
Chasing Similarity: Distributionaware
Aggregation Scheduling

Feilong Liu1, Ario Salmasi1, Spyros Blanas1, Anastasios Sidiropoulos2

1The Ohio State University, 2University of Illinois at Chicago

{liu.3222,salmasi.1,blanas.2}@osu.edu, sidiropo@gmail.com

ABSTRACT

Parallel aggregation is a ubiquitous operation in data analyt-
ics that is expressed as GROUP BY in SQL, reduce in Hadoop,
or segment in TensorFlow. Parallel aggregation starts with
an optional local pre-aggregation step and then repartitions
the intermediate result across the network. While local pre-
aggregation works well for low-cardinality aggregations, the
network communication cost remains significant for high-
cardinality aggregations even after local pre-aggregation. The
problem is that the repartition-based algorithm for high-
cardinality aggregation does not fully utilize the network.

In this work, we first formulate a mathematical model that
captures the performance of parallel aggregation. We prove
that finding optimal aggregation plans from a known data
distribution is NP-hard, assuming the Small Set Expansion
conjecture. We propose GRASP, a GReedy Aggregation
Scheduling Protocol that decomposes parallel aggregation
into phases. GRASP is distribution-aware as it aggregates
the most similar partitions in each phase to reduce the trans-
mitted data size in subsequent phases. In addition, GRASP
takes the available network bandwidth into account when
scheduling aggregations in each phase to maximize network
utilization. The experimental evaluation on real data shows
that GRASP outperforms repartition-based aggregation by
3.5× and LOOM by 2.0×.
PVLDB Reference Format:

Feilong Liu, Ario Salmasi, Spyros Blanas, Anastasios Sidiropou-
los. Chasing Similarity: Distribution-aware Aggregation Schedul-
ing. PVLDB, 12(3): 292-306, 2018.
DOI: https://doi.org/10.14778/3291264.3291273

1. INTRODUCTION
Aggregation is widely used in data analytics. Parallel aggre-
gation is executed in two steps. The first step is an optional
local aggregation where data is aggregated locally, followed
by a second step where data is repartitioned and transferred
to the final destination node for aggregation [45, 14]. The
local aggregation can reduce the amount of data transferred
in the second step for algebraic aggregations, as tuples with

This work is licensed under the Creative Commons Attribution
NonCommercialNoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/byncnd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 12, No. 3
ISSN 21508097.
DOI: https://doi.org/10.14778/3291264.3291273

the same GROUP BY key are aggregated to a single tuple
during local aggregation [6, 52, 22, 35, 48]. Local aggrega-
tion works effectively for low-cardinality domains, such as
age, sex or country, where data can be reduced substan-
tially and make the cost of the repartition step negligible.
However, high-cardinality aggregations see little or no ben-
efit from local aggregation. Optimizing the repartitioning
step for high-cardinality aggregations has received less re-
search attention.

High-cardinality aggregations are surprisingly common in
practice. One example is sessionization, where events in a
timestamp-ordered log need to be grouped into user ses-
sions for analysis. An exemplar is the publicly-available
Yelp dataset where 5.2M reviews are aggregated into 1.3M
user sessions [53]. Even when there are no high-cardinality
attributes, aggregation on composite keys of multiple at-
tributes can lead to high-cardinality aggregations, which is
common in data cube calculations [16].

This paper focuses on reducing the communication cost
for high-cardinality aggregations. We classify aggregations
into two types: all-to-one aggregation and all-to-all aggre-
gation. In all-to-one aggregation, one coordinator collects
and aggregates data from all compute nodes. All-to-one ag-
gregation frequently happens at the last stage of a query. In
all-to-all aggregation, data is repartitioned on the GROUP
BY attributes and every node aggregates a portion of the
data. All-to-all aggregation is common in the intermediate
stages of a query plan.

Directly transmitting the data to the destination node
during an aggregation underutilizes the network. In all-to-
one aggregation, the receiving link of the destination is the
bottleneck while every other receiving link in the network
is idle. In all-to-all aggregation, workload imbalance due to
skew or non-uniform networks [17, 27] means that some net-
work links will be underutilized when waiting for the slower
or overburdened links to complete the repartitioning.

Systems such as Dremel [32], Camdoop [7], NetAgg [31]
and SDIMS [51] reduce the communication cost and increase
network utilization by using aggregation trees for all-to-one
aggregations. The most relevant prior work is LOOM [8, 9],
which builds aggregation trees in a network-aware manner.
LOOM assumes that every node stores |Rleaf | distinct keys
and that the cardinality of the final aggregation result is
|Rroot|. Given these parameters as input, LOOM produces
an aggregation tree with a fan-in that is a function of the
reduction rate |Rroot|/|Rleaf |. Applying LOOM during query
execution is not trivial, however, as the cardinality of the
input and the final result is not known in advance. (Even

292

Figure 1: Graph representation
of a cluster with four nodes. The
aggregation destination is v0 and
the router is vR.

Figure 2: Aggregation based
on repartitioning completes
in 9 time units. The bottle-
neck is the vR→v0 link.

Figure 3: The similarity-aware

plan completes in 6 time units.
Figure 4: The similarity-obliv-

ious plan finishes in 9 time units.

estimations of the cardinality can be inaccurate [24].) Fur-
thermore, the aggregation plan that LOOM produces fails to
consider how the similarity between partitions impacts the
reduction rate at intermediate steps of the aggregation.

The importance of considering partition similarity during
aggregation can be shown with an example. Figure 1 shows
an all-to-one aggregation in a 4-node cluster, where vR is
the switch, node v0 is the destination node, node v1 stores
three tuples with keys A, B and C, and nodes v2 and v3 store
three tuples each with keys D, E and F. (For simplicity, the
figures only show the GROUP BY keys.)
• The repartitioning strategy in Figure 2 finishes the ag-

gregation in 9 time units, where one time unit is the time
v0 needs to receive and process a single tuple.
• The similarity-aware aggregation plan in Figure 3 pro-

ceeds in two phases. In the first phase, v1 transmits keys
{A,B,C} to v0 and v3 transmits keys {D,E,F} to v2. In
the second phase, v2 computes the partial aggregation
and transmits keys {D,E,F}. The entire aggregation com-
pletes in 6 time units — 1.5× faster than repartitioning.
• The similarity-oblivious aggregation plan shown in Fig-

ure 4 transmits keys {D,E,F} from v3 to v1 in the first
phase and then needs 6 time units in the second phase to
transmit keys {A,B,C,D,E,F} to v0. The entire aggrega-
tion completes in 9 time units, as fast as repartitioning.

This paper introduces GRASP, an algorithm that carefully
constructs aggregation plans to accelerate high-cardinality
aggregation. Unlike prior solutions [32, 7, 31, 51] that do
not consider if data can be combined during an aggrega-
tion, GRASP aggregates fragments with similar keys first to
improve performance. GRASP has the following attributes:
(1) it is distribution-aware as it selects aggregation pairs that
will produce smaller partial aggregates, (2) it is topology-
aware as it schedules larger data transfers on faster network
links, (3) it achieves high network utilization as it uses as
many network links as possible.

The paper is structured as follows. Section 2 develops a
theoretical model for the network cost of parallel data aggre-
gation. Section 3 introduces GRASP, a topology-aware and
data distribution-aware algorithm, that accelerates aggrega-
tions by leveraging partition similarity. A natural question
to ask is if GRASP produces aggregation plans that approx-
imate the optimal plan by some constant factor. Section 4
proves that the aggregation scheduling problem cannot be
approximated within a constant factor by any polynomial al-
gorithm (including GRASP), assuming the SSE conjecture.
Section 5 contains the experimental evaluation which shows
that GRASP can be up to 3.5× faster than repartitioning
and up to 2.0× faster than LOOM on real datasets.

2. PROBLEM DEFINITION
We use a connected, directed, weighted graph G = (V (G),
E(G)) to represent the network topology of the cluster.
Each edge 〈vi, vj〉 ∈ E (G) represents one network link, with
the edge direction to be the direction of data flow.

The fat-tree topology is widely used in data centers [1].
We represent all routers in the network as a single node
vR ∈ V (G) and model the fat-tree topology as a star net-
work. The set VC = V (G) − {vR} represents the com-
pute nodes of the cluster. Compute nodes have bidirec-
tional network links, therefore E (G) = {〈s, vR〉|s ∈ VC}
⋃ {〈vR, t〉|t ∈ VC}, where edge 〈s, vR〉 represents the uplink
and edge 〈vR, t〉 represents the downlink.

2.1 Modeling alltoone aggregations
Aggregation Model. We first consider an aggregation
where data is aggregated to one single node v∗ ∈ VC . The
aggregation consists of multiple phases which execute in se-
rial order. We use P to denote an aggregation execution plan
with n phases, P = {P1, P2, ..., Pn}, where Pi represents one
phase of the aggregation. In a phase Pi, there are k con-
current data transfers, Pi = {s1 → t1, ..., sk → tk}, where
sj → tj denotes the data transfer in which node sj sends all
its data to node tj . Figure 3 shows an aggregation execution
plan P with two phases P1 and P2. Phase P1 performs two
data transfers v1 → v0, v3 → v2, and phase P2 performs one
data transfer v2 → v0.

We impose one constraint in the selection of s → t pairs:
node s will never send its data to a node t that has no data,
unless t is the final destination node v∗, as no data will be ag-
gregated in this case. (In fact, we could not find any instance
where transferring to an empty node t would be beneficial
over transmitting data directly to the destination v∗ in a
single-path star topology.) Hence, a node can be a receiver
multiple times across multiple phases, but once it transmits
its data in some phase Pi it becomes inactive and it will

Table 1: Symbol definitions.

Symbol Description

s→ t Data transfer from node s to node t
Pi Phase i, Pi = {s1→ t1, s2→ t2, . . .}
P Aggregation plan, P = {P1, P2, . . .}

Xl
i (v) Data of partition l in node v after Pi completes

Xi (v) Data in v after Pi finishes, Xi (v) =
⋃

l X
l
i(v)

X0 (v) Data in v before the aggregation starts
Yi (s→ t) Data sent from s to t in phase Pi

w Size of one tuple
B (s→ t) Available bandwidth for the s→ t data transfer
COST (s→ t) Network cost for the s→ t data transfer

293

Figure 5: The GRASP framework.

not participate in the aggregation in phases Pi+1, ..., Pn. A
corollary is that a node cannot be both sending and receiv-
ing data in the same phase.

Let X0 (v) be the data in node v in the beginning of the
aggregation execution and Xi (v) be the data in node v after
phase Pi completes. Let Yi(s → t) be the data sent from s
to t in phase Pi. A node will send all its local data within
one phase, hence Yi(s → t) = Xi−1(s). After phase Pi

completes, for every transfer s→ t ∈ Pi, Xi (s) = ∅ and

Xi (t) = Xi−1 (t)
⋃

⋃

s→t∈Pi

Xi−1 (s)

 (1)

The aggregation has finished in phase n when all nodes
except v∗ have sent their data out for aggregation:

∀v ∈
{

VC − {v∗}
}

: Xn (v) = ∅ (2)

Aggregation cost. The aggregation execution plan P =
{P1, ..., Pn} consists of phases in serial order. Hence the
network cost of P is:

COST (P) =
∑

COST (Pi) (3)

The network cost for phase Pi = {s1 → t1, ..., sk → tk} is
the cost of the network transfer which completes last:

COST (Pi) = max
sj→tj∈Pi

COST (sj → tj) (4)

The cost of the data transfer sj → tj is the time it takes to
transfer |Yi(sj→ tj)| tuples of size w each over the available
link bandwidth B (sj→ tj):

COST (sj → tj) =
|Yi(sj → tj)| · w

B (sj → tj)
(5)

Section 3.2 shows how GRASP estimates B (sj → tj) with-
out network topology information. Section 4.1 shows one
way to calculate B (sj → tj) if all network activity is known.

Problem definition. Given a connected, directed, weighted
graph G, the dataX0 (v) in every node v ∈ VC , the final des-
tination node v∗ ∈ VC , obtain an aggregation execution plan
containing one or more phases P = {P1, P2, ..., Pn} such that
COST (P) is minimized.

2.2 Modeling alltoall aggregations
The all-to-all aggregation model executes multiple all-to-one
aggregations over different partitions in a single plan.

Aggregation Model. In all-to-all aggregation data is di-
vided into m partitions, L = {l1, l2, ..., lm}. Every compute
node in VC is the aggregation destination for one or more
partitions. This is specified by a mapping M : L→ VC that
maps a partition l ∈ L to a specific destination v ∈ VC .

Let Xl
0 (v) be the data of partition l in node v in the begin-

ning of the aggregation execution and Xl
i (v) be the data of

partition l in node v after phase Pi completes.
Within one aggregation phase, a node s will send an entire

partition l of local data to t, hence Yi(s → t) = Xl
i−1(s) ⊆

Xi−1(s). Once a node transmits all its data for partition l it
becomes inactive in subsequent phases for this partition, but
it will participate in aggregations for other active partitions.
Hence, in all-to-all aggregation a node can be both sending
and receiving data in the same phase, as long as it does
not send and receive data belonging to the same partition.
Xi (v) is the data in node v after phase Pi completes:

Xi (v) = Xi−1 (v)
⋃

⋃

s→v∈Pi

Yi (s→ v)

−
⋃

v→t∈Pi

Yi(v → t)

(6)

All-to-all aggregation completes when data in all partitions
are aggregated to their corresponding destination:

∀ l → v∗ ∈M : ∀v ∈
{

VC − {v∗}
}

: Xl
n (v) = ∅ (7)

Problem definition. Given a connected, directed, weighted
graph G, the data Xl

0 (v) for each partition l ∈ L in every
node v ∈ VC , and a mapping M : L → VC denoting the
destination of each partition, obtain an aggregation execu-
tion plan containing one or more phases P = {P1, P2, ..., Pn}
such that COST (P) is minimized.

3. THE GRASP FRAMEWORK
This section introduces GRASP, a greedy aggregation sched-
uling protocol, which uses partition similarity as a heuristic
to carefully schedule data transfers to improve performance.

3.1 Overview
Figure 5 shows an overview of the GRASP framework. The
inputs to the framework are the data X0(v) in every node
v and the Group By attribute a. The input data may
be either a table in the database or an intermediate result
produced during query processing. Steps 1, 2 and 9 are
run by all compute nodes, while steps 3–8 are run in the
coordinator.
1) Bandwidth estimation. Every node estimates the
available bandwidth between itself and other nodes and stores
it in matrix B. Section 3.2 describes the process in detail.
2) Partition, pre-aggregate and calculate minhash
signatures. Every node partitions and aggregates data lo-
cally. During this operation, every node runs the minhash
algorithm [3, 21, 13] to produce succinct minhash signatures.
3) Estimate the cardinality of every possible pair.
The coordinator collects the minhash signatures and esti-
mates the cardinality of all possible aggregation pairs. An

294

aggregation pair is a partition l, a source node s and a desti-
nation node t. Section 3.3 presents the algorithms in detail.
4) Estimate the cost of the final plan. The coordi-
nator uses the available bandwidth matrix B as input and
estimates the runtime cost and the future benefit of execut-
ing every possible aggregation pair. Section 3.4 describes
the cost heuristic.
5) Generate aggregation phase Pi. The coordinator
selects aggregation pairs for phase Pi based on their cost.
The detailed algorithm is described in Section 3.5.
6) Add Pi to aggregation plan P. If the aggregation is
complete, the aggregation plan P is scheduled for execution.
7) Update data size |Xl

i(v)|. The coordinator updates
the estimation of the size of each partition |Xl

i(v)| in every
node for the next phase of the aggregation. GRASP does not
make another pass over the data, as the minhash signature of
any intermediate result can be calculated from the original
minhash signatures obtained in Step 2.
8) Generate query plans. The aggregation planning is
complete. GRASP generates query plans for execution.
9) Query execution. Every node in the cluster executes
its assigned aggregations for each phase.

3.2 Estimating the bandwidth
This section describes how GRASP estimates the available
bandwidth for data transfers without network topology in-
formation. GRASP schedules aggregation plans so that one
node sends to and receives from at most one node within a
phase to avoid network contention. This ensures that the
outgoing link and the incoming link of each node are used
by at most one data transfer. Similar approaches are used
by Rödiger et al. [41] to minimize network contention.

GRASPmeasures the pair-wise bandwidth through a bench-
marking procedure that is executed on system startup. The
bandwidth B(s → t) is measured by running a benchmark
on every s and t pair individually, where s keeps sending
data to t. The average throughput is stored as the estima-
tion of B(s → t) in a matrix, where the row index is the
sender and the column index is the receiver. (For example,
B(v0 → v1) = 2 in Figure 5.) The bandwidth matrix B is
computed once and reused for all queries that follow. Sec-
tion 5.3.1 evaluates the accuracy of the estimation and the
robustness of GRASP to estimation errors.

3.3 Estimating the size of intermediate results
GRASP needs to estimate the cardinality of the interme-
diate result between every node pair s and t for aggre-
gation planning. According to set theory, the size of the
union of two sets S and T can be calculated as |S ∪ T | =
|S| + |T | − |S ∩ T | = |S|+|T |

1+J
, where J is the Jaccard simi-

larity J = |S∩T |
|S∪T |

. Hence one can calculate the cardinality of

an aggregation from the cardinality of the input partitions
S, T and the Jaccard similarity between them.

Accurately calculating the Jaccard similarity is as expen-
sive as computing the aggregation itself, as it requires col-
lecting both inputs to the same node. GRASP thus esti-
mates the Jaccard similarity using the minhash algorithm [3,
21, 13]. After running minhash, the inputs are represented
by a small vector of integers called a minhash signature.
The minhash signatures are used to estimate the Jaccard
similarity between the two sets.

The minhash algorithm generates minhash signatures by
applying a set of hash functions to the dataset. The min-

Figure 6: Example of Jaccard similarity estimation with
the minhash algorithm and hash functions h1(x) = (x +
1) mod 11 and h2(x) = (3x+ 1) mod 11.

hash signature value is the minimum value produced by each
hash function. Figure 6 shows an example of the minhash
signature calculation for two sets S and T and their min-
hash signatures sig(S) and sig(T), respectively. The Jac-
card similarity between the two sets can be estimated from
the minhash signatures as the fraction of the hash functions
which produce the same minhash value for both sets. In the
example shown in Figure 6, the accurate Jaccard similarity

is Jacc = |S∩T |
|S∪T |

= 6
10
. The estimated Jaccard similarity from

the minhash signatures is Jest = 1/2, as only hash function
h2(·) produces the same minhash value between the two sets.

Another appealing property of the minhash algorithm is
that the minhash signature sig(S∪T) can be computed from
the minhash signatures sig(S) and sig(T), respectively: The
minhash signature of the union is the pairwise minimum of
the respective signatures, or sig(S ∪ T)[i] = min

(

sig(S)[i],

sig(T)[i]
)

. The practical significance of this property is that
GRASP needs to access the original data only once before
the aggregation starts, and then will operate on the much
smaller signatures during aggregation planning.

In GRASP, every node partitions the local data and cal-
culates the cardinality and the minhash signatures for each
partition. (This is step 2 in Figure 5.) The coordinator
collects the cardinality and the minhash signature for each
partition of every node in two arrays Card and MinH of
size |VC | × |L|. The arrays are initialized to Card[v, l] ←
∣

∣Xl
0(v)

∣

∣ and MinH[v, l] ← sig
(

Xl
0(v)

)

. After these arrays
are populated with information from every node, they are
only accessed by two functions during aggregation planning,
which are defined in Algorithm 1. The first function is Est-
Card(s, t, l) which estimates the Jaccard similarity between
the sets Xl

i(s) and Xl
i(t) from their minhash signatures and

returns an estimate of the cardinality of their union. The
second function is Update(s, t, l) which updates the Card

and MinH arrays after the s→ t transfer of partition l.

Algorithm 1: EstCard(s,t,l) estimates
∣

∣Xl
i(s) ∪Xl

i(t)
∣

∣

and Update(s,t,l) updates the Card and MinH arrays.

Input s, t ∈ VC : computing node identifiers
l ∈ L: data partition identifier

function EstCard(s,t,l)
1 sigS← MinH[s, l]; sigT← MinH[t, l]; J ← 0
2 for j ∈ [1, n] do
3 if sigS[j] = sigT[j] then
4 J ← J + 1/n

5 return
Card[s,l] + Card[t,l]

1 + J

function Update(s,t,l)
6 Card[t, l]← EstCard(s,t,l)
7 Card[s, l]← 0
8 for j ∈ [1, n] do
9 MinH[t, l][j]← min(MinH[s, l][j],MinH[t, l][j])

10 MinH[s, l]← ⊥

295

How many hash functions does minhash need? GRASP
uses only 100 hash functions so that signatures are less than
1KB. This choice sacrifices accuracy but keeps the com-
putation and network cost small. Satuluri and Parthasa-
rathy [43] show that the estimation is within 10% of the
accurate similarity with 95% probability when n = 100. Sec-
tion 5.3.3 evaluates the accuracy of the minhash estimation.

3.4 Forecasting the benefit of each aggregation
Ideally one should take the cost of all future aggregation
phases into account when picking the best plan for the cur-
rent phase. This is prohibitively expensive as there are nn−2

possible aggregation trees for a cluster with n nodes [4]. A
greedy approach that minimizes the cost of the current phase
only ignores how similarity can reduce the network cost of
future data transfers. Hence, GRASP looks one phase ahead
during optimization to balance the network transfer cost of
a data transfer in the current phase with the anticipated fu-
ture savings from transmitting less data in the next phase.

The heuristic GRASP uses to pick which transfers to sched-
ule in the current phase is based on a cost function Ci(s, t, l)
that adds the cost of an s→ t transfer in this phase and the
cost of transmitting the union of the data in the next phase.
Ci(s, t, l) is constructed based on the following intuition:

1) Penalize the following transfers by setting Ci = ∞ so
that they will never be picked: (1) Node s sending partitions
whose destination is s, to prevent circular transmissions. (2)
One node sending a partition to itself, as this is equivalent
to a no-op. (3) Transfers involving nodes that neither have
any data nor are they the final destination for this partition.

2) When any node transmits partition l to its final des-
tination M(l), only the cost of the data transfer needs to
be considered, as this partition will not be re-transmitted
again. Hence, we set Ci to COST(s → t) in this case, where
COST is defined in Eq. 5, and Yi (s→ t) = Xl

i−1 (s).

3) Otherwise, add the cost of the s→ t transfer to the cost
of transmitting the aggregation result in the next phase. We

define Ei(s, t, l) =
EstCard(s,t,l)·w

B(s→t)
to simplify the notation.

Based on the above, we define Ci for a transfer s → t of
partition l between any pair of nodes (s, t) in phase Pi as:

Ci(s, t, l) =

∞ s = t
∞ s = M(l)
∞ Xl

i−1 (s) = ∅

∞ Xl
i−1 (t) = ∅

COST(s→ t) t = M(l)
COST(s→ t) + Ei(s, t, l) otherwise

(8)

Figure 7 shows C1 for the phase P1 of the aggregation
shown in Figure 1. There is only one partition in this exam-
ple, hence l = 0. The row index is the sending node and the
column index is the receiving node. Note that the matrix
Ci will not be symmetric, because transfers s→ t and t→ s
transmit different data and use different network links.

3.5 Selecting aggregation pairs
This section describes step 5 in Figure 5 which selects trans-
fers among all possible pairs to produce one aggregation
phase Pi. There are three aspects for consideration when
selecting candidate aggregations:

v0

v1

v2

v3

C1 =

v3v2v1v0

9 9

6

69

9

(v2 , v3 , 0)C1

3

3

3

Figure 7: The matrix C1 for the phase P1 of the aggregation
problem in Figure 1 that has a single partition. The example as-
sumes w is equal to the bandwidth B. Rows represent the sender
and columns represent the receiver. The circled value corresponds
to the aggregation v2 → v3 where v2 sends out {D,E,F} to ag-
gregate with {D,E,F} in v3.

1) In each phase, how many transfers does a node
participate in? Prior work shows that uncoordinated net-
work communication leads to congestion in the network [41,
42]. Rödiger et al. [41] do application-level scheduling by
dividing communication into stages to improve throughput,
where in each stage a server has a single target to send to and
a single source to receive from. Like prior work, GRASP re-
stricts the communication within one phase to minimize net-
work contention. Specifically, GRASP picks transfers such
that one node sends to at most one node and receives from
at most one node in each aggregation phase.

2) How many nodes are selected for aggregation in
one phase? In order to maximize the network utiliza-
tion, GRASP picks as many data transfers as possible in
one phase until the available bandwidth B is depleted.

3) Given many candidate aggregation pairs, which
aggregation should one choose within one phase?
GRASP minimizes the Ci function defined in Equation 8
and selects aggregations by picking the smallest Ci values.

Algorithm 2 shows how GRASP selects candidate aggre-
gations for one phase Pi. Vsend is the set of candidate nodes
to be senders, Vrecv is the set of candidate nodes to be re-
ceivers, and Vl is the nodes that can operate on partition l.
The algorithm picks the aggregation pair which has smallest
value in Ci (line 3). The algorithm then removes the selected
nodes from the candidate node sets (lines 6-7) to enforce
that (a) one node only sends to or receives from at most one
node, and (b) one node does not send and receive data for
the same partition within the same phase. Then, the trans-

Algorithm 2: Selecting data transfers for phase Pi

Input Ci: the cost function defined in Eq. 8.
Vsend: candidate nodes to send
Vrecv: candidate nodes to receive
Vl: candidate nodes to operate on partition l

Output Pi: the next aggregation phase
1 Pi ← ∅; Vsend ← VC ; Vrecv ← VC ; Vl ← VC

2 while |Vsend| > 0 and |Vrecv| > 0 do
3 Pick 〈s→ t, l〉 such that

s ∈ (Vsend ∩ Vl), t ∈ (Vrecv ∩ Vl) and
Ci(s, t, l) has the minimum value in Ci

4 if Ci(s, t, l) =∞ then
5 break

6 Remove s from Vsend and Vl, if found
7 Remove t from Vrecv and Vl, if found
8 Add 〈s→ t, l〉 to Pi

9 Update(s, t, l)

10 return Pi

296

X0(v0)={}

X0(v1)={1}

X0(v2)={2,3,4}

X0(v3)={2,3}

calculate

heuristic

X1(v0)={1}

X1(v1)={}

X1(v2)={2,3,4}

X1(v3)={}

P2={v2 v0}

X2(v0)={1,2,3,4}

X2(v1)={}

X2(v2)={}

X2(v3)={}

{{v3 v2, v1 v0}, {v2 v0}}=
generate

plan

select

aggregation

calculate

heuristic
select

aggregation

v0

v1

v2

v3

C1 =

v3v2v1v0

5 4

67

5 5

1

3

2

C2 =

v0

v1

v2

v3

v3v2v1v0

3

P1= {v1 v0

v3 v2
{

Figure 8: An example of how GRASP generates aggregation
plans for an all-to-one aggregation with a single partition.

fer s → t for partition l is added to the aggregation phase
Pi (line 8). GRASP calls the function Update(s, t, l), which
was defined in Algorithm 1, to update the minhash signa-
tures and the cardinalities in arrays MinH and Card (line 9),
as data in s and t will change after the aggregation. The
algorithm stops when either candidate set is empty (line 2)
or there are no more viable transfers in this phase (line 5).

Figure 8 shows an example of how GRASP selects ag-
gregations using the Ci cost function. For simplicity, we
again show an all-to-one aggregation with a single parti-
tion l = 0, and we assume the bandwidth B to be equal
to the tuple width w. In the first iteration, the coordi-
nator constructs the matrix C1 from the cost function de-
scribed in Section 3.4. For example, assume in the first phase
|X0(v2)| = 3 and |X0(v2)∪X0(v3)| = 3, then C1(v2, v3, 0) =
6. After constructing the cost matrix C1, GRASP picks data
transfers for aggregation using Algorithm 2. The first pick
is v1 → v0 because it has the least cost. Because a transfer
has now been scheduled on the v1 → v0 link, GRASP elimi-
nates v1 and v0 from all candidate sets. GRASP then picks
v3 → v2. GRASP then finishes this phase because there
are no candidates left, and appends the aggregation phase
P1 = {v1 → v0, v3 → v2} to the aggregation plan P. In the
next iteration, GRASP constructs matrix C2 and picks the
last data transfer v2 → v0 for phase P2. At this point, all
data will have been aggregated to the destination nodes so
the aggregation plan P will be scheduled for execution.

4. HARDNESS OF APPROXIMATION
Many hard problems are amenable to efficient approxima-
tion algorithms that quickly find solutions that are within a
guaranteed distance to the optimal. For instance, 2-approx-
imation algorithms —polynomial algorithms that return a
solution whose cost is at most twice the optimal— are known
for many NP-hard minimization problems. A natural ques-
tion to ask is how closely does GRASP approximate the
optimal solution to the aggregation problem.

This section proves that it is not feasible to create a poly-
nomial algorithm that approximates the optimal solution
to the aggregation problem within any constant factor. In
other words, the aggregation problem is not only NP-hard

but it also cannot be approximated within any constant fac-
tor by any polynomial algorithm, including GRASP. This
hardness of approximation result is much stronger than sim-
ply proving the NP-hardness of the problem, as many NP-
hard problems are practically solvable using approximation.

The proof is structured as follows. Section 4.1 introduces
an assumption regarding the cost of using shared network
links. Section 4.2 defines the Small Set Expansion (SSE)
problem and the well-established SSE conjecture. Section
4.3 starts with an instance of SSE and reduces it to the all-
to-one aggregation problem. This proves that the all-to-one
aggregation problem is NP-hard to approximate, assuming
the SSE conjecture. Section 4.3.3 proves that the all-to-all
aggregation problem is also NP-hard to approximate.

4.1 Link sharing assumption
Whereas GRASP will never schedule concurrent data trans-
fers on the same link in one phase in a star network, the
theoretical proof needs a mechanism to assess the runtime
cost of sharing a network link for multiple transfers. Our
proof makes the fair assumption that the cost of sending
data from one node to another is proportional to the total
data volume that is transferred over the same link across all
aggregations in this phase.

One way to incorporate link sharing information in the
cost calculation is to account for the number of concurrent
data transfers on the s→ t path when computing the avail-
able bandwidth B(s → t). For example, for the network
topology shown in Figure 1 the available bandwidth from s
to t, B (s→ t) can be calculated as:

B (s→ t) = min

(

W (〈s, vR〉)
do (s)

,
W (〈vR, t〉)

di (t)

)

(9)

where W (〈s, vR〉) and W (〈vR, t〉) are the network band-
widths of the links, do (s) denotes the number of data trans-
fers using the 〈s, vR〉 link and di (t) denotes the number of
data transfers using the 〈vR, t〉 link in this phase.

4.2 The Small Set Expansion Problem
This subsection defines the Small Set Expansion (SSE) con-
jecture [37]. We first briefly discuss the intuition behind this
problem and we then give a formal definition.

4.2.1 Intuition

A d-regular graph is a graph where each vertex has d edges
for some integer d ≥ 1. The Small Set Expansion prob-
lem asks if there exists a small subset of vertices that can
be easily disconnected from the rest in a d-regular graph.
The SSE conjecture states that it is NP-hard to distinguish
between the following two cases: (1) The YES case, there
exists some small set of vertices that can be disconnected
from the graph. (2) The NO case, such a set does not ex-
ist. In other words, in this case every set of vertices has a
relatively large boundary to the other vertices in the graph.

Note that the SSE conjecture is currently open, as it has
not been proven or disproven yet. Just like the well-known
P 6= NP conjecture, the theory community has proceeded
to show that many problems are hard to approximate based
on the general belief that the SSE conjecture is true. Sig-
nificant hardness of approximation results that assume the
SSE conjecture include the treewidth and pathwidth of a
graph [2], the Minimum Linear Arrangement (MLA) and
the c-Balanced Separator problem [38].

297

4.2.2 Formal Definition

Let G be an undirected d-regular graph. For any subset of
vertices S ⊆ V (G), we define the edge expansion of S to be

Φ(S) = E(S,V\S)
d|S|

.

Definition 4.1. Let ρ ∈ [−1, 1]. Let Φ−1 be the inverse
function of the normal distribution. Let X and Y be jointly
normal random variables with mean 0 and covariance matrix
(

1 ρ
ρ 1

)

. We define Γρ : [0, 1] → [0, 1] as Γρ(µ) = Pr[X ≤

Φ−1(µ) ∧ Y ≤ Φ−1(µ)].

Conjecture 4.2 (The Small Set Expansion conjecture [37]).
For every integer q > 0 and ε, γ > 0, it is NP-hard to dis-
tinguish between the following two cases:

YES There is a partition of V (G) into q equi-sized sets
S1, . . . , Sq such that Φ(Si) ≤ 2ε, ∀i ∈ {1, . . . , q}.

NO For every S ⊆ V (G) we have Φ(S) ≥ 1− (Γ1−ε/2(µ)+
γ)/µ, where µ = |S|/|V (G)|.

Remark 4.1. In the YES case, the total number of edges
that are not contained in one of the Si sets is at most 2ε|E|.

Remark 4.2. In the NO case, for every S ⊆ V (G) with
|V (G)|/10 ≤ |S| ≤ 9|V (G)|/10, we have |E(S, V (G) \ S)| ≥
c
√
ε|E(G)|, for some constant c > 0.

4.3 Hardness of the aggregation problem
Before stating the formal inapproximability result, we first
provide the intuition behind our proof strategy approach.
We then reduce the SSE problem to the all-to-one aggrega-
tion problem. Finally, we show that the all-to-all problem is
a straightforward generalization of the all-to-one problem.

4.3.1 Intuition

We now give a brief intuitive overview of the proof. Recall
that in the SSE problem we are given a graph G and the
goal is to decide whether G admits a partition into small
subgraphs, each having a small boundary (a SSE partition
henceforth), or G is an expander at small scales; that is,
all small subgraphs of G have a large boundary. The SSE
conjecture asserts that this problem is hard to approximate,
and has been used to show the inapproximability of various
graph optimization problems [2]. Inspired by these results,
we show that the all-to-one aggregation problem is hard to
approximate by reducing the SSE problem to it. Our proof
strategy is as follows. We begin with an instance G′ of the
SSE problem. We encode G′ as an instance of the all-to-
one aggregation problem by interpreting each node of G′ as
a leaf node in the star network, and each edge 〈u, v〉 of G
as a data item which is replicated in nodes u and v in the
aggregation problem. We show that any partition of G can
be turned into an aggregation protocol, and, conversely, any
aggregation protocol can be turned into a partition of G.
The key intuition is that the cost of the partition is related
to the cost of the aggregation via the observation that the
data items that need to be transmitted twice are exactly the
edges that are cut by the partition.

4.3.2 Formal proof for the alltoone aggregation

Suppose that we are given an all-to-one aggregation instance:
a graph G, a single destination vertex v∗ ∈ V (G), and the
data X0(v) in each node v ∈ V (G). Let X =

⋃

v∈V (G) X0(v)

be the set of all data. Let P = {P1, P2, . . . , Pn} be an exe-
cution plan. For every Pi = {s1 → t1, . . . , sk → tk} ∈ P, let
S(Pi) = {s1, . . . , sk} and T (Pi) = {t1, . . . , tk}.

We define the overhead cost of P to be COST (P)−|X|. Un-
der the all-to-one aggregation model, every execution plan is
obtained from an aggregation tree. To simplify the proof, we
assume that one node sends data to only one node within a
phase. This modeling assumption is acceptable from a theo-
retical standpoint as one can represent a phase where a node
transmits data to multiple destinations as a sequence of dis-
crete phases to each individual destination. We say that
P is obtained from an aggregation tree TP , if the following
conditions hold:

1. TP is a spanning tree of G, rooted at v∗.

2. The leaf vertices of TP are exactly the elements of S(P1).
Furthermore, for every i ∈ {2, . . . , k−1}, the leaf vertices
of TP \

⋃

1≤j<i S(Pj) are exactly the elements of S(Pi).

Theorem 4.3. For every ε > 0, given an aggregation in-
stance

(

G, v∗ ∈ V (G), X0(v) ∀v ∈ V (G)
)

, it is SSE-hard to
distinguish between the following two cases:

YES There exists an execution plan that is obtained from
an aggregation tree with overhead cost O(ε|X|).

NO Every execution plan that is obtained from an aggre-
gation tree has overhead cost Ω(

√
ε|X|).

Proof. We start with an instance of SSE with q = 1/ε, and
reduce it to our problem. Let G′ be the d-regular graph of
the SSE instance. We construct an aggregation instance as
follows. Let V (G) = V (G′), and X = E(G′). Note that G is
a complete graph with the same vertex set as G′. For every
v ∈ V (G), let X0(v) = {〈u,w〉 ∈ X : v = u ∨ v = w} be the
set of data that is held by v.

In the YES case of the SSE instance, we have disjoint sets
S1, S2, . . . , Sq of equal size. For every i ∈ {1, 2, . . . , q}, we
have |Si| = |V (G)|/q = ε|V (G)|. We may assume w.l.o.g. that
v∗ ∈ Sq . For every i ∈ {1, 2, . . . , q − 1}, pick an arbitrary
vertex vi ∈ Si. Let also vq = v∗. For every j ∈ {1, 2, . . . , q},
let {si,1, . . . , si,ij} = Sj \ {vj}. We first construct an aggre-
gation tree T as follows. For every i ∈ {1, 2, . . . , q}, let vi
be the parent of all other vertices in Si. Let vq be also the
parent of v1, v2, . . . , vq−1.

Now consider the execution plan corresponding to T . This
aggregation has two phases: P = {P1, P2}. First we de-
scribe P1. For each Si, we aggregate all the data held by
vertices of Si to vi; that is every vertex in Si (except vi
itself) transfers its dataset to vi. This can be done simul-
taneously for all Si’s, since Si’s are disjoint sets. We have
that P1 = {s1,1 → v1, s1,2 → v1, ..., s1,i1 → v1, s1,2 →
v2, ..., s1,i2→v2, ..., sq,1→vq, ..., sq,iq→vq}.

By the construction, at the beginning for each vertex v
we have that |X0(v)| = d. Therefore, for every Si, the to-
tal volume of data to be transferred to vi is 2ε|E(G)| =
dε|V (G)| = d|Si|. In other words, for every (si,j → vi) ∈ P1,
we have that COST(si,j → vi) = 2ε|E(G)|, and thus we have
COST(P1) = 2ε|E(G)|.

In the second phase of the execution plan, for every i ∈
{1, 2, . . . , q − 1}, we need to transfer all the data held by vi
to v∗. This can be done simply by sending one data at a
time to v∗. We have:

P2 = {v1 → vq, v2 → vq , . . . , vq−1 → vq}

298

By Remark 4.1, the total number of tuples that are trans-
ferred more than once in this phase is at most εd|V (G)| =
2ε|E(G)|. This means that COST(P2) ≤ (1 + 2ε)|E(G)|.
Therefore we have that COST(P) ≤ (1 + 4ε)|E(G)|, and thus
the overhead cost of this execution plan is O(ε|E(G)|).

In the NO case, we want to show that every execution
plan that is obtained from an aggregation tree has cost
Ω(
√
ε|E|). Let P be an execution plan that is obtained from

an aggregation tree T . For every v ∈ V (T), let Tv be the
subtree of T rooted at v.

Suppose that v∗ has a child v such that |V (T)|/10 ≤
|V (Tv)| ≤ 9|V (T)|/10. We apply Remark 4.2 by setting S =
Tv. We have that E(S, V (G)\S) ≥ c

√
ε|E(G)|, for some con-

stant c > 0. This means that there are at least c
√
ε|E(G)|

data that are going to be sent at least twice to v∗ in the
execution plan, or COST(P) = Ω((1 +

√
ε)|E(G)|). Thus, the

overhead cost of this execution plan is Ω(
√
ε|E(G)|).

Otherwise, v∗ has a child v such that |V (Tv)| < |V (T)|/10.
In this case, there are at least 9|E(G)|/10 data in Tv that
are going to be transferred at least twice to get to v∗ in
the execution plan. Therefore, we have COST(P) = Ω((0.9 +
0.9)|E(G)|), and thus the overhead cost of this execution
plan is clearly Ω(

√
ε|E(G)|). This completes the proof.

Corollary 4.4. Assuming Conjecture 4.2, it is NP-hard to
approximate the minimum overhead cost of an all-to-one
aggregation plan that is obtained from an aggregation tree
within any constant factor.

Corollary 4.5. Assuming Conjecture 4.2, it is NP-hard to
find an all-to-one aggregation plan that is obtained from an
aggregation tree with minimum cost.

One might ask if it is feasible to brute-force the prob-
lem for small graphs by enumerating all possible aggrega-
tion trees and picking the best solution. Unfortunately this
would be extremely expensive even for small graphs. Cay-
ley’s formula [4] states that the number of different span-
ning trees of graph with n vertices is nn−2. Hence, even for
n = 20 one needs to enumerate 2018 ≥ 1023 different trees.

4.3.3 Formal proof for the alltoall aggregation

The more general case is the all-to-all aggregation problem.
We observe that the all-to-one aggregation problem can be
trivially reduced to the all-to-all aggregation problem, since
by the definition, every instance of the all-to-one aggrega-
tion problem is also an instance of the all-to-all aggregation
problem.

Theorem 4.6. Assuming Conjecture 4.2, it is NP-hard to
find an all-to-all aggregation plan with minimum cost.

Proof. We reduce the all-to-one aggregation problem to the
all-to-all aggregation problem. Suppose that we are given an
instance of the all-to-one aggregation problem. By its def-
inition, this is also an instance of the all-to-all aggregation
problem where the mapping M is such that the aggregation
destination of every partition is node v∗ ∈ VC . By Corol-
lary 4.5 we know that the all-to-one aggregation problem
is NP-hard assuming Conjecture 4.2, therefore the all-to-all
aggregation problem is NP-hard as well.

5. EXPERIMENTAL EVALUATION
This section compares the GRASP algorithm with the repar-
tition algorithm and LOOM. Section 5.1 introduces the ex-
perimental setup, which includes the hardware setting, the
workloads and the baselines. The other sections evaluate
the following questions:

• (§ 5.2.1) How well does GRASP leverage similarity be-
tween datasets?

• (§ 5.2.2) Can GRASP benefit from workload imbalance?

• (§ 5.3.1) How accurate is the bandwidth estimation? How
robust is GRASP to estimation errors?

• (§ 5.3.2) How does GRASP perform in nonuniform net-
works?

• (§ 5.3.3) Is GRASP faster than aggregation based on repar-
titioning and LOOM on TPC-H and real datasets?

• (§ 5.3.4) How well does GRASP work in a real-world de-
ployment where the network conditions are unpredictable?

The evaluation of how GRASP utilizes the similarity within
the dataset and how GRASP scales out is included in an
extended version of this paper [25].

5.1 Experimental setup
We implemented the GRASP framework in C++ and we
have open-sourced our prototype implementation [15]. We
evaluate GRASP in two clusters. The first is a shared clus-
ter connected by a 1 Gbps network. Each machine has two
NUMA nodes with two Intel Xeon E5-2680v4 14-core proces-
sors and 512 GB of memory. The second cluster is Amazon
EC2 with d2.8xlarge instances which have 36 vCPUs and
244 GB of memory. The instances are connected with a 10
Gbps network.

We run one or more aggregation fragments in each ma-
chine/instance. Hence, one fragment corresponds to one
logical graph node in Figure 1. We evaluate all-to-all ag-
gregations by setting the mapping between partitions and
destinations so that aggregation results are evenly balanced
across all nodes. We evaluate all-to-one aggregations by
mapping all data partitions to the same destination.

Our evaluation reports the total response time to complete
the aggregation query. All our performance results include
the time to plan the aggregation using GRASP, the time to
transfer all data to their destinations and the time to process
the aggregation locally in each node. All experiments use
hash-based local aggregation.

5.1.1 Baselines

We compare GRASP with two baselines. The first baseline
is LOOM [8, 9]. As described in Section 1, LOOM needs the
size of aggregation results during query planning. In our
evaluation we configure LOOM to use the accurate result
size so that LOOM achieves its best performance. The sec-
ond baseline is repartitioning which has two versions. One
version is without local aggregation, where data is directly
sent to the destination fragment for aggregation. We use
“Repart” to denote this version. The other version is with
local aggregation, where data is first aggregated locally, then
the local aggregation result is sent to the destination frag-
ment for aggregation. We use “Preagg+Repart” to denote
this version of repartitioning. Note that repartitioning works
for both all-to-all and all-to-one aggregations, while LOOM
only works for all-to-one aggregations.

299

5.1.2 Workloads

We use five workloads in our evaluation.
1) Synthetic workload. The first workload is a syn-

thetic workload which has one table R, with two long integers
R.a and R.b as attributes. The query evaluated is SELECT

R.a SUM(R.b) FROM R GROUP BY R.a.
2) TPC-H workload. The second workload is the TPC-

H workload with scale factor 80. We evaluate this subquery
from TPC-H Q18: SELECT ORDERKEY, SUM(QUANTITY) FROM

LINEITEM GROUP BY ORDERKEY. The LINEITEM table is par-
titioned and distributed on the SUPPKEY to framgents with
a modulo hash function.

3) MODIS workload. The third workload is the Surface
Reflectance data MOD09 from MODIS (Moderate Resolu-
tion Image Spectroradiometer) [46]. The MODIS data pro-
vides the surface relfectance of 16 bands together with the
location coordinates (latitude and longitude). In the pro-
cessing of MODIS data, one product is MOD09A1 [47] which
aggregates the observed data in an 8-day period with the fol-
lowing query: SELECT Latitude, Longitude, MIN(Band3)

FROM RelfectTable GROUP BY ROUND(Latitude, 2),

ROUND(Longitude, 2) WHERE Date BETWEEN ‘01/01/2017’

AND ‘01/08/2017’. The MODIS data is stored in separate
files, one file per satelite image in timestamp order. We
download about 1200 files from the MODIS website, and
assigned files into plan fragments in a round-robin fashion.
Overall, there are about 3 billion tuples and 648 million dis-
tinct GROUP BY keys in this dataset.

4) Amazon workload. The fourth dataset is the Ama-
zon review dataset [19]. The review dataset has more than
82 million reviews from about 21 million users. The dataset
includes the reviewer ID, overall rating, review time and
detail review etc. We evaluate the following query to cal-
culate the average rating a customer gives out. SELECT

ReviewerID, AVG(OverallRate) FROM AmazonReview GROUP

BY ReviewerID. The reviews are stored in timestamp order
and we split this file into plan fragments.

5) Yelp workload. The fifth dataset is the Yelp review
dataset [53]. The review dataset has more than 5 million
reviews from about 1.3 million users. The Yelp dataset has
similar attributes as the Amazon dataset and we use a sim-
ilar query to calculate the average stars a customer gives.

5.2 Experiments with uniform bandwidth
This section evaluates GRASP in a setting where each plan
fragment communicates with the same bandwidth. The
measured inter-fragment bandwidth is 118 MB/s. We exper-
iment with 8 machines and 1 fragment per machine, which
results in 8 fragments in total. We use the synthetic work-
load in this section.

5.2.1 Effect of similarity across fragments

GRASP takes advantage of the similarities between datasets
in different fragments in aggregation scheduling. How well
does the GRASP algorithm take advantage of similarities
between datasets?

In this experiment, we change the similarities between
datasets, i.e. the number of common GROUP BY keys, in
different plan fragments. Each plan fragment has 64 million
tuples. Figure 9 shows how we change the similarity between
datasets. Each segment in Figure 9 shows the range of R.a
in one fragment. Figure 9 only shows fragments 0, 1 and
2. The range of datasets between adjacent fragments has an

Frag 0

Frag 1

128M

0
0

Frag 2

(a) Jaccard similarity J = 0
128

.

Frag 0

Frag 1

112M

16M

16M

Frag 2

(b) Jaccard similarity J = 16
112

.

Figure 9: The line segments represent the range of GROUP
BY attributes. The Jaccard similarity increases when the
overlap of GROUP BY key ranges increases.

overlap. The Jaccard similarity increases when the size of
the overlap increases.

The experimental results for all-to-one aggregation are
shown in Figure 10. The horizontal axis is the Jaccard sim-
ilarity coefficient between datasets. The vertical axis is the
speedup over the Preagg+Repart algorithm with Jaccard
similarity 0. Here speedup 1 corresponds to response time
of 64.6 seconds. Figure 10 shows that GRASP has the best
performance and is up to 4.1× faster than Preagg+Repart
and 2.2× faster than LOOM when the Jaccard similarity
is 1. Figure 10 shows that the performance of Repart and
Preagg+Repart stays the same when the Jaccard similarity
changes. This means that repartitioning cannot utilize the
similarities between datasets.

GRASP has better performance than LOOM for two rea-
sons. First, GRASP is data distribution-aware and priori-
tizes aggregations with higher similarity. Second, GRASP
has higher network utilization than LOOM. In GRASP, a
fragment can be both sending and receiving as long as it is
not working on the same partition. In LOOM, a fragment is
either a parent fragment receiving data or a child fragment
sending data. We also evaluate with all-to-all aggregation.
The result shows that GRASP has similar performance with
repartitioning as there is no underutilization of the network
during the all-to-all aggregation. We omit the results for
brevity.

5.2.2 Effect of workload imbalance

In parallel aggregation, some fragments may receive more
tuples to aggregate for two reasons. First, the repartition
function may assign more GROUP BY keys to some frag-
ments. Second, even if each fragment gets the same number
of GROUP BY keys to process, there may be skew in the
dataset. In this section, we evaluate how GRASP works
when one fragment gets more tuples to process.

0.0 0.2 0.4 0.6 0.8 1.0

Jaccard similarity

0
1

2
3

S
p
e
e
d
u
p
 o

ve
r

P
re

a
g
g
+

R
e
p
a
rt

2.2x

4.1x

Repart
Preagg+Repart
GRASP
LOOM

Figure 10: Speedup of
GRASP when the sim-
ilarity between datasets
increases. GRASP is
up to 2.2× faster than
LOOM and 4.1× faster
than Preagg+Repart.

1 3 5 7 9

Imbalance level

0
.0

0
.4

0
.8

1
.2

0
.2

0
.6

1
.0

S
p
e
e
d
u
p
 o

ve
r

P
re

a
g
g
+

R
e
p
a
rt

2x

3x

Repart
Preagg+Repart
GRASP

Figure 11: Speedup of
GRASP for all-to-all
aggregations when the
fragment 0 receives
more tuples. GRASP
is up to 3× faster than
Preagg+Repart.

300

In this experiment, we have 128 million tuples and R.a
ranges from 1 to 128 million. We change the repartition
function to assign more tuples to fragment 0. We assign
n million tuples to fragment 0 for aggregation and assign
m = 128−n

7
million tuples to the other fragments. We use

l = n
m

to denote the imbalance level. When n equals to 16,
l is 1 and there is no imbalance. However, as n increases,
fragment 0 gets more tuples than other fragments.

The results are shown in Figure 11. The horizontal axis
is imbalance level l. The vertical axis is the speedup over
Preagg+Repart when l is 0. Here speedup 1 corresponds
to response time of 22.1 seconds. Notice that LOOM is
not shown here because LOOM does not work for all-to-
all aggregations. Figure 11 shows that the performance of
repartition and GRASP both decreases when the workload
imbalance increases. However, the performance decreases
much faster for repartition than GRASP and GRASP is al-
ready 2× faster than Preagg+Repart when fragment 0 re-
ceives about 3 times of data of other fragments. This is
because in repartition, other fragments will stop receiving
and aggregating data when they are waiting for fragment
0 to complete. While for GRASP, other fragments are still
scheduled to receive and aggregate data. GRASP improves
performance when some fragments process more tuples.

5.3 Experiments with nonuniform bandwidth
GRASP is cognizant of the network topology, which is cru-
cial when the communication bandwidth is nonuniform, i.e.
when some plan fragments communicate at different speeds.
The distribution of the link bandwidth is not uniform in
many common network topologies. Datacenter networks
often have large oversubscription ratios and data transfers
within the same rack will be faster than data transfers across
racks [17]. The data transfer throughput between instances
in the cloud is also nonuniform [27]. Even HPC systems
which strive for balanced networks may have nonuniform
configurations [20].

This section evaluates how GRASP performs when the
network bandwidth is nonuniform. All experiments in this
section run multiple concurrent plan fragments in each server
to emulate a nonuniform network where some data transfers
will be faster than others due to locality.

5.3.1 Impact of bandwidth estimation

The bandwidth estimation procedure described in Section 3.2
leads to two questions: how accurate is the estimation and
how robust is GRASP to estimation errors?

Figure 12 compares the available bandwidth as estimated
by GRASP versus a manual calculation based on the hard-
ware specifications, the network topology and the fragment
placement. This experiment uses 8 machines with each ma-
chine having 14 fragments in the experiment. “Within ma-
chine” and “Across machines” corresponds to the communi-
cation bandwidth between fragments within the same node
and across different nodes, respectively. The result shows
that the estimation error is within 20% from the theoreti-
cal bandwidth. We conclude that the GRASP estimation
procedure is fairly accurate in an idle cluster.

The estimation procedure may introduce errors in produc-
tion clusters that are rarely idle. Figure 13 shows the impact
of bandwidth underestimation on the response time of the
aggregation plan produced by GRASP. We test two under-
estimation levels, 20% and 50% from the theoretical value.

Across machines Within machine

−
4

0
%

0
2

0
%

−
2

0
%

4
0

%

D
if
fe

re
n

c
e

 f
ro

m
 t
o

p
o

lo
g

y
 v

a
lu

e

Topology
GRASP estimation

Figure 12: Comparing
between the theoreti-
cal bandwidth and the
bandwidth estimated
from benchmarks.

GRASP
estimation

Topology

Switch
congestion

NIC congestion
on one machine

Co−location on
all machines

Co−location on
one machine

Response time difference from Topology
−40% 0 20%−20%

20% underestimation

50% underestimation

Figure 13: Speedup on the
MODIS dataset when changing
the estimated bandwidth.

In this experiment we force GRASP to use a modified band-
width matrix while running the aggregation query on the
MODIS dataset. We run the experiment 10 times picking
nodes at random for each setting, and show the standard de-
viation as an error bar. Co-location results in the underesti-
mation of the communication bandwidth between local frag-
ments in one or more machines. NIC contention and switch
contention underestimates the available network bandwidth
for one or all nodes in the cluster, respectively. “Topol-
ogy” corresponds to the calculation based on the hardware
capabilities, while “GRASP estimation” corresponds to the
procedure described in Section 3.2. The horizontal axis is
the response time difference with respect to the plan GRASP
generated using the theoretical hardware capabilities (hence,
lower means faster). The result shows that GRASP has bet-
ter performance when using the estimated bandwidth ma-
trix than the accurate bandwidth from network topology.
This is because the estimated bandwidth measured from the
benchmark is closer to the available bandwidth during query
execution. Moreover, even when the available bandwidth is
underestimated by up to 50%, the change in query response
time is less than 20%. We conclude that GRASP is robust
to errors introduced during bandwidth approximation.

5.3.2 Effect of nonuniform bandwidth

GRASP takes network bandwidth into consideration in ag-
gregation scheduling. How well does GRASP work when the
bandwidth between network links is different in a cluster?

In this experiment, we use 4 machines and each machine
has 14 aggregation fragments. The dataset in each fragment
has 14 million tuples with R.a ranging from 1 to 14 million.

The result is shown in Figure 14. The vertical axis is
the speedup over Preagg+Repart. The results show that
GRASP has better performance than both repartitioning
and LOOM in both all-to-one and all-to-all aggregations.
GRASP is up to 16× faster than Preagg+Repart and 5.6×
faster than LOOM in all-to-one aggregation and 4.6× faster
than Preagg+Repart in all-to-all aggregation. This is be-
cause GRASP is topology-aware and schedules more aggre-
gations on the faster network links. GRASP is topology-
aware and has better performance than the baselines when
the bandwidth between fragments is not uniform.

5.3.3 Real datasets and the TPCH workload

These experiments evaluate the performance of the GRASP
plans with the TPC-H workload and three real datasets. We

301

all−to−one all−to−all

Aggregation type

S
p
e
e
d
 u

p
 o

ve
r

P
re

a
g
g
+

R
e
p
a
rt

1
4

8
1
2

1
6

Repart
Preagg+Repart
GRASP
LOOM

Figure 14: Speedup over
Preagg+Repart with
nonuniform bandwidth.

MODIS Amazon Yelp TPC−H

Datasets

S
p
e
e
d
u
p
 o

ve
r

P
re

a
g
g
+

R
e
p
a
rt

0
1

2
3

4

3.5x
2x

Repart
Preagg+Repart

GRASP
LOOM

Figure 15: Speedup over
Preagg+Repart on the TPC-
H workload and on real datasets.

0 100 200 300

Time (seconds)

N
e
tw

o
rk

 l
in

k
s
 u

ti
liz

a
ti
o

n

O
u

tg
o

in
g

In
c
o

m
in

g

(a) GRASP

0 200 400 600

Time (seconds)

N
e
tw

o
rk

 l
in

k
s
 u

ti
liz

a
ti
o

n

O
u

tg
o

in
g

In
c
o

m
in

g

(b) LOOM

0 300 600 900

Time (seconds)

N
e
tw

o
rk

 l
in

k
s
 u

ti
liz

a
ti
o

n

O
u

tg
o

in
g

In
c
o

m
in

g

(c) Preagg+repart
Figure 16: Network link utilization.

use 8 machines and 14 fragments per machine. The dataset
is aggregated to fragment 0, which corresponds to the all-
to-one aggregation.

Speedup results: Figure 15 shows the speedup over Preagg
+Repart for each algorithm. The result shows that GRASP
has the best performance for all datasets. GRASP is 2×
faster than LOOM and 3.5× faster than Preagg+Repart in
the MODIS dataset.

Network utilization: Figure 16 shows the network utiliza-
tion plot for the MODIS dataset. The horizontal axis is the
time elapsed since the query was submitted to the coordi-
nator. (Note that the scale of the horizontal axis is not the
same, as some algorithms finish earlier than others.) Each
horizontal line in the plot represents one incoming network
link or one outgoing link of a fragment. For each link, we
plot a line when there is traffic in the link and leave it blank
otherwise.

Figure 16a shows network utilization with GRASP. After
a short delay to compute the aggregation plan, the network
is fully utilized in the first few phases and there is traffic
in all links. As the aggregation progresses, more fragments
contain no data and hence these fragments do not further
participate in the aggregation. The aggregation finishes in
under 300 seconds.

Figure 16b shows LOOM. One can see that the network
links, especially the receiving links, are not as fully utilized
as in Figure 16a. The fan-in of the aggregation tree pro-
duced by LOOM is 5 for this experiment, which makes the
receiving link of the parent fragment to be bottleneck. The
aggregation finishes in about 600 seconds.

Figure 16c shows Preagg+Repart. All receiving links ex-
cept fragment 0 (the aggregation destination) are not uti-
lized. The entire aggregation is bottlenecked on the receiv-
ing capability of fragment 0. The aggregation takes more
than 900 seconds. We omit the figure for Repart as it is
similar to Preagg+Repart.

Table 2: Tuples received by the final destination fragment.

Repart Preagg+Repart LOOM GRASP

3,464,926,620 3,195,388,849 2,138,236,114 787,105,152

Tuples transmitted to destination: The GRASP per-
formance gains can be directly attributed to the fact that it
transmits less data on the incoming link of the destination
fragment, which is frequently the bottleneck of the entire
aggregation. Table 2 shows how many tuples the destina-
tion fragment receives under different algorithms. Local pre-
aggregation has minimal impact as it is only effective when
duplicate keys happen to be co-located on the same node.
LOOM transmits fewer tuples to the destination fragment as
tuples are combined in the aggregation tree before arriving
at the final destination fragment. By aggressively combin-
ing fragments based on their similarity, GRASP transmits
2.7× less tuples than LOOM to the destination fragment.

Accuracy of minhash estimation: We also evaluate the
accuracy of the minhash estimation with the MODIS dataset.
Figure 17 shows the cumulative distribution function of the
absolute error in estimating the size of the intersection be-
tween fragments when the cardinality of the input is accu-
rately known. The result shows that the absolute error of
the size of the intersection is less than 10% for 90% of the
estimations. We conclude that the minhash estimation is ac-
curate and it allows GRASP to pick suitable fragment pairs
for aggregation.

5.3.4 Evaluation on Amazon EC2

This section evaluates GRASP on the MODIS dataset on
Amazon EC2. We allocate 8 instances of type d2.8xlarge
and run 6 fragments in each instance. Figure 18 shows the
speedup over the Preagg+Repart algorithm for each algo-
rithm. Preagg+Repart has better performance than Repart
in this experiment. This is because the fast 10 Gbps network
in EC2 makes the query compute bound. The throughput of
the local aggregation on pre-aggregated data is measured to
be 811 MB/s, which is faster than aggregation on raw data
with throughput to be 309 MB/s. This does not make a
difference in the experiment in Section 5.3.3, as aggregation
is network bound in the 1 Gbps network where the maxi-
mum throughput is 125 MB/s. However, the aggregation
is compute bound in the 10 Gbps network of EC2 with a
maximum throughput of 1.2 GB/s, hence pre-aggregation
makes a big difference.

Figure 18 shows that GRASP is 2.2× faster than Preagg+
Repart and 1.5× faster than LOOM. GRASP still has bet-

0 10% 30% 50%20% 40%

Absolute estimation error

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

C
D

F

Figure 17: Absolute error
in minhash estimation.

MODIS

S
p
e
e
d
u
p
 o

ve
r

P
re

a
g
g
+

R
e
p
a
rt

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

2.2x
1.5x

Repart
Preagg+Repart

GRASP
LOOM

Figure 18: Speedup over
Preagg+Repart on the MODIS
dataset in Amazon EC2.

302

ter performance when computation is the bottleneck. This is
because GRASP maximizes network utilization by schedul-
ing as many aggregations as possible in each phase, which
also maximizes the number of fragments participating in the
aggregation and sharing the computation load of each phase.

6. RELATED WORK

Aggregation execution
Aggregation has been extensively studied in previous works.
Many works have focused on how to execute an aggregation
efficiently in a single server. Larson [23] studied how to use
partial aggregation to reduce the input size of other opera-
tions. Cieslewicz and Ross [6] evaluated aggregation algo-
rithms with independent and shared hash tables on multi-
core processors. Ye et al. [52] compared different in-memory
parallel aggregation algorithms on the Intel Nehalem archi-
tecture. Raman et al. [39] described the grouping and ag-
gregation algorithm used in DB2 BLU. Müller et al. [34]
proposed an adaptive algorithm which combines the hashing
and sorting implementations. Wang et al. [48] proposed a
NUMA-aware aggregation algorithm. Jiang and Gagan [22]
and Polychroniou et al [35] used SIMD and MIMD to par-
allelize the execution of aggregation. Gan et al. [12] op-
timized high cardinality aggregation queries with moment
based summaries. Müller et al. [33] studied the floating-
point aggregation.

Aggregation has also been studied in the parallel database
system literature. Graefe [14] introduced aggregation eval-
uation techniques in parallel database system. Shatdal and
Naughton [45] proposed adaptive algorithms which switch
between the repartition and the two-phase algorithm at run-
time. Aggregation trees are used in accelerating parallel
aggregations. Melnik et al. [32] introduced Dremel, which
uses a multi-level serving tree to execute aggregation queries.
Yuan et al. [54] compared the interfaces and implementa-
tions for user-defined distributed aggregations in several dis-
tributed computing systems. Mai et al. [31] implemented
NetAgg which aggregates data along network paths. Costa
et al. [7] proposed Camdoop, which does in-network aggrega-
tion for a MapReduce-like system in a cluster with a direct-
connect network topology. Yalagandula and Dahlin [51] de-
signed a distributed information management system to do
hierarchical aggregation in networked systems. Culhane et
al. [8, 9] proposed LOOM, which builds an aggregation tree
with fixed fan-in for all-to-one aggregations.

The impact of the network topology on aggregation has
been studied. Gupta et al. [18] proposed an aggregation
algorithm that works in unreliable networks such as sensor
networks. Madden et al. [29] designed an acquisitional query
processor for sensor networks to reduce power in query eval-
uation. Madden et al. [28, 30] also proposed a tiny aggre-
gation service which does in network aggregation in sensor
networks. Chowdhury et al. [5] proposed Orchestra to man-
age network activities in MapReduce systems.

None of the above aggregation algorithms is cognizant of
the similarity between datasets as GRASP is. The most rel-
evant work is LOOM which considers the amount of data re-
duction in an aggregation during planning. However LOOM
only considers the overall reduction rate and does not con-
sider data similarities during aggregation. The biggest strength
of GRASP is that it carefully estimates the size of every par-
tial aggregation and handles each partition differently, which
is not possible with LOOM.

Distributionaware algorithms

Distribution-aware algorithms use information about the dis-
tribution and the placement of the data during query pro-
cessing. Prior works have extensively studied how to take
advantage of locality. Some algorithms consider the offline
setting. Zamanian et al. [55] introduced a data partition-
ing algorithm to maximize locality in the data distribution.
Prior works have also considered how to extract and exploit
locality information at runtime. Rödiger et al. [42] proposed
a locality-sensitive join algorithm which first builds a his-
togram for the workload, then schedules the join execution
to reduce network traffic. Polychroniou [36] proposed track-
join, where the distribution of the join key is exchanged
across the cluster to generate a join schedule to leverage lo-
cality. Lu et al. [26] proposed AdaptDB, which refines data
partitioning according to access patterns at runtime.

Distribution-aware algorithms have also been proposed to
deal with skewed datasets. DeWitt et al. [10] handled skew
in a join by first sampling the data, then partitioning the
build relation and replicating the probe relation as needed.
Shah et al. [44] implemented an adaptive partitioning opera-
tor to collect dataset information at runtime and address the
problem of workload imbalance in continuous query systems.
Xu et al. [50] addressed skew in parallel joins by first scan-
ning the dataset to identify the skewed values, then keeping
the skewed rows locally and duplicating the matching rows.
Rödiger et al. [40] adopted similar approach as DeWitt et
al. [10] by first sampling 1% of the data and then use this
information to decide the data partition scheme. Wolf et
al. [49] divided the parallel hash join into two phases, and
add one scheduling phase to split the partition with data
skew. Elseidy et al. [11] proposed a parallel online dataflow
join which is resilient to data skew.

7. CONCLUSIONS AND FUTURE WORK
Parallel aggregation is a ubiquitous operation in data ana-
lytics. For low-cardinality parallel aggregations, the network
cost is negligible after the data has been aggregated locally
using pre-aggregation. However, the network communica-
tion cost becomes significant for high-cardinality parallel
aggregations. This paper proposes GRASP, an algorithm
that schedules parallel aggregation in a distribution-aware
manner to increase network utilization and reduce the com-
munication cost for algebraic aggregations.

Looking ahead, GRASP can be further extended in two
promising ways. First, GRASP can be extended for non-
algebraic aggregations. This would require a new metric
to quantify the data reduction of an aggregation pair. Sec-
ond, the assumption that the communication cost dominates
the aggregation marginally holds on 10 Gbps networks, and
will not hold in faster networks such as InfiniBand. One
opportunity is to augment the cost estimation formulas to
account for compute overheads, instead of modeling the net-
work transfer cost alone. This can jointly optimize compute
and communication overheads during aggregation in high-
performance networks.

Acknowledgements: We would like to acknowledge Srini-
vasan Parthasarathy, Jiongqian Liang, Vishal Dey and the
anonymous reviewers for their insightful comments that im-
proved this paper. This work was supported by the National
Science Foundation grants IIS-1464381, CCF-1816577, CCF-
1815145, CCF-1423230 and CAREER award 1453472.

303

8. REFERENCES
[1] M. Al-Fares, A. Loukissas, and A. Vahdat. A Scalable,

Commodity Data Center Network Architecture.
SIGCOMM Comput. Commun. Rev., 38(4):63–74,
Aug. 2008.

[2] P. Austrin, T. Pitassi, and Y. Wu. Inapproximability
of Treewidth, One-shot Pebbling, and Related Layout
Problems. In Approximation, Randomization, and
Combinatorial Optimization. Algorithms and
Techniques, pages 13–24. Springer, 2012.

[3] A. Z. Broder, M. Charikar, A. M. Frieze, and
M. Mitzenmacher. Min-wise Independent
Permutations (Extended Abstract). In Proceedings of
the Thirtieth Annual ACM Symposium on Theory of
Computing, STOC ’98, pages 327–336, New York, NY,
USA, 1998. ACM.

[4] A. Cayley. A theorem on trees. Quarterly Journal of
Pure Applied Mathematics, 23:376–378, 1889.

[5] M. Chowdhury, M. Zaharia, J. Ma, M. I. Jordan, and
I. Stoica. Managing Data Transfers in Computer
Clusters with Orchestra. In Proceedings of the ACM
SIGCOMM 2011 Conference, SIGCOMM ’11, pages
98–109, New York, NY, USA, 2011. ACM.

[6] J. Cieslewicz and K. A. Ross. Adaptive Aggregation
on Chip Multiprocessors. In Proceedings of the 33rd
International Conference on Very Large Data Bases,
VLDB ’07, pages 339–350. VLDB Endowment, 2007.

[7] P. Costa, A. Donnelly, A. I. T. Rowstron, and
G. O’Shea. Camdoop: Exploiting In-network
Aggregation for Big Data Applications. In Proceedings
of the 9th USENIX Symposium on Networked Systems
Design and Implementation, NSDI 2012, San Jose,
CA, USA, April 25-27, 2012, pages 29–42, 2012.

[8] W. Culhane, K. Kogan, C. Jayalath, and P. Eugster.
LOOM: Optimal Aggregation Overlays for In-memory
Big Data Processing. In Proceedings of the 6th
USENIX Conference on Hot Topics in Cloud
Computing, HotCloud’14, pages 13–13, Berkeley, CA,
USA, 2014. USENIX Association.

[9] W. Culhane, K. Kogan, C. Jayalath, and P. Eugster.
Optimal communication structures for big data
aggregation. In 2015 IEEE Conference on Computer
Communications, INFOCOM 2015, Kowloon, Hong
Kong, April 26 - May 1, 2015, pages 1643–1651, 2015.

[10] D. J. DeWitt, J. F. Naughton, D. A. Schneider, and
S. Seshadri. Practical Skew Handling in Parallel Joins.
In Proceedings of the 18th International Conference on
Very Large Data Bases, VLDB ’92, pages 27–40, San
Francisco, CA, USA, 1992. Morgan Kaufmann
Publishers Inc.

[11] M. Elseidy, A. Elguindy, A. Vitorovic, and C. Koch.
Scalable and Adaptive Online Joins. PVLDB,
7(6):441–452, 2014.

[12] E. Gan, J. Ding, K. S. Tai, V. Sharan, and P. Bailis.
Moment-Based Quantile Sketches for Efficient High
Cardinality Aggregation Queries. CoRR,
abs/1803.01969, 2018.

[13] A. Gionis, P. Indyk, and R. Motwani. Similarity
Search in High Dimensions via Hashing. In Proceedings
of the 25th International Conference on Very Large
Data Bases, VLDB ’99, pages 518–529, San Francisco,
CA, USA, 1999. Morgan Kaufmann Publishers Inc.

[14] G. Graefe. Query Evaluation Techniques for Large
Databases. ACM Comput. Surv., 25(2):73–170, 1993.

[15] GRASP. https://code.osu.edu/pythia/grasp.

[16] J. Gray, A. Bosworth, A. Layman, and H. Pirahesh.
Data Cube: A Relational Aggregation Operator
Generalizing Group-By, Cross-Tab, and Sub-Total. In
Proceedings of the Twelfth International Conference
on Data Engineering, February 26 - March 1, 1996,
New Orleans, Louisiana, pages 152–159, 1996.

[17] A. G. Greenberg, J. R. Hamilton, N. Jain, S. Kandula,
C. Kim, P. Lahiri, D. A. Maltz, P. Patel, and
S. Sengupta. VL2: A Scalable and Flexible Data
Center Network. In Proceedings of the ACM
SIGCOMM 2009 Conference on Applications,
Technologies, Architectures, and Protocols for
Computer Communications, Barcelona, Spain, August
16-21, 2009, pages 51–62, 2009.

[18] I. Gupta, R. v. Renesse, and K. P. Birman. Scalable
Fault-Tolerant Aggregation in Large Process Groups.
In Proceedings of the 2001 International Conference
on Dependable Systems and Networks (Formerly:
FTCS), DSN ’01, pages 433–442, Washington, DC,
USA, 2001. IEEE Computer Society.

[19] R. He and J. McAuley. Ups and Downs: Modeling the
Visual Evolution of Fashion Trends with One-Class
Collaborative Filtering. In Proceedings of the 25th
International Conference on World Wide Web, WWW
2016, Montreal, Canada, April 11 - 15, 2016, pages
507–517, 2016.

[20] https://htor.inf.ethz.ch/research/topologies/.

[21] P. Indyk and R. Motwani. Approximate Nearest
Neighbors: Towards Removing the Curse of
Dimensionality. In Proceedings of the Thirtieth Annual
ACM Symposium on Theory of Computing, STOC ’98,
pages 604–613, New York, NY, USA, 1998. ACM.

[22] P. Jiang and G. Agrawal. Efficient SIMD and MIMD
Parallelization of Hash-based Aggregation by Conflict
Mitigation. In Proceedings of the International
Conference on Supercomputing, ICS ’17, pages
24:1–24:11, New York, NY, USA, 2017. ACM.

[23] P. Larson. Data Reduction by Partial Preaggregation.
In Proceedings of the 18th International Conference on
Data Engineering, San Jose, CA, USA, February 26 -
March 1, 2002, pages 706–715, 2002.

[24] V. Leis, B. Radke, A. Gubichev, A. Mirchev, P. A.
Boncz, A. Kemper, and T. Neumann. Query
Optimization Through the Looking Glass, and What
We Found Running the Join Order Benchmark. VLDB
J., 27(5):643–668, 2018.

[25] F. Liu, A. Salmasi, S. Blanas, and A. Sidiropoulos.
Chasing Similarity: Distribution-aware Aggregation
Scheduling (Extended Version). CoRR,
abs/1810.00511, 2018.

[26] Y. Lu, A. Shanbhag, A. Jindal, and S. Madden.
AdaptDB: Adaptive Partitioning for Distributed
Joins. PVLDB, 10(5):589–600, 2017.

[27] L. Luo, J. Nelson, L. Ceze, A. Phanishayee, and
A. Krishnamurthy. Parameter Hub: a Rack-Scale
Parameter Server for Distributed Deep Neural
Network Training. In Proceedings of the ACM
Symposium on Cloud Computing, SoCC 2018,
Carlsbad, CA, USA, October 11-13, 2018, pages

304

41–54, 2018.

[28] S. Madden, M. J. Franklin, J. M. Hellerstein, and
W. Hong. TAG: A Tiny AGgregation Service for
Ad-Hoc Sensor Networks. In 5th Symposium on
Operating System Design and Implementation (OSDI
2002), Boston, Massachusetts, USA, December 9-11,
2002, 2002.

[29] S. Madden, M. J. Franklin, J. M. Hellerstein, and
W. Hong. The Design of an Acquisitional Query
Processor for Sensor Networks. In Proceedings of the
2003 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’03, pages 491–502,
New York, NY, USA, 2003. ACM.

[30] S. Madden, R. Szewczyk, M. J. Franklin, and D. E.
Culler. Supporting Aggregate Queries Over Ad-Hoc
Wireless Sensor Networks. In 4th IEEE Workshop on
Mobile Computing Systems and Applications
(WMCSA 2002), 20-21 June 2002, Callicoon, NY,
USA, pages 49–58, 2002.

[31] L. Mai, L. Rupprecht, A. Alim, P. Costa,
M. Migliavacca, P. Pietzuch, and A. L. Wolf. NetAgg:
Using Middleboxes for Application-specific On-path
Aggregation in Data Centres. In Proceedings of the
10th ACM International on Conference on Emerging
Networking Experiments and Technologies, CoNEXT
’14, pages 249–262, New York, NY, USA, 2014. ACM.

[32] S. Melnik, A. Gubarev, J. J. Long, G. Romer,
S. Shivakumar, M. Tolton, and T. Vassilakis. Dremel:
Interactive Analysis of Web-Scale Datasets. PVLDB,
3(1):330–339, 2010.

[33] I. Müller, A. Arteaga, T. Hoefler, and G. Alonso.
Reproducible Floating-Point Aggregation in RDBMSs.
CoRR, abs/1802.09883, 2018.

[34] I. Müller, P. Sanders, A. Lacurie, W. Lehner, and
F. Färber. Cache-Efficient Aggregation: Hashing Is
Sorting. In Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data,
SIGMOD ’15, pages 1123–1136, New York, NY, USA,
2015. ACM.

[35] O. Polychroniou, A. Raghavan, and K. A. Ross.
Rethinking SIMD Vectorization for In-Memory
Databases. In Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data,
SIGMOD ’15, pages 1493–1508, New York, NY, USA,
2015. ACM.

[36] O. Polychroniou, R. Sen, and K. A. Ross. Track Join:
Distributed Joins with Minimal Network Traffic. In
Proceedings of the 2014 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’14,
pages 1483–1494, New York, NY, USA, 2014. ACM.

[37] P. Raghavendra and D. Steurer. Graph Expansion and
the Unique Games Conjecture. In Proceedings of the
forty-second ACM symposium on Theory of
computing, pages 755–764. ACM, 2010.

[38] P. Raghavendra, D. Steurer, and M. Tulsiani.
Reductions Between Expansion Problems. In
Computational Complexity (CCC), 2012 IEEE 27th
Annual Conference on, pages 64–73. IEEE, 2012.

[39] V. Raman, G. Attaluri, R. Barber, N. Chainani,
D. Kalmuk, V. KulandaiSamy, J. Leenstra,
S. Lightstone, S. Liu, G. M. Lohman, T. Malkemus,
R. Mueller, I. Pandis, B. Schiefer, D. Sharpe, R. Sidle,

A. Storm, and L. Zhang. DB2 with BLU Acceleration:
So Much More Than Just a Column Store. PVLDB,
6(11):1080–1091, 2013.

[40] W. Rödiger, S. Idicula, A. Kemper, and T. Neumann.
Flow-Join: Adaptive Skew Handling for Distributed
Joins over High-speed Networks. In 32nd IEEE
International Conference on Data Engineering, ICDE
2016, Helsinki, Finland, May 16-20, 2016, pages
1194–1205, 2016.

[41] W. Rödiger, T. Mühlbauer, A. Kemper, and
T. Neumann. High-Speed Query Processing over
High-Speed Networks. PVLDB, 9(4):228–239, 2015.

[42] W. Rödiger, T. Mühlbauer, P. Unterbrunner,
A. Reiser, A. Kemper, and T. Neumann.
Locality-sensitive Operators for Parallel Main-memory
Database Clusters. In IEEE 30th International
Conference on Data Engineering, Chicago, ICDE
2014, IL, USA, March 31 - April 4, 2014, pages
592–603, 2014.

[43] V. Satuluri and S. Parthasarathy. Bayesian Locality
Sensitive Hashing for Fast Similarity Search. PVLDB,
5(5):430–441, 2012.

[44] M. A. Shah, J. M. Hellerstein, S. Chandrasekaran, and
M. J. Franklin. Flux: An Adaptive Partitioning
Operator for Continuous Query Systems. In
Proceedings of the 19th International Conference on
Data Engineering, March 5-8, 2003, Bangalore, India,
pages 25–36, 2003.

[45] A. Shatdal and J. F. Naughton. Adaptive Parallel
Aggregation Algorithms. In Proceedings of the 1995
ACM SIGMOD International Conference on
Management of Data, SIGMOD ’95, pages 104–114,
New York, NY, USA, 1995. ACM.

[46] E. Vermote-NASA GSFC and MODAPS SIPS -
NASA. (2015). MOD09 MODIS/Terra L2 Surface
Reflectance, 5-Min Swath 250m, 500m, and 1km.
NASA LP DAAC.

[47] E. Vermote-NASA GSFC and MODAPS SIPS -
NASA. (2015). MOD09A1 MODIS/Surface
Reflectance 8-Day L3 Global 500m SIN Grid. NASA
LP DAAC.

[48] L. Wang, M. Zhou, Z. Zhang, M. Shan, and A. Zhou.
NUMA-Aware Scalable and Efficient In-Memory
Aggregation on Large Domains. IEEE Trans. Knowl.
Data Eng., 27(4):1071–1084, 2015.

[49] J. L. Wolf, P. S. Yu, J. Turek, and D. M. Dias. A
Parallel Hash Join Algorithm for Managing Data
Skew. IEEE Trans. Parallel Distrib. Syst.,
4(12):1355–1371, Dec. 1993.

[50] Y. Xu, P. Kostamaa, X. Zhou, and L. Chen. Handling
Data Skew in Parallel Joins in Shared-nothing
Systems. In Proceedings of the 2008 ACM SIGMOD
International Conference on Management of Data,
SIGMOD ’08, pages 1043–1052, New York, NY, USA,
2008. ACM.

[51] P. Yalagandula and M. Dahlin. A Scalable Distributed
Information Management System. In Proceedings of
the 2004 Conference on Applications, Technologies,
Architectures, and Protocols for Computer
Communications, SIGCOMM ’04, pages 379–390, New
York, NY, USA, 2004. ACM.

[52] Y. Ye, K. A. Ross, and N. Vesdapunt. Scalable

305

Aggregation on Multicore Processors. In Proceedings
of the Seventh International Workshop on Data
Management on New Hardware, DaMoN ’11, pages
1–9, New York, NY, USA, 2011. ACM.

[53] https:

//www.yelp.com/dataset/documentation/json.

[54] Y. Yu, P. K. Gunda, and M. Isard. Distributed
Aggregation for Data-parallel Computing: Interfaces
and Implementations. In Proceedings of the ACM

SIGOPS 22Nd Symposium on Operating Systems
Principles, SOSP ’09, pages 247–260, New York, NY,
USA, 2009. ACM.

[55] E. Zamanian, C. Binnig, and A. Salama.
Locality-aware Partitioning in Parallel Database
Systems. In Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data,
SIGMOD ’15, pages 17–30, New York, NY, USA,
2015. ACM.

306

