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ABSTRACT
Nowadays, crowdsourcing is being widely used to collect training
data for solving classification problems. However, crowdsourced
labels are often noisy, and there is a performance gap between clas-
sification with noisy labels and classification with ground-truth la-
bels. In this paper, we consider how to apply oracle-based label
cleaning to reduce the gap. We propose TARS, a label-cleaning
advisor that can provide two pieces of valuable advice for data sci-
entists when they need to train or test a model using noisy labels.
Firstly, in the model testing stage, given a test dataset with noisy
labels, and a classification model, TARS can use the test data to
estimate how well the model will perform w.r.t. ground-truth la-
bels. Secondly, in the model training stage, given a training dataset
with noisy labels, and a classification algorithm, TARS can deter-
mine which label should be sent to an oracle to clean such that the
model can be improved the most. For the first advice, we propose
an effective estimation technique, and study how to compute confi-
dence intervals to bound its estimation error. For the second advice,
we propose a novel cleaning strategy along with two optimization
techniques, and illustrate that it is superior to the existing clean-
ing strategies. We evaluate TARS on both simulated and real-world
datasets. The results show that (1) TARS can use noisy test data
to accurately estimate a model’s true performance for various eval-
uation metrics; and (2) TARS can improve the model accuracy by
a larger margin than the existing cleaning strategies, for the same
cleaning budget.
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1. INTRODUCTION
Classification is a fundamental problem in machine learning and

statistics. It has achieved great success in many real-world applica-
tions, such as entity resolution, disease prediction, and fraud detec-
tion. The goal of classification is to train a classifier (a.k.a. model)
from a collection of 〈instance, label〉 pairs such that the classifier
can predict the labels of unseen instances. The labeled pairs are
split into two parts: training data and test data, where the training
data is for model training and the test data is for model evaluation.
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How accurate is
a model?

(1) Model
(2) Noisy Test Data

0.8±0.01

Which label should
be cleaned?

(1) Learning Algorithm
(2) Noisy Training Data

<instance3, label3>

Advice 1. Model Evaluation

Advice 2. Cleaning Strategy

Figure 1: TARS can provide two pieces of valuable advice when
data scientists need to train or test a model using noisy labels

Despite the great success that classification has achieved, it suf-
fers from the high cost of data labeling. Crowdsourcing is a promis-
ing way to overcome this limitation. Crowdsourcing platforms such
as Amazon Mechanical Turk have a large pool of crowd workers
available. These workers can be used to label data at low cost
and fast speed. But at the same time, crowd workers are not ac-
curate. They often provide noisy labels with certain probabilities
to be wrong. Although this issue can be mitigated by assigning an
instance to multiple workers and then infer the instance’s ground-
truth label using a truth-inference algorithm, the state-of-the-art
truth-inference algorithms are still far from perfect [47].

Having noisy labels in training data will negatively affect the per-
formance of a classification algorithm because the algorithm tries
to predict noisy labels rather than ground-truth labels. In the Ma-
chine Learning community, there has already been some work that
studies how to clean noisy labels to solve this problem [5]. How-
ever, the noisy labels are cleaned by heuristic algorithms, which
have no guarantee on cleaning accuracy and may even mess up a
lot of correct labels [15].

Unlike the existing work, our work draws some inspiration from
the recent progress in the data cleaning community [3, 14, 20], and
focuses on a different data-cleaning scenario. We consider that
there exists an oracle who can be queried to clean noisy labels.
Each query is to ask the oracle to verify whether a training example,
〈instance, label〉, is correctly labeled or not. If not, replace its label
with the ground-truth label. This scenario more often than not holds
in reality. Imagine a data scientist needs to train a good classifier
on noisy data. In this situation, she can ask internal experts from
her company to serve as oracles to clean the noisy labels.

It is worth noting that the goal of this paper is not to develop
yet another classification algorithm for noisy labels. Instead, we
aim to develop a label cleaning advisor, named as TARS1, that can

1TARS is named after an intelligent robot in Interstellar who
can provide insightful advice for human beings.
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Instance Noisy
Label

𝑥" (𝑤",+1)
𝑥) (𝑤",+1)
𝑥* (𝑤",+1)
𝑥+ (𝑤",−1)
𝑥- (𝑤),−1)

(a) Ground-truth Labels

Instance Predicted
Label

𝑥" +1
𝑥) +1
𝑥* -1
𝑥+ -1
𝑥- +1

Instance True
Label

𝑥" +1
𝑥) +1
𝑥* -1
𝑥+ -1
𝑥- -1

(b) Crowdsourced (noisy) labels (c) Model’s Prediction

Figure 2: Datasets with ground-truth labels, crowdsourced la-
bels, and a model’s predicted labels.

advise a data scientist on how to make the best use of oracle-based
cleaning for classification. As shown in Figure 1, suppose a data
scientist has already trained a model on a noisy dataset. The first
piece of advice she may ask for is how accurate the model is. If the
current model is already good enough, there is no need to further
spend effort on label cleaning. However, if she finds that the current
model does not meet her need, the next question she may ask is
which label should be cleaned such that the model can be improved
the most. TARS can provide the two pieces of advice:

• Advice 1. Model Evaluation. Given a model, and a test dataset
labeled by the crowd, TARS can tell a data scientist how well the
model will perform w.r.t. ground-truth labels (rather than w.r.t.
noisy labels). Advice 1 is especially useful when cleaning a la-
bel is prohibitively expensive. Moreover, the model may some-
times need to be evaluated not only on a single test dataset but
on multiple different ones. For example, suppose a data scientist
wants to monitor the model’s performance over time. Without
Advice 1, she needs to keep asking domain experts to clean a
new test dataset again and again, which is tedious and costly.
• Advice 2. Cleaning Strategy. Given a learning algorithm, and a

training dataset labeled by the crowd, TARS can tell a data sci-
entist which label in the training dataset should be cleaned such
that the new model, re-trained on the cleaned training dataset us-
ing the learning algorithm, has the best performance. The size
of a training dataset is typically in the range from a few hundred
to tens of thousands [1, 2]. It is expensive to ask oracles to clean
them all. With the help of Advice 2, data scientists are able to
apply oracles to clean them progressively. For example, suppose
there is a small cleaning budget (e.g., 50), but a training dataset
is much bigger (e.g., 1000). In this situation, a data scientist can
ask for Advice 2 iteratively for 50 times and identify which label
should be cleaned at each iteration.

There are some straightforward solutions to the above two prob-
lems. In the following, we will use the simple example in Figure 2
to illustrate the limitations of these solutions, and then demonstrate
the contributions made in this paper to overcome the limitations.

Let us first consider Advice 1. Figure 2(b) shows a test dataset
labeled by two crowd workers w1 and w2. For simplicity, we as-
sume that the workers w1 and w2 have the same noise rate = 0.2,
which means that each of them has a probability of 0.2 to give a dif-
ferent label from the ground-truth label. We apply a given model to
the test dataset and obtain the predicted label of each instance (see
Table (c)). Since ground-truth labels are unknown, the model’s true
accuracy cannot be directly derived. One naive approach is to treat
noisy labels as ground-truth labels and then compute the accuracy
based on the noisy labels. However, this approach is biased because
it ignores the workers’ noise rates. In this example, the accuracies
computed based on the noisy labels and the ground-truth labels are
3
5

and 4
5

, respectively, and the difference is 1
5

.
To overcome the limitation, we present a new estimator that es-

timates the model’s true performance (e.g., accuracy, precision, re-
call, or F-score) by considering not only noisy labels but also noise
rates. We prove that our estimator is unbiased (i.e., in expectation
the estimator’s estimated value is equal to the true value). We fur-
ther study how to compute a confidence interval for the estimator

in order to bound its estimation error (i.e., bound the difference be-
tween the estimated value and the true value). This turns out to
be a challenging problem because the estimator’s error comes from
two sources: sampling and labeling. We theoretically analyze how
each source contributes to the overall estimation error, and show
that the contribution of the first (second) source is controlled by
test data size N (a noise rate β). Interestingly, they will not be
affected by each other: (i) as N increases, the overall estimation
error will decrease at a rate ofO( 1√

N
), regardless of what β is, and

(ii) as β decreases, the overall estimation error will decrease at a
rate of O

(
1

|0.5−β|

)
, regardless of what N is. In other words, the

estimation error can be decreased by either increasing test data size
or improving worker quality; the above theoretical results show the
trade-off of each choice.

Next, let us consider Advice 2. Suppose Figure 2(b) represents a
training dataset, where w1’s noise rate is 0.4 and w2’s noise rate is
0.01. There are five noisy labels in the dataset, and TARS needs to
decide which one should be sent to an oracle to clean. One straight-
forward solution is to apply active cleaning [36] (e.g., uncertain
sampling) to determine which label should be cleaned. However,
our problem setting is different since active learning assumes that
data is unlabeled but here data has been labeled by crowd workers.
We need to incorporate label noise into our cleaning strategy oth-
erwise an oracle may clean many instances that have already been
correctly labeled. For example, consider the data in Figure 2(b), the
first four instances have the label noise of 0.4 and the label noise
of the last instance is only 0.01. A good cleaning strategy should
try to avoid sending the last instance to an oracle because it has a
probability of 0.99 to be correct. (In addition to active learning,
there are some other cleaning strategies proposed in the literature.
Please refer to Section 5.1 for a more detailed discussion.)

To this end, we propose a new cleaning strategy, called expected
model improvement (EMI). EMI estimates the expected model im-
provement of cleaning each noisy label and then selects the noisy
label with the largest estimated value to clean. We illustrate the lim-
itations of the existing cleaning strategies and explain why EMI can
overcome the limitations. While the idea of EMI sounds promis-
ing in theory, we need to address some practical issues. The first
issue is which data should be used to estimate the expected model
improvement. If we choose the data improperly, EMI may end up
training a model that performs well on the training data but not
on the test data. The second issue is how to break the tie when
two noisy labels have the same expected model improvement. We
propose optimization techniques to address the issues and demon-
strate their effectiveness experimentally. In the end, we analyze
the time complexity of our approach, and study how to improve its
efficiency in practice.

Figure 2 only shows a simplified version of our problem. In the
paper, we study a more general version of the problem, where an
instance can be labeled by multiple workers, a confusion matrix is
used to model worker quality, and various metrics such as accuracy,
precision, recall, and F-score can be chosen for model evaluation.
In summary, our paper makes the following contributions:

• To the best of our knowledge, we are the first to study how to
use an oracle to clean crowdsourced labels for classification. We
identify two challenging problems (model evaluation and clean-
ing strategy) and present the formal problem definitions.
• We propose an estimator that can estimate a model’s true accu-

racy based on noisy data. We prove that the estimator is unbiased
and we compute a confidence interval to bound its estimation er-
ror. We also discuss how to extend our solution to other evalua-
tion metrics such as precision, recall, F-score.
• We develop a new cleaning strategy, called EMI, that can effec-

tively decide which label should be cleaned. We explain why
EMI is superior to the existing cleaning strategies to solve our
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problem. We further improve the effectiveness of EMI by devel-
oping two optimization techniques, and discuss how to make it
run efficiently in practice.

• We evaluate TARS on both simulated and real-world datasets.
The results show that (1) TARS can use noisy labels to accurately
estimate how well a model will perform w.r.t. ground-truth la-
bels; and (2) TARS can improve the model accuracy by a larger
margin than the existing cleaning strategies, for the same clean-
ing budget.

The remainder of this paper is organized as follows. Section 2
formally defines the model evaluation and cleaning strategy prob-
lems. Since each instance may be labeled by multiple workers,
we introduce how label consolidation works in Section 3. After
that, we discuss how to solve the model evaluation problem in Sec-
tion 4 and the cleaning strategy problem in Section 5. Experimental
results are presented in Section 6, followed by related work (Sec-
tion 7) and conclusion (Section 8).

2. PROBLEM DEFINITION
We first provide some background knowledge in Section 2.1, and

then formally define our problems in Sections 2.2 and 2.3.

2.1 Background
Classification With Ground-Truth Labels. Let G be the joint dis-
tribution on (x, y) ∈ X × Y , where x represents an input instance
(typically a vector) and y ∈ {−1,+1} represents the ground-truth
label (see [11] for the extension to multiclass classification). De-
note a sample drawn i.i.d. from G as S = {(xi, yi)}Ni=1. A classi-
fication algorithm aims to train a predictive model (i.e., a classifier)
f based on S and then make predictions over the unseen instances
in G, where f can be thought of as a decision function that takes an
instance x as input and outputs a real value t = f(x). The instance
will be classified as +1 if t > 0, and -1 otherwise.

Crowdsourced Data. LetW = {wj}Kj=1 denote a set of workers.
We assume that each instance xi is labeled by a subset of ki work-
ers; let Li = {(wj , li,j) | wj labels xi} denote the corresponding
labels, where li,j ∈ {−1,+1} represents the label given by worker
wj . Let C = {(xi,Li)}Ni=1, which we call the crowdsourced data.

Worker Model. Typically, there are three ways to model worker
quality. The first one is to use a single probability value, which
represents the probability that a worker provides the correct label
of an instance (regardless of its ground-truth label). The second one
is to use a confusion matrix, which represents the probability that a
worker provides the correct label of an instance given the ground-
truth label. The third one is to use a probability distribution, which
represents the probability that a worker provides the correct label of
an instance given its difficulty. In this paper, we choose the second
one because it has been widely used in the crowdsourcing literature
and has been shown an effective way to model worker quality [23].
For the third approach, although it sounds more reasonable, the
challenge is that in practice, it is hard to estimate how difficult a
worker feels when doing a task. Without an accurate estimation,
the worker model will not perform well.

The confusion matrix of each worker wj is a 2× 2 matrix,

q(j) =

[
q

(j)
−1,−1, q

(j)
−1,+1

q
(j)
+1,−1, q

(j)
+1,+1

]
,

where each row represents a ground-truth label, each column rep-
resents a worker’s provided label, and q(j)

y,l (y ∈ {±1}, l ∈ {±1})
means that given an instance with ground-truth label y, worker wj
provides label l with probability of q(j)

y,l .

True Negative
(TN)

False Negative
(FN)

False Positive
(FP)

True Positive
(TP)

-1

+1

-1 +1

Tr
ue
La
be
l

Predicted Label

(a)

Accuracy = 	
TN+TP

TN+FN+FP+TP

Precision = 	
TP

𝑇𝑃 + 𝐹𝑁

Recall = 	
TP

𝑇𝑃 + 𝐹𝑃

F−Score = 	
2TP

2TP+FN+FP

(b)

Figure 3: An illustration of (a) model’s confusion matrix and
(b) four evaluation metrics derived from the confusion matrix.

Prior Probability. Each cell in a confusion matrix is a conditional
probability, q(j)

y,l = P (L = l | Y = y). To compute the joint prob-
ability distribution P (L, Y ), we also need to know a prior prob-
ability (or simply called the prior), denoted by P (Y ). Intuitively,
the prior is the probability of an instance having a label of +1 or -1.

Computing Confusion Matrices and Prior. An important prob-
lem is how to compute workers’ confusion matrices q(j) (for all
j ∈ [1,K]) and the prior P (Y ) in practice. This problem has been
extensively studied in the crowdsourcing literature [23]. One sim-
ple idea is to manually label a small sample of instances upfront,
and then mix these instances with other unlabeled instances and
ask workers to label them all. Since workers do not know which
instances have been pre-labeled, these pre-labeled instances can be
used to compute workers’ confusion matrices as well as the prior.

Another common idea is to leverage label redundancy. To im-
prove quality, each instance is often labeled by multiple workers.
If a worker often provides inconsistent labels with the majority of
other workers, then the worker is very likely to be a low-quality
worker. Based on this idea, existing work treats confusion matri-
ces and the prior as unknown parameters and adopts an EM algo-
rithm [10] to iteratively estimate their values.

There are certainly many other approaches to improve the com-
putation of workers’ confusion matrices and the prior. In this paper,
we treat this as an orthogonal problem, and assume that they are
given as input of our problems.
Classification With Noisy Labels. Let A denote a classification
algorithm that learns a classifier f on crowdsourced data C. This
problem has been well studied in the Machine Learning commu-
nity [15, 32]. Their basic ideas are either to develop a robust clas-
sification algorithm to tolerate label noise or to adopt automatic
cleaning algorithms to filter/correct noisy labels. In this paper, we
treat A as a black box, which takes crowdsourced data C as input
and outputs a classifier.

2.2 Advice 1: How Good is a Model?
The first piece of advice from TARS is focused on the model

testing stage. It considers the situation when a user has already
trained a model and wants to evaluate the model’s performance us-
ing crowdsourced data.
Evaluation Metrics. To evaluate a model’s performance, people
often compute a confusion matrix for the model and then derive dif-
ferent types of evaluation metrics from the matrix. Figure 3(a) illus-
trates a confusion matrix. We can see that it is similar to a worker’s
confusion matrix, where each row also represents a ground-truth
label, but the difference is that each column represents a model’s
predicted label rather than a worker’s provided label. The matrix
has four cells: True Positive (TP), False Positive (FP), True Nega-
tive (TN), and False Negative (FN). TARS aims to estimate the value
of each cell. In this way, any evaluation metric computed based on
these cells can be derived in a straightforward manner. Figure 3(b)
shows the definitions of four representative evaluation metrics.

Let eval denote a user-specified evaluation metric. The model’s
true performance is denoted by eval(G, f). For example, suppose
eval is accuracy, then eval(G, f) computes the f ’s accuracy on G.
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Since we do not have access to G but only crowdsourced data C,
TARS aims to use C to estimate eval(G, f). Let ẽval(C, f) denote
an estimation of eval(G, f). We say ẽval(C, f) to be unbiased if
the expected value of the estimation is equal to the true value, i.e.,
E[ẽval(C, f)] = eval(G, f).

TARS computes a confidence interval to bound the estimation
error of ẽval(C, f). Suppose the estimated value is ẽval(C, f) =
0.8. Given a confidence level (e.g., 95%), a confidence interval
(e.g., 0.8±0.01) indicates that the difference between the estimated
value and the true value is within±0.01 with 95% probability. The
wider the confidence interval, the larger the estimation error.

PROBLEM 1 (MODEL EVALUATION). Given crowdsourced
data C, a model f , and an evaluation metric eval, TARS aims to
determine (1) an unbiased estimator, ẽval(C, f), of the model’s
true performance, and (2) a confidence interval, [ẽval(C, f) −
ε1, ẽval(C, f) + ε2], at a given confidence level.

2.3 Advice 2: Which Label Should be Cleaned?
The second piece of advice that TARS can provide is focused

on the model training stage. It considers the situation when a user
trains a model using noisy data, but the model is not good enough.
The user wants to know which instance-label pair should be sent to
an oracle to clean such that the model’s true performance can be
improved the most.
Oracle Labeller. Cleaning, or ground truth labeling, can be thought
of as querying a perfect worker wΩ called an oracle. It follows that
the noise rates for wΩ are P (L = −1 | Y = +1) = P (L = +1 |
Y = −1) = 0. We assume that queries are expensive, and thus
calls to the oracle are constrained by a budget.
Cleaning Data. Suppose we query an oracle to clean an instance xi
and obtain ground truth label yi. One could update crowdsourced
data C with this new knowledge by replacing Li with {(wΩ, yi)}.
We say that we are cleaning instance xi, because we are substitut-
ing a set of imprecise labels with the ground truth label provided
by the oracle.
Cleaning Strategy. Recall that a classification algorithm A takes
crowdsourced data C as input and outputs a model f . By cleaning
the labels in C, we hope A can produce a better model. It is ex-
pensive to query an oracle to get ground truth labels, thus the goal
is to strategically choose xi to clean. The best choice of xi would
result in a dataset which leads to a model more accurate than clean-
ing any other label. Based on the notation above, we have a formal
definition of the problem below:

PROBLEM 2 (CLEANING STRATEGY). Given crowdsourced
data C, a classification algorithmA, and an evaluation metric eval,
let fi be the model resulting from cleaning instance xi, then train-
ing on C with A. TARS aims to determine which instance should
be cleaned such that the model’s true performance can be improved
the most: i∗ = argmax

i=1,...,N
eval(G, fi).

3. PRELIMINARY: LABEL CONSOLIDATION
Given crowdsourced data, if there are instances in the data hav-

ing multiple worker labels, TARS will first consolidate these label
into a single label. In other words, after this process, each instance
in the crowdsourced data will have a single consolidated label along
with a confusion matrix that quantifies the uncertainty of the con-
solidated label. In this section, we will start by showing why there
is a need for this process, and then present how to get the consoli-
dated label as well as the consolidated confusion matrix.

3.1 The Need For Label Consolidation
Both Problems 1 and 2 require estimating the performance of

some model which is defined based on the ground-truth labels in

G. Rather than ground-truth labels, we only have worker labels.
The trick to bridging the gap between worker labels and ground-
truth labels is noticing that there are some relationships between
them, which are captured by the workers’ confusion matrices.

We use worker labels along with workers’ confusion matrices
to infer the most likely ground-truth label for each instance, and
then figure out how to quantify the uncertainty of each inferred la-
bel. Specifically, given a crowdsourced dataset C = {(xi,Li)}Ni=1,
we aim to get a new dataset, denoted by D = {(xi, y′i, r(i))}Ni=1,
where y′i and r(i) represent the inferred label and the uncertainty of
the inferred label mentioned above. We will present how to com-
pute y′i and r(i) in Sections 3.2 and 3.3, respectively.

3.2 Computing Consolidated Labels
Given an instance xi with worker labels Li, the basic idea of

getting the xi’s most likely label is to compare the values of two
conditional probabilities: P (Yi = +1 | Li) and P (Yi = −1 |
Li), the probability that instance xi has a ground-truth label of +1
(resp. -1), conditioned on the labels that the workers provide. If the
former (latter) is larger, it means that the instance’s label is more
likely to be +1 (resp. -1).

We use the work of Dawid and Skene [10] to compute the con-
ditional probabilities. Below is an explanation of their approach,
adapted to our notation. Assuming that workers provide labels in-
dependently of one another, we have:

P (Yi = +1 | Li) =
P (Li | Yi = +1)P (Yi = +1)

P (Li)
∝ P (Li | Yi = +1)P (Yi = +1)

= P (Yi = +1)
∏

li,j∈Li

P (Lj = li,j | Yi = +1)

= P (Y = +1)
∏

li,j∈Li

q
(j)
+1,li,j

(1)

Similarly, we can compute P (Yi = −1 | Li). By comparing
their values, we obtain the consolidated label y′i:

y′i = argmax
ȳ=−1,1

P (Y = ȳ)
∏

li,j∈Li

q
(j)
ȳ,li,j

(2)

Thus, the chance of instance xi having a ground truth label of,
say, +1 is influenced by two main factors. If the instances for which
Y = +1 are extremely common (i.e. P (Y = +1) is very close to
1), this increases our belief that Yi = +1. Likewise, if the labels
that workers provide are likely to happen provided that Y = +1
were true (i.e., qk+1,l is very close to +1), then this also increases
our belief that Yi = +1.

3.3 Quantify Consolidated Label’s Uncertainty
Suppose an instance xi is labeled by a group of ki workers, de-

noted by Wi. Let y′i denote the consolidated label inferred from
worker labels using the above method. Like the definition of a
worker’s confusion matrix, we define the consolidated confusion
matrix associated with a group of workers as a 2× 2 matrix:

r(Wi) =

[
r

(Wi)
−1,−1, r

(Wi)
−1,+1

r
(Wi)
+1,−1, r

(Wi)
+1,+1

]
,

where each row represents a ground-truth label, each column rep-
resents a consolidated label, and Each cell in the matrix is a condi-
tional probability r(Wi)

y,y′ = P (Y ′i = y′ | Y = y) (y′, y ∈ {±1}).
If the context is clear, we abbreviate r(Wi) as r(i) or r.
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We use the Law of Total Probability to compute the conditional
probability.

P (Y ′i | Y ) =
∑
n

P (Y ′i | L̄in, Y )P (L̄in | Y ), (3)

where {L̄in : n = 1, 2, · · · , 2ki} represents all combinations of the
labels that the group of ki workers fromWi can provide. For ex-
ample, suppose there are two workers, w1, w2. Then, there will be
four combinations of worker labels: L̄i1 = {(w1,−1), (w2,−1)},
L̄i2 = {(w1,−1), (w2,+1)}, L̄i3 = {(w1,+1), (w2,−1)}, and
L̄i4 = {(w1,+1), (w2,+1)}, where, e.g., L̄i1 means that w1 pro-
vides -1 and w2 provides -1.

The equation depends on two forms of conditional probabilities:
P (Y ′ | L̄in, Y ) and P (L̄in | Y ). For the latter, we have already
discussed how to compute it in Equation 1.

P (L̄in | Y ) =
∏

(wj ,l)∈L̄i
n

P (L̄in = (wj , l) | Y ) =
∏

(wj ,l)∈L̄i
n

q
(j)
y,l (4)

For the former, since y′i depends only on L̄in (i.e., the workers
and the labels that they provide), we have that:

P (Y ′ = y′ | L̄in, Y ) =

{
1 if y′ = ȳ

0 otherwise
(5)

where ȳ represents the consolidated label inferred from L̄in.

4. MODEL EVALUATION
Now we have a noisy dataset D = {(xi, y′i, r(i))}Ni=1, where

each instance is associated with a single noisy label y′i along with
a noise rate r(i). There are a number of challenging problems
that need to be addressed: (1) how to develop a unified estimation
framework that works for different evaluation metrics (Section 4.1);
(2) how to bound the difference between the estimated value and
the true value under the new framework (Section 4.2); (3) how to
give a quantitative analysis on how each factor (e.g., sample vs.
population, noisy labels vs. ground-truth labels) contributes to the
bound (Section 4.2.1).

4.1 Estimating Model’s True Performance
We first present our unified estimation framework. Recall that a

model’s performance (e.g., accuracy, F-score) is determined by its

confusion matrix:
[

TN FN
FP TP

]
. To estimate a model’s performance,

the key is to figure out how to estimate the values of the four cells
in the confusion matrix. We will use TP as an example to illustrate
this estimation process.

Overview. The estimation framework consists of two steps. The
first step is to write TP in a form of the sum of loss, and the second
step is to use an existing approach [28] to estimate the loss.

Step 1. A loss function, denoted by Loss(t, y), measures the dif-
ference between a model’s prediction t and a ground-truth label y.
When ground-truth labels are accessible, we can represent TP as:

TP =

N∑
i=1

Loss(ti, yi), (6)

where Loss(ti, yi) = 1 if ti and yi are both positive; 0, otherwise.
Step 2. In reality, however, we do not have access to ground-truth
labels but only noisy labels. Thus, we need to use a noisy label

y′ along with its noise rate r to estimate the true loss Loss(t, y).
Natarajan et al. [28] proposed an unbiased estimator:

L̃oss(t, y′) =
(1− r−y′,y′ ) · Loss(t, y′)− ry′,−y′ · Loss(t,−y′)

1− r+1,−1 − r−1,+1
.

(7)

Please note that this estimator works for any bounded loss func-
tion. It is defined based on a noisy label y′, thus does not require
knowing the ground-truth label y.

Unbiased Estimator of TP. By plugging L̃oss(t, y′) into Equa-
tion 6, we obtain an estimator of TP:

T̃P =

N∑
i=1

L̃oss(ti, y
′
i). (8)

Since L̃oss(t, y′) is unbiased, due to the linearity of expectation,
we can easily prove that T̃P is unbiased, i.e., E[T̃P] = TP.

Unbiased Estimator of TN, FN, FP. Using a similar approach, we
can get an unbiased estimator for TN, FN, and FP. The only differ-
ence from TP is that they need to choose a different loss function.
For example, suppose we want to estimate TN. Then, the loss func-
tion w.r.t. TN should be defined as Loss(ti, yi) = 1 if ti and yi are
both negative; 0, otherwise.

Estimating Accuracy, Precision, Recall, F-Score. Now we have
known how to estimate each value in the model’s confusion matrix.
These estimated values can be composed to get the model’s perfor-
mance w.r.t. each evaluation metric that is defined in Figure 3. For
example, by plugging the estimated values of TP and TN into the
accuracy’s definition, we can get the estimated value of accuracy:
T̃P+T̃N

N
. Similarly, we can get the estimated values for precision:

T̃P
T̃P+F̃P

, recall: T̃P
T̃P+F̃N

, and F-score: 2T̃P
2T̃P+F̃P+F̃N

.

For accuracy, we can prove that the estimation is unbiased, i.e.,

E
[ T̃P + T̃N

N

]
=

E[T̃P] + E[T̃N]

N
] =

TP + TN
N

.

For precision, recall, and F-score, their denominator is not a con-
stant value but a random variable. We do not have E[X

Y
] = E[X]

E[Y ]
.

This type of estimator is called conditionally unbiased given Y . If
Y is not fixed, there will be a bias. We did a literature review to
explore how existing studies handle this bias, and found that many
works adopt the same approach as us, i.e., approximate E[X

Y
] as

E[X]
E[Y ]

[21, 29, 34, 38]. Furthermore, there is a good theoretical guar-

antee on the quality of the approximation: E[X
Y

] = E[X]
E[Y ]

+O(n−1)

for n → ∞, which shows that the approximation error becomes
smaller and smaller as n increases [29]. We evaluate the effec-
tiveness of the estimators of precision, recall, and F-score in the
experiments, and find that they perform well on both synthetic and
real-world datasets.
Remark. Note that the unbiased loss estimator was originally pro-
posed to solve a different problem (i.e., model training with noisy
labels). It has never been used to solve our problem (i.e., model
evaluation over crowdsourced labels). We are the first to study how
to evaluate model performance using crowdsourced noisy labels.

4.2 Bounding Estimation Error
In this section, we study how to compute confidence intervals

for these estimators. This problem is challenging because there are
two sources of error involved and a confidence interval has to take
both of them into consideration.

Sample vs. Population. The first source of error comes from sam-
pling. Since the entire population is not accessible, our estimator
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can only look at a sample of data and use it to estimate how well a
model will perform over the entire population.

Noisy Labels vs. Ground-Truth Labels. The other source of error
comes from noisy labels. Since ground-truth labels are not acces-
sible, our estimator can only look at noisy labels and use them to
estimate how well a model will perform w.r.t. ground-truth labels.

To address this challenge, we develop an analytical confidence
interval based on the Central Limit Theorem. From the analyti-
cal confidence interval, we can easily see how each source of error
contributes to the overall estimation error (i.e., half the width of
the confidence interval). However, the analytical confidence in-
terval only works for accuracy. For the other evaluation metrics,
we show how to compute their empirical confidence intervals us-
ing bootstrapping and conduct experiments to explore the impact
of the two sources of error on the overall estimation error.

4.2.1 Analytical Confidence Interval
We first introduce some background knowledge about CLT, then

present an analytical confidence interval for accuracy, and finally
dive into the confidence interval to gain more insights.

Central Limit Theorem (CLT). Consider a population with mean
µ and variance σ2. Given a random sample of size N from the
population, {X1, X2, · · · , XN}, CLT states that the sample mean
µ̃ = 1

N

∑N
i=1 Xi follows a normal distribution with mean µ and

variance σ2

N
. Note that CLT does not require that the original pop-

ulation has to follow a normal distribution.
Suppose that we treat the sample mean as an estimator of the

population mean. Based on CLT, the confidence interval for the
estimator is

µ± λ
√
σ2

N
, (9)

where λ is a parameter determined by a confidence level (e.g.,
λ = 1.96 for 95% confidence interval, λ = 2.58 for 99% con-
fidence interval). Since the population mean µ and variance σ2

are unknown, they can be replaced by the estimated mean µ̃ and
variance σ̃2 based on a sample.

Analytical Confidence Interval. The estimator of accuracy can be
represented as follows:

accuracy ≈ T̃P + T̃N
N

=
1

N

N∑
i=1

L̃oss0/1(ti, y
′
i),

where L̃oss0/1(ti, y
′
i) is an unbiased estimator of Loss0/1(ti, yi),

and Loss0/1(ti, yi) = 1 if ti and yi have the same sign (i.e., either
both positive or both negative); Loss0/1(ti, yi) = 0, otherwise.
We can see that the estimator is in the form of mean. Let Xi =
L̃oss0/1(ti, y

′
i) for each i ∈ [1, N ]. The confidence interval for the

estimator can be directly derived from Equation 10.

E[X]± λ
√

var(X)

N
(10)

In-Depth Analysis. We now provide an in-depth analysis of the
confidence interval. As mentioned in the beginning of this section,
there are two sources of error. Our analysis aims to answer two
questions: (1) how does sample size affect the confidence interval?
(2) how does label noise affect the confidence interval?.

For simplicity, we assume that each instance has the same label
noise of r−1,+1 = r+1,−1 = β. Based on Equation 7, we find that
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Figure 4: The relationships between sample size (N ), label
noise (β), and estimation error (half the width of the 95% con-
fidence interval), for model accuracy θ = 0.8. (For simplicity,
we do not show the estimation error for β ∈ (0.5, 1] because
based on Equation 15, it will be the same as 1− β).

L̃oss0/1(t, y′) can only take two possible values:

L̃oss0/1(t, y′) =

{ 1−β
1−2β

if t and y′ have the same sign
−β

1−2β
otherwise

(11)
Suppose that L̃oss0/1(t, y′) has a probability of p being a =

1−β
1−2β

and 1 − p being b = −β
1−2β

. It is easy to see that a + b = 1.

The expected value of L̃oss0/1(t, y′) is:

E[X] = pa+ (1− p)b (12)

The variance of L̃oss0/1(t, y′) is:

Var[X] = E[X2]− E[X]2

= pa2 + (1− p)b2 − E[X]2

= pa2 + (1− p)b2 −
(
pa+ (1− p)b− E[X]

)
− E[X]2

= −ab+ E[X]− E[X]2 (13)

Let θ denote a model’s true accuracy. Since 1
N

∑
L̃oss0/1(t, y′) is

an unbiased estimator of the true accuracy, then we have E[X] = θ.

Var[X] = −ab+ θ − θ2 (14)

By plugging Equation 14 into Equation 10, we obtain a closed form
confidence interval of our estimator:

θ ± λ
√
−ab+ θ − θ2

N
(15)

where ab = −β(1−β)

(1−2β)2
, β is label noise, θ is model’s true accuracy,

and λ is constant determined by a confidence level.
From this equation, we can analyze how each source of error

contributes to the overall estimation error.

Insight 1. The first source of error (sample vs. population) is con-
trolled by sample size N . It only affects the denominator of the
confidence interval. Figure 4(a) shows the relationship between
sample size and estimation error, for different label noise β. We
can see that as sample size N increases, regardless of what β is,
estimation error will decrease at a rate of O

(
1√
N

)
. For example,

when sample size is increased from N = 100 to 1000, estimation

error will decrease by about O
(√

1000
100

)
= 3 times.

Insight 2. The second source of error (noisy label vs. ground-truth
label) is controlled by label noise β. It only affects the numerator
of the confidence interval. Figure 4(b) demonstrates the relation-
ship between label noise and estimation error, for different sample
size N . We can see that as noise decreases, regardless of what N
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Figure 5: Illustrating the limitation of sorting by noise rate.

is, estimation error will decrease at a rate of O
(

1
|0.5−β|

)
. For ex-

ample, when β is decreased from β = 0.4 to β = 0.1, estimation
error will decrease by about O

(
|0.5−·0.1|
|0.5−·0.4|

)
= 4 times.

4.2.2 Empirical Confidence Interval
Now we present how to use the bootstrap to compute empirical

confidence intervals for other estimators than accuracy. Consider a
crowdsourced dataset D. We can think of D as a random sample
of a population. While it is feasible to get multiple crowdsourced
datasets from the population, the monetary cost and the time for
doing so can be quite high. For example, suppose each instance
needs 0.5 dollar and 5 seconds to label on average. Getting one
crowdsourced dataset of size |D| = 1000 will cost us $500 dollars
and 1.4 hours. Repeat this for 1000 times will cost us as high as 0.5
million dollars and 58 days.

We use boostrapping to avoid the need to repeatedly draw sam-
ples from the population. GivenD and an estimator ẽval(D, f), the
first step is to construct n resamples of D, denoted by D(1), D(2),
· · · , D(n). Then, we apply the estimator to each resample to get n
estimates, ẽval(D(1), f), ẽval(D(2), f), · · · , ẽval(D(n), f).

Given a confidence level (e.g., 95%), let ẽval2.5% and ẽval97.5% de-
note the 2.5th and 97.5th percentile of the distribution, respectively.
Then, the 95% confidence interval is denoted by [ẽval2.5%, ẽval97.5%].

This approach works for all the estimators developed in Sec-
tion 4.1 including precision, recall, F-score. Like accuracy, the es-
timation error of other estimators also come from two sources. We
empirically study its relationship with sample size and label noise
for these estimators in the experiments.

5. CLEANING STRATEGY
Now we present how TARS provides the second piece of advice:

which label should be cleaned? Please note that, unlike the previ-
ous section, here we turn our focus to the model training stage. In
the following, we first explain why the existing cleaning strategies
do not work in Section 5.1, and then present the main idea of our
cleaning strategy in Section 5.2. We find that the naive implemen-
tation of this idea did not work very well in the experiments. We
provided the reasons and propose effective solutions in Section 5.3.

5.1 Limitations of Existing Strategies
Below are three classes of existing cleaning strategies, and expla-

nations as to why they are not the perfect solution to our problem.
Active Learning. Active learning involves labeling unlabeled rather
than noisy data. We believe that an effective cleaning strategy in
our problem setting should leverage y′i and r(i), rather than treat
instances as unlabeled. Consider an example in Figure 6. If we ig-
nore noise rates and simply apply an active-learning query strategy
(e.g., uncertain sampling), xi will be selected because it is clos-
est to the model’s decision boundary (the red line). However, xi’s
label only has a noise rate of 0.01, which is very unlikely to flip
after cleaning. In comparison, xj has a much higher noisy rate, and
cleaning it would be more likely to flip the label, leading to a big
change of the model. Thus, xj should have a higher priority than
xi to be selected.
Sorting by Noise Rate. Another cleaning strategy is to sort the
instances by noise rates, then choose the instance with the greatest
noise. This minimizes the chance of not flipping an instance’s label
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Figure 6: Illustrating the limitation of uncertain sampling.

after cleaning, but it totally ignores the impact to the model. Con-
sider an example in Figure 5. This strategy will select xi for clean-
ing because it has the greatest noise. As shown in Figure 5(b), even
if x1’s label was flipped, the model would still keep unchanged. In
comparison, xj’s label has a slightly smaller noise rate, but if its
label was flipped, the model’s decision boundary would move from
the left side of xj to its right side, leading to a big change of the
model. Therefore, xj should have a higher priority to be selected.
ActiveClean. A good cleaning strategy should be aware of both
noise rate as well as model changes. A recent paper takes these
two factors into consideration and proposes a new cleaning strat-
egy, called ActiveClean [20]. ActiveClean predicts the ground-
truth label of each instance, and then estimates how cleaning each
instance would change the model based on predicated ground-truth
labels, and finally selects the instance that would lead to the biggest
change. However, ActiveClean has two limitations to solve our
problem. First, it does not leverage the given noise rates to predict
the ground-truth label of each instance. Second, it uses stochastic
gradient descent to update the model after cleaning each batch of
instances, thus the model’s performance may not be very stable for
our oracle-based cleaning scenario, where only a small number of
instances (e.g., hundreds of instances) can be cleaned.

5.2 Main Idea: Expected Model Improvement
To inform our decision of which instance to clean, we wish to

understand how cleaning an instance could improve the current
model. Let f be the model trained without cleaning any data. Let
fi be the model trained after cleaning instance xi. There are two
possible cases about fi.

Case 1: If the label is not flipped (i.e., yi = y′i), the model will
stay the same, i.e., fi = f .
Case 2: If the label is flipped (i.e., yi = −y′i), the model’s perfor-
mance will change by eval(G, fi)− eval(G, f).

Please note that cleaning an instance is not always guaranteed
to improve the model. For example, in Case 2, if eval(G, fi) <
eval(G, fi), the model’s performance will get worse. Since we do
not know whether the label would be flipped or not until clean-
ing the instance, the model’s true improvement cannot be obtained.
Nevertheless, it could be possible to compute the model’s expected
improvement based on the probabilities that each case may happen.

LetP (case1) andP (case2) denote the probabilities that Case 1
and Case 2 happen, respectively. Then, the expected model im-
provement (EMI) is defined as:

EMI(i) = P (case1) · 0 + P (case2) ·
(

eval(G, fi)− eval(G, f)
)

= P (case2) ·
(

eval(G, fi)− eval(G, f)
)

(16)

Our cleaning strategy computes EMI(i) for each instance xi, and
then selects the instance xi∗ with the largest value (i.e., the best
expected model improvement) and sends it to an oracle to clean.

i∗ = argmax
i

EMI(i) (17)

In this paper, we are focused on oracle-based cleaning. That is,
we only use oracles to clean instances. An interesting observation
is that the data-dependency relationship could also be leveraged to
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clean instances. For example, consider an instance xi. If an oracle
confirms that xi has a positive (or negative) label, it is very likely
that its neighbors (i.e., the instances that are close to xi based on
some distance function) also have positive (or negative) labels. We
discuss this extension in the technical report [11].

Next, we discuss how to compute EMI(i), which has three parts:

Computing P (case2). P (case2) represents the probability that
the noisy label is flipped after cleaning. Note that we have already
known that the noisy label is y′i. Thus, P (case2) represents the
conditional probability of the ground-truth label being −y′i given
the noisy label y′i, i.e., P (case2) = P (Yi = −y′i|Y ′i = y′i),
where y′i ∈ {−1,+1} is constant. Based on the Bayes’ rule, we
can easily derive that

P (case2) =
P (Y ′i = y′i|Yi = −y′i) · P (Yi = −y′i)

P (Y ′i = y′i)

∝ P (Y ′i = y′i|Yi = −y′i) · P (Yi = −y′i) (18)

P (Y ′i = y′i|Yi = −y′i) is equal to the noise rate r(i)

−y′i,y
′
i

and

P (Yi = −y′i) is equal to the prior P (Y = −y′i). Therefore, we
obtain

P (case2) ∝ r(i)

−y′i,y
′
i
· P (Y = −y′i) (19)

Similarly, we can obtain

P (case1) ∝ r(i)

y′i,y
′
i
· P (Y = y′i) (20)

Since P (case1) + P (case2) = 1, we have

P (case2) =
r

(i)

−y′i,y
′
i
· P (Y = −y′i)

r
(i)

−y′i,y
′
i
· P (Y = −y′i) + r

(i)

y′i,y
′
i
· P (Y = y′i)

(21)

Computing eval(G, f). Since G is not available, we cannot com-
pute eval(G, f) directly. Fortunately, in Section 4.1, we have dis-
cussed a way to estimate it based on noisy data D, which is acces-
sible. Thus, we can use ẽval(D, f) to approximate eval(G, f).

Computing eval(G, fi). If we knew fi, eval(G, fi) could be esti-
mated similarly as above. Recall that fi denotes the resulting model
from training on D after cleaning instance xi. If xi’s label is not
flipped, we do not need to consider this case because the model
stays the same as f ; if xi’s label is flipped, we can retrain a model
fi on the new dataset Di, where Di represents the dataset resulting
from flipping the label of instance xi of D.

Remarks. EMI incorporates both noise rates and model changes,
thus overcomes the limitations of the existing cleaning strategies.
For example, consider xi in Figure 6. Since it has a small noise rate,
leading to a small value of P (case2), EMI tends to not select xi.
Consider xi in Figure 5. Since the model would not change after
flipping the label of xi, leading to a zero value of eval(G, fi) −
eval(G, f), EMI will not select xi.

Time Complexity. Let N = |D| denote the size of training data.
EMI needs to retrain N models for each iteration. Let costtrain de-
note the average cost of training a model on D. The cost of each
iteration is O(N · costtrain). Suppose there are t iterations. Then,
the total cost of our approach will be O(t · N · costtrain). Based
on our observation of real-world datasets [1, 2], the training data
size N is typically in the range from a few hundred to tens of thou-
sands. Without improving the efficiency, it is expensive to apply
our approach to a training dataset with thousands of instances.

In practice, there are two simple but effective ideas that can be
used to improve the efficiency.

(1) Pruning. Rather than retrain N models for every iteration,
we can prune p% of the iterations, where p% is a parameter to

balance the trade-off between efficiency and effectiveness. For ex-
ample, 50% means that we prune 50% of the iterations and retrain
models for every other iteration. This pruning idea works well in
practice because if EMI(i) is high in one iteration, since the noise
rate keeps unchanged, its value tends to be high in later iterations.
As a result, we can use the value of EMI(i) from a previous iteration
to approximate its value in a later iteration. For the above example,
if p% = 90%, then the cost will be reduced by 10×.

(2) Parallel Computing. At each iteration, we can retrain
N models in parallel. Recall that these models are trained on
D1,D1, · · · ,DN , where Di only has one instance different from
D for all i ∈ [1, N ]. We keep one copy of training data D in
memory. When training a model on Di, we read D and flip the
label of the i-th instance on-the-fly. In this way, the training data
D is read-only, and there is no coordination when training multiple
models in parallel. For the above example, suppose CPU has 16
cores. The total cost will be reduced by 16×. In addition to paral-
lel computing, we can leverage distributed computing frameworks
(e.g., Spark) or GPU computing to further reduce the running time.
In this paper, we treat this as an orthogonal problem and defer ad-
ditional exploration to future work.

5.3 Further Optimization
We find that the naive implementation of EMI did not perform

very well in the experiments. We discuss the reasons that cause the
problem and propose effective techniques to optimize EMI.

Splitting the noisy data The first reason is related to which noisy
dataset should be used to estimate eval(G, fi) and eval(G, f). One
natural idea is to use Di for eval(G, fi) and D for eval(G, f) be-
cause fi is trained on Di and f is trained on D:

eval(G, fi) ≈ ẽval(Di, fi), eval(G, f) ≈ ẽval(D, f).

However, there are two issues about this idea.
First, as shown in Equation 16, the goal is to estimate the dif-

ference between eval(G, fi) and eval(G, f) as more accurate as
possible. Let X and Y denote the estimators of eval(G, fi) and
eval(G, f), respectively. That is, we aim to minimize var(X −
Y ) = var(X) + var(Y ) − cov(X,Y ). In order to minimize
var(X − Y ), we need to increase cov(X,Y ) as more as possi-
ble, i.e., making X and Y as more correlated as possible. If X and
Y are estimated based on the same noisy data, it will make them
much more correlated than be estimated on two different ones. An-
other issue is about overfitting. If we train a model on a dataset
and then use the same dataset to evaluate it, the model may suffer
from overfitting. In other words, the model may perform well on
the current dataset, but not learn to generalize to unseen data.

To address these issues, we split D into a training dataset Dtrain
and a validation dataset Dvdn. Only the instances in Dtrain can be
cleaned and be used to train a model; the instances in Dvdn cannot
be cleaned or train a model, and their job is to estimate eval(G, fi)
and eval(G, f):

eval(G, fi) ≈ ẽval(Dvdn, fi), eval(G, f) ≈ ẽval(Dvdn, f).

It is worth noting that this idea has been widely adopted in machine
learning, where a validation set is often used for hyperparameter
tuning and has shown to be very effective to avoid overfitting.

Weighing with Model Uncertainty Even after splitting noisy data
into validation and training sets, another challenge that remains is
that the values for EMI(i) for different instances i can be very sim-
ilar. To see why this is the case, consider a simple situation where
eval(G, f) measures the percent of instances classified correctly by
f , and the data is labeled by a single worker. Then, the r(i) constant
across all instances i, as is P (case2).

This means if we have two instances i1 and i2, for which
eval(G, fi1) − eval(G, f) and eval(G, fi2) − eval(G, f) are very
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Table 1: Dataset statistics (SS: synthetic data with simulated
noisy labels; RS: real-world data with simulated noisy labels;
RR: real-world data with real-world crowdsourced labels)

Dataset Size Positive% #Dimension Type
Gaussian 1000 50% 2 SS

Gaussian (big) 10000 50% 2 SS
Heart 270 44% 13 RS

Cancer 699 31% 9 RS
Diabetes 768 65% 20 RS

Restaurant 2004 5% 8 RR

similar, the resulting values EMI(i1) and EMI(i2) will be very sim-
ilar. In the worst case, EMI(i1) = EMI(i2), which makes it impos-
sible to distinguish which instance would be a better candidate for
cleaning.

To address this issue, we combine EMI with the uncertainty of
model f . More specifically, let u(xi) = 1−P (f(xi) | xi) measure
the uncertainty of f ’s prediction on xi. For example, we can inter-
pret small P (f(xi) | xi) as a “less confident” prediction, which
corresponds to large u(xi).

Intuitively, if we have two instances whose EMI values are sim-
ilar, we would like to defer the decision of “which is better” (i.e.
which instance is better to clean) to the model’s uncertainty. In this
case, the instance for which f more uncertain (i.e. larger u(xi))
should be considered a better candidate for cleaning.

At first glance, it might be tempting to compare instances using
u(xi) · EMI(i). Suppose xi∗ is the best instance to clean. Since
EMI(i∗) is computed using estimators, it’s possible that EMI(i∗) <
0. Furthermore, if u(xi∗) is large, then the product u(xi∗)·EMI(i∗)
could be very negative, which would rank xi∗ below other instances.

Before multiplying by u(xi), we need to transform EMI(i) into
a positive value, using some function σ : R→ R+. In order to pre-
serve the relative ordering of EMI(i), σ needs to be monotonically
increasing. A convenient choice is the sigmoid function σ(t) =

1
1+e−t . To weigh EMI with model uncertainty, we compute:

MU(i) = u(xi) · σ(EMI(i)), (22)

Thus, with this optimization, we choose instance i∗ to clean by
computing: i∗ = argmax

i
MU(i).

6. EXPERIMENTS
We conduct extensive experiments to evaluate the effectiveness

of TARS on synthetic and real-world datasets with simulated noisy
labels and crowdsourced noisy labels. The experiments aim to an-
swer four questions. (1) Can we accurately estimate a model’s true
performance from noisy labels? (2) How does the estimation er-
ror change by varying different parameters (e.g., sample size, noise
rates)? (3) Are the proposed optimization techniques effective for
EMI? (4) How does the optimized EMI perform compared to the
existing cleaning strategies?

6.1 Experimental Settings
Datasets. We used a synthetic dataset and four real-world datasets
to evaluate our method. (1) Gaussian contains instances randomly
drawn from two different 2D Gaussian distributions with the pa-
rameters of (x1, y1) = (0, 0) and σx1 = σy1 = 1, and (x2, y2) =
(1, 0) and σx2 = σy2 = 1. Gaussian (big) is generated using the
same process but the size is ten times larger. (2) Heart, Diabetes,
and Cancer are three real-world datasets downloaded from the UCI
Machine Learning Repository2. They are widely used to evaluate
classification algorithms in the Machine Learning community. (3)
Restaurant is a real-world dataset widely used to evaluate entity
resolution [41]. Table 1 illustrates the detailed statistical informa-
tion of the six data sets.

2http://archive.ics.uci.edu/ml/index.php

Noisy Labels. The noisy labels for the Gaussian, Heart, Diabetes,
and Cancer datasets were randomly generated, controlled by two
parameters, r−1,+1 and r+1,−1. For example, given r−1,+1 = 0.2
and r+1,−1 = 0.1, to generate the noisy labels for a dataset, we
do the following for each instance. If the instance’s ground-truth
label is -1, then it will be flipped with a probability of 0.2; if its
ground-truth label is +1, then it will be flipped with a probability
of 0.1. When an instance needs to be labeled by multiple workers,
we will apply this process to generate multiple noisy labels for the
instance and get its consolidated label using the method described
in Section 3.

The noisy labels for the Restaurant dataset were collected from
the real crowd in Amazon Mechanical Turk (AMT). Each instance
was labeled by a single worker, and the entire dataset was labeled
by 24 different workers in total. The noise rates of the workers
were in the ranges of r−1,+1 ∈ [0, 0.4] and r+1,−1 ∈ [0, 0.2].

Baselines for Advice 1. We compared TARS with two existing
model evaluation approaches.

• DirtyEval treats noisy labels as ground-truth labels and directly
evaluates the model accuracy over the data.
• NoiseRemove [5] uses a set of learning algorithms to create clas-

sifiers to identify mislabeled instances. It removes the instances
that are identified as mislabeled and evaluates the model accu-
racy over the remaining data.

Baselines for Advice 2. We compared TARS with six existing
cleaning strategies.

• Random cleans the instance randomly selected from the un-
cleaned instances.
• SortNoise cleans the instance whose noisy label is most likely to

be wrong, without considering the impact on the current model.
• ActiveClean cleans the instance which, if the instance was

cleaned, would impart the greatest change to the current model.
• Uncertainty Sampling (USample) [22] cleans the instance that

the current model is most uncertain about, without considering
the noise rate.
• Expected Error Reduction (ExpectError) [35] cleans the instance

such that the current model’s error can be reduced the most. This
is similar (in spirit) to our strategy. But the error is computed on
noisy labels rather than estimated w.r.t. ground-truth labels.
• Hung [19] is a state-of-the-art truth-inference approach. Unlike

other approaches, it allows an oracle to validate crowd answers.
However, its strategy is to clean the instance in order to maxi-
mize label quality rather than model quality.

To examine the benefit of oracle-based cleaning, we also compared
with two non-oracle-based cleaning algorithms.

• NoiseRemove trains a classifier on the data with noisy labels fil-
tered by [5].
• NoiseTolerate [28] trains a classifier using a loss function tolerant

to label noise.

The code was written in Python 2.7. We trained logistic regres-
sion models on all datasets using scikit-learn3. Each dataset was
randomly divided into a training set and a test set with the ratio of
2 to 1. The experiments were run on a Windows machine with an
Intel Core 8 i7-6700 3.40GHz processor and 16GB of RAM.

6.2 Evaluation of Advice 1
In this section, we first conduct sensitivity analysis on the Ad-

vice 1 provided by TARS in order to gain a deep understanding of
its performance, and then examine its performance on real data.

3http://scikit-learn.org/
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Figure 7: Comparison of different approaches for Advice 1 by varying sample size (Gaussian).
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Figure 8: Comparison of different approaches for Advice 1 by varying noise rates (Gaussian).
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Figure 9: Comparison of different approaches for Advice 1 by varying the number of votes per instance (Gaussian).

6.2.1 Sensitivity Analysis
We evaluate the estimation error of TARS on the Gaussian dataset

by varying the sample size, the noise rate, and the number of votes,
for accuracy, precision, recall, and F-score. When varying one pa-
rameter, we set the other parameters with their default values. By
default, the sample size is 1000, the noise rate is 0.2, and the num-
ber of votes is 1. We define the estimation error of TARS as half
the width of the 95% confidence interval of its estimated value. We
compared TARS with DirtyEval and NoiseRemove.
Sample Size. Figure 7 compares the estimation error of TARS,
DirtyEval, and NoiseRemove by varying the dataset size from 100
to 1000, w.r.t. different evaluation metrics. We can see that as
the sample size was increased by 10 times, the estimation error of
TARS was reduced by about 3 times, but DirtyEval and NoiseRe-
move did not change so much. The reason is that TARS takes into
account noise rates, which converts label error (i.e., bias) into sam-
pling error (i.e., variance). Increasing the sample size can reduce
the sampling error at the rate of O( 1√

N
). In comparison, DirtyE-

val has a much larger label error but with a smaller sampling error.
While the sampling error can still be decreased, since the overall es-
timation error was dominated by the label error, the improvement
was marginal. NoiseRemove is able to remove some mislabeled in-
stances (i.e., reduce label error), but still does not touch many of
them in the dataset. This is because that the classifiers that NoiseR-
emove uses to identify mislabeled instances are trained over noisy
data rather than ground-truth data. If these classifiers give a wrong
prediction to a mislabeled instance, NoiseRemove fails to remove
this instance from the data.
Noise Rate. Figure 8 compares the estimation error of TARS,
DirtyEval, and NoiseRemove by varying the noise rate from 0.45 to
0.1, w.r.t. different evaluation metrics. We can see that TARS fol-
lows a similar trend for all the figures: as the decrease of the noise
rate, the estimation error will first decrease dramatically, quickly
reaching an estimation error of less than 0.1 at the noise rate of

about 0.35. After that, the decreasing speed tends to get slower.
Our theoretical analysis in Section 4.2.1 has shown that for accu-
racy, the estimation error decreases at the rate of O

(
1

|0.5−β|

)
. This

experiment validated that it holds for the other evaluation metrics
empirically.
Number of Votes. We investigate how adding the number of votes
will affect the estimation error. We varied the number of votes from
1 to 15. Figure 8 reports the result. We can see that increasing the
number of votes reduced the estimation error exponentially. This is
because that as the increase of the number of votes, the noise rate
of a consolidated label will decrease exponentially. We also see
that TARS outperformed DirtyEval and NoiseRemove for not only a
single-vote situation but also multiple-vote situations. Eventually,
their estimation error will both converge to zero.

6.2.2 Performance on Real-world Datasets
We evaluate TARS on the four real-world datasets. We used

the noise rate of 0.2 for Heart, Diabetes, and Cancer, and used
the real-world crowd workers to label Restaurant. We tested all
evaluation metrics, but due to space constraints, we can only show
some of them in the paper. We chose Accuracy for Heart, Dia-
betes, and Cancer since they have balanced labels, and Accuracy
is the most widely used evaluation metric in this situation. How-
ever, Accuracy is not suitable for the Restaurant dataset since the
dataset has very unbalanced labels (positive# : negative# = 1:24).
Simply labeling everything as negative will lead to an accuracy of
24
25

= 96%. Therefore, we chose F-score for the Restaurant dataset.
We computed the true accuracy (F-score) using the ground-truth
labels. Note that since the entire clean population G is not avail-
able, we can only compute the true accuracy (F-score) based on
the clean sample S (i.e., the labeled datasets). Figure 10 shows
the result. We can see that on the Diabetes and Cancer datasets,
TARS returned almost the same accuracy as the true accuracy while
DirtyEval and NoiseRemove performed much worse. On the Heart
and Restaurant datasets, TARS and NoiseRemove had similar per-
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(c) Cancer
Dirt

yE
va

l

Nois
eR

em
ov

e
TA

RS

Tr
ue

 Acc
ur

ac
y

0.0
0.2
0.4
0.6
0.8
1.0

Ac
cu

ra
cy

Dirt
yE

va
l

Nois
eR

em
ov

e
TA

RS

Tr
ue

 Pr
ec

isi
on

0.0
0.2
0.4
0.6
0.8
1.0

Pr
ec

is
io

n

Dirt
yE

va
l

Nois
eR

em
ov

e
TA

RS

Tr
ue

 Rec
all

0.0
0.2
0.4
0.6
0.8
1.0

Re
ca

ll

Dirt
yE

va
l

Nois
eR

em
ov

e
TA

RS

Tr
ue

 F-
sc

or
e

0.0
0.2
0.4
0.6
0.8
1.0

F-
sc

or
e

D
ir

ty
E

va
l

N
o

is
eR

em
o

ve

T
A

R
S

T
ru

e 
A

cc
u

ra
cy

(d) Restaurant
Figure 10: Comparison of different approaches for Advice 1 on real-world datasets.
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(b) Noise Rates: (0.2, 0.2)
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(c) 50%:(0.4, 0), 50%:(0.2, 0.2)
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(d) 90%: (0.4, 0), 10%: (0.2, 0.2)
Figure 11: Evaluating the effectiveness of the proposed optimization techniques of the TARS’s cleaning strategy (Gaussian).

formance. But please note that unlike TARS, NoiseRemove does
not provide a confidence interval for its estimated result. If a data
scientist does not know how far an estimated result is from the true
result, she will not be able to trust the estimated result even if it is
close to the true result.

6.3 Evaluation of Advice 2
In this section, we first examine how the proposed optimization

techniques can improve the effectiveness of the naive implementa-
tion of EMI, and then compared TARS (i.e., EMI with all the opti-
mization techniques) with the state-of-the-art cleaning strategies.

6.3.1 Optimization Techniques
In Section 5.3, we identified the possible issues when applying

EMI in practice, and proposed two optimization techniques, denoted
by op1 and op2, where op1 represents the optimization of split-
ting the noisy data and op1 represents the optimization of weigh-
ing with model uncertainty. Figure 11 compares the three variants
of EMI on the Gaussian dataset in various settings of noise rates.

In Figure 11(a), we set the noise rates to r−1,+1 = 0.4 and
r+1,−1 = 0.2. We can see that the noisy labels had a significant
negative impact on the model. After cleaning 100 instances (10%
of the data), EMI +op1+op2 improved the model’s accuracy from
0.77 to 0.94. However, the other two cleaning strategies did not
help to improve the model so much.

In Figure 11(b), we set the noise rates to r−1,+1 = 0.2 and
r+1,−1 = 0.2. In this setting, we can see that the model’s accu-
racy was (almost) not affected by the noisy labels. Therefore, all
three cleaning strategies started with a very accurate model. After
sending some instances to an oracle to clean, EMI and EMI +op1
sometimes led to a much worse model, but EMI +op1+op2 avoided
this kind of situation to happen.

In Figure 11(c) and (d), we evaluated the optimization techniques
on a mix of noise rates, where the former has 50% of the instances
with (0.4, 0) and 50% with (0.2, 0.2); the latter has 90% with (0.4,
0) and 10% with (0.2, 0.2). We can see that in both settings, EMI
+op1+op2 outperformed the other two variants, further validating
the effectiveness of the proposed optimization techniques.

Note that op1 and op2 are heuristic approaches, thus they are
not guaranteed to always improve the performance of EMI. Never-
theless, Figure 11 empirically shows that they help to improve the
performance in most situations. Since EMI +op1+op2 typically
performs the best, we will only use it in later experiments.

6.3.2 Efficiency Study
We proposed two techniques, parallel computing and pruning,

in Section 5.2 to optimize the efficiency of our cleaning strategy.
The result for the use of parallel computing is obvious, which will
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Figure 12: Evaluating the impact of the pruning technique on
the efficiency and effectiveness of TARS.

improve the efficiency by c times without hurting the effectiveness,
where c is the number of CPU cores. So, we only show the results
for the pruning technique. We used the Gaussian (big) dataset and
set the noise rates to (0.4, 0). Let TARS(p%) denote our clean-
ing strategy with the pruning percentage of p%. For example,
TARS(0%) means that no pruning is adopted; TARS(50%) means
that 50% of the iterations are pruned; TARS(100%) means that all
the iterations (except for the first one) are pruned.

We varied the data size from 2000 to 10,000, and calculated
the average time that each approach spent over 1000 iterations.
Figure 12(a) shows the result. We can see that the pruning tech-
nique can significantly improve the efficiency. For example, with-
out pruning, TARS(0%) spent about 13 seconds in deciding which
instance to clean; with 80% pruning, TARS(0%) reduced the aver-
age time to less than 4 seconds. Next, we evaluate the impact of
the pruning technique on the effectiveness of TARS. Figure 12(b)
shows the result. We can see that using pruning only had a slightly
negative impact on the accuracy. This is because that when data is
large, cleaning a few instances will not change the current model a
lot, thus there is no need to retrain all the models for every iteration.

6.3.3 Cleaning Strategies
In this section, we first compare oracle-based cleaning with non-

oracle-based cleaning, and then evaluate different cleaning strate-
gies for oracle-based cleaning.
Oracle-based vs. Non-Oracle-based Cleaning. Our paper is fo-
cused on oracle-based cleaning. NoiseRemove and NoiseTolerate
represent non-oracle-based cleaning. To motivate the need for oracle-
based cleaning, we compared NoiseRemove and NoiseTolerate with
TARS by varying the number of instances cleaned by an oracle.
Figure 13 shows the results. NoiseRemove and NoiseTolerate are
both represented by a single dot in the figure since they do not use
oracles to clean noisy labels. We have two observations from the
figures. First, there is a performance gap between NoiseRemove
(or NoiseTolerate) and learning with ground-truth labels in terms
of classification accuracy. Second, TARS is able to fill the gap by
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Figure 13: Comparing the effectiveness of different cleaning strategies by varying the number of cleaned instances.

progressively asking an oracle to clean noisy labels. These results
motivate the need to study oracle-based cleaning.
Oracle-based Cleaning Strategies. We varied the number of cleaned
instances, and compared the model’s accuracy of different clean-
ing strategies. We constructed a mix of noise rates: (0.4, 0.1) and
(0.3, 0.4), and applied the first noise rate to two thirds of the in-
stances, and applied the second one to the remaining instances.

Figure 13 shows the results. We have three interesting obser-
vations. First, TARS outperformed all the other cleaning strate-
gies. The reason is that TARS considers both label noise and model
changes in its cleaning strategy while Random does not consider ei-
ther of them, SortNoise and Hung do not consider model changes,
and USample and ExpectError do not consider label noise. Second,
the performance of ActiveClean sometimes was not very stable (see
Figure 13(b) and Figure 13(c)). This is because that ActiveClean is
focused on a different cleaning scenario, where there is a large dirty
dataset (both features and labels are dirty), and an oracle cleans the
data in batches. It is common that each batch contains at least 100
instances, but in this experiment, the entire cleaning budget was
only 100. Third, after a number of instances cleaned, the perfor-
mance of TARS becomes stable. This is because that TARS prior-
itizes cleaning those instances likely to affect the model. If such
instances have all been cleaned, the model will become stable.

Section 5.3 presents two optimization techniques (op1 and op2)
for TARS. One natural question is whether these optimizations are
also applicable to the other cleaning strategies. Let us first take a
look at op1. op1 divides noisy data into two disjoint parts, where
one is used to train a model and the other is used to test the model.
Among all the other cleaning strategies, op1 can only be applied
to ExpectError. In the above experiment, we have already imple-
mented op1 in ExpectError. For op2, it uses model uncertainty to
break the tie. This is a general technique that can be applied to
all cleaning strategies. We evaluated the impact of op2 on each
cleaning strategy, and got some interesting observations. First, op2
has little impact on USample because USample has already taken
into account model uncertainty. Second, the performance of Ac-
tiveClean is still not stable even with op2. Third, for the other
cleaning strategies, op2 can sometimes bring some improvements,
but TARS still performs the best since it is the only approach that
considers both label noise and model impact.

7. RELATED WORK
Crowdsourcing. There are three research topics in crowdsourcing
related to our work: task assignment [4, 6, 13, 17, 26, 31, 48], truth
inference [12,16,19,33,47], and active learning (from crowds) [18,
24, 27, 45]. Task assignment studies how to determine which task
should be assigned to an incoming crowd worker. However, their
objectives are not to maximize the performance of a classification
model. Truth inference studies the problem of inferring the ground-
truth label of each instance based on (inconsistent) labels from dif-
ferent workers. For traditional truth-inference techniques where
no oracle-based cleaning is involved [47], this is orthogonal to our
problem because we can first use them to get a noisy label along
with noise rate for each instance, and then apply TARS to train
or test a model using the noisy labels. The oracle-based cleaning
was adopted by a recent truth-inference study [19]. However, as

shown in the experiment, TARS outperformed this approach be-
cause it aims to maximize label quality rather than model qual-
ity. Active learning (from crowds) determines which unlabeled in-
stance should be sent to a crowd worker to label. Since a crowd
worker may make mistakes, there are some studies on the trade-off
between asking another crowd worker to relabel an instance or la-
bel a new instance [24,37]. In our problem, we consider that all the
instances have been labeled by the crowd and an oracle can be used
to clean the instances.
Data Cleaning. Algorithmic data cleaning approaches have been
improving in quality, but still far from perfect [7]. In view of the
challenge, human-guided data cleaning has recently attracted a lot
of attention [3, 8, 9, 14, 20, 30, 41, 42, 43, 44, 46]. The existing stud-
ies can be broadly divided into two categories. One category is to
leverage humans (either crowd workers or experts) to solve a partic-
ular data-cleaning problem, such as entity resolution [9,14,41,43],
missing value imputation [30], and data repairing [8,44]. The other
category is to clean data for a particular data analysis task, such
as building a machine-learning model [20] and answering SQL
queries [3,42]. Our work belongs to the second category. In partic-
ular, we are focused on cleaning crowdsourced labels for statistical
classification, which is a problem that has not been explored before.
Learning with Noisy Labels. There is a large body of work in
the Machine Learning community on learning with noisy labels
(see [15] for a survey). Some existing approaches aim to develop
a robust algorithm to tolerate label noise [25, 39]. There are also
some works [5, 40] that seek to leverage data cleaning for model
training. In contrast to these works, this paper is focused on a dif-
ferent data-cleaning scenario, i.e., oracle-based label cleaning.

8. CONCLUSION
In this paper, we have studied the problem of cleaning crowd-

sourced labels using oracles for statistical classification. We devel-
oped TARS, a label-cleaning advisor that can provide data scientists
with two pieces of advice when they need to train or test a model us-
ing noisy labels. We formally defined the corresponding problems:
model evaluation and cleaning strategy. For the first problem, we
described effective techniques to estimate the model’s true perfor-
mance as well as bound the estimation error, for different evalua-
tion metrics (accuracy, precision, recall, F-score). For the second
problem, we devised a new cleaning strategy, called EMI, to over-
come the limitations of the existing cleaning strategies. We devel-
oped two techniques to further optimize its effectiveness and pro-
posed two ideas to improve its efficiency. The experimental results
show that (1) TARS can accurately estimate the model’s true per-
formance, with the estimation error up to 3× smaller than DirtyEval
and NoiseRemove; (2) TARS can improve the model accuracy by
a larger margin than the state-of-the-art cleaning strategies, for the
same cleaning budget.
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