R). So, when R is being processed, H(L) > t
for L = {⇢(S) : S 3 R}. That means there are at least t+1
s-cliques where each has ⇢ value of at least t+ 1. However,
this implies that R is a part of (t + 1)-(r, s) nucleus, which
contradicts with the initial assumption.

The worst case happens when all the r-cliques see the ⌧
values of their neighbors that are computed in the previous
iteration and it is exactly the SND algorithm.

Figure 2 illustrates Snd and And algorithms (with di↵er-
ent orderings) on the k-core case (r = 1, s = 2). Our focus
is on vertices (1-cliques) and their edge (2-clique) counts
(degrees). We first apply Snd. First, vertex degrees are cal-
culated as ⌧0 indices (blue numbers). Then, for each vertex
u we compute the ⌧1(u) = H({⌧0(v) : v 2 N2(u)}, i.e., h-
index of its neighbors’ degrees (red numbers). For instance,
vertex a has two neighbors, e and b, with degrees 2 and
3. Since H({2, 3}) = 2, we get ⌧1(a) = 2. For vertex b,
we get ⌧1(b) = H({2, 2, 2}) = 2. Once we compute all ⌧1
indices, we iterate again because there were changes in ⌧
indices, e.g,. ⌧1(e) 6= ⌧0(e) (Line 13 in Algorithm 2). ⌧2
indices are shown in green. We observe an update only for
the vertex a; ⌧2(a) = H({⌧1(e), ⌧1(b)}) = H({1, 2}) = 1.
When we iterate again, no update is observed in ⌧ indices,
which means s = ⌧2 for all vertices. Regarding And algo-
rithm, we choose to follow the non-decreasing order of s

indices; {f,e,a,b,c,d}. Computing the ⌧1 indices on this or-
der enables us to reach the convergence in a single iteration.
For instance, ⌧1(a) = H({⌧1(e), ⌧0(b)}) = H({1, 2}) = 1.
If we choose to process the vertices in the alphabetical or-
der, {a,b,c,d,e,f}, we have ⌧1(a) = H({⌧0(e), ⌧0(b)}) =
H({2, 2}) = 2, which implies that we need more iteration(s)
to converge. Indeed ⌧2(a) = H({⌧1(e), ⌧1(b)}) = H({1, 2}) =
1

 ⌧1 ToDo: should I include some numbers in exp, bounds
part

4.2.1 Skipping the plateaus
ToDo: fig for tau changes and platos Our computations

converge when none of the vertices update their ⌧ indices
anymore. This implies that computations are performed for
all the vertices even when only a single update occurs. Those
computations are redundant. When ⌧(v) converges (v) for
a vertex v, no more computations are needed for v in the

following iterations. Also, a vertex can possibly maintain
the same ⌧ index for a number of iterations, reaches to a
plateau, and then updates it. So, it is not possible to deduce
whether ⌧(v) has converged to (v) by just looking at ⌧(v)
values of any vertex v. In order to skip the intermediate
or final plateaus during the convergence of ⌧(v) to (v), we
introduce a notification mechanism where a vertex notifies
its neighbors when its ⌧ index is updated.
Brown lines in Algorithm ?? summarizes the notification

mechanism we plug in to the asynchronous computation.
The only changes are in lines ??, ??, ?? and ??. Additional
C(·) array tracks whether a vertex v 2 V has updated its ⌧
index or not. It is set to true at the beginning to initiate
the computations for all vertices. Once C(v) becomes false,
i.e., maintains its ⌧ index, we avoid the computation. Note
that, a vertex restarts its computation only when a neighbor
vertex has an update (Line ??). Once a vertex completes
the computation, it is set to be not-updated (line ??) so that
no computation occurs until a notification is received from
a neighbor.

4.3 Illustrative examples
ToDo: explain fig 3 and 4

4.4 Heuristics and implementation
Here we introduce an important scheduling decision for

the parallelization in our algorithms, and a heuristic to com-
pute the h-index of a set in linear time.
We implemented our algorithms by using OpenMP [6] to

utilize the shared-memory architectures. The loops, anno-
tated as parallel in Algorithm ??, are shared among threads,
and each thread is responsible for its partition of vertices.
Default scheduling policy in OpenMP is static and it dis-
tributes the iterations of the loop to the threads in chunks,
i.e., for two threads, one takes the first half and the other
takes the second. Although this policy is useful for many ap-
plications, it will not work well for our algorithms. The no-

a

i

d

f

b

h

c e g
122

4

2

4

3

2

4 2

1 1

23

3

2

2
1st

2nd

3rd

step
step
step

Figure 3: Core example

d3

 0 1 2
 3

1 2 3 4

AND (lex. order) :

 no notification :
degree, core number :

1 2 3 4 with notification :

Figure 5: Truss example

plateaus. Because it can maintain the same ⌧ index for a
number of iterations, creating a plateau, and then update.
Thus, it is not possible to deduce whether ⌧(R) has con-
verged to (R) by just looking at consecutive ⌧(R) indices.
In order to skip the intermediate or final plateaus during the
convergence, we introduce a notification mechanism where
an r-clique notifies its neighbors when its ⌧ index is updated.

Orange lines in Algorithm 3 presents the notification mech-
anism we plug in to the asynchronous computation. c(·)
array is declared in line 4 to track whether an R 2 R(G)
has updated its ⌧ index or not. c(R) = false means that
R is an idle r-clique and there is no need to recompute its ⌧
value, as shown in line 8. Thus, all c(·) is set to true at the
beginning to initiate the computations for all the r-cliques.
Each r-clique marks itself idle at the end of an iteration
(line 17) and waits until an update happens in the ⌧ in-
dex of a neighbor. Whenever the ⌧ index of an r-clique is
updated, all its neighbors are notified and woken up since
their ⌧ indices might be a↵ected (line 15). Note that some
neighbors might already be active at that time and misses
the new update, but it is ok since the following iterations
will handle it – in the worst case it will be a synchronous
computation.
⌧0 ⌧1 ⌧2 ⌧3
⌧0 ⌧1 ⌧2
d3 3

⌧0 ⌧1
d2 2

Figure 5 illustrates the k-truss decomposition (r = 2, s =
3) on a toy graph. We follow the lexicographical order of
the edges (vertex pairs). Triangle counts (d3) of edges are
given in blue, which are used to initialize ⌧0 indices. We first
process edge ab. It has four triangles, abc, abd, abe, abi.
⇢ value of each triangle is calculated by taking the minimum
⌧0 value of the neighbor edges of ab (Line 11). Set of ⇢ values
is {min(⌧0(ac), ⌧0(bc)),min(⌧0(ad), ⌧0(bd)),min(⌧0(ae),
⌧0(be)),min(⌧0(ai), ⌧0(bi))}, which is L = {4, 3, 3, 2} and
⌧1(ab) = H(L) = 3. After computing ⌧1 indices of all the
edges in lexicographical order (ei edge is last),

4.3 Heuristics and implementation

Table 3: Dataset statistics

|V | |E| |4| |K4|
as-skitter (ask) 1.7M 11.1M 28.8M 148.8M

facebook (fb) 4K 88.2K 1.6M 30.0M
soc-LiveJournal (slj) 4.8M 68.5M 285.7M 9.9B

soc-orkut (ork) 2.9M 106.3M 524.6M 2.4B
soc-sign-epinions (sse) 131.8K 711.2K 4.9M 58.6M
soc-twitter-higgs (hg) 456.6K 12.5M 83.0M 429.7M

twitter (tw) 81.3K 1.3M 13.1M 104.9M
web-Google (wgo) 916.4K 4.3M 13.4M 39.9M

web-NotreDame (wnd) 325.7K 1.1M 8.9M 231.9M
wikipedia-200611 (wiki) 3.1M 37.0M 88.8M 162.9M

Here we introduce an important scheduling decision for
the parallelization in our algorithms, and a heuristic to com-
pute the h-index of a set in linear time.
We implemented our algorithms by using OpenMP [6] to

utilize the shared-memory architectures. The loops, anno-
tated as parallel in Algorithm ??, are shared among threads,
and each thread is responsible for its partition of vertices.
Default scheduling policy in OpenMP is static and it dis-
tributes the iterations of the loop to the threads in chunks,
i.e., for two threads, one takes the first half and the other
takes the second. Although this policy is useful for many ap-
plications, it will not work well for our algorithms. The no-
tification mechanism to avoid the redundant computations
can result in significant load imbalance between threads. If
most of the converged vertices reside in a certain part, then
the thread that is responsible for that part becomes idle un-
til the end of computation. To prevent this, we embraced
the dynamic scheduling where each thread is given a new
workload once it is done. No thread stays idle this way, and
the overall computation is parallelized more e�ciently.
h-index computation of a list is done by sorting the items

in non-increasing order and checking the values from the
beginning of the list to find the largest h value for which at
least h items exist with at least h value. Main bottleneck is
the sorting operation which takes O(n.logn) time. However,
h-index can be computed without sorting. We initialize h
as zero and iterate over the items in the list. At each time,
we attempt to increase the current h value based on the
inspected item. For the current h value, we keep track of
the number of items that have equal value to h. We also
use a hashmap to keep track of the items that are greater
than the current h value, and we simply ignore the items
that are smaller than h. This enables the computation of
the h-index in linear time. In addition, for the non-initial
iterations of the convergence process, we simply check the
items if the current ⌧ index can be preserved. Once we see
� ⌧ items with at least ⌧ index, no more checks needed.

5. EXPERIMENTS
We evaluate our algorithms on three instances of the nu-

cleus decomposition: k-core (or (1, 2)), k-truss (or (2, 3)),
and (3, 4). Constructing the hypergraphs requires to store
all the s-cliques, which is infeasible for large networks. Thus
we do not construct the actual hypergraphs to compute
the indices. Instead, we find the participations of the
r-cliques in s-cliques on-the-fly. Details about the com-

Figure 8: k-core decomposition (r = 1, s = 2) by And (Al-
gorithm 3) that uses the notification mechanism. After the
first iteration, the only active vertex is a. In the second it-
eration, computation updates τ(a) and thus notifies vertices
b and e. In the third iteration, their τ indices are recom-
puted and no update happens. All the vertices become idle,
thus convergence is obtained. 9 τ computations performed
in 3 iterations by And with notification mechanism, while
24 τ computations are done in 4 iterations if notification
mechanism is not used (Figure 6).

avoiding redundant computations yields faster runtimes in
practice.

Figure 8 illustrates the notification mechanism on the
graph in Figure 6, processing the vertices in the a,b,c,d,e,f
order. Again, vertex degrees are set as τ0 indices (blue)
and we compute τ1(u) = H({τ0(v) : v ∈ N2(u)}, i.e., h-
index of its neighbors’ degrees, (red) for each vertex u. No
update happens for vertex a and no vertices are notified.
τ(b) is updated as 2 and we check if any neighbors of b
has a τ index ≥ 2 (Line 16). All its neighbors have such
τ indices, thus all are notified: a, c, d. Vertices c and d
do not update their τ indices. Then, τ(e) is updated as 1
and since τ0(e) ≥ τ1(a) > τ1(e), vertices a and f are noti-
fied for recomputing its τ index. At that instant, vertices
a and f are active. Next, vertex f is processed and does
not change its τ index, so all the vertices except a are idle
now. In the second iteration, we only process a and com-
pute τ2(a) = H{τ1(e), τ1(b)} = H{1, 2} = 1. Update in
τ(a) notifies vertices b and e since both have ≥ τ indices.
In the third iteration, we recompute τ indices for b and
e, but there is no update. So all the vertices become idle,
implying convergence. Overall, it takes 9 τ computations
and 3 iterations for the And with notification mechanism,
while 24 τ computations and 4 iterations are needed without
the notification mechanism (Figure 6). So the notification
mechanism is helpful to avoid redundant computations.

PartialAnd on a set of r-cliques: Local nature of the
And algorithm enables selection of a set of r-cliques and its
application only to this set until convergence. This is useful
in query-driven scenarios where the focus is on a single (or a
few) vertex/edge. We define PartialAnd as the application
of And algorithm on a set of given r-cliques, say P . We only
modify the orange lines in Algorithm 3 where c of an r-clique
is re-computed only if it is in set P . This way we just limit
the And computation on a small set. We give an application
of PartialAnd in Section 5.3 where the computation is
limited on a given r-clique and its neighbors.

4.4 Heuristics and implementation
We introduce key implementation details for the shared-
memory parallelism and heuristics for efficient h-index com-
putation. We used OpenMP [7] to utilize the shared-memory
architectures. The loops, annotated as parallel in Algo-
rithms 2 and 3, are shared among the threads, and each

Table 2: Statistics about our dataset; number of vertices,
edges, triangles and four-cliques (K4).

|V | |E| |4| |K4|
as-skitter (ask) 1.7M 11.1M 28.8M 148.8M

facebook (fb) 4K 88.2K 1.6M 30.0M
friendster (fri) 65.6M 1.8B 4.1B 8.9B

soc-LiveJournal (slj) 4.8M 68.5M 285.7M 9.9B
soc-orkut (ork) 2.9M 106.3M 524.6M 2.4B

soc-sign-epinions (sse) 131.8K 711.2K 4.9M 58.6M
soc-twitter-higgs (hg) 456.6K 12.5M 83.0M 429.7M

twitter (tw) 81.3K 1.3M 13.1M 104.9M
web-Google (wgo) 916.4K 4.3M 13.4M 39.9M

web-NotreDame (wnd) 325.7K 1.1M 8.9M 231.9M
wiki-200611 (wiki) 3.1M 37.0M 88.8M 162.9M

thread is responsible for its partition of r-cliques. No syn-
chronization or atomic operation is needed. Default schedul-
ing policy in OpenMP is static and it distributes the iter-
ations of the loop to the threads in chunks, i.e., for two
threads, one takes the first half and the other takes the sec-
ond. This approach does not work well for our algorithms,
since the notification mechanism may result in significant
load imbalance among threads. If most of the idle r-cliques
are assigned to a certain thread, this thread quickly finishes,
and remains idle until the iteration ends. To prevent this,
we adopted the dynamic scheduling where each thread is
given a new workload once it idle. We set chunk size to 100
and observed no significant difference for other values. No
thread stays idle this way, improving parallel efficiency.
h-index computation for a list of numbers is traditionally

done by sorting the numbers in the non-increasing order and
checking the values starting from the head of the list to find
the largest h value for which at least h items exist with at
least h value. Main bottleneck in this routine is the sorting
operation which takes O(nlogn) time for n numbers. We
use a linear time algorithm that uses a hashmap and does
not include sorting to compute the h-index. h is initialized
as zero and we iterate over the items in the list. At each
step, we attempt to increase the current h value based on
the inspected item. For the present h value in a step, we
keep track of the number of items examined so far that have
value equal to h. We use a hashmap to keep track of the
number of items that has at least h value, and ignore values
smaller than h. This enables the computation of the h-
index in linear time and provides a trade-off between time
and space. In addition, after the initialization, we check to
see if the current τ index can be preserved. Once we see at
least τ items with index at least τ , no more checks needed.

5. EXPERIMENTS
We evaluate our algorithms on three instances of the (r, s)
nucleus decomposition: k-core ((1, 2)), k-truss ((2, 3)), and
(3, 4) nucleus, which are shown to be the practical and ef-
fective [37, 38]. We do not store the s-cliques during the
computation for better scalability in terms of the mem-
ory space. Instead, we find the participations of the r-
cliques in the s-cliques on-the-fly [37]. Our dataset con-
tains a diverse set of real-world networks from SNAP [25]
and Network Repository [32] (see Table 2), such as internet
topology network (as-skitter), social networks (facebook,
friendster, soc-LiveJournal, soc-orkut), trust network
(soc- sign-epinions), Twitter follower-followee networks
(soc-twitter -higgs, twitter), web networks (web-Google,
web- NotreDame), and a network of wiki pages (wiki-200611).

50

Table 3: Number of iterations for the theoretical upper
bound, Degree Levels (DL)(Section 3.1), Snd, and And al-
gorithms.

ask fb slj ork hg wgo wiki

k-core
DL 1195 352 3479 5165 1713 384 2026
Snd 63 21 99 147 73 23 55
And 33 11 51 73 37 14 30

k-truss
DL 1605 859 5401 4031 2215 254 2824
Snd 118 33 86 207 101 20 562
And 58 19 44 103 53 11 410

(3, 4)
DL 1734 1171 7426 3757 2360 157 1559
Snd 72 38 123 196 109 11 122
And 41 23 73 116 51 6 107

All experiments are performed on a Linux operating sys-
tem running on a machine with Intel Ivy Bridge processor at
2.4 GHz with 64 GB DDR3 1866 MHz memory. There are
two sockets on the machine and each has 12 cores, making
24 cores in total. Algorithms are implemented in C++ and
compiled using gcc 6.1.0 at the -O2 level. We used OpenMP
v4.5 for the shared-memory parallelization. Code is avail-
able at http://sariyuce.com/pnd.tar.

We first investigate the convergence characteristics of our
new algorithms in Section 5.1. We compare the number of
iterations that our algorithms need for the convergence and
also examine the convergence rates for the κ values. In ad-
dition, we investigate how the densest subgraphs evolve and
present a metric that can be monitored to determine the
“good-enough” decompositions so that trade-offs between
quality and runtime can be enjoyed. Then, we evaluate the
runtime performance in Section 5.2. In particular, we exam-
ine the impact of notification mechanism (Section 4.3) on the
And algorithm, show the scalability for our best performing
method, and compare it with respect to the partially par-
allel peeling algorithms. We also examine the runtime and
accuracy trade-off for our algorithms. Last, but not least,
we highlight a query-driven scenario in Section 5.3 where our
algorithms are used on a subset of vertices/edges to estimate
the core and truss numbers.

5.1 Convergence analysis
Here we study the following questions:

• How does the number of iterations change between asyn-
chronous computation (And) and synchronous (Snd)? How
do they relate to our theoretical bounds of Section 3.1?
• What is the rate of convergence regarding the τ values?

How quickly do they approach to the κ values?
• How is the evolution of the important subgraphs (with

high density) during the convergence?
• Is there a generic way to infer the “good-enough” decom-

positions so that the computation can be halted for trade-
off between runtime and quality?

5.1.1 Number of iterations
As described in Section 4.2, the number of iterations for

convergence can (only) be decreased by the asynchronous
algorithm And. We compare Snd (Algorithm 2) and And
(Algorithm 3) for three nucleus decompositions. All runs
are performed in sequential, and for And we use the natural
ordering of the r-cliques in datasets that is the order of ver-
tices/edges/triangles given or computed based on the ids in
the data files. Note that, we also checked And with random

0.0

0.5

1.0

 0 5 10 15 20 25 30

Ke
nd

al
l T

au

number of iterations

FB
SSE
TW
WN

WIKI

(a) k-core

0.0

0.5

1.0

 0 5 10 15 20 25 30

Ke
nd

al
l T

au

number of iterations

FB
SSE
TW
WN

WIKI

(b) (3, 4) nucleus

Figure 9: Convergence rates for five graphs in our dataset.
Kendall-Tau similarity score compares the τ values in a
given iteration with the exact decomposition (κ values); be-
comes 1.0 when they are equal. Our algorithms compute
almost-exact decompositions in around 10 iterations for k-
core, k-truss (in Figure 1), and (3, 4) nucleus decomposi-
tions.
r-clique orderings and did not observe significant differences.
We also compute the number of degree levels (Definition 7)
that we prove as an upper bound in Section 3.1.

Table 3 presents the results for k-core, k-truss, and (3, 4)
nucleus decompositions. Number of degree levels gives much
tighter bounds than the obvious limits – number of r-cliques.
We observe that both algorithms converge in far fewer iter-
ations than our upper bounds – Snd converges in 5% of the
bounds given for all decompositions, on average. Regarding
the comparison, And algorithm converges in 50% fewer iter-
ations than the Snd for k-core and k-truss decompositions
and 35% fewer iterations for (3, 4) nucleus decomposition.
Overall, we see the clear benefit of asynchronous computa-
tion on all the decompositions, thus use And algorithm in
the following experiments.

5.1.2 Convergence rates for the τ values
In the previous section, we studied the number of itera-

tions required for exact solutions. Now we will investigate
how fast our estimates, τ values converge to the exact, κ
values. We use Kendall-Tau similarity score to compare the
τ and κ values for each iteration, which becomes 1, when
they are equal. Figure 9 and Figure 1 present the results for
five representative graphs in our dataset. We observe that
our local algorithms compute almost exact decompositions
in less than 10 iterations for all decompositions, and we need
5, 9, and 6 iterations to achieve 0.90 similarity for k-core,
k-truss, and (3, 4) nucleus decompositions, respectively.

5.1.3 Evolution of the densest regions
In the hierarchy of dense subgraphs computed by our algo-

rithms, the leaves are the most important part (see Figure 2
and Figure 3), since those subgraphs have the highest edge

density (|E|/
(|V |

2

)
), pointing to the significant regions. Note

that the r-cliques in a leaf subgraph have same κ values
and they are the local maximals, i.e., have greater-or-equal
κ value than all their neighbors. For this reason, we mon-
itor how the nodes/edges in the leaf subgraphs form their

51

http://sariyuce.com/pnd.tar

0.0
0.2
0.4
0.6
0.8
1.0

 0 2 4 6 8 10 12 14

F
1

sc
or

e

number of iterations

(a) k-core on fb

0.0
0.2
0.4
0.6
0.8
1.0

 0 5 10 15 20 25 30

F
1

sc
or

e

number of iterations

(b) k-core on wnd

0.0
0.2
0.4
0.6
0.8
1.0

 0 2 4 6 8 10 12 14 16 18

F
1

sc
or

e

number of iterations

(c) k-truss on fb

0.0
0.2
0.4
0.6
0.8
1.0

 0 5 10 15 20 25
F

1
sc

or
e

number of iterations

(d) k-truss on sse

Figure 10: Evolution of densest subgraphs (leaves). Each
line shows the evolution of a leaf. We limit to subgraphs
with at least 10 vertices to filter out the trivial ones. Almost
all leaves are captured in the first few iterations.

max-cores/max-trusses during the convergence process. In
the k-core decomposition; for a given leaf subgraph L, we
find the max-cores, M i

v, of all v ∈ L at each iteration i with
respect to the τi values. Then we measure the F1 score
between each M i

v and L, and report the averages for each
leaf L in iteration i, i.e.,

∑
v∈LM

i
v/|L|. We follow a similar

way for the k-truss case; find the max-trusses for all edges
in each leaf, track their F1 scores during convergence with
respect to the leaf, and report the averages.

Figure 10 presents the results for a representative set of
graphs (similar trends observed for other graphs). Each line
shows the evolution of a leaf subgraph during the conver-
gence process and we only considered the subgraphs with at
least 10 vertices to filter out the trivial ones. We observe
that almost all leaves are captured in the first few itera-
tions. Regarding the facebook network, it has 3 leaves in
the k-core case and all can be found in 7 iterations, and 5
iterations are enough to identify 28 of 33 leaves in k-truss
decomposition. This trend is also observed for the other
graphs; 5 iterations find 78 of the 85 leaves in k-core de-
composition of web-NotreDame, and 39 of the 42 leaves in
k-truss decomposition of soc-sign-epinions.

5.1.4 Predicting convergence
Number of iterations for convergence depends on the graph

structure, as shown in Table 3. We cannot know whether
a particular r-clique has converged by tracking the stability
of its τ index since there can be temporary plateaus (see
Figure 7). However, we know which r-cliques are active or
idle in each iteration thanks to the notification mechanism
in And algorithm. We propose using the ratio of active
r-cliques as an indicator.

Table 4: Impact of the notification mechanism. And-nn
does not use notifications. Using 24 threads, notification
mechanism yields speedups up to 3.98 and 3.16 for k-truss
and (3, 4) cases.

(seconds) k-truss (3, 4)
Graphs And-nn And Speedup And-nn And Speedup

fb 0.45 0.35 1.29 34.4 22.2 1.55
tw 3.89 2.23 1.74 178.7 59.6 3.00
sse 2.50 1.46 1.72 105.5 49.6 2.13
wgo 3.15 1.25 2.52 25.7 16.9 1.53
wnd 2.38 0.60 3.98 220.5 69.8 3.16

We examine the relation between the ratio of active r-
cliques and the accuracy ratios of the r-cliques. Figure 11
presents the results for a set of graphs on all decompositions.
We observe that when the ratio of active r-cliques goes below
40% during the computation, 91%, 89%, and 92% accurate
results are obtained for k-core, k-truss, and (3, 4) nucleus de-
compositions, on average. When the ratio goes below 10%,
over 98% accuracy is achieved in all decompositions. The
results show the ratio of active r-cliques is a helpful guide
to find almost-exact results can be obtained faster. Watch-
ing for 10 or 40% of active r-cliques yields nice trade-offs
between runtime and quality. Watching the 40% threshold
provides 3.67, 4.71, and 4.98 speedups with respect to full
computation in k-core, k-truss, and (3, 4) nucleus decompo-
sitions, respectively, and the speedups for 10% threshold are
2.26, 2.81, and 3.25 (more details in Section 5.2.3).

5.2 Runtime performance
We evaluate the performance of our algorithms and seek to
answer the following questions:

• What is the impact of the notification mechanism (in Sec-
tion 4.3) on And algorithm?
• How does the And algorithm scale with more threads?

How does it compare to sequential peeling?
• What speedups are achieved when a certain amount of

accuracy is sacrificed?

5.2.1 Impact of the notification mechanism
We check the impact of the notification mechanism for

k-truss and (3, 4) cases. We use 24 threads and Table 4
presents the results where And is the entire Algorithm 3
with notification mechanism and And-nn does not have the
notifications – missing the orange lines in Algorithm 3. We
observe that Algorithm 3 brings great improvements, reach-
ing up to 3.98 and 3.16 over speedups over And-nn for k-
truss and (3, 4) cases. We use And algorithm (with notifi-
cation mechanism) in the rest of the experiments.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 5 10 15 20 25 30
 0
 10
 20
 30
 40
 50
 60
 70
 80
 90
 100

ac
cu

ra
cy

 (
da

sh
ed

)

%
 a

ct
iv

e
r-

cl
iq

ue
s

number of iterations

k-core
k-truss

(3,4)

(a) as-skitter

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 5 10 15 20 25 30
 0
 10
 20
 30
 40
 50
 60
 70
 80
 90
 100

ac
cu

ra
cy

 (
da

sh
ed

)

%
 a

ct
iv

e
r-

cl
iq

ue
s

number of iterations

k-core
k-truss

(3,4)

(b) soc-LiveJournal

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 5 10 15 20 25 30
 0
 10
 20
 30
 40
 50
 60
 70
 80
 90
 100

ac
cu

ra
cy

 (
da

sh
ed

)

%
 a

ct
iv

e
r-

cl
iq

ue
s

number of iterations

k-core
k-truss

(3,4)

(c) soc-orkut

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 5 10 15 20 25 30
 0
 10
 20
 30
 40
 50
 60
 70
 80
 90
 100

ac
cu

ra
cy

 (
da

sh
ed

)

%
 a

ct
iv

e
r-

cl
iq

ue
s

number of iterations

k-core
k-truss

(3,4)

(d) web-Google

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 5 10 15 20 25 30
 0
 10
 20
 30
 40
 50
 60
 70
 80
 90
 100

ac
cu

ra
cy

 (
da

sh
ed

)

%
 a

ct
iv

e
r-

cl
iq

ue
s

number of iterations

k-core
k-truss

(3,4)

(e) wiki-200611

Figure 11: Changes in the ratio of active r-cliques and the accuracy of τ indices during the computation, When the ratio of
active r-cliques goes below 40%, τ indices provide 91%, 89% and 92% accurate results on average for k-core, k-truss and (3, 4)
nucleus decompositions, respectively. If the ratio is below 10%, more than 98% accuracy is achieved in all decompositions.

52

0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0

 4 6 12 24

sp
ee

du
p

number of threads

ASK
FRI
HG

ORK
SLJ

WIKI
Peeling-24t

1.31s

0.84s

223s

(a) k-core

0.0

1.0

2.0

3.0

4.0

5.0

 4 6 12 24

sp
ee

du
p

number of threads

ASK
HG

ORK
SLJ

WIKI
Peeling-24t

706s

147s

9923s

(b) (3, 4)

Figure 12: Speedups of the parallel computations with re-
spect to the peeling computations (with 24 threads) for the
k-core and (3, 4) nucleus decompositions. We used 4, 6, 12,
and 24 threads where each thread is assigned to a single core.
On average, k-core computations are performed 3.83x faster
when the number of threads goes from 4 to 24. This increase
is 4.7x for (3, 4) case. Runtimes with 24 threads are anno-
tated for some graphs. Speedup numbers increase with more
threads and faster solutions are possible with more cores.

5.2.2 Scalability and comparison with peeling
Given the benefit of notification mechanism, we now com-

pare the runtime performances of And (Algorithm 3) and
the peeling process (Algorithm 1) on three decompositions.
Our machine has 24 cores in total (12 in each socket) and
we perform full computations until convergence with 4, 6,
12, and 24 threads. Note that our implementations for the
baseline peeling algorithms are efficient; for instance [46]
computes the truss decomposition of as-skitter graph in
281 secs where we can do it in 74 secs, without any paral-
lelization. In addition, for soc-orkut and soc-LiveJournal

graphs, we compute the truss decompositions in 352 and
81 secs whereas [18] needs 2291 and 1176 secs (testbeds
in [46] and [18] are similar to ours). For the k-truss and
(3, 4) nucleus decompositions, triangle counts per edge and
four-clique counts per triangle need to be computed and we
parallelize these parts for both the peeling algorithms and
And, for a fair comparison. Rest of the peeling computation
is sequential. Figure 12 and Figure 1 present the speedups
by And algorithm over the (partially parallel) peeling com-
putation with 24 threads on k-core, k-truss, and (3, 4)
nucleus decompositions. For all, And with 24 threads ob-
tains significant speedups over the peeling computation. In
particular, with 24 threads And is 8.77x faster for the k-core
case on the soc-LiveJournal, 6.3x faster for the k-truss de-
composition on as-skitter, and 4.3x faster for the (3, 4) nu-
cleus case on wiki-200611 graph. In addition, our speedup
numbers increase by more threads. On average, k-core com-
putations are performed 3.83x faster when the number of
threads are increased from 4 to 24. This increase is 4.8x
and 4.7x for k-truss and (3, 4) cases. Our speedup numbers
increase with more threads and faster solutions are possible
with more cores.
Recent results: There is a couple recent studies, concur-
rent to our work, that introduced new efficient parallel algo-
rithms for k-core [8] and k-truss [41, 45, 22] decompositions.
Dhulipala et al. [8] have a new parallel bucket data structure
for k-core decomposition that enables work-efficient paral-
lelism, which is not possible with our algorithms. They
present speedups to 23.6x on friendster graph with 72
threads. Regarding the k-truss decomposition, the HPEC
challenge [35] attracted interesting studies that parallelize

 1

 10

 100

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

sp
ee

du
p

accuracy

(a) k-truss

 1

 10

 100

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

sp
ee

du
p

accuracy

ASK
HG

ORK
SLJ

WIKI

(b) (3, 4)-nucleus

Figure 13: Runtime/accuracy tradeoff. We show the poten-
tial for speedups with respect to the peeling computations for
the k-truss and (3, 4) nucleus decompositions. Speedups at
full accuracy correspond to the speedups with 24 threads in
Figure 12. Number of iterations (and accuracy) decrease on
the x-axis. We reach up to 15x and 9x speedups on k-truss
and (3, 4) cases when 0.8 accuracy is allowed.

the computation [41, 45, 22]. In particular, Shaden et al. [41]
reports competitive results with respect to the earlier version
of our work [36]. Note that our main focus in this work
is a generic framework that enables local computa-
tion for k-core, k-truss, and (3, 4) nucleus decomposi-
tions, which has not been discussed in the previous works.
Although our algorithms are not work-efficient and more
specialized solutions can give better speedups, our local al-
gorithms are more generally applicable, enable trade-offs be-
tween runtime and accuracy, and also enable query-driven
scenarios that can be used to analyze smaller subgraphs.

5.2.3 Runtime and accuracy trade-off
We check the speedups for the approximate decomposi-

tions in the intermediate steps during the convergence. We
show how the speedups (with respect to peeling algorithm
with 24 threads) change when a certain amount of accuracy
in κs indices is sacrificed. Figure 13 presents the behavior
for k-truss and (3, 4) nucleus decompositions on some repre-
sentative graphs. We observe that speedups for the k-truss
decomposition can reach up to 15x when 0.8 accuracy is al-
lowed. For (3, 4) nucleus decomposition, up to 9x speedups
are observed for the same accuracy score. Overall, our local
algorithms are enable to enjoy different trade-offs between
the runtime and accuracy.

5.3 PartialAnd to estimate κ2 and κ3 values
So far, we have studied the performance of our algorithms on
the full graph. Now, we will look at how we can apply sim-
ilar ideas to a portion of the graph using the PartialAnd
algorithm described at end of Section 4.3. We will apply
PartialAnd to the ego networks and show that it can be
used to estimate κ2 values (core number) of vertices and κ3

values (truss number) of edges. Ego network of a vertex u is
defined as the induced subgraph among u and its neighbors.
It has been shown that ego networks in real-world networks
exhibit low conductance [15] and also can be used for friend
suggestion in online social networks [11]. Accurate and fast
estimation of core numbers [29] is important in the context
of network experiments (A/B testing) [43] where a random
subset of vertices are exposed to a treatment and responses
are analyzed to measure the impact of a new feature in on-
line social networks.

For the core number estimation of a vertex u, we apply
PartialAnd on u and its neighbor vertices, i.e., u∪N2(u),

53

100

101

102

103

104

 0 5 10 15 20 25 30 35 40 45

es
tim

at
io

n

core number

PartialAND
degree

100
101
102
103
104
105

 0 20 40 60 80 100 120

es
tim

at
io

n

core number

PartialAND
degree

(a) Core number estimations for wgo and ask

 0
 20
 40
 60
 80

 100
 120

 0 10 20 30 40 50 60 70 80

es
tim

at
io

n

truss number

PartialAND
triangle count

 0

 50

 100

 150

 200

 250

 0 10 20 30 40 50 60 70

es
tim

at
io

n

truss number

PartialAND
triangle count

(b) Truss number estimations for tw and hg

Figure 14: Accuracy of core and truss number estimations by PartialAnd. Top two charts present the core number estimations
by PartialAnd and degree with respect to the ground-truth (green line) on web-Google and as-skitter. Bottom two present
the truss number estimations for twitter and soc-twitter-higgs (green line is the ground-truth). PartialAnd estimates
the core and truss numbers accurately for a wide range. Results for other graphs are similar and omitted for brevity.

and report κ2(u). Indeed, the application of PartialAnd
on ego-network for core number estimation is the same as
the propagating estimator in [29] for distance-1 neighbor-
hood. Here we generalize the same concept to estimate truss
numbers of edges. Regarding the truss number estimations,
we define the ego network of an edge e as the set of neigh-
bor edges that participates in a common triangle (N3(e)).
Thus, we apply PartialAnd on e∪N3(e) and report κ3(e)
as a truss number estimate. Figures 14a and 14b present the
results for core and truss number estimations. We selected
vertices/edges with varying core/truss numbers (on the x-
axis) and check the accuracy of PartialAnd estimations.
Ground-truth values are shown with green lines (note that
y-axes in Figure 14a are log-scale). We also show the de-
grees/triangle counts of the vertices/edges in red as a base-
line. Overall, PartialAnd yields almost exact estimations
for a wide range of core/truss numbers. On the other hand,
degree of a vertex gives a close approximation to the core
number for smaller degrees, but it fails for large values. This
trend is similar for the truss numbers and triangle counts.

Regarding the runtime, PartialAnd on ego networks only
takes a fraction of a second – way more efficient than com-
puting the entire core/truss decomposition. For instance, it
takes only 0.23 secs on average to estimate the core number
of any vertex in the soc-orkut network whereas the full k-
core decomposition needs 11.4 secs. It is even better in the
k-truss case; PartialAnd takes 0.017 secs on average to
estimate a truss number of an edge in soc-twitter-higgs

network where the full k-truss computation takes 73 secs.

6. RELATED WORK
Previous attempts to find the approximate core numbers (or
k-cores) focus on the neighborhood of a vertex within a cer-
tain radius [29]. It is reported that if the radius is at least
half of the diameter, close approximations can be obtained.
However, given the small-world nature of the real-world net-
works, the local graph within a distance of half the diameter
is too large to compute. In our work, we approximate the k-
core, k-truss, and (r, s) nucleus decompositions in a rigorous
and efficient way that does not depend on the diameter.

Most related study is done by Lu et al. [26], where they
show that iterative h-index computation on vertices result

in the core numbers. Their experiments on smaller graphs
also show that h-index computation provides nice trade-offs
for time and quality of the solutions. In our work, we gen-
eralized the iterative h-index computation approach for any
nucleus decomposition that subsumes the k-core and k-truss
algorithms. Furthermore, we give provable upper bounds on
the number of iterations for convergence. Apart from that
work, Govindan et al. [16] use the iterative h-index com-
putation to design space-efficient algorithms for estimating
core numbers. Distributed algorithms in [28] and out-of-core
approaches in [23, 47, 5] also make use of similar ideas, but
only for core decomposition. Montresor et al. [28] present a
bound for the number of iterations, which is basically |V |−1,
much looser than ours.

Regarding the parallel computations, Jiang et al. [20] in-
troduced parallel algorithms to find the number of iterations
needed to find the empty k-core in random hypergraphs.
Their work relies on the assumption that the edge density
is below a certain threshold and the focus is on the number
of iterations only. Our local algorithms present an alterna-
tive formulation for the peeling process, and work for any
k value. For the k-truss decomposition, Quick et al. [31]
introduced algorithms for vertex-centric distributed graph
processing systems. For the same setup, Shao et al. [40]
proposed faster algorithms that can compute k-trusses in
a distributed graph processing system. Both papers make
use of the peeling-based algorithms for computation. Our
focus is on the local computation where the each edge has
access to only its neighbors and no global graph information
is necessary, thus promise better scalability.

7. CONCLUSION
We introduced a generalization of the iterative h-index com-
putations to identify any nucleus decomposition and prove
convergence bounds. Our local algorithms are highly paral-
lel and can provide fast approximations to explore time and
quality trade-offs. Experimental evaluation on real-world
networks exhibits the efficiency, scalability, and effectiveness
of our algorithms for three decompositions. We believe that
our local algorithms will be beneficial for many real-world
applications that work in challenging setups. For example,
shared-nothing systems can leverage the local computation.

54

8. REFERENCES
[1] N. K. Ahmed, J. Neville, R. A. Rossi, and N. G.

Duffield. Efficient graphlet counting for large
networks. In IEEE International Conference on Data
Mining, ICDM, pages 1–10, 2015.

[2] A. Angel, N. Sarkas, N. Koudas, and D. Srivastava.
Dense subgraph maintenance under streaming edge
weight updates for real-time story identification.
PVLDB, 5(6):574–585, 2012.

[3] V. Batagelj and M. Zaversnik. An o (m) algorithm for
cores decomposition of networks. arXiv preprint
cs/0310049, 2003.

[4] A. R. Benson, D. F. Gleich, and J. Leskovec.
Higher-order organization of complex networks.
Science, 353(6295):163–166, 2016.

[5] J. Cheng, Y. Ke, S. Chu, and M. T. Ozsu. Efficient
core decomposition in massive networks. In IEEE
International Conference on Data Engineering ,
ICDE, pages 51–62, 2011.

[6] J. Cohen. Trusses: Cohesive subgraphs for social
network analysis. Technical report, National Security
Agency Technical Report, Fort Meade, MD, 2008.

[7] L. Dagum and R. Menon. Openmp: an industry
standard api for shared-memory programming.
Computational Science & Engineering, IEEE,
5(1):46–55, 1998.

[8] L. Dhulipala, G. Blelloch, and J. Shun. Julienne: A
framework for parallel graph algorithms using
work-efficient bucketing. In ACM Symposium on
Parallelism in Algorithms and Architectures ,SPAA,
pages 293–304, 2017.

[9] Y. Dourisboure, F. Geraci, and M. Pellegrini.
Extraction and classification of dense communities in
the web. In International Conference on World Wide
Web, WWW, pages 461–470, 2007.

[10] X. Du, R. Jin, L. Ding, V. E. Lee, and J. H. T. Jr.
Migration motif: a spatial-temporal pattern mining
approach for financial markets. In ACM SIGKDD
International Conf. on Knowledge Discovery and Data
Mining, pages 1135–1144, 2009.

[11] A. Epasto, S. Lattanzi, V. Mirrokni, I. O. Sebe,
A. Taei, and S. Verma. Ego-net community mining
applied to friend suggestion. PVLDB, 9(4):324–335,
2015.

[12] E. Fratkin, B. T. Naughton, D. L. Brutlag, and
S. Batzoglou. Motifcut: regulatory motifs finding with
maximum density subgraphs. Bioinformatics,
22(14):e150–e157, 2006.

[13] D. Gibson, R. Kumar, and A. Tomkins. Discovering
large dense subgraphs in massive graphs. In
International Conference on Very Large Data Bases,
VLDB, pages 721–732, 2005.

[14] A. Gionis, F. Junqueira, V. Leroy, M. Serafini, and
I. Weber. Piggybacking on social networks. PVLDB,
6(6):409–420, 2013.

[15] D. F. Gleich and C. Seshadhri. Vertex neighborhoods,
low conductance cuts, and good seeds for local
community methods. In ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining,
pages 597–605, 2012.

[16] P. Govindan, S. Soundarajan, T. Eliassi-Rad, and
C. Faloutsos. Nimblecore: A space-efficient external

memory algorithm for estimating core numbers. In
IEEE/ACM International Conference on Advances in
Social Networks Analysis and Mining, ASONAM,
pages 207–214, 2016.

[17] J. E. Hirsch. An index to quantify an individual’s
scientific research output. Proceedings of the National
Academy of Sciences of the United States of America,
102(46):16569–16572, 2005.

[18] X. Huang, H. Cheng, L. Qin, W. Tian, and J. X. Yu.
Querying k-truss community in large and dynamic
graphs. In ACM SIGMOD International Conference
on Management of Data, pages 1311–1322, 2014.

[19] M. Jha, C. Seshadhri, and A. Pinar. Path sampling: A
fast and provable method for estimating 4-vertex
subgraph counts. In International Conference on
World Wide Web, WWW, pages 495–505, 2015.

[20] J. Jiang, M. Mitzenmacher, and J. Thaler. Parallel
peeling algorithms. In ACM Symposium on
Parallelism in Algorithms and Architectures, SPAA,
pages 319–330, 2014.

[21] R. Jin, Y. Xiang, N. Ruan, and D. Fuhry. 3-hop: a
high-compression indexing scheme for reachability
query. In ACM SIGMOD International Conference on
Management of Data, pages 813–826, 2009.

[22] H. Kabir and K. Madduri. Shared-memory graph
truss decomposition. In IEEE International
Conference on High Performance Computing, HiPC,
pages 13–22, 2017.

[23] W. Khaouid, M. Barsky, S. Venkatesh, and A. Thomo.
K-core decomposition of large networks on a single
PC. PVLDB, 9(1):13–23, 2015.

[24] R. Kumar, P. Raghavan, S. Rajagopalan, and
A. Tomkins. Trawling the web for emerging
cyber-communities. In International Conference on
World Wide Web, WWW, pages 1481–1493, 1999.

[25] J. Leskovec and A. Krevl. SNAP Datasets, June 2014.

[26] L. Lü, T. Zhou, Q.-m. Zhang, and H. E. Stanley. The
h-index of a network node and its relation to degree
and coreness. Nature Communications, 7:10168, 2016.

[27] D. W. Matula and L. L. Beck. Smallest-last ordering
and clustering and graph coloring algorithms. Journal
of the ACM, 30(3):417–427, July 1983.

[28] A. Montresor, F. D. Pellegrini, and D. Miorandi.
Distributed k-core decomposition. IEEE Transactions
on Parallel and Distributed Systems, 24(2):288–300,
2013.

[29] M. P. O’Brien and B. D. Sullivan. Locally estimating
core numbers. In IEEE International Conference on
Data Mining, ICDM, pages 460–469, 2014.

[30] A. Pinar, C. Seshadhri, and V. Vishal. Escape:
Efficiently counting all 5-vertex subgraphs. In
International Conference on World Wide Web,
WWW, pages 1431–1440, 2017.

[31] L. Quick, P. Wilkinson, and D. Hardcastle. Using
pregel-like large scale graph processing frameworks for
social network analysis. In IEEE/ACM International
Conference on Advances in Social Networks Analysis
and Mining, ASONAM, pages 457–463, 2012.

[32] R. A. Rossi and N. K. Ahmed. The network data
repository with interactive graph analytics and
visualization. In AAAI Conference on Artificial

55

Intelligence, pages 4292–4293, 2015.

[33] R. A. Rossi, R. Zhou, and N. K. Ahmed. Estimation
of graphlet statistics. CoRR, abs/1701.01772, 2017.

[34] K. Saito and T. Yamada. Extracting communities
from complex networks by the k-dense method. In
IEEE International Conference on Data Mining
Workshops, ICDMW, pages 300–304, 2006.

[35] S. Samsi, V. Gadepally, M. Hurley, M. Jones, E. Kao,
S. Mohindra, P. Monticciolo, A. Reuther, S. Smith,
W. Song, D. Staheli, and J. Kepner. Static graph
challenge: Subgraph isomorphism. In IEEE High
Performance Extreme Computing Conference, HPEC,
2017.

[36] A. E. Sariyüce, C. Seshadhri, and A. Pinar. Parallel
local algorithms for core, truss, and nucleus
decompositions. CoRR, abs/1704.00386, 2017.

[37] A. E. Sarıyüce, C. Seshadhri, A. Pınar, and Ü. V.
Çatalyürek. Finding the hierarchy of dense subgraphs
using nucleus decompositions. In International
Conference on World Wide Web, WWW, pages
927–937, 2015.

[38] A. E. Sarıyüce, C. Seshadhri, A. Pınar, and Ü. V.
Çatalyürek. Nucleus decompositions for identifying
hierarchy of dense subgraphs. ACM Transactions on
Web, 11(3):16:1–16:27, 2017.

[39] S. B. Seidman. Network structure and minimum
degree. Social Networks, 5(3):269–287, 1983.

[40] Y. Shao, L. Chen, and B. Cui. Efficient cohesive
subgraphs detection in parallel. In ACM SIGMOD
International Conference on Management of Data,
pages 613–624, 2014.

[41] S. Smith, X. Liu, N. K. Ahmed, A. S. Tom, F. Petrini,
and G. Karypis. Truss decomposition on
shared-memory parallel systems. In IEEE High
Performance Extreme Computing Conference, HPEC,
pages 1–6, 2017.

[42] C. Tsourakakis. The k-clique densest subgraph
problem. In International Conference on World Wide
Web, WWW, pages 1122–1132, 2015.

[43] J. Ugander, B. Karrer, L. Backstrom, and
J. Kleinberg. Graph cluster randomization: Network
exposure to multiple universes. In ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining, pages 329–337, 2013.

[44] A. Verma and S. Butenko. Network clustering via
clique relaxations: A community based. Graph
Partitioning and Graph Clustering, 588:129, 2013.

[45] C. Voegele, Y. Lu, S. Pai, and K. Pingali. Parallel
triangle counting and k-truss identification using
graph-centric methods. In IEEE High Performance
Extreme Computing Conference, HPEC, pages 1–7,
2017.

[46] J. Wang and J. Cheng. Truss decomposition in
massive networks. PVLDB, 5(9):812–823, 2012.

[47] D. Wen, L. Qin, Y. Zhang, X. Lin, and J. Yu. I/o
efficient core graph decomposition at web scale. In
IEEE International Conference on Data Engineering,
ICDE, pages 133–144, 2016.

[48] Y. Zhang and S. Parthasarathy. Extracting analyzing
and visualizing triangle k-core motifs within networks.
In IEEE International Conference on Data
Engineering, ICDE, pages 1049–1060, 2012.

56

	Introduction
	Problem and challenges
	Contributions

	Background
	Core, Truss, and Nucleus Decompositions
	h-index computation

	From the h-index to the s-index
	Convergence bounds by the degree levels

	Local algorithms
	Synchronous Nucleus Decomposition (Snd)
	AsynchronousNucleusDecomposition(And)
	Avoiding redundant work by notifications
	Heuristics and implementation

	Experiments
	Convergence analysis
	Number of iterations
	Convergence rates for the values
	Evolution of the densest regions
	Predicting convergence

	Runtime performance
	Impact of the notification mechanism
	Scalability and comparison with peeling
	Runtime and accuracy trade-off

	PartialAnd to estimate 2 and 3 values

	Related Work
	Conclusion
	References

