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ABSTRACT
The pigeonhole principle states that if n items are contained
in m boxes, then at least one box has no more than n/m
items. It is utilized to solve many data management problems,
especially for thresholded similarity searches. Despite many
pigeonhole principle-based solutions proposed in the last few
decades, the condition stated by the principle is weak. It only
constrains the number of items in a single box. By organizing
the boxes in a ring, we propose a new principle, called the
pigeonring principle, which constrains the number of items in
multiple boxes and yields stronger conditions.

To utilize the new principle, we focus on problems defined
in the form of identifying data objects whose similarities or
distances to the query is constrained by a threshold. Many
solutions to these problems utilize the pigeonhole principle to
find candidates that satisfy a filtering condition. By the new
principle, stronger filtering conditions can be established. We
show that the pigeonhole principle is a special case of the new
principle. This suggests that all the pigeonhole principle-based
solutions are possible to be accelerated by the new principle.
A universal filtering framework is introduced to encompass
the solutions to these problems based on the new principle.
Besides, we discuss how to quickly find candidates specified by
the new principle. The implementation requires only minor
modifications on top of existing pigeonhole principle-based
algorithms. Experimental results on real datasets demonstrate
the applicability of the new principle as well as the superior
performance of the algorithms based on the new principle.
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1. INTRODUCTION
The pigeonhole principle (a.k.a. Dirichlet’s box principle or

Dirichlet’s drawer principle) is a simple but a powerful tool
in combinatorics. It has been utilized to solve a variety of
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data management problems, especially for search problems
involving approximate match and threshold constraints, such
as Hamming distance search and set similarity search. The pi-
geonhole principle has many forms. For data management, the
most frequently used form is stated below (though sometimes
it is not explicitly claimed the principle is utilized):

If no more than n items are put into m boxes, then at least
one box must contain no more than n/m items.

Many solutions to these data management problems adopt
the principle to develop filtering techniques. Although the
principle has become a prevalent tool for such tasks, we
observe an inherent drawback of these solutions which lies in
the principle itself: the constraint is applied on the m boxes
individually, as shown in the following example.

Example 1 Suppose we have m = 5 boxes and search for the
results such that the total number of items is no more than n = 5.
By the pigeonhole principle, the constraint for filtering is: for
every result, there exists a box which contains no more than
n/m = 1 item. Such filter is easily passed if only a box fulfills
this requirement. Let bi denote the number of items in the i-th
box 1. Consider the two box layouts (b0, . . . , bm−1) in Figure 1:
(2, 1, 2, 2, 1) and (2, 0, 3, 1, 2). Both have a total of 8 > 5 items,
but pass the filter as both have at least one bi ≤ 1.

This example showcases that the constraint by the pigeonhole
principle is weak, rendering the filtering power very limited.

In this paper, we seek stronger constraints by aggregated con-
ditions on multiple boxes. By placing the m boxes b0, . . . , bm−1

(without loss of generality,) clockwise in a ring where b0 is
next to bm−1, and going clockwise on the ring, we observe:

If no more than n items are put into m boxes, then for every
length l in [1 . .m], there exist l consecutive boxes which contain
a total of no more than l · n/m items.

We call it the basic form of the pigeonring principle. Consider
the above example. For every result, there must be two
consecutive boxes which contain a total of no more than
2n/m = 2 items, three consecutive boxes which contain a total
of no more than 3n/m = 3 items, and so on. For the layout
(2, 1, 2, 2, 1) which passes the pigeonhole principle-based filter,
when l = 2, we have b0 + b1 = 3, b1 + b2 = 3, b2 + b3 = 4,
b3+b4 = 3, and b4+b0 = 3. Since there are no two consecutive
boxes with a sum of ≤ 2 items, it is filtered.

On the basis of the basic form of the pigeonring principle,
we discover its strong form:

1For ease of computing modulo operation, the subscript i
starts with 0 in this paper, unless otherwise specified. In
addition, we let subscript i = i mod m whenever i ≥ m.
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Figure 1: Pigeonring Principle (n = 5, m = 5)

If no more than n items are put into m boxes, then there exists
at least one box such that for every l ∈ [1 . .m], starting from
this box and going clockwise, the l consecutive boxes contain a
total of no more than l · n/m items.

In short, there exists i ∈ [0 . .m− 1], such that bi ≤ n/m,
bi + bi+1 ≤ 2n/m, bi + bi+1 + bi+2 ≤ 3n/m, . . . For the two
layouts (2, 1, 2, 2, 1) and (2, 0, 3, 1, 2), when l = 2, since we
cannot find any i such that bi ≤ 1 and bi + bi+1 ≤ 2, both
are filtered. Despite being exemplified by real life objects, the
new principle also holds when n is a real number. To the best
of our knowledge, we are the first to discover this property.

To utilize the pigeonring principle, we focus on the problems
which have the following form: f is a function that maps a pair
of objects to a real number. Given a query object q, find all
objects x in a database such that f(x, q) is not greater (or not
smaller) than a threshold τ . We call it a τ -selection problem. It
covers many problems, especially for various similarity searches
to cope with specific data types and similarity measures. These
problems are important for numerous applications, including
search and retrieval tasks, data cleaning, data integration,
etc. The näıve algorithm for a τ -selection problem needs to
access every object in the database, and thus cannot scale
well to large datasets. For the sake of efficiency, many exact
solutions [57, 132, 65, 73, 7, 30, 55, 107, 72, 28, 137] to τ -
selection problems adopt the filter-and-refine strategy, and
utilize the pigeonhole principle to find a set of candidates
that satisfy necessary condition of the f(x, q) constraint. Since
computing f(x, q) for the candidates is usually expensive, the
efficiency critically depends on the filtering power measured
by the number of candidates. Based on the pigeonring
principle, stronger filtering conditions can be developed to
fundamentally reduce the candidate number.

We analyze the filtering power of the pigeonring principle
and show the candidates it produces are guaranteed to be a
subset of those produced by the pigeonhole principle. It is easy
to see that the pigeonring principle contains the pigeonhole
principle as a special case when l = 1. Thus, all the pigeonhole

principle-based methods are possible to be accelerated by the
pigeonring principle. We also discuss the case when variable
threshold allocation and integer reduction, two important
techniques for τ -selection problems, are present, so that they
can be seemlessly integrated into our principle.

We describe a universal filtering framework which applies
to all pigeonring (and of course, pigeonhole) principle-based
methods for τ -selection problems. We answer two questions:
on what condition a filtering instance is complete and on
what condition a filtering instance is tight. Although existing
studies have developed complete and tight filtering methods
for specific τ -selection problems, the two questions are yet
to be answered from a general perspective. Case studies are
shown for several common τ -selection problems. Moreover, we
discuss the indexing and candidate generation techniques for
the pigeonring principle. It only requires minor modifications
on top of the existing pigeonhole principle-based methods.

To show the applicability of the new principle and the effi-
ciency of the resulting algorithms, we conduct experiments
on four τ -selection problems which cover a variety of data
types and applications. The results on real datasets show that
by simply applying the new principle on the existing pigeon-
hole principle-based methods, the search can be significantly
accelerated (e.g., 15 times for Hamming distance search).

Since the pigeonring principle holds as a free extension of
the pigeonhole principle, we believe that the applications of
the pigeonring principle are far beyond the scope of τ -selection
problems. We leave them as future work.

Our contributions are summarized as:
• We develop the pigeonring principle which exploits condi-

tions on multiple boxes and hence yields inherently stronger
constraints than the pigeonhole principle does. The new
principle can be utilized to solve τ -selection problems effi-
ciently as filtering conditions.
• We propose a universal filtering framework which encapsu-

lates all the pigeonring (pigeonhole) principle-based solutions
to τ -selection problems.
• We explain how to quickly find the candidates satisfying

the filtering condition by the pigeonring principle with easy
modifications on existing algorithms.
• We perform extensive experiments on real datasets. The

results demonstrate the applicability of the pigeonring prin-
ciple and the efficiency of the algorithms equipped with the
pigeonring principle-based filtering.
The rest of the paper is organized as follows: Section 2

introduces the pigeonhole principle and the τ -selection problem.
Section 3 presents the pigeonring principle. Section 4 describes
the integration of variable threshold allocation and integer
reduction to pigeonring principle. Section 5 introduces the
filtering framework. Section 6 shows case studies for several
τ -selection problems. Indexing and candidate generation
techniques as well as cost analysis are presented in Section 7.
Experimental results are reported in Section 8. Section 9
surveys related work. Section 10 concludes the paper.

2. PRELIMINARIES
Table 1 lists the frequently used notations in this paper.

2.1 Pigeonhole Principle
The simple form of the pigeonhole principle states that if

(n+ 1) items are put into n boxes, then at least one box has
two or more of the items. By generalizing to real numbers,
the principle is formally stated as follows.
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Table 1: Frequently Used Notations
Sym. Description Sym. Description
x, y Object q Query object
O Object universe X Dataset of objects
f Selection function τ Selection threshold
m #boxes n (bound of) #items
bi #items in i-th box ti Threshold of bi
B Sequence of bi T Sequence of ti
‖ · ‖1 Sum of elements l Chain length

cli Chain of length l, starting from bi
CB Set of chains on B d Dimensionality
F Featuring function D Bounding function

Theorem 1 (Pigeonhole Principle [13]) Let b0, . . . , bm−1

be m real numbers. If b0 + b1 + . . . + bm−1 ≤ n, then there
exists at least one bi, i ∈ [0 . .m− 1], such that bi ≤ n/m.

2.2 τ -selection Problems
The pigeonhole principle has been utilized to solve many

data management problems. Particularly, it is often used on
the problems of finding objects in a database whose similarities
or distances to a query object are constrained by a threshold.
These problems can be generalized by the following form.

Problem 1 (τ -selection Problem) Let O denote an object
universe. x and y are two objects in O. f : O × O → R is a
function which evaluates a pair of objects. Given a collection of
data objects X ⊆ O, a query object q ∈ O, and a threshold τ ,
the goal is to find all data objects x ∈ X such that f(x, q) ≤ τ .

We call f a selection function. It usually captures the similarity
or distance between a pairs of objects. Since all these problems
involve a threshold τ , we call them τ -selection problems. “≤”
can be replaced by “≥”, “<”, or “>” for specific problems.
Without loss of generality, we use “≤” in this paper. The
extension to support the other three cases is straightforward.
Next we show a few examples of τ -selection problems.

Problem 2 (Hamming Distance Search) Given a col-
lection of d-dimensional binary vectors X, a query vector q,
find all x ∈ X such that H(x, q) ≤ τ . H(·, ·) measures the
Hamming distance between two binary vectors: H(x, y) =∑d−1

i=0 ∆(x[i], y[i]). x[i] denotes the value of the i-th dimension
of x. ∆(x[i], y[i]) = 0, if x[i] = y[i]; or 1, otherwise.

Problem 3 (Set Similarity Search) An object is a set of
tokens drawn from a finite universe U . Given a collection of
objects X, a query set q, find all x ∈ X such that sim(x, q) ≥ τ .
sim(·, ·) is a set similarity function, e.g., the overlap similarity
O(x, y) = |x ∩ y|.

Problem 4 (String Edit Distance Search) Given a col-
lection of strings X, a query string q, find all x ∈ X such that
ed(x, q) ≤ τ . ed(·, ·) is the edit distance between two strings. It
is the minimum number of operations (insertion, deletion, or
substitution of a symbol) to transform a string to another.

Problem 5 (Graph Edit Distance Search) Given a col-
lection of graphs X, a query graph q, find all x ∈ X such that
ged(x, q) ≤ τ . ged(·, ·) is the graph edit distance between two
graphs. It is the minimum number of operations to transform
one graph to another. The operations include: inserting an

isolated labeled vertex, deleting an isolated vertex, changing the
label of a vertex, inserting a labeled edge, deleting an edge, and
changing the label of an edge.

The above problems 2 collectively cover a variety of data
types and applications such as image retrieval, near-duplicate
detection, entity resolution, and structure search. For instance,
in image retrieval, images are converted to binary vectors
and the vectors whose Hamming distances to the query are
within a threshold of 16 are identified for further image-level
verification [131]. In entity resolution, the same entity may
differ in spellings or formats, e.g., al-Qaeda, al-Qaida, and
al-Qa’ida. A string similarity search with an edit distance
threshold of 2 can capture these alternative spellings [108].

Computing f(x, q) for every data and query object is pro-
hibitive for large datasets. To avoid this, many exact solu-
tions 3 to τ -selection problems are based on the filter-and-refine
strategy to generate a set of candidates. They first extract a
bag of features from each object, e.g., a partition for Hamming
distance search [57, 132, 65, 73], q-grams for string edit dis-
tance search [72, 28, 53, 55, 107], trees, paths, or a partition
for graph edit distance search [128, 101, 109, 136, 138, 56, 137].
The intuition is that if two objects are similar, there must be
a pair of similar or identical features from the two objects.
By the pigeonhole principle, the constraint f(x, q) ≤ τ is
thus converted to a necessary condition on pairs of features,
called filtering condition. The data objects that satisfy this
condition are called candidates. It is much more efficient to
check whether a pair of features satisfies the filtering condition
than to compute f(x, q); and with the help of an index, one
may quickly identify all the candidates. They are eventually
verified by comparing f(x, q) with τ . Since computing f(x, q)
for the candidates is time-consuming, the search performance
depends heavily on the candidate number.

Example 2 Consider an instance of Hamming distance search.
d = 10. τ = 5. Table 2 shows four data objects and a query
object. They are vertically partitioned into 5 equi-width disjoint
parts. Let xi denote the i-th part of x. Because the parts are
disjoint, the sum of distances in the five parts

∑4
i=0H(xi, qi) =

H(x, q). Let each box bi represent a part. By Theorem 1, if
H(x, q) ≤ τ , there exists at least one box such that H(xi, qi) ≤
τ/5 = 1. This becomes the filtering condition. x1, x2, and x3

are candidates because H(x11, q1) = H(11, 10) = 1, H(x20, q0) =
H(00, 00) = 0, and H(x30, q0) = H(01, 00) = 1 4. H(x1, q) =
8. H(x2, q) = 5. H(x3, q) = 7. Only x2 is a result.

Table 2: Hamming Distance Search
b0 b1 b2 b3 b4

x1 = 11 11 10 11 10
x2 = 00 01 01 11 10
x3 = 01 01 10 01 10
x4 = 11 01 10 11 00
q = 00 10 01 00 11

2Another common τ -selection problem is Lp distance search.
However, the pigeonhole principle is hardly adopted by preva-
lent methods for Lp distance search (p > 0). For this reason,
we choose not to speed up Lp distance search in this paper.
3In this paper, we focus on exact solutions and single-core,
in-memory, and stand-alone implementations of algorithms.
4Despite other parts satisfying the condition for the three
data objects, they are not reported here since the objects have
already become candidates by checking the first two parts.

30



3. PIGEONRING PRINCIPLE
In the pigeonhole principle, the threshold of a box can be

regarded as a quota. To generate candidates, only individual
boxes are considered. Even if f(x, q) exceeds τ by a large
margin, a data object becomes a candidate if only it has
a box within the quota. E.g., consider x1 in Example 2.
The distances in the five boxes are (2, 1, 2, 2, 1). b1 and b4
satisfy the filtering condition. x1 becomes a candidate, but
f(x1, q) = 8 > τ . This case is common for real datasets, and
consequently the filtering power is rather weak. To address
this issue, our idea is to examine multiple boxes and compare
the accumulated distance with the quota.

Example 3 For x1 in Example 2, we organize the boxes in a
ring in which b0 succeeds b4, as shown in Figure 1(a), where a
ball indicates a Hamming distance of 1. Now we find candidates
by checking every two adjacent boxes: b0b1, b1b2, b2b3, b3b4,
and b4b5, each with a quota of 2 · τ/m = 2. Since the m parts
are disjoint, we can sum up the distances in individual boxes to
obtain the distances in multiple boxes, which are 3, 3, 4, 3, and
3, respectively. Since all of them exceed the quota, x1 is filtered.

The idea in Example 3 can be extended to combinations
of any size, which becomes the intuition of our pigeonring
principle. We investigate in the following direction: if the sum
of m numbers is bounded by a value, what is the property for
the sum of a subset of these numbers? E.g., in Example 3,
there must be two consecutive boxes whose sum of distances
does not exceed 2 · f(x, q)/m, thus 2τ/m for every result.

Let B be a sequence of m real numbers (b0, . . . , bm−1).
Each bi is called a box (for brevity, we abuse the term to
denote the number of items in it). Let ‖B‖1 denote the sum
of all elements in B; i.e., ‖B‖1 =

∑m−1
i=0 bi. We place the

boxes in a ring, in which bm−1 is adjacent to b0. Let a chain
cli be a sequence of l consecutive boxes starting from bi:

cli = (bi, . . . , bi+l−1).

Recall that we let subscript i = i mod m, if i ≥ m. ‖cli‖1
denotes the sum of elements in cli; i.e., ‖cli‖1 =

∑i+l−1
j=i bi.

When l = 1, cli contains a single element bi. ∀l′ ∈ [1 . . l],

cl
′
i is an l′-prefix of cli, and cl

′

i+l−l′ is an l′-suffix of cli. c
l′
j is

a subchain of cli if j ≥ i and j + l′ ≤ i + l. cmi is called a
complete chain because every box in B appears exactly once
in cmi . ‖cmi ‖1 = ‖B‖1. We restrict the length of a chain to
not exceeding m. Let CB be the set of all chains based on B,
i.e., CB = { cli | i ∈ [0 . .m− 1], l ∈ [1 . .m] }.

Example 4 Consider Figure 1(a). c43 = (b3, b4, b0, b1). ‖c43‖1 =
2 + 1 + 2 + 1 = 6. c23 is a 2-prefix of c43. c34 is a 3-suffix of c43.
c24 is a subchain of c43. c53 is a complete chain.

Theorem 2 (Pigeonring Principle – Basic Form) 5 B
is a sequence of m real numbers. If ‖B‖1 ≤ n, then ∀l ∈ [1 . .m],
there exists at least one chain cli ∈ CB such that ‖cli‖1 ≤ l ·n/m.

To utilize the pigeonring principle for τ -selection problems,
we may regard each box as the output of a function taking x
and q as input, e.g., bi(x, q) = H(xi, qi) for Hamming distance
search, so that ‖B(x, q)‖1 = f(x, q) is guaranteed 6. Then for

5Please refer to the full version of this paper [74] for the proofs
of the theorems and the lemmata in this paper.
6We assume this setting throughout this section. The general
case will be discussed in Section 5.

a result object x, because f(x, q) ≤ τ , by Theorem 2, we can
always find a chain cli ∈ CB(x,q) such that ‖cli‖1 ≤ l · τ/m.
As a result, a data object becomes a candidate only if it
meets this condition. It is noteworthy to mention that when
l = 1, the pigeonring principle becomes exactly the pigeonhole
principle. As a result, the pigeonhole principle is a special case
of the pigeonring principle. Since a candidate produced by
the pigeonring principle must have a chain satisfying ‖cli‖1 ≤
l · τ/m, by Theorem 1, there exists at least one box in cli such
that its value is less than or equal to τ/m. This implies:

Lemma 1 Given X, q, τ , and B(x, q), the candidates produced
by Theorem 2 are a subset of those produced by Theorem 1.

One may notice that when ‖B(x, q)‖1 = f(x, q) and l = m,
all the candidates are exactly the results, meaning that in this
case the candidate generation subsumes the verification.

Example 5 Consider Example 2. For the four data objects,
the values of boxes b0, . . . , bm−1 are:

B(x1, q) = (2, 1, 2, 2, 1).

B(x2, q) = (0, 2, 0, 2, 1).

B(x3, q) = (1, 2, 2, 1, 1).

B(x4, q) = (2, 2, 2, 2, 2).

Since the five parts are disjoint, ‖B(x, q)‖1 = f(x, q). We use
the above method to generate candidates. Suppose l = 2. We
represent in a sequence the ‖cli‖1 values for i = 0, . . . ,m− 1.
(‖cli(x1, q)‖1) = (3, 3, 4, 3, 3). (‖cli(x2, q)‖1) = (2, 2, 2, 3, 1).
(‖cli(x3, q)‖1) = (3, 4, 3, 2, 2). (‖cli(x4, q)‖1) = (4, 4, 4, 4, 4).
Since objects x2 and x3 have at least one chain whose value is
within l · τ/m, they become candidates. x1 and x4 are filtered.

Next we will see the condition stated by Theorem 2 can be
further strengthened. A chain cli is called viable if it satisfies
the condition in Theorem 2: ‖cli‖1 ≤ l · n/m. Otherwise, it is
called non-viable. We may also call a box viable or non-viable
since it can be regarded as a chain of length 1. Given a viable
chain cli, if all of its prefixes are also viable, i.e., ∀l′ ∈ [1 . . l],

‖cl
′
i ‖1 ≤ l′ · n/m, then cli is called prefix-viable.

Theorem 3 (Pigeonring Principle – Strong Form) B
is a sequence of m real numbers. If ‖B‖1 ≤ n, then ∀l ∈ [1 . .m],
there exists at least one prefix-viable chain cli ∈ CB.

By the strong form of the pigeonring principle, a stronger
filtering condition is delivered: Assume ‖B(x, q)‖1 = f(x, q).
A candidate object must have a chain such that each of the
chain’s prefixes cli satisfies ‖cli‖1 ≤ l · τ/m.

Lemma 2 Given X, q, τ , and B(x, q), the candidates produced
by Theorem 3 are a subset of those produced by Theorem 2.

Example 6 Assume τ = 5, m = 5, and B = (2, 0, 3, 1, 2)
for a data object. When l = 2, (‖cli‖1) = (2, 3, 4, 3, 4). cl0 is
the only chain of length 2 satisfying ‖cli‖1 ≤ l · τ/m. This
object is not filtered by the basic form of the pigeonring principle.
However, its 1-prefix ‖c10‖1 > 1 · τ/m. By the strong form of
the pigeonring principle, this object is filtered.

In the rest of the paper, when context is clear, we mean the
strong form when the pigeonring principle is mentioned.

Because we can go either clockwise or counterclockwise
on the ring to collect chains, “prefix” can be replaced with
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“suffix” in Theorem 3, and the principle still holds. We may
also replace “≤” with “>” and prove the principle for the
non-viable case. We call a chain whose suffixes are all viable
a suffix-viable chain. If a chain’s prefixes/suffixes are all
non-viable, we say it is a prefix/suffix-non-viable chain. The
following corollaries are obtained.

Corollary 1 B is a sequence of m real numbers. If ‖B‖1 ≤ n,
then ∀l ∈ [1 . .m], there exist at least one prefix-viable chain
cli ∈ CB and at least one suffix-viable chain cli′ ∈ CB. If
‖B‖1 > n, then ∀l ∈ [1 . .m], there exist at least one prefix-non-
viable chain cli ∈ CB and at least one suffix-non-viable chain
cli′ ∈ CB.

Corollary 2 Consider four types of chains: prefix-viable,
suffix-viable, prefix-non-viable, and suffix-non-viable. If two

contiguous chains cli and cl
′
i+l−1 are the same type, then cl+l

′

i is
also this type.

3.1 Filtering Performance Analysis
We first analyze the probability that a data object is a

candidate for a chain length l (denoted by Pr(CANDl)), and
then estimate the ratio of false positive number and result
number in the candidate set of the pigeonring principle-based
filtering. We assume ‖B(x, q)‖1 = f(x, q). All the m boxes are
assumed independent random variables in (−∞,+∞), having
the same probability density function (PDF) 7, denoted by p.
Let n = τ . Then a viable chain cli must satisfy ‖cli‖1 ≤ l ·τ/m.
Our idea is to construct by recurrence all the rings in which
there is no prefix-viable chain of length l ∈ [1 . .m], hence to
obtain 1−Pr(CANDl). By the pigeonring principle, for such
rings, ‖B‖1 > τ . By Corollary 1, there exists at least one
suffix-non-viable chain of length m. Although cm0 might not
be a suffix-non-viable chain, we will discuss this scenario later,
and assume cm0 is suffix-non-viable first. Obviously, cm0 does
not have any prefix-viable chain of length l ∈ [1 . .m] as its
subchain. We call such suffix-non-viable chain a target chain.

A target chain can be constructed by concatenation of chains
drawn from a set. E.g., when m = 3 and l = 2, there are
only three cases for the boxes in a target chain: NNN, NVN, and
VNN. V and N denote viable and non-viable boxes, respectively.
Thus, it can be constructed by concatenating chains in { N, VN },
where VN is non-viable. We call a set of chains a word set
if concatenating any number of chains in it always yields a
suffix-non-viable chain. Each chain in it is called a word.

Because a target chain contains no prefix-viable chain of
length l, we consider the word set W which consists of (1) non-
viable chain of length 1, and (2) suffix-non-viable chains of
length l′, l′ ∈ [2 . . l], whose (l′ − 1)-prefixes are prefix-viable.
The set { N, VN } (VN is non-viable) in the above example is
such kind of word set when l = 2. Given a word wi ∈ W
whose length is |wi|, let Pr(wi) denote the probability that a
chain of length |wi| is wi. Consider a chain c constructed by
concatenation of words w0, . . . , wk ∈W . The probability that
a chain of length |w0|+ |w1|+ . . .+ |wk| is c is the product

of the words’ probabilities:
∏k
i=0 Pr(wi). Let M(x) be the

probability that a chain of length x is a target chain.

M(x) =

{
1 , if x = 0;∑min(x,l)
i=1 M(x− i) Pr(wi) , if x > 0.

7If the thresholds or PDFs of boxes differ or dependency exists,
e.g., by joint PDFs, Pr(CANDl) can be computed by dynamic
programming, extending the method in this subsection.
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Figure 2: Filtering Performance Analysis

wi denotes a word in W whose length is i. The probability
that a chain of length i is wi is computed as follows.

When i = 1,Pr(wi) =

∫ +∞

τ/m

p(x)dx.

When i = 2,Pr(wi) =

∫ τ/m

−∞
p(x)dx

∫ +∞

2τ/m−x
p(y)dy.

When i > 2,Pr(wi) =

∫ τ/m

−∞
p(x0)dx0

∫ 2τ/m−x0

−∞
p(x1)dx1 . . .∫ iτ/m−

∑i−2
j=0 xj

−∞
p(xi−1)dxi−1

∫ +∞

(i+1)τ/m−
∑i−1

j=0 xj

p(y)dy.

Let N(x) be the probability that there is no prefix-viable
chain of length l in a ring of x boxes, i.e., 1− Pr(CANDl).
Since we assume cm0 is the target chain, bm−1 always ends with
the last box of a word in W . To compute N(x), we also need
to consider the case when bm−1 ends with the other positions
in a word. This can be done by shifting the starting position
of a target chain of length (x − l′) for every l′ ∈ [2 . . l], to
b1, . . . , bl−1, and then append a word of length l′ in W . Thus,

N(x) =

{
M(x) , if x = 1;

M(x) +
∑min(x,l)
i=2 M(x− i)(i− 1) Pr(wi), if x > 1.

Then Pr(CANDl) = 1−N(m).
Next we analyze the expected ratio of false positive number

and result number in a candidate set. The probability that an
object is a result is

Pr(RES) =

∫ +∞

−∞
p(x0)dx0 . . .∫ +∞

−∞
p(xm−2)dxm−2

∫ τ−
∑m−2

i=0 xi

−∞
dxm−1.

The ratio is Pr(CANDl)/Pr(RES). For the assumption
‖B(x, q)‖1 = f(x, q), when l = m, Pr(RES) = Pr(CANDl).

Based on the analysis, we plot in Figure 2 the ratio of false
positive number and result number for Hamming distance
search on a synthetic dataset with uniform distribution (please
see Section 8.2 for results on real datasets). It can be observed
that the estimated ratio keeps decreasing with the growth of
chain length l. The ratio is smaller than 1 for some parameter
settings, meaning most candidates are results.

4. VARIABLE THRESHOLD ALLOCATION
AND INTEGER REDUCTION
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The pigeonhole principle has many variants. We discuss two
variants that have been utilized to solve τ -selection problems:
variable threshold allocation and integer reduction.

Instead of using a fixed threshold n/m, we may assign
different thresholds for b0, . . . , bm−1.

Theorem 4 (Pigeonhole Principle - Variable Thresh-
old Allocation [73]) Given two sequences of real numbers:
(b0, . . . , bm−1) and (t0, . . . , tm−1). If b0 + b1 + . . .+ bm−1 ≤ n
and t0 + t1 + . . . + tm−1 = n, then there exists at least one
bi, i ∈ [0 . .m− 1], such that bi ≤ ti.

If b0, . . . , bm−1 are limited to integers, the thresholds do
not have to sum up to n, but n−m+ 1, as stated below.

Theorem 5 (Pigeonhole Principle - Integer Reduc-
tion [73]) Given two sequences of integers (b0, . . . , bm−1)
and (t0, . . . , tm−1). If b0 + b1 + . . . + bm−1 ≤ n and t0 +
t1 + . . . + tm−1 = n − m + 1, then there exists at least one
bi, i ∈ [0 . .m− 1], such that bi ≤ ti.

To see this is correct, assume bi > ti for every i ∈ [0 . .m− 1].
Then b0 + b1 + . . .+ bm−1 =

∑m−1
i=0 (ti+ 1) = n−m+ 1 +m =

n+ 1. It contradicts b0 + b1 + . . .+ bm−1 ≤ n.
The pigeonring principle applies to these variants as well.

Let T = (t0, . . . , tm−1). We have the following theorem.

Theorem 6 (Pigeonring Principle - Variable Thresh-
old Allocation) Consider two sequences of real numbers B
and T . If ‖B‖1 ≤ n and ‖T‖1 = n, then ∀l ∈ [1 . .m], there

exists at least one cli ∈ CB such that each of its prefixes cl
′
i

satisfies ‖cl
′
i ‖1 ≤

∑j+l′−1
j=i tj.

Assume ‖B(x, q)‖1 = f(x, q). We can distribute the thresh-
old τ with a sequence T such that ‖T‖1 = τ . By Theorem 6,
a data object becomes a candidate only if it yields a chain
such that each of its prefixes cli satisfies ‖cli‖1 ≤

∑j+l−1
j=i tj .

Example 7 Consider x1 in Example 5. Suppose T = [1, 2, 0, 1, 1].
‖T‖1 = 5 = τ . When l = 2, ‖cl0‖1 = 3 ≤ t0 + t1. It is the only

chain of length 2 satisfying ‖cli‖1 ≤
∑j+l−1
j=i tj. However, its

1-prefix ‖c10‖1 = 2 > t0. x1 is filtered.

It can be seen that Theorem 3 is a special case of Theorem 6
when ti = n/m for every i ∈ [0 . .m − 1]. If we regard the
boxes in B as variables, then with an assumption on these
variables, the condition of T in Theorem 6, ‖T‖1 = n, is tight:

Lemma 3 Assume the m boxes in B are independent variables
and ∀i ∈ [0 . .m− 1], the range of bi is an interval [ui, vi]. If∑m−1

0 ui ≤ n ≤
∑m−1

0 vi, then @T = (t0, . . . , tm−1) such that
(1) ‖T‖1 < n; and (2) ∀‖B‖1 ≤ n and l ∈ [1 . .m], there exists

at least one cli ∈ CB such that each of its prefixes cl
′
i satisfies

‖cl
′
i ‖1 ≤

∑j+l′−1
j=i tj.

Intuitively, this lemma means that when the m boxes are
independent and every box is a real number in a continuous
range, if we use Theorem 6 for filtering, the thresholds of
boxes cannot be reduced while we are still guaranteed to find
all the results, which is necessary for an exact algorithm.

If the m boxes are limited to integers, we may use integer
reduction to reduce the thresholds, like in Theorem 5.

Theorem 7 (Pigeonring Principle - Integer Reduc-
tion) Consider two sequences of integersB and T . If ‖B‖1 ≤ n
and ‖T‖1 = n−m+ 1, then ∀l ∈ [1 . .m], there exists at least

one cli ∈ CB such that that each of its prefixes cl
′
i satisfies

‖cl
′
i ‖1 ≤ l′ − 1 +

∑j+l′−1
j=i tj.

This theorem suggests that if f(x, q) and τ are limited to
integers, we may distribute τ with a sequence of m integers
T = (t0, . . . , tm−1) such that ‖T‖1 = τ − m + 1. Assume
‖B(x, q)‖1 = f(x, q). A data object becomes a candidate only
if it yields a chain such that each of its prefixes cli satisfies
‖cli‖1 ≤ l − 1 +

∑j+l−1
j=i tj .

Example 8 Consider x3 in Example 5. Suppose T = (1, 0, 0, 0, 0).
‖T‖1 = 1 = τ−m+1. When l = 2, ‖cl4‖1 = 2 ≤ l−1+t4+t0. It

is the only chain of length 2 satisfying ‖cli‖1 ≤ l−1+
∑j+l−1
j=i tj .

However, its 1-prefix ‖c14‖1 = 1 > 1− 1 + t4. x3 is filtered.

If the m boxes are independent and the range of every box
is an integer interval, then the condition of T in Theorem 7,
‖T‖1 = n−m+ 1, is tight.

We may replace “≤” with “≥” in Theorem 6 and the theorem
still holds. If we use “≥” instead of “≤” in Theorem 7, we need

to replace “n−m+1” with “n+m−1” and “l′−1+
∑j+l′−1
j=i tj”

with “1− l′ +
∑j+l′−1
j=i tj” to make the theorem hold.

5. FILTERING FRAMEWORK
Based on the pigeonring principle, we describe a univer-

sal filtering framework for τ -selection problems. Although
this framework has been materialized as many (pigeonhole
principle-based) solutions to τ -selection problems, it is yet
to be formulated generally. By this framework, we may de-
cide the completeness and the tightness of any pigeonring
principle-based filtering instance from a general perspective.

The pigeonring principle-based filtering in essence leverages
the relation between f and the sum of a set of functions’
outputs. It consists of three components: extract, box, and
bound. The extract component draws a bag of features from
an object, such as projections, histograms, and substrings. A
common method is to partition an object, and each part is
regarded as a feature. To be more general, features are not
necessarily disjoint, nor their union has to be an entire object.
The box component distributes the bag of features into m
subbags (overlap may exist), and then returns m values for m
pairs of subbags, one from a data object and the other from a
query object. The bound component bounds the sum of the
m values returned by the box component. Next we define the
framework and the components formally.

A (pigeonring principle-based) filtering instance is a triplet
〈F,B,D 〉 composed of a featuring function F , a sequence of
boxes B, and a bounding function D.

The feature extraction is implemented by a function F which
maps an object to a bag of features: F (x) = {x0, x1, . . . }. In
general, we use the same feature extraction as state-of-the-art
pigeonhole principle-based methods do.

Each box bi(x, q) is a function which selects subbags of
features from F (x) and F (q) and returns a real number. The
design of bi depends on the problem and the extracted features.
In general, it captures the similarity or distance of features,
or tells if features match or not. E.g., for Hamming distance
search, a box returns the Hamming distance between a data
and a query object over a part. Let B(x, q) be a sequence of
m boxes: B(x, q) = (b0(x, q), . . . , bm−1(x, q)). We construct
a ring on B(x, q) and collect a set of chains CB(x,q).
D is a function which maps a threshold τ to a real number.

The most common case is an identity function D(τ ) = τ , e.g.,
for Hamming distance search. In other cases, especially when
lower bounding techniques are used, D(τ ) may be other values,
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e.g., 2τ for the content-based filter of string edit distance
search [115]. The filtering instance works on condition that
‖B(x, q)‖1 be bounded by D(τ) for every result of the query;
i.e., ‖B(x, q)‖1 ≤ D(τ).

By regarding D(τ ) as n, we may use the pigeonring principle
to establish a filtering condition on CB(x,q). The pigeonring
principle guarantees that the set of candidates satisfying this
condition is a superset of {x | ‖B(x, q)‖1 ≤ D(τ) }. When
l = m, the candidates are exactly {x | ‖B(x, q)‖1 ≤ D(τ) }.
To make the filtering instance work for the constraint f(x, q) ≤
τ , we define the completeness of a filtering instance. Let R
denote the range of f , R ⊆ R. τ ∈ R.

Definition 1 A filtering instance 〈F,B,D 〉 is complete iff
∀x, q ∈ O and τ ∈ R, ‖B(x, q)‖1 ≤ D(τ) is a necessary
condition of f(x, q) ≤ τ .

Intuitively, the completeness shows the condition on which we
can safely use the pigeonring principle so that no result will
be missed for any input. A sufficient and necessary condition
of the completeness is stated below.

Lemma 4 A filtering instance 〈F,B,D 〉 is complete, iff
(1) ∀x, q ∈ O, ‖B(x, q)‖1 ≤ D(f(x, q)), and (2) @x1, q1, x2, q2 ∈
O, such that f(x1, q1) < f(x2, q2) and ‖B(x1, q1)‖1 > D(f(x2, q2)).

We may judge if a filtering instance is complete with this
lemma. Further, we can prove that if a filtering instance
satisfies Condition 1 of Lemma 4 and D is monotonically
increasing over R, then it is complete.

Complete filtering instance exists for all τ -selection problems:
m = 1, b0 = −1, and D(τ ) = 0. However, it is trivial as all the
data objects are candidates. Besides completeness, a filtering
instance is also supposed to deliver good filtering power. In
the ideal case, f(x, q) ≤ τ is equivalent to ‖B(x, q)‖1 ≤ D(τ ),
as captured by the definition of tightness:

Definition 2 A filtering instance 〈F,B,D 〉 is tight iff ∀x, q ∈
O and τ ∈ R, ‖B(x, q)‖1 ≤ D(τ) is a necessary and sufficient
condition of f(x, q) ≤ τ .

Intuitively, the tightness shows that ‖B‖1 can be tightly
bounded using f . It also implies the completeness, and we
are guaranteed that when using pigeonring principle with
l = m, the candidates are exactly the results. A sufficient and
necessary condition of the tightness is stated below.

Lemma 5 A filtering instance 〈F,B,D 〉 is tight, iff (1) ∀x, q ∈
O, ‖B(x, q)‖1 ≤ D(f(x, q)), and (2) @x1, q1, x2, q2 ∈ O, such
that f(x1, q1) < f(x2, q2) and D(f(x1, q1)) ≥ ‖B(x2, q2)‖1.

We can also prove that if a filtering instance is tight, then
‖B(x, q)‖1 and D(f(x, q)) must be strictly increasing with
respect to f(x, q).

6. CASE STUDIES
In this section, we discuss how to utilize the pigeonring

principle to improve the pigeonhole principle-based algorithms
for τ -selection problems.

The general rules are discussed first. Although the search
performance depends heavily on the candidate number, a small
candidate number does not always lead to fast search speed
because the filter itself also poses overhead. As we will see
in Section 8.3, some methods reduce candidates by expensive
operations, and eventually spend too much time on filtering.

It is difficult to accurately estimate the search time, but in
general, the filter should be light-weight. As a result, to apply
the new principle on pigeonhole principle-based algorithms,
it is crucial that we work out an efficient way to compute
the value of each box in a chain in order to check if it is
prefix-viable. Another key is to choose proper chain length
l to strike a balance between filtering time and candidate
number. This will be investigated empirically in Section 8.2.

Next we delve into the τ -selection problems listed in Sec-
tion 2.2 and show how to leverage the filtering framework
and the new principle to solve them. Since our methods are
devised on top of existing pigeonhole principle-based meth-
ods, for each problem, we briefly review the existing method
and describe our filtering instance. Since our methods are
devised on top of existing pigeonhole principle-based methods,
for each problem, we briefly review the existing method and
describe our filtering instance 8. We include a remark on
implementation for efficient computation of the box values.

6.1 Hamming Distance Search
Existing algorithm. Our method is based on the GPH
algorithm [73]. It divides d dimensions into m disjoint parts,
and utilizes variable threshold allocation and integer reduction
for filtering. The threshold of each part is computed by a
cost model. By the pigeonhole principle, given a sequence of
thresholds T = (t0, . . . , tm−1) such that ‖T‖1 = τ −m+ 1, a
candidate must have at least one part such that the Hamming
distance to the query object over this part does not exceed ti.
Filtering instance by the pigeonring principle.

• Extract: d dimensions are partitioned into m parts. Each
part of an object x is a feature, denoted by xi.
• Box: m is tunable. bi(x, q) = H(xi, qi).
• Bound: D(τ) = τ .

Because ‖B(x, q)‖1 = f(x, q), by Lemma 5, the filtering
instance is complete and tight. Theorem 7 is used for filtering.

Remark on implementation. To compute bi(x, q), we
count the number of bits set to 1 in xi bitwise XOR qi. This
can be done by a built-in popcount operation supported by
most modern CPUs. We may also exploit the popcount to
compute the sum of multiple boxes at a time.

6.2 Set Similarity Search
Suppose we use overlap similarity.

Existing algorithm. Our method is based on the pkwise
algorithm [105]. Although it was developed for local similarity
search to identify similar sliding windows represented by sets,
it is also competitive on set similarity search (as shown in
Section 8.3, it is even faster than the algorithms dedicated to
set similarity queries). It extends the prefix filtering [19, 8].
The tokens in each object are sorted by a global order (e.g.,
increasing frequency). A k-wise signature is a combination
of k tokens. By the pigeonhole principle, a candidate shares
with a query object at least one k-wise signature in their first
few tokens, called prefixes.

The token universe is partitioned into (m− 1) disjoint parts,
each part called a class, numbered from 1 to m− 1. Let the
p-prefix/p-suffix of an object x be the first/last p tokens of x by
the global order. If |x∩y| ≥ τ , then ∃k ∈ [1 . .m−1], such that
the px-prefix of x and the py-prefix of y share at least k tokens

8Please see the full version of this paper [74] for running
examples.
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(a k-wise signature) in class k. The prefix length px is the
smallest integer such that

∑m−1
k=1 max(0, cnt(x, px, k)−k+1) =

|x| − τ + 1. cnt(x, px, k) is the number of class k tokens in
the px-prefix of x. py is computed in the same way.

Filtering instance by the pigeonring principle.
• Extract: An object x is divided into px-prefix and (|x|−px)-

suffix. The first two features are x and the (|x| − px)-suffix
(denoted by x0). Each of the other (m−1) features (denoted
by xi) consists of class i tokens in the px-prefix.
• Box: m is tunable. b0(x, q) = |x0∩q|, if the last token of the
px-prefix of x precedes the last token of the pq-prefix of q in
the global order; or |x ∩ q0|, otherwise. For i ∈ [1 . .m− 1],
bi(x, q) = |xi ∩ qi|.
• Bound: D(τ) = τ .
As b0 computes the overlap in the suffix and the other boxes
computes the overlap in the prefix, ‖B(x, q)‖1 is exactly the
overlap of x and q; i.e., ‖B(x, q)‖1 = f(x, q). By Lemma 5,
the filtering instance is tight and complete. Based on the
pkwise algorithm, we use variable threshold allocation and
integer reduction: (1) (suffix) When i = 0, ti = |q| − pq + 1.
(2) (prefix, if the number of tokens is adequate to create an i-
wise signature) When 1 ≤ i ≤ m−1, ti = i, if cnt(q, pq, i) ≥ i;
(3) (prefix, the other case) ti = cnt(q, pq, i)+1, if cnt(q, pq, i) <
i. It can be proved t0 + t1 + . . .+ tm−1 = τ +m− 1. Hence
Theorem 7 (the ≥ case) is used for filtering. When m = 2 and
l = 1, our method exactly becomes the prefix filtering.

Remark on implementation. For i ∈ [1 . .m−1], bi(x, q)
is computed by set intersection. The computation of b0(x, q)
is expensive. As a result, whenever we are to compute the
value of b0(x, q), x becomes a candidate and the verification is
invoked directly. In doing so, the filtering instance becomes not
tight but gains in efficiency. Orthogonal filtering techniques
such as length filter [8], position filter [116], and index-level
skipping [111] are available to speed up the search process.

6.3 String Edit Distance Search
Existing algorithm. Our method is based on the Pivotal
algorithm [28] which utilizes prefix filtering on q-grams. It sorts
the q-grams of each string by a global order (e.g., increasing
frequency) and picks the first (κτ + 1) (can be reduced by
location-based filter [115]) q-grams, called prefix. Let κ denote
the q-gram length. Let Px and Pq denote x’s and q’s prefixes,
respectively. If ed(x, q) ≤ τ , then:
• Pivotal prefix filter (based on the pigeonhole principle): if

the last token in Px precedes the last token in Pq in the
global order, any (τ + 1) disjoint q-grams (called pivotal
q-grams) in Px must have at least one exact match in Pq;
otherwise, any (τ + 1) pivotal q-grams in Pq must have at
least one exact match in Px.
• Alignment filter: the sum of the (τ + 1) minimum edit

distances from each pivotal q-gram to a substring whose
starting position differs by no more than τ in the other
string must be within τ .

Filtering instance by the pigeonring principle.
• Extract: We sort the q-grams of each string by a global order

and take the first (κτ + 1) q-grams as features. Another
feature is the whole string.
• Box: m = τ + 1. If the last feature q-gram of x precedes

the last feature q-gram of q in the global order, bi(x, q) =
min{ ed(xi, q[u . . v]) | 0 ≤ v − u ≤ κ + τ − 1 ∧ u, v ∈
[max(0, xi.p−τ ) . .min(xi.p+κ−1+τ, |q|−1)] }; otherwise,
bi(x, q) = min{ ed(qi, x[u . . v]) | 0 ≤ v−u ≤ κ+τ−1∧u, v ∈

[max(0, qi.p − τ) . .min(qi.p + κ − 1 + τ, |x| − 1)] }. xi is
the i-th pivotal q-gram of x. xi.p is its starting position
in x. x[u . . v] is x’s substring from positions u to v. The
notations with respect to q are defined analogously.
• Bound: D(τ) = τ .
‖B(x, q)‖1 is the sum of minimum edit distances in the align-
ment filter. As shown in [28], ‖B(x, q)‖1 ≤ f(x, q). By
Lemma 4, the filtering instance is complete. It is not tight due
to violation of Condition 2 of Lemma 5. We use Theorem 3
for filtering. The first box of a prefix-viable chain must be
zero, i.e., an exact match. By the pivotal prefix filter, for the
first box of a chain, we only consider if it matches a q-gram in
the prefix of the other side.

Remark on implementation. The alignment filter is
essentially a special case (l = m) of the basic form of the
pigeonring principle (Theorem 2). The time complexity of
computing edit distance for a pivotal q-gram is O(κ2 + κτ).
Seeing its expense, rather than computing the exact values of
the edit distances for pivotal q-grams, we compute their lower
bounds by content-based filter [115]: Given two strings x and y
and a threshold t, ed(x, y) ≤ t only if H(hx, hy) ≤ 2t. H(·, ·)
is the Hamming distance. hx (hy) is a bit vector hashed from x
(y): If x has a symbol σ, the corresponding bit is 1; otherwise,
the bit is 0. In doing so, we may also limit the length of the
substring x[u . . v] (q[u . . v]) to κ and the completeness still
holds. By a fast popcount algorithm with constant number of
arithmetic operations, the complexity is reduced to O(κ+ τ).

6.4 Graph Edit Distance Search
Existing algorithm. Our method is based on the Pars
algorithm [137]. It divides each data graph into (τ + 1)
disjoint subgraphs (may contain half-edges). By the pigeonhole
principle, a candidate has at least one subgraph which is
subgraph isomorphic (including half-edges) to the query graph.

Filtering instance by the pigeonring principle.
• Extract: We partition a graph to (τ + 1) disjoint subgraphs

as features. Another feature is the whole graph.
• Box: m = τ + 1. bi(x, q) is the minimum graph edit

distance from a feature xi to any subgraph of q: bi(x, q) =
min{ ged(xi, q

′) | q′ v q }. v denotes a subgraph relation.
• Bound: D(τ) = τ .
As shown in [137], ‖B(x, q)‖1 ≤ f(x, q). By Lemma 4, the
filtering instance is complete. It is not tight due to violation
of Condition 2 of Lemma 5. We use Theorem 3 for filtering.
The first box of a prefix-viable chain must be zero, meaning
xi is a subgraph of q.

Remark on implementation. We check if ged(xi, q
′) ≤

t using its necessary condition by a subgraph isomorphism
test to q from the deletion neighborhood [63, 108] of xi by btc
operations (deleting an edge or an isolated vertex, or changing
a vertex label to wildcard), so as to circumvent the expen-
sive subgraph enumeration and edit distance computation.
ged(xi, q

′) ≤ t only if a subgraph isomorphism is found.

7. INDEXING, CANDIDATE GENERATION,
AND COST ANALYSIS

Since a candidate always yields a prefix-viable chain of length
l, to find candidates, we begin with searching for a viable
single box (we call it the first step of candidate generation).
This can be done efficiently with an index. By the case studies
in Section 6, this step is the exactly same as the candidate
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generation of existing methods [73, 105, 28, 137]. Hence we
use the same indexes as these methods do to find viable single
boxes. We refer readers to these studies for details.

With a viable single box, we check if the chains of lengths
2, . . . , l starting from this box are all viable (we call it the
second step of candidate generation). This can be done on the
fly. An object is a candidate only if it passes this check. A
speedup is that if the check of a chain cli fails at some length,

say l′, i.e., cl
′
i is not prefix-viable, then we do not need to

check the chain starting from any position in [i . . i+ l′ − 1],
because by Corollary 2, none of them is prefix-viable.

To find candidates by the pigeonring principle, only mi-
nor modifications are needed for the second step. E.g., for
Hamming distance search we only need to add a few bit oper-
ations. Because the prefix-viable check is done incrementally,
we believe that optimizations are available for indexing and
candidate generation; e.g., a specialized index to share compu-
tation. Nonetheless, in order to evaluate the effectiveness of
the pigeonring principle itself, we choose not to apply such
optimizations in this paper and leave them as future work.

We analyze the search cost. Since the cost of feature extrac-
tion is irrespective of which principle is used, we only consider
candidate generation and verification. For the pigeonhole
principle-based method, the cost CPH = CC1 + |APH | · cV .
CC1, |APH |, and cV are the cost of (the first step of) candi-
date generation, the number of candidates by the pigeonhole
principle, and the average cost of verifying a candidate, respec-
tively. For the pigeonring principle-based method, the cost
CPR = CC1 +CC2 + |APR| · cV . CC2 and |APR| are the cost
of the second step of candidate generation and the number
of candidates by the pigeonring principle, respectively. CC2

is upper-bounded by (l − 1) · |V | · cB . |V | is the number of
viable boxes identified in the first step. cB is the average cost
of checking a box in the second step. Since |APR| ≤ |APH |,
there is a tradeoff between CC2 and |APR| · cV , which we are
going to evaluate through experiments.

8. EXPERIMENTS

8.1 Experiment Setup
We select eight datasets, two for each of the four τ -selection

problems listed in Section 2. 1,000 objects are randomly
sampled from each dataset as queries.

• GIST is a set of 80 million GIST descriptors for tiny
images [99]. We convert them to 256-dimensional binary
vectors by spectral hashing [114].
• SIFT is a set of 1 billion SIFT features from the BIGANN

dataset [44]. We follow the method in [65] to convert them
to 512-dimensional binary vectors.
• Enron is a set of 517,386 emails by employees of the Enron

Corporation, each tokenized by white space and punctuation.
The average number of tokens is 142.
• DBLP is a set of 860,751 bibliography records from the

DBLP website. Each object is a concatenation of author
name(s) and a publication title, tokenized by white space
and punctuation. The average number of tokens is 14.
• IMDB is a set of 1 million actor/actress names from the

IMDB website. The average string length is 16.
• PubMed is a set of 4 million publication titles from MED-

LINE. The average string length is 101.
• AIDS is a set of 42,687 antivirus screen chemical compounds

from the Developmental Therapeutics Program at NCI/NIH.

The average numbers of vertices/edges are 26/28. The
numbers of vertex/edge labels are 62/3.
• Protein is a set of 6,000 protein structures from the Protein

Data Bank [80]. The original dataset has only 600 graphs.
We make up our dataset by duplication and randomly ap-
plying minor errors. The average numbers of vertices/edges
are 33/56. The numbers of vertex/edge labels are 3/5.

The following state-of-the-art methods are compared.

• Hamming distance search: GPH is a partition-based algo-
rithm [73] for Hamming distance search. We set partition
size m = bd/16c for best overall search time.
• Set similarity search: We use Jaccard similarity J(x, y) =
|x∩ y|/|x∪ y|. It can be converted to an equivalent overlap
similarity: J(x, y) ≥ τ ⇐⇒ |x ∩ y| ≥ (|x|+ |y|)τ/(1 + τ).
We consider three algorithms: (1) pkwise is a prefix filter-
based algorithm [105] for local similarity search. It can be
easily adapted for set similarity search and achieves good
performance. We set the partition size of token universe to
4 (equivalent to m = 5), as suggested by [105]. (2) Adapt-
Search [102] is a prefix filter-based algorithm dedicated to set
similarity search. As its join version is shown to be slower
than the AllPairs [8] and the PPJoin [116] algorithms in a
few cases [61], we disable its extension of prefixes (and apply
the position filter [116] if necessary) to make it the same as
AllPairs’ or PPJoin’s search version, whenever either of the
two is faster. (3) PartAlloc [30] is a partition filter-based
algorithm for set similarity join. We adapt it for search. All
the competitors are equipped with fast verification [61].
• String edit distance search: Pivotal is a q-gram-based algo-

rithm [28]. The number of pivotal q-grams is m = τ + 1.
The q-gram length κ is set to 3, 2, 2, 2 for τ = 1, 2, 3, 4 on
IMDB and 8, 6, 6, 4, 4 for τ = 4, 6, 8, 10, 12 on PubMed.
• Graph edit distance search: Pars is a partition-based algo-

rithm [137]. The partition size m = τ + 1.

Our pigeonring principle-based algorithms are denoted by Ring.
When l = 1, Ring exactly becomes the above competitors
(pkwise for set similarity search). We choose the same settings
for Ring and its pigeonhole principle-based counterparts. The
source codes were either from our previous work or received
from the original authors of the aforementioned work.

The methods in [65, 132, 7, 52, 115, 72, 109, 136, 138]
are not compared since prior work [73, 102, 61, 28, 137]
showed they are outperformed by the above selected ones.
Approximate methods are not considered because we focus on
exact solutions and the main purpose of our experiments is
to show the speedup on top of the pigeonhole principle-based
methods.

The experiments were carried out on a server with an
Octa-Core Intel(R) Xeon(R) CPU @3.2GHz Processor and
256GB RAM, running Ubuntu 16.04. All the algorithms were
implemented in C++ in a single thread main memory fashion.

Since we use exactly the same indexes and parameters for
index construction as the pigeonhole principle-based counter-
parts do, the index sizes and the construction times are the
same as theirs, thus not repeatedly evaluated.

8.2 Effect of Chain Length
We study how the performance of Ring changes with chain

length l.
The average numbers of candidates per query and the

corresponding search times are plotted in Figures 3 – 6 ((a)
and (c)). Two τ settings are shown for each dataset. We also
plot the number of results. It can be observed the candidate
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Figure 3: Effect of Chain Length on Hamming Dis-
tance Search
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Figure 4: Effect of Chain Length on Set Similarity
Search

numbers decrease with the growth of chain length. This is
expected: when l increases, because we look for prefix-viable
chains from existing ones, the candidates are always reduced
to a subset.

In Figures 3 – 6 ((b) and (d)), we plot the candidate gener-
ation time and the total search time. Their difference is the
verification time. Feature extraction time is negligible and thus
we make it subsumed by candidate generation. We observe:
when the chain length increases, the candidate generation
time keeps increasing, while the general trend of the total
search time is to decrease and rebound. According to the
analysis in Section 7, there is a tradeoff: with longer chains,
we spend more time looking for prefix-viable chains, while the
candidate number is reduced and the verification time is saved.
The following settings achieve the overall best search time:
(1) Hamming distance search: l = 5 or 6. (2) Set similarity
search: l = 2. (3) String edit distance search: l = min(3, τ+1).
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Figure 5: Effect of Chain Length on String Edit Dis-
tance Search
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Figure 6: Effect of Chain Length on Graph Edit Dis-
tance Search

(4) Graph edit distance search: l = [τ − 2 . . τ ]. We use these
settings in the rest of the experiments.

8.3 Comparison with Alternative Methods
Figures 7(a) – 7(d) show the average candidate number

and search time on the two datasets for Hamming distance
search. With the new principle, candidates and search time
are significantly reduced. The speedup over GPH is up to 5.9
times on GIST and 15.5 times on SIFT. SIFT’s dimensionality
is twice as much as GIST’s. This results in more expensive
verification per candidate on SIFT. The reduction in candidates
is thus more converted to search time. We also notice that the
speedup on the two datasets comes from not only Hamming
distance computation but also the union of candidate sets
before verification (e.g., both b1 and b4 produce x1 as a
candidate in Example 2, and a union is required to avoid
duplicate verification). This is attributed to two factors:
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Figure 7: Comparison on Hamming Distance Search
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Figure 8: Comparison on Set Similarity Search

(1) The size of the input to the union is reduced by the new
principle. (2) The prefix-viable check for Hamming distance
search is faster than the hash table lookup used for the union.

The results for set similarity search are plotted in Fig-
ures 8(a) – 8(d). Note that this is a f(x, q) ≥ τ case. The
smaller the threshold is, the looser the constraint we have.
The fastest competitor is Ring, followed by pkwise. Although
PartAlloc has small candidate number (especially on DBLP),
it spends too much time on candidate generation and thus
become less efficient. It finds candidates by selecting signatures
with a cost model. Due to the fast verification [61] on all the
competitors, PartAlloc’s advantage on candidate number is
compromised. This is in accord with the results of a recent
study on set similarity join [111], suggesting that we need not
only small candidate number but also light-weight filtering.
Both pkwise and AdaptSearch extend prefix lengths to find
objects that share multiple tokens in prefixes. pkwise is faster
because (1) pkwise uses token combinations to check the num-
ber of shared tokens, as opposed to AdaptSearch’s merging long
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Figure 9: Comparison on String Edit Distance Search
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Figure 10: Comparison on Graph Edit Distance
Search

lists; and (2) AdaptSearch computes prefix lengths by a cost
model, which incurs considerable overhead, despite reporting
a smaller candidate number in a few cases. Ring exploits the
advantage of pkwise and successfully reduces candidates from
pkwise at a tiny additional cost by counting the overlap of
same class tokens in prefixes (merging two very short lists),
thereby becoming the fastest. The speedup over the runner-up,
pkwise, is up to 2.0 times on Enron and 1.2 times on DBLP.

We provide the results for string edit distance search in
Figures 9(a) – 9(d). We divide Pivotal’s candidate number into
two parts: the candidates that pass the pivotal prefix filter
(denoted by Cand-1s) and the Cand-1s that pass the alignment
filter (denoted by Cand-2s). Ring reduces candidates on the
basis of Pivotal’s Cand-1. By the alignment filter, Pivotal’s
Cand-2 number becomes less than Ring’s candidate number,
and even close to the result number on PubMed. However,
since the filter involves expensive edit distance computation
between q-grams and substrings, the small Cand-2 number does
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not always pay off. Ring is always faster than Pivotal, by up
to 3.1 times on IMDB and 3.9 times on PubMed. The reasons
are: (1) Ring is able to early stop whenever the prefix-viable
check fails at some length l′ ≤ l ≤ m, whereas the alignment
filter has to check m boxes. (2) Instead of computing the exact
edit distance between a q-gram and a substring, Ring obtains
a lower bound using bit vectors. This achieves good filtering
power at the cost of only a few bit operations. The speedup of
Ring is more significant on PubMed, where long q-grams are
chosen to filter. This is in accord with the reduction in the
time complexity of a box check from O(κ2 + κτ ) to O(κ+ τ ).

For graph edit distance search, Figures 10(a) – 10(d) show
the results on the two datasets. The reduction in candidate
number and search time is not as significant as on the other
problems. The main reason is, for the other problems, boxes are
exclusive or almost exclusive, e.g., disjoint parts for Hamming
distance search and disjoint token classes for set similarity
search. For graph edit distance search, though the feature
subgraphs are disjoint, their vertex mappings in the query
graph via subgraph isomorphism may highly overlap. This
fact showcases the hardness of complex structures like graphs.
Nonetheless, Ring outperforms Pars by up to 1.9 times on
AIDS. Their performances on Protein are close. Ring wins by
a small margin of 1.04 times speedup. There are two factors
for why the gap is more remarkable on AIDS: (1) There is still
plenty of room between the numbers of candidates and results
on AIDS. Ring is able to reduce candidates by more than 40%
and thus have remarkable gain in search time. On Protein,
since the two numbers are already close, the room for speedup
is small. (2) Protein has much fewer labels than AIDS. This
makes feature subgraphs less selective and more likely to be
contained by the query graph, meaning the data graphs are
more likely to pass the pigeonring principle-based filter.

9. RELATED WORK
Pigeonhole principle. The pigeonhole principle is a the-
orem in combinatorics. It has several forms in which the
numbers of items and boxes differ [13]. The simple form
discusses the case of (n + 1) items in n boxes. The strong
form discusses the case of (

∑m
i=1 qi−m+ 1) items in m boxes,

where qi are positive integers. It is easy to extend these forms
to real numbers. In set theory, it is formulated by Dirichlet
drawer principle [25] using functions on finite sets. It can
be also applied to infinite sets where n and m are described
by cardinal numbers. Apart from these formulations, it has
applications in various fields of mathematics. E.g., in number
theory, Dirichlet’s approximation theorem is a consequence of
the pigeonhole principle [6]. It has also been used to bound
the gaps between primes [95], which are steadily improved
over the years towards proving the twin prime conjecture.
The principle is also studied in theoretical computer science,
especially for its provability and proof complexity [41, 14, 69,
71, 2, 50, 15, 78, 77]. In the area of databases, the principle
has been extensively utilized to solve thresholded similarity
searches [57, 132, 65, 73, 7, 30, 55, 107, 72, 28, 56, 137] which
can be formalized as τ -selection problems, as well as other
important problems such as association rule mining [85].

τ-selection problem. The study on τ -selection prob-
lems has received much attention in the last few decades. A
multitude of solutions have been devised to handle different
representations of objects and selection functions. A com-
mon scenario is to deal with objects in multi-dimensional

space. Efficient solutions were proposed for binary vectors and
Hamming distance [93, 57, 65, 132, 66, 73]. More investiga-
tions were towards vectors with real-valued dimensions and
Lp distance. Notable approaches are tree-based indexing [24,
10], lower bounding [42], transformation (including dimension
reduction) [9, 67, 130, 43, 114, 91], and locality sensitive
hashing (LSH) [38, 26, 59, 96, 37]. Some of them targeted
k-NN queries rather than thresholded queries. However, the
pigeonhole principle is barely utilized for Lp distance, and
approximate solutions are more popular than exact ones. We
refer readers to a book on multi-dimensional indexes [82], a
survey on dimension reduction [1], and a survey on the widely
studied hashing-based approaches [104]. The searches with
other similarity measures such as Bregman divergence [135]
and earth mover’s distance [118, 94] have also been investi-
gated. Recently, much work was devoted to set similarity
search and its variant of batch processing (similarity join).
Most solutions were developed for overlap, Jaccard, or cosine
similarities. Prevalent exact approaches are based on prefix
filter [19, 8, 116, 79, 11, 102, 4, 60, 111]. Experimental eval-
uation can be found for set similarity join [61]. Other exact
approaches include partition filter [7, 30], enumeration [27, 31],
tree indexing [133], and postings list merge [83, 40]. Approxi-
mate approaches have also been developed, such as minhash
and other LSH [12, 129, 84, 5, 22, 23]. The research on string
similarity search (join) received tantamount attention. Most
work adopted edit distance constraints. The methods are
based on overlapping substrings (q-grams) [39, 52, 115, 109,
110, 113], non-overlapping substrings [53, 121, 107, 54, 72,
122, 28, 123], or tree indexes [134, 34, 33, 29, 58, 127]. Experi-
mental evaluation for the join case was reported in [45]. We
also recommend a survey [126]. Some work proposed to use
fuzzy match on tokens [18, 103, 27]. A recent study targeted
Jaro-Winkler distance [112]. Another line of methods cope
with biosequence alignment, including BLAST [3], the Smith-
Waterman algorithm [90], the BWT improvement [51], and
those from the database area [62, 16, 68, 120]. For complex
data types such as graphs, solutions have been developed for
maximum common subgraph [119, 87, 86, 46] and graph edit
distance [128, 101, 109, 136, 138, 56, 137] constraints. Another
common data type is time series, including trajectories. Exist-
ing studies considered dynamic time warping [124, 49, 17, 139,
81, 47, 36, 48, 75, 125], edit distance [20, 21, 76, 64], longest
common subsequence [100], other similarity measures [17, 35,
97, 98, 70, 88, 117, 92, 106], and systems for multiple similarity
measures [89]. An experimental evaluation appeared in [32].

10. CONCLUSION
In this paper, we proposed the pigeonring principle, an

extension of the pigeonhole principle with stronger constraints.
We utilized the pigeonring principle to develop filtering meth-
ods for τ -selection problems. We showed that the resulting
filtering condition always produces less or equal number of
candidates than the pigeonhole principle does. Thus, all the
pigeonhole principle-based solutions are possible to be acceler-
ated by the new principle. A filtering framework was proposed
to cover the pigeonring principle-based solutions. Based on
the framework, we showed case studies for several common τ -
selection problems. The pigeonring principle-based algorithms
were implemented on top of existing pigeonhole principle-based
solutions to these problems with minor modifications. The
superiority of the pigeonring principle-based algorithms were
demonstrated through experiments on real datasets.
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Sárközy. Interactive time series exploration powered by the
marriage of similarity distances. PVLDB, 10(3):169–180, 2016.

[65] M. Norouzi, A. Punjani, and D. J. Fleet. Fast search in
hamming space with multi-index hashing. In CVPR, pages
3108–3115, 2012.

[66] E. Ong and M. Bober. Improved hamming distance search
using variable length hashing. In CVPR, pages 2000–2008,
2016.

[67] B. C. Ooi, K. Tan, C. Yu, and S. Bressan. Indexing the edges -
A simple and yet efficient approach to high-dimensional
indexing. In PODS, pages 166–174, 2000.

[68] P. Papapetrou, V. Athitsos, G. Kollios, and D. Gunopulos.
Reference-based alignment in large sequence databases.
PVLDB, 2(1):205–216, 2009.

[69] J. B. Paris, A. J. Wilkie, and A. R. Woods. Provability of the
pigeonhole principle and the existence of infinitely many
primes. The Journal of Symbolic Logic, 53(4):1235–1244, 1988.

[70] J. Peng, H. Wang, J. Li, and H. Gao. Set-based similarity
search for time series. In SIGMOD, pages 2039–2052, 2016.

[71] T. Pitassi, P. Beame, and R. Impagliazzo. Exponential lower
bounds for the pigeonhole principle. Computational
Complexity, 3:97–140, 1993.

[72] J. Qin, W. Wang, C. Xiao, Y. Lu, X. Lin, and H. Wang.
Asymmetric signature schemes for efficient exact edit
similarity query processing. ACM Trans. Database Syst.,
38(3):16:1–16:44, 2013.

[73] J. Qin, Y. Wang, C. Xiao, W. Wang, X. Lin, and Y. Ishikawa.
GPH: Similarity search in hamming space. In ICDE, pages
29–40, 2018.

[74] J. Qin and C. Xiao. Pigeonring: A principle for faster
thresholded similarity search. CoRR, abs/1804.01614, 2018.

[75] T. Rakthanmanon, B. J. L. Campana, A. Mueen, G. E. A. P. A.
Batista, M. B. Westover, Q. Zhu, J. Zakaria, and E. J. Keogh.
Searching and mining trillions of time series subsequences
under dynamic time warping. In KDD, pages 262–270, 2012.

[76] S. Ranu, D. P, A. D. Telang, P. Deshpande, and S. Raghavan.

Indexing and matching trajectories under inconsistent
sampling rates. In ICDE, pages 999–1010, 2015.

[77] R. Raz. Resolution lower bounds for the weak pigeonhole
principle. J. ACM, 51(2):115–138, 2004.

[78] A. A. Razborov. Proof complexity of pigeonhole principles. In
DLT, pages 100–116, 2001.

[79] L. A. Ribeiro and T. Härder. Generalizing prefix filtering to
improve set similarity joins. Inf. Syst., 36(1):62–78, 2011.

[80] K. Riesen and H. Bunke. IAM graph database repository for
graph based pattern recognition and machine learning. In
SSPR & SPR, pages 287–297, 2008.

[81] Y. Sakurai, M. Yoshikawa, and C. Faloutsos. FTW: fast
similarity search under the time warping distance. In PODS,
pages 326–337, 2005.

[82] H. Samet. Foundations of multidimensional and metric data
structures. Morgan Kaufmann, 2006.

[83] S. Sarawagi and A. Kirpal. Efficient set joins on similarity
predicates. In SIGMOD, 2004.

[84] V. Satuluri and S. Parthasarathy. Bayesian locality sensitive
hashing for fast similarity search. PVLDB, 5(5):430–441, 2012.

[85] A. Savasere, E. Omiecinski, and S. B. Navathe. An efficient
algorithm for mining association rules in large databases. In
VLDB, pages 432–444, 1995.

[86] H. Shang, X. Lin, Y. Zhang, J. X. Yu, and W. Wang.
Connected substructure similarity search. In SIGMOD, pages
903–914, 2010.

[87] H. Shang, K. Zhu, X. Lin, Y. Zhang, and R. Ichise. Similarity
search on supergraph containment. In ICDE, pages 637–648,
2010.

[88] S. Shang, L. Chen, Z. Wei, C. S. Jensen, K. Zheng, and
P. Kalnis. Trajectory similarity join in spatial networks.
PVLDB, 10(11):1178–1189, 2017.

[89] Z. Shang, G. Li, and Z. Bao. DITA: distributed in-memory
trajectory analytics. In SIGMOD, pages 725–740, 2018.

[90] T. F. Smith and M. S. Waterman. Identification of common
molecular subsequences. In Journal of Molecular Biology,
volume 147(1), pages 195–197, 1981.

[91] Y. Sun, W. Wang, J. Qin, Y. Zhang, and X. Lin. SRS: solving
c-approximate nearest neighbor queries in high dimensional
euclidean space with a tiny index. PVLDB, 8(1):1–12, 2014.

[92] N. Ta, G. Li, Y. Xie, C. Li, S. Hao, and J. Feng.
Signature-based trajectory similarity join. IEEE Trans.
Knowl. Data Eng., 29(4):870–883, 2017.

[93] Y. Tabei, T. Uno, M. Sugiyama, and K. Tsuda. Single versus
multiple sorting in all pairs similarity search. Journal of
Machine Learning Research - Proceedings Track, 13:145–160,
2010.

[94] Y. Tang, L. H. U, Y. Cai, N. Mamoulis, and R. Cheng. Earth
mover’s distance based similarity search at scale. PVLDB,
7(4):313–324, 2013.

[95] T. Tao. Small and large gaps in the primes. Latinos in the
Mathematical Sciences Conference, April 2015.

[96] Y. Tao, K. Yi, C. Sheng, and P. Kalnis. Efficient and accurate
nearest neighbor and closest pair search in high-dimensional
space. ACM Trans. Database Syst., 35(3), 2010.

[97] E. Tiakas, A. Papadopoulos, A. Nanopoulos, Y. Manolopoulos,
D. Stojanovic, and S. Djordjevic-Kajan. Searching for similar
trajectories in spatial networks. Journal of Systems and
Software, 82(5):772–788, 2009.

[98] E. Tiakas and D. Rafailidis. Scalable trajectory similarity
search based on locations in spatial networks. In MEDI, pages
213–224, 2015.

[99] A. Torralba, R. Fergus, and W. T. Freeman. 80 million tiny
images: A large data set for nonparametric object and scene
recognition. IEEE Trans. Pattern Anal. Mach. Intell.,
30(11):1958–1970, 2008.

[100] M. Vlachos, D. Gunopulos, and G. Kollios. Discovering similar
multidimensional trajectories. In ICDE, pages 673–684, 2002.

[101] G. Wang, B. Wang, X. Yang, and G. Yu. Efficiently indexing
large sparse graphs for similarity search. IEEE Trans. Knowl.
Data Eng., 24(3):440–451, 2012.

41



[102] J. Wang, G. Li, and J. Feng. Can we beat the prefix filtering?:
an adaptive framework for similarity join and search. In
SIGMOD, pages 85–96, 2012.

[103] J. Wang, G. Li, and J. Feng. Extending string similarity join
to tolerant fuzzy token matching. ACM Trans. Database Syst.,
39(1):7:1–7:45, 2014.

[104] J. Wang, H. T. Shen, J. Song, and J. Ji. Hashing for similarity
search: A survey. CoRR, abs/1408.2927, 2014.

[105] P. Wang, C. Xiao, J. Qin, W. Wang, X. Zhang, and
Y. Ishikawa. Local similarity search for unstructured text. In
SIGMOD, pages 1991–2005, 2016.

[106] S. Wang, Z. Bao, J. S. Culpepper, Z. Xie, Q. Liu, and X. Qin.
Torch: A search engine for trajectory data. In SIGIR, pages
535–544, 2018.

[107] W. Wang, J. Qin, C. Xiao, X. Lin, and H. T. Shen.
Vchunkjoin: An efficient algorithm for edit similarity joins.
IEEE Trans. Knowl. Data Eng., 25(8):1916–1929, 2013.

[108] W. Wang, C. Xiao, X. Lin, and C. Zhang. Efficient
approximate entity extraction with edit constraints. In
SIMGOD, 2009.

[109] X. Wang, X. Ding, A. K. H. Tung, S. Ying, and H. Jin. An
efficient graph indexing method. In ICDE, pages 210–221,
2012.

[110] X. Wang, X. Ding, A. K. H. Tung, and Z. Zhang. Efficient and
effective KNN sequence search with approximate n-grams.
PVLDB, 7(1):1–12, 2013.

[111] X. Wang, L. Qin, X. Lin, Y. Zhang, and L. Chang. Leveraging
set relations in exact set similarity join. PVLDB,
10(9):925–936, 2017.

[112] Y. Wang, J. Qin, and W. Wang. Efficient approximate entity
matching using jaro-winkler distance. In WISE, pages
231–239, 2017.

[113] H. Wei, J. X. Yu, and C. Lu. String similarity search: A
hash-based approach. IEEE Trans. Knowl. Data Eng.,
30(1):170–184, 2018.

[114] Y. Weiss, A. Torralba, and R. Fergus. Spectral hashing. In
NIPS, pages 1753–1760, 2008.

[115] C. Xiao, W. Wang, and X. Lin. Ed-Join: an efficient algorithm
for similarity joins with edit distance constraints. PVLDB,
1(1):933–944, 2008.

[116] C. Xiao, W. Wang, X. Lin, J. X. Yu, and G. Wang. Efficient
similarity joins for near-duplicate detection. ACM Trans.
Database Syst., 36(3):15:1–15:41, 2011.

[117] D. Xie, F. Li, and J. M. Phillips. Distributed trajectory
similarity search. PVLDB, 10(11):1478–1489, 2017.

[118] J. Xu, Z. Zhang, A. K. H. Tung, and G. Yu. Efficient and
effective similarity search over probabilistic data based on
earth mover’s distance. PVLDB, 3(1):758–769, 2010.

[119] X. Yan, P. S. Yu, and J. Han. Substructure similarity search in
graph databases. In SIGMOD, pages 766–777, 2005.

[120] X. Yang, H. Liu, and B. Wang. ALAE: accelerating local
alignment with affine gap exactly in biosequence databases.
PVLDB, 5(11):1507–1518, 2012.

[121] X. Yang, B. Wang, and C. Li. Cost-based variable-length-gram
selection for string collections to support approximate queries
efficiently. In SIGMOD, pages 353–364, 2008.

[122] X. Yang, B. Wang, C. Li, J. Wang, and X. Xie. Efficient direct
search on compressed genomic data. In ICDE, pages 961–972,
2013.

[123] X. Yang, Y. Wang, B. Wang, and W. Wang. Local filtering:
Improving the performance of approximate queries on string
collections. In SIGMOD, pages 377–392, 2015.

[124] B. Yi, H. V. Jagadish, and C. Faloutsos. Efficient retrieval of
similar time sequences under time warping. In ICDE, pages
201–208, 1998.

[125] R. Ying, J. Pan, K. Fox, and P. K. Agarwal. A simple efficient
approximation algorithm for dynamic time warping. In
SIGSPATIAL GIS, pages 21:1–21:10, 2016.

[126] M. Yu, G. Li, D. Deng, and J. Feng. String similarity search
and join: a survey. Frontiers Comput. Sci., 10(3):399–417,
2016.

[127] M. Yu, J. Wang, G. Li, Y. Zhang, D. Deng, and J. Feng. A
unified framework for string similarity search with
edit-distance constraint. VLDB J., 26(2):249–274, 2017.

[128] Z. Zeng, A. K. H. Tung, J. Wang, J. Feng, and L. Zhou.
Comparing stars: On approximating graph edit distance.
PVLDB, 2(1):25–36, 2009.

[129] J. Zhai, Y. Lou, and J. Gehrke. Atlas: a probabilistic
algorithm for high dimensional similarity search. In SIGMOD,
pages 997–1008, 2011.

[130] R. Zhang, B. C. Ooi, and K.-L. Tan. Making the pyramid
technique robust to query types and workloads. In ICDE,
pages 313–324, 2004.

[131] W. Zhang, K. Gao, Y. Zhang, and J. Li. Efficient approximate
nearest neighbor search with integrated binary codes. In ACM
Multimedia, pages 1189–1192, 2011.

[132] X. Zhang, J. Qin, W. Wang, Y. Sun, and J. Lu. Hmsearch: an
efficient hamming distance query processing algorithm. In
SSDBM, page 19, 2013.

[133] Y. Zhang, X. Li, J. Wang, Y. Zhang, C. Xing, and X. Yuan.
An efficient framework for exact set similarity search using
tree structure indexes. In ICDE, pages 759–770, 2017.

[134] Z. Zhang, M. Hadjieleftheriou, B. C. Ooi, and D. Srivastava.
Bed-tree: an all-purpose index structure for string similarity
search based on edit distance. In SIGMOD, pages 915–926,
2010.

[135] Z. Zhang, B. C. Ooi, S. Parthasarathy, and A. K. H. Tung.
Similarity search on bregman divergence: Towards non-metric
indexing. PVLDB, 2(1):13–24, 2009.

[136] X. Zhao, C. Xiao, X. Lin, W. Wang, and Y. Ishikawa. Efficient
processing of graph similarity queries with edit distance
constraints. VLDB J., 22(6):727–752, 2013.

[137] X. Zhao, C. Xiao, X. Lin, W. Zhang, and Y. Wang. Efficient
structure similarity searches: a partition-based approach.
VLDB J., 27(1):53–78, 2018.

[138] W. Zheng, L. Zou, X. Lian, D. Wang, and D. Zhao. Efficient
graph similarity search over large graph databases. IEEE
Trans. Knowl. Data Eng., 27(4):964–978, 2015.

[139] Y. Zhu and D. E. Shasha. Warping indexes with envelope
transforms for query by humming. In SIGMOD, pages
181–192, 2003.

42


