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ABSTRACT
Boolean expression matching is an important function for
many applications. However, existing solutions still suf-
fer from limitations when applied to high-dimensional and
dense workloads. To overcome these limitations, in this pa-
per, we design a data structure called PS-Tree that can ef-
ficiently index subscriptions in one dimension. By dividing
predicates into disjoint predicate spaces, PS-Tree achieves
high matching performance and good expressiveness. Based
on PS-Tree, we first propose a Boolean expression match-
ing algorithm PSTBloom. By efficiently filtering out a large
proportion of unmatching subscriptions, PSTBloom achieves
high matching performance, especially for high-dimensional
workloads. PSTBloom also achieves fast index construction
and a small memory footprint. Compared with state-of-the-
art methods, comprehensive experiments show that PSTBloom
reduces matching time, index construction time and memory
usage by up to 84%, 78% and 94%, respectively. Although
PSTBloom is effective for many workload distributions, dense
workloads represent new challenges to PSTBloom and other
algorithms. To effectively handle dense workloads, we fur-
ther propose the PSTHash algorithm, which divides subscrip-
tions into disjoint multidimensional predicate spaces. This
organization prunes partially matching subscriptions effi-
ciently. Comprehensive experiments on both synthetic and
real-world datasets show that PSTHash improves the match-
ing performance by up to 92% for dense workloads.
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1. INTRODUCTION
We consider the problem of efficiently evaluating a large

collection of conjunctive Boolean expressions given a set of
attribute value pairs. Efficient Boolean expression match-
ing plays an important role in a growing number of data
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management and Web applications, such as online advertis-
ing [27], online news dissemination [26], workflow manage-
ment [36], business process execution and monitoring [24],
market feed processing [9], multiplayer online gaming [7],
and advertising exchanges [17]. These applications can be
modeled by the content-based publish/subscribe paradigm,
in which subscriptions represent users’ interests and events
represent messages [14, 33, 34, 39, 22, 16]. As these applica-
tions scale to larger user populations, the underlying match-
ing algorithms must be able to handle ever larger volumes
of subscriptions at increasing event rates. Taking online ad-
vertising as an example, by April 2017, the number of active
advertisers on Facebook had grown to 5 million. In March
2018, Facebook had up to 1.45 billion daily active users and
2.2 billion monthly active users [2].

Designing efficient Boolean expression matching algorithms
is challenging for at least five main reasons. First, the al-
gorithm must scale to a large number of Boolean expres-
sions (i.e., subscriptions in pub/sub) defined over a high-
dimensional space. Second, the subscriptions may be un-
evenly distributed over the available dimensions and highly
concentrated in some dimensions, which results in dense
workloads; the algorithm should be able to efficiently han-
dle dense workloads. Third, fast subscription-index con-
struction and dynamic index updates need to be supported
to accommodate changing interests. Fourth, the algorithm
should be efficient at handling a high rate of arriving events
on the premise of low Boolean expression matching latency.
Last, the algorithm should support a rich subscription lan-
guage to enable expressive modeling of user interests.

In this paper, a dimension refers to the value domain un-
derlying an attribute in a subscription. When all or part
of the dimensions is associated with a large number of sub-
scriptions, we consider the workload to be dense.

A large number of Boolean expression matching algorithms
exist [3, 14, 38, 33, 34, 35, 6, 39, 31, 30, 15, 28]. However,
these solutions continue to suffer from limitations that affect
performance and applicability. For example, Propagation [14]
suffers from costs incurred while processing the predicate
bit vector that tracks the matching predicates of a given
event. k-index [38] does not support dynamic subscrip-
tion updates. OpIndex [39] possesses high index construction
costs when the arrival of subscriptions and events overlaps.
Moreover, the existing solutions are not effective at han-
dling dense workloads, which is an important property that
is rarely considered by state-of-the-art algorithms.

To overcome these limitations, we first design the Pred-
icate Space Tree (PS-Tree), a data structure used to in-
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dex subscriptions in one dimension. Then, we propose the
PSTBloom and PSTHash matching algorithms for high di-
mensional and dense workloads, respectively. In PS-Tree,
a predicate of a subscription is regarded as a space, and
an attribute-value pair of an event is regarded as a point.
PS-Tree divides predicates into disjoint predicate spaces and
maintains a many-to-many relationship between predicate
spaces and subscriptions. Through PS-Tree, the problem
of matching an attribute-value pair against a set of sub-
scriptions is transformed into the problem of locating the
predicate space to which the attribute-value pair belongs;
PS-Tree efficiently solves this problem.

The example in Fig. 1 illustrates the relationship that
PS-Tree maintains. In this example, there are two sub-
scriptions: S1{price, in, [0, 4]} and S2{price, in, [2, 4]}. The
two predicates involved are divided into two disjoint predi-
cate spaces: [0, 2) and [2, 4]. The first predicate space [0, 2)
is associated with {S1}, while the second predicate space
[2, 4] is associated with {S1, S2}. For an attribute-value
pair, 〈price, 3〉, after determining the predicate space [2, 4]
to which it belongs, the matching subscriptions {S1, S2} can
be directly retrieved.

20 4
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Figure 1: Relationship maintained by PS-Tree

Based on PS-Tree, we first propose the PSTBloom algo-
rithm. For each subscription S in PSTBloom, one of its pred-
icates is selected as the access predicate. Access predicates
are evaluated before other predicates to retrieve candidate
subscriptions, i.e., subscriptions that are likely to match the
given input event. The access predicate is divided into sev-
eral disjoint predicate spaces. Each predicate space cor-
responds to a leaf node in PS-Tree. S is associated with
those leaf nodes that correspond to its access predicate. For
an input event, each attribute-value pair of that event is
matched against a corresponding PS-Tree to determine a set
of partially matching subscriptions. These candidate sub-
scriptions are then pruned by the Bloom filter signatures
of the related leaf nodes. The signature of a leaf node is
the Bloom filter created from subscription IDs. PSTBloom

achieves good matching performance since a large propor-
tion of unmatching subscriptions can be efficiently filtered
out. Our comprehensive experiments show that PSTBloom

outperforms state-of-the-art algorithms in terms of not only
matching time but also index construction time and memory
consumption.
PSTBloom is effective for many types of workloads, espe-

cially high-dimensional workloads, because PSTBloom can ef-
ficiently locate the small number of subscriptions whose ac-
cess predicates are satisfied by an event. However, dense
workloads present new challenges to PSTBloom and other al-
gorithms: the number of partially matching candidate sub-
scriptions could be large for an event. To overcome this lim-
itation, we further design the PSTHash algorithm. PSTHash

is also based on PS-Tree. However, in contrast to PSTBloom,
PSTHash selects more than one predicate as access predicates
for each subscription. These access predicates are divided
into a set of disjoint multidimensional predicate spaces. PS-

Hash constructs a many-to-many relation between the mul-
tidimensional predicate spaces and the subscriptions. When
an event is received in PSTHash, each attribute-value pair of

that event is matched against a corresponding PS-Tree to
determine the predicate space to which the attribute-value
pair belongs. Then, a number of multidimensional predi-
cate spaces is constructed. Through these multidimensional
predicate spaces, the candidate subscriptions can be directly
obtained for that event. PSTHash identifies fewer candidate
subscriptions since PSTHash guarantees that all the selected
access predicates in each candidate subscription have match-
ing attribute-value pairs in the event. Under dense work-
loads, our experiments show that PSTHash achieves the best
matching performance among the algorithms we evaluated.

Our proposed algorithms present advantages over existing
solutions, especially for high-dimensional and dense work-
loads. With this paper, we make the following three main
contributions. (1) We propose the PS-Tree index, which
achieves high matching performance, exhibits high expres-
siveness and supports dynamic subscription updates. (2)
We propose PSTBloom, which presents advantages over ex-
isting solutions for reducing not only the Boolean expression
matching latency but also the memory consumption and in-
dex construction latency. (3) We propose PSTHash, which
achieves the best matching performance given dense work-
loads. Finally, we offer an extensive evaluation of these al-
gorithms based on both synthetic and real-world workloads.

The remainder of this paper is organized as follows. In
Section 2, we review the existing Boolean expression match-
ing algorithms. In Section 3, we present the expression lan-
guage and matching semantics. The PS-Tree index is pre-
sented in Section 4. In Section 5, we describe the design of
the PSTBloom algorithm. In Section 6, we present the design
of the PSTHash algorithm. Section 7 reports extensively on
our experimental results, and Section 8 concludes the paper.

2. RELATED WORK
A large body of work is dedicated to studying Boolean ex-

pression matching in many contexts: trigger processing [8,
19], XPath/XML matching [13, 32, 23, 20], indexing in mul-
tidimensional space [25, 5, 18], and pub/sub matching [33,
39, 38, 14]. We concentrate on pub/sub matching since other
contexts either use different languages or cannot scale to
thousands of dimensions and millions of expressions. Exist-
ing solutions in pub/sub matching include BE-Tree [33, 34,
35], OpIndex [39], Propagation [14], k-index [38], SIFT [3],
Gryphon [3], H-Tree [31], TAMA [40], REIN [30], GEM [15], and
SCAN [3]. These solutions can be roughly classified into two
classes: count-based methods and tree-based methods.

Count-based approaches [39, 14, 38, 3] usually design in-
dexes to retrieve a set of candidate subscriptions. For these
candidate subscriptions, count-based methods identify the
matching subscriptions by counting the satisfied predicates
of each subscription. Representative count-based approaches
include Propagation, k-index, and OpIndex.
Propagation [14] creates indexes on predicates and main-

tains a predicate bit vector. Each predicate that occurs in
one or more subscriptions is associated with a single en-
try in the predicate bit vector. When an event is received,
Propagation first locates the satisfied predicates and sets re-
lated entries in the predicate bit vector to 1. Candidate sub-
scriptions can be obtained through these predicates. Then,
Propagation identifies a candidate subscription as match-
ing if all of its predicates are satisfied. While Propagation

is a novel algorithm, it suffers from the limitation that, to
match each event, all bits in the predicate bit vector need
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to be reinitiated to 0. This operation is expensive if there
are a large number of distinct predicates.
k-index [38] is an approach based on an inverted in-

dex. The basic idea behind k-index is to partition the sub-
scriptions into subsets of predicates and to organize each
predicate subset using the inverted list data structure. For
each attribute-value pair in an incoming event, appropri-
ate inverted list indexes are searched to identify predicates
matching the attribute-value pair, and a counting method is
used to determine the matching subscriptions for an event.
k-index is effective in retrieving partially matching sub-
scriptions; however, it suffers from the limitation that a
range predicate must be rewritten to a disjunction of equal-
ity predicates, which increases the index’s size due to the
need for many inverted list entries for a single predicate.
OpIndex [39] is a state-of-the-art count-based method. This

method adopts a two-level index structure and organizes
subscriptions using inverted lists. In the first level, OpIndex
selects an attribute for each subscription, and subscriptions
with the same selected attribute are grouped together. In
the second level, subscriptions are further partitioned based
on their predicate operators. The predicates with the same
operator are clustered together. For an incoming event,
OpIndex retrieves all the satisfied predicates and then uses
the counting method to locate the matching subscriptions.
OpIndex has high matching performance. However, when
the arrival of subscriptions and events overlaps, OpIndex suf-
fers from high index construction costs since related indexes
need to be reordered after each subscription is inserted. Dur-
ing the reordering process of an index, event matching is
delayed, which results in high matching latency.

In contrast to count-based methods, tree-based methods
[33, 3, 6] are designed to filter out unmatching subscriptions
step by step. These methods usually recursively divide the
search space by eliminating subscriptions upon encountering
unsatisfied predicates. Compared to count-based methods,
tree-based methods usually identify fewer candidate sub-
scriptions, but the filtering process is more expensive.
BE-Tree [33], a representative tree-based method, uses a

two-phase space cutting technique and organizes subscrip-
tions in a tree index. The subscriptions are repeatedly par-
titioned by attribute, followed by value space partitioning.
In BE-Tree, there are three classes of nodes: a partition
node that maintains the space partitioning information (an
attribute), a cluster node that maintains the space cluster-
ing information (a range of values), and a leaf node that
stores the actual expressions. By configuring the maximum
leaf node size, BE-Tree achieves a good trade-off between
matching performance and memory consumption. However,
BE-Tree indexes all subscriptions through a single tree, which
constitutes a potential performance bottleneck.
H-Tree is also a tree-based method. H-Tree first selects a

set of attributes to index. Then, the value domain of each
attribute is divided into a number of overlapping cells. The
cells of each attribute are connected level-by-level to form a
tree. In this way, H-Tree divides the subscription space into
a set of buckets. The number of buckets increases exponen-
tially with the number of indexed attributes. As a result,
H-Tree is not suitable for high-dimensional workloads.
GEM [15] and REIN [30] are different from the count-based

and tree-based methods presented above. The idea behind
these two algorithms is to filter out the unmatching sub-
scriptions one by one for each event. GEM and REIN are not

suitable for scenarios in which the proportion of unmatching
subscriptions is high. TAMA [40] is an approximate matching
algorithm, which means that it can introduce false positives
into the result set.
PS-Tree can be interpreted to store intervals and allows

efficient querying of which stored intervals contain a given
point. Segment-Tree [11] and Interval-Tree [10] are two
index structures that provide similar capabilities. Thus,
both approaches are related to PS-Tree. One limitation of
Segment-Tree is that it is a static structure, meaning that
Segment-Tree cannot be modified after it is built. A vari-
ant [4] of Segment-Tree supports dynamic updates at the
cost of extra memory. Interval-Tree does not have this
limitation but presents more expensive querying. Compared
to Segment-Tree and Interval-Tree, PS-Tree achieves good
querying performance, as shown in Section 7.5. Classical
string and bit-vector tree indexing structures, such as a
trie [12] and Radix-, Patrica- and Suffix-tree [29, 37], present
a similar structure as that of PS-Tree. However, they are
different because they do not provide the function to match
attribute-value pairs against predicates.

3. MATCHING MODEL
3.1 Expression Language

Predicate: A predicate is a triple consisting of an at-
tribute, an operator and a set of values. A predicate is
denoted as P attr,op,vals(x), or more concisely as P (x). The
attribute name P attr uniquely represents a dimension. A
predicate may contain more than one value. The number of
values is determined by the operator. For example, if the
operator is “=”, the predicate contains a single value; if the
operator is “∈”, the predicate contains a set of values.

The expressiveness of the predicates is determined by the
supported attribute value types and operators. To achieve
high expressiveness, the predicates in our expression lan-
guage support the standard relational operators (<,≤,=, 6=
, >,≥) and set operators (∈, /∈) as well as SQL’s BETWEEN
operator (in) on numerical, enumeration, and string do-
mains.

Subscription: A subscription is a conjunctive Boolean
expression over predicates. Suppose that the total number
of dimensions is n. Formally, a subscription S is defined
over an n-dimensional space as follows:

S = {P attr,op,vals
1 (x1) ∧ ... ∧ P attr,op,vals

k (xk)}, k ≤ n

Different predicates in the same subscription are required
to belong to different dimensions: P attr

i 6= P attr
j , if i 6= j.

We refer to the size of a subscription S, denoted by |S|, as
the number of predicates in S.
Event: An event contains a set of attribute-value pairs.

Formally, an event E is defined over an n-dimensional space
as follows:

E = {〈attr1, val1〉, ... , 〈attrk, valk〉}, k ≤ n
For the same event, different attribute-value pairs are re-

quired to belong to different dimensions: attri 6= attrj ,
if i 6= j. We refer to the size of an event E, denoted by
|E|, as the number of attribute-value pairs in E.

3.2 Matching Semantics
A predicate accepts an input value x and outputs a Boolean

value indicating whether that predicate constraint is satis-
fied:

253



P attr,opt,vals(x)→ {True, False}
A predicate P attr,opt,vals(x) matches with an attribute-

value pair 〈attr, val〉, denoted by P attr,opt,vals(x) ' 〈attr,
val〉, if the following condition is satisfied:

{P attr = attr} ∧ {P attr,opt,vals(val) = True}
If a predicate of a subscription S matches with an attribute-

value pair 〈attr, val〉, we say that the subscription matches
with that attribute-value pair, denoted by S ' 〈attr, val〉.
Furthermore, a subscription S matches with an event E,
denoted by S ' E, if the following condition is met:

∀P (x) ∈ S → {∃〈attr, val〉 ∈ E} ∧ {P (x) ' 〈attr, val〉}

Given an event E and a set of subscriptions, retrieve all
the subscriptions matched by E. We refer to this problem
as the Boolean expression matching problem.

3.3 Predicate Selectivity
Boolean expression matching can be seen as a process for

filtering out unmatching subscriptions for a given event. We
observe that different predicates have different pruning ca-
pacities, i.e., predicate selectivity. For a subscription S, we
define the selectivity of its predicate P (x) as the probabil-
ity that S is identified as unmatching if P (x) is used as the
pruning predicate for an arbitrary event.

The selectivity of a predicate is determined by three fac-
tors: (1) the distribution of the event workload, (2) the op-
erator of the predicate, and (3) the values of the predicate.
Since the whole event workload is often unknown in advance,
in our algorithms, we use statistics over historical events to
calculate the selectivity of a predicate: a predicate with a
higher number of matching events is considered to have lower
selectivity. The advantage of our algorithms is that PS-Tree
can be used to quickly obtain the number of matching his-
torical events for a predicate. If no historical events exist,
we heuristically rank the selectivity of predicates by their
operators and values. The selectivity ranking of operators
is {=} > {∈} > {in} > {<,≤, >,≥} > {/∈} > {6=}. When
the operators have the same selectivity, we consider pred-
icates with wider value sets to have lower selectivity. For
example, we consider the selectivity of {attr, in, [1, 10]} to
be lower than the selectivity of {attr, in, [1, 5]}.

4. PS-TREE DESIGN
PS-Tree is a novel tree index for subscriptions. The idea

behind PS-Tree is to divide the set of values represented
by all predicates into disjoint subsets, here referred to as
predicate spaces. In other words, a predicate space is a
value range in the predicate’s dimension (i.e., value domain).
Then, we construct a many-to-many relationship between
predicate spaces and subscriptions. Thus, the problem of
matching an attribute-value pair against a set of subscrip-
tions is transformed into the problem of locating the pred-
icate space to which an attribute-value pair belongs, which
can be efficiently supported by PS-Tree.

4.1 PS-Tree Structure
PS-Tree contains two types of nodes: leaf nodes and inner

nodes. A leaf node represents a predicate space, while an
inner node represents an “element” of the represented at-
tribute values. Elements are specified differently for differ-
ent value types. For example, we specify elements as digits

for the integer type. The root node of PS-Tree is a special
inner node that represents the starting element of the repre-
sented attribute values. The inner nodes on the path from
the root node to a leaf node construct the represented at-
tribute value and act as the boundary between two adjacent
predicate spaces.

As shown in Fig. 2(a), an inner node contains three leaf
node links (l, e, g) and an array of links to child inner nodes.
The length of the inner node link array is set as the number
of different elements. If an inner node corresponds to an
attribute value, say, v, l of this inner node links to the leaf
node whose predicate space is less than v, e links to the leaf
node whose predicate space is equal to v, and g links to the
leaf node whose predicate space is greater than v. As an
optimization, e can link to the same leaf node as l and g.
For the root node, a special consideration is that g links to
the first leaf node, and l links to the last leaf node.

InnerNode {
LeafNodeLink l;
LeafNodeLink e;
LeafNodeLink g;
InnerNodeLink p[LENGTH];

}

LeafNode {
LeafNodeLink next;
Integer counter;
list<Sub> subLinkedList;
BloomFilter signature;
Integer spaceId;

}

(a) Node design
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(b) PS-Tree index example

Figure 2: PS-Tree index structure

In PS-Tree, a leaf node contains a next link, a predicate
counter, an event counter, a subscription linked list and a
signature. The next link points to another leaf node whose
predicate space is adjacent and greater than that leaf node’s
predicate space. The predicate counter equals the number of
predicates covering1 the current leaf node’s predicate space.
The event counter equals the number of historical events
that match with the current leaf node’s predicate space. The
subscription linked list contains links to subscriptions. The
signature is the Bloom filter created from the subscription
IDs. When a predicate of a subscription covers the predicate
space of a leaf node, the ID of that subscription is inserted
into the signature of that leaf node. The sub linked list and
the signature are only required by PSTBloom. For PSTHash,
a leaf node maintains a unique predicate space ID, which is
not required by PSTBloom. As a result, we have two versions
of PS-Tree, PS-TreeB and PS-TreeH , which have different
space complexities.

The elements are specified differently for different value
types. In this paper, we use the 8-bit byte type to illus-
trate the design of PS-Tree. Fig. 2(b) shows a PS-Tree in-
stance with two subscriptions, S1{attr, in, [−5,−1]} and S2

{attr, in, [1, 5]}, indexed. Each of these subscriptions con-
tains one predicate in the dimension attr. In this exam-
ple, the value type of this dimension is an 8-bit byte. For a
byte, which is stored as a binary complement, we specify the
most significant bit, the next 3 bits, and the last 4 bits as
an element. Take the attribute value −5 as an example; its
elements are “−”, “7” and “11”. In this PS-Tree instance,

1In this paper, we use the term cover to indicate that an
interval contains another interval or a point.
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there are five leaf nodes. Correspondingly, the whole value
domain [−128, 127] of the dimension attr is divided into five
predicate spaces: [−128,−5), [−5,−1], (−1, 1), [1, 5], and
(5, 127]. These predicate spaces are mapped to the follow-
ing five subscription sets, respectively: ∅, {S1}, ∅, {S2},
and ∅. Given an attribute value pair 〈attr, 2〉, the predi-
cate space [1, 5] to which it belongs can be quickly located
through PS-Tree. Subsequently, the matching subscription
set {S2} can be directly obtained.

4.2 Index Construction
Alg. 1 processes the inserted predicates and constructs the

PS-Tree index. InsertPredicate takes two parameters, pred
and pstree, as input. pred is the predicate to be inserted.
The output is a list of leaf nodes whose predicate spaces
are covered by the inserted predicate. InsertPredicate ad-
dresses predicates differently for different operators. Alg. 1
shows how the operator “≥” is handled. Other operators
are handled in a similar manner.

Algorithm 1 InsertPredicate(pred, pstree)

1: if pred.op is ≥ then
2: startNode←Partition(pred.vals[0], pred.op, pstree)
3: endNode←pstree.root.l

4: while startNode 6= endNode.next do
5: startNode.predCounter++
6: leafNodes.add(startNode)
7: startNode←startNode.next
8: return leafNodes

Algorithm 2 Partition(val, op, pstree)

1: currNode←pstree.root
2: for each elem ∈ val do
3: path.push(currNode, elem)
4: if currNode.p[elem] = null then
5: currNode.p[elem]←CreateInnerNode()

6: currNode←currNode.p[elem]

7: if currNode.e = null then
8: iRNode←GetRNode(path)
9: iLNode←GetLNode(iRNode, pstree.root)

10: PartitionLeafNode(currNode, iLNode, op)
11: else
12: PartitionLeafNode(currNode, op)

13: return currNode.e

Algorithm 3 MatchPair(pair, pstree)

1: currNode←pstree.root
2: for each elem ∈ pair.val do
3: path.push(currNode, elem)
4: if currNode.p[elem] 6= null then
5: currNode←currNode.p[elem]
6: else
7: iRNode←GetRNode(path)
8: iLNode←GetLNode(currNode, pstree.root)
9: return iLNode.l

10: return currNode.e

Partition is a function invoked by InsertPredicate to par-
tition a predicate space in a PS-Tree. The input parameters
include a value, an operator, and a PS-Tree. The output is
a leaf node whose predicate space covers the input value.
As shown in Alg. 2, if not all inner nodes corresponding to

that value exist, new inner nodes are created. The function
GetRNode is used to locate the inner node adjacent to and
to the right of the current inner node. GetLNode is used
to locate the minimal left inner node. PartitionLeafNode
is used to partition the predicate space of a leaf node and
create new leaf nodes. Except for the space ID and the next
link, a newly created leaf node copies other content from the
leaf node to be partitioned. The detailed specifications and
explanation of GetRNode, GetLNode, CreateInnerNode and
PartitionLeafNode are presented in the technical report [21].

4.3 Query Processing
Alg. 3 matches an attribute-value pair against a PS-Tree

to locate the predicate space to which it belongs. Two sit-
uations can occur: (1) all the inner nodes corresponding to
the value in that attribute-value pair exist, in which case
the last inner node’s link e is returned, or (2) not all cor-
responding inner nodes exist, in which case GetRNode and
GetLNode are invoked to locate the inner node whose l links
to the leaf node with the predicate space covering the value.

4.4 Dynamic Index Adjustment
PS-Tree supports dynamic index adjustment by providing

the function DeletePredicate, which is used to delete the out-
dated predicates and nodes from a PS-Tree. As mentioned
in Sec. 4.1, every leaf node contains a predicate counter,
which is equal to the number of predicates covering the cur-
rent leaf node’s predicate space. When the predicate counter
is zero, the corresponding leaf node is deleted to save mem-
ory. The implementation details and complexity analysis of
DeletePredicate and the subscription deletion operation of
PSTBloom and PSTHash are presented in [21].

Here, we give an additional example that focuses on pred-
icate space partitioning and dynamic PS-Tree index adjust-
ment. Suppose, initially, that there are two subscriptions:
S1{age, in, [20, 60]} and S2{age, in, [30, 80]}. The value do-
main of the “age” dimension is [1, 100]. Therefore, at the be-
ginning, the value domain is divided into 5 predicate spaces,
[1, 20), [20, 30), [30, 60], (60, 80] and (80, 100], with the coun-
ters 0, 1, 2, 1 and 0, respectively. When S2 is removed, the
counters become 0, 1, 1, 0, 0, respectively. Then, the pred-
icate space [20, 30) is merged with [30, 60], and (60, 80] is
merged with (80, 100]. As a result, there are three predicate
spaces remaining: [1, 20), [20, 60], and (60, 100].

4.5 Expressiveness
PS-Tree offers high expressiveness by supporting different

value types and operators. To support a value type (integer,
float, string, etc.), the only requirement is to specify the
elements of values of that type. As shown in Fig. 2(b),
we divide a byte type value into three elements. For other
integer types, the elements are similarly specified as digits.
For example, a 32-bit integer type value is divided into nine
elements. We use characters as elements for the string type.
For the float type, the most significant bit, the exponent bits
and the mantissa bits are specified as elements.
PS-Tree supports an expressive set of operators; for num-

bers (e.g., integer, float and double), enumerations, and
strings, the supported operations include relational oper-
ators (<,≤,=, 6=, >,≥), set operators (∈, /∈), and the SQL
operator (in). The only requirement to support a specific
operator in PS-Tree is that the predicate containing that
operator is able to be divided into disjoint predicate spaces.
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A further advantage of PS-Tree is that it isolates the spe-
cific value types and operators from the upper matching
layer of PSTBloom and PSTHash. Thus, the upper layer works
in the same way for different value types and operators.

4.6 Time and Space Analysis
Matching Time Complexity: In PS-Tree, matching an

attribute-value pair against a set of subscriptions is achieved
by locating the predicate space to which the attribute-value
pair belongs. As shown in Alg. 3, the number of operations is
linear in the number of elements of the represented attribute
value. Thus, the matching complexity is O(Ne), where Ne

is the number of elements in an attribute value. For the
integer type, Ne equals nine; therefore, the matching time
complexity is only O(1).

Predicate Insertion Time Complexity: In Alg. 1, two
steps are needed to insert a predicate into a PS-Tree: (1)
insert predicate values into the PS-Tree and (2) determine
all leaf nodes covered by the predicate. The time complex-
ity of the first step is also O(Ne). For the second step, the
number of operations needed equals the number of predi-
cate spaces covered by the predicate. In the worst case, the
number of predicate spaces in a PS-Tree is 2∗Np +1, where
Np represents the number of predicates that have been in-
serted. Therefore, the predicate insertion time complexity
is O(Ne +Np).

Space Complexity: PS-Tree requires space for inner
nodes and leaf nodes. The number of leaf nodes is equal to
the number of predicate spaces. In the worst case, the num-
ber of inner nodes is Ne times the number of leaf nodes. As
analyzed above, the number of leaf nodes is O(Np). There-
fore, the space complexity of PS-TreeH , which is used by
the PSTHash algorithm, is O(Ne ∗Np). For PS-TreeB , which
is used by the PSTBloom algorithm, additional memory is
needed to store the subscription list. The space complexity
of PS-TreeB is O(Np ∗ (Ne + Np)). Note that this is the
worst-case space complexity.

5. PSTBLOOM ALGORITHM
Based on PS-Tree, we first design the PSTBloom algo-

rithm. The idea behind PSTBloom is to select a predicate
with high selectivity as the access predicate for each sub-
scription. Then, the subscription is attached to those leaf
nodes corresponding to its access predicate. The ID of the
subscription is inserted into the Bloom filter signature of the
leaf nodes corresponding to its other predicates. When an
event is received, it is matched against a number of PS-Trees
to locate its associated leaf nodes. Then, the set of sub-
scriptions whose access predicates match with that event is
directly located. Next, we further filter out unmatching sub-
scriptions through the signatures of those leaf nodes. The
correctness of PSTBloom is based on Lemma 1.

Lemma 1 Given an event E, the matching subscrip-
tions for E are contained in the candidate subscription set
{S(〈attri, vali〉) | 〈attri, vali〉 ∈ E}, where S(〈attri, vali〉)
represents the subscriptions whose access predicates match
with the i-th attribute-value pair 〈attri, vali〉 of E.

We sketch the proof for Lemma 1 as follows. If a sub-
scription S matches with an event E, based on the matching
semantics in Sec 3.2, we know that there exists a matching
attribute-value pair in E for every predicate of S. Therefore,
the access predicate of S has a matching attribute-value pair
〈attri, vali〉 in E. Thus, S is contained in {S(〈attri, vali〉)}.

5.1 PSTBloom Structure
In PSTBloom, a PS-Tree is constructed for each dimension.

As shown in Fig. 2(a), each leaf node of a PS-Tree contains
a subscription linked list and a signature. Each link in the
subscription linked list points to a subscription whose access
predicate covers the current leaf node’s predicate space. The
signature is the Bloom filter over a set of subscription IDs.
Each such subscription has one predicate (except the access
predicate) covering the current leaf node’s predicate space.
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Figure 3: PSTBloom index structure

The example in Fig. 3 illustrates the PSTBloom index struc-
ture. In this example, the value type is byte. There are three
subscriptions:

S1 : {attr1, <,−5}, {attr2, in, [1, 5]}
S2 : {attr1, in, [−5,−1]}, {attr2, <, 1}
S3 : {attr1, in, [−5,−1]}, {attr2, >, 5}

PSTBloom constructs two PS-Trees, denoted as attr1 and
attr2. For S1, {attr2, in, [1, 5]} is selected as the access pred-
icate, while for S2 and S3, {attr1, in, [−5,−1]} is selected as
the access predicate. As shown in Fig. 3, a link to S1 is in-
serted into the linked list associated with the leaf node with
the predicate space [1, 5] in the PS-Tree for attr2. Links to
S2 and S3 are inserted into the linked list associated with the
leaf node with the predicate space [−5,−1] of the PS-Tree

for attr1. The ID of S1 is inserted into the signature of the
leaf node with the predicate space [−128,−5) in the PS-Tree
for attr1. The ID of S2 and S3 is inserted into the signa-
ture of the leaf nodes with the predicate space [−128, 1) and
(5, 127] of the PS-Tree for attr2, respectively.

Algorithm 4 InsertSubscription(sub, pstb)

1: accPred←SelectAccPred(sub, pstree)
2: for each pred ∈ sub do
3: pstree←pstb.pstrees[pred.attr]
4: leafNodes←InsertPredicate(pred, pstree)
5: for each node ∈ leafNodes do
6: if pred = accPred then
7: node.subLinkedList.add(sub)
8: else
9: node.signature.add(sub.id)

5.2 Index Construction
Alg. 4 processes the inserted subscriptions. When a sub-

scription is received, the predicate with the highest selectiv-
ity is selected as the access predicate. Then, every predicate
is inserted into its corresponding PS-Tree. For each predi-
cate, a set of leaf nodes is returned after invoking the opera-
tion InsertPredicate presented in Alg. 1. Based on whether
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that predicate is an access predicate, different operations are
executed. If the predicate is an access predicate, a link to
the subscription is inserted into the subscription linked list
of each leaf node; otherwise, the subscription ID is inserted
into the signature of each leaf node.

5.3 Event Matching
As shown in Alg. 5, PSTBloom takes three steps to match

an event against subscriptions: (1) Match each attribute-
value pair in the event against the PS-Trees to locate a set
of leaf nodes. The subscriptions in the subscription linked
lists attached to these leaf nodes are candidate subscriptions.
(2) Prune a subscription if its ID is not contained in the
signature of the related leaf nodes. (3) Match the event
against the remaining subscriptions to further filter out false
positives. In this step, the access predicate no longer needs
to be checked.

Algorithm 5 MatchEvent(event, pstb)

1: for each pair ∈ event do
2: pstree←pstb.pstrees[pair.attr]
3: leafNode←MatchPair(pair, pstree)
4: leafNodes[pair.attr]←leafNode

5: for each node ∈ leafNodes do
6: for each sub ∈ node.subLinkedList do
7: isCandidate←True
8: for each pred ∈ sub do
9: if pred = sub.accPred then

10: Continue
11: nodeSign←leafNodes[pred.attr].signature
12: if ¬nodeSign.contain(sub.id) then
13: isCandidate←False; break

14: if isCandidate = True then
15: if Match(event, sub) = True then
16: matchingSubs.add(sub.id)

17: return matchingSubs

5.4 Time and Space Analysis
Matching Time Complexity: As analyzed in Sec. 4.6,

PS-Tree needs O(Ne) time to locate the predicate space
to which an attribute-value pair belongs. Therefore, for
PSTBloom, the time complexity to retrieve the candidate sub-
scriptions is O(|E| ∗ Ne), where |E| is the event size. The
total time complexity for event matching is O(|E|∗Ne+Nc),
where Nc is the number of candidate subscriptions.

Index Construction Time Complexity: To insert a
subscription, each of its predicates is inserted into a corre-
sponding PS-Tree. As analyzed in Sec. 4.6, the time com-
plexity of this operation is O(Ne + Np). Thus, the index
construction time complexity for PSTBloom is O(Ns ∗ |S| ∗
(Ne +Np)), where Ns is the number of subscriptions and |S|
is the subscription size.

Space Complexity: PSTBloom maintains a PS-Tree, more
specifically PS-TreeB , for each dimension. As analyzed in
Sec. 4.6, the space complexity of PS-TreeB is O(Np ∗ (Ne +
Np). To store all PS-Trees, PSTBloom requires O(Nd ∗Np ∗
(Ne + Np)) space, where Nd is the number of dimensions
and Np is the number of predicates in a dimension.

6. PSTHASH ALGORITHM
Although PSTBloom achieves good performance with re-

spect to event matching, index construction, and memory

use, it suffers from a limitation in addressing dense work-
loads because PSTBloom uses only one access predicate to
select candidate subscriptions. Given dense workloads, the
number of candidates could potentially be large.

To overcome this limitation, we design the PSTHash al-
gorithm, which is also based on PS-Tree. The idea behind
PSTHash is to select more than one, say, N , predicates with
high selectivity as access predicates for each subscription.
These access predicates are divided into a number of dis-
joint N-dim predicate spaces. Each N-dim predicate space
contains N predicate spaces. For an event, a subscription is
identified as a candidate only when all N access predicates
are matched.
PSTHash differs from PSTBloom in its method of identifying

candidate subscriptions. In PSTHash, a many-to-many hash
table between N-dim predicate spaces and subscriptions is
maintained. Given an event E, each attribute-value pair of
E is matched against a corresponding PS-Tree to identify
the predicate spaces to which the attribute-value pair be-
longs. In total, |E| predicate spaces can be found. Then,(|E|

N

)
N-dim predicate spaces are constructed. Through these

N-dim predicate spaces, the candidate subscriptions can be
directly retrieved by querying the hash table that relates
the N-dim predicate spaces and the subscriptions. Given
dense workloads, compared with PSTBloom, PSTHash identi-
fies fewer candidate subscriptions and achieves better match-
ing performance. Assuming that N is not greater than the
size of all events and subscriptions2, we formulate Lemma 2.

Lemma 2 Given an event E, the matching subscrip-
tions for E are contained in the candidate subscription set
{S(AVi1 , ..., AViN ) | {AVi1 , ..., AViN } ∈ E, ix 6= iy, x 6= y},
where S(AVi1 , ..., AViN ) represents the subscriptions whose
access predicates match with the i1-th to the iN -th attribute-
value pair of E.

We sketch a proof. If a subscription S matches with an
event E, based on Sec. 3.2, there exists a matching attribute-
value pair in E for every predicate of S. Therefore, any
access predicate of S also has a matching attribute-value
pair in E, which means that S is contained in a specific
S(AVi1 , ..., AViN ).

The number of access predicates N is an important con-
figuration parameter in PSTHash. When N is large, the ac-
cess predicates of a subscription are divided into more N-
dim predicate spaces, PSTHash consumes more memory, and
index construction becomes more expensive; however, the
matching performance improves, thus producing a trade-
off. The most suitable value of N is dependent on workload
and beyond the scope of this paper. For simplicity, in the
following sections, we always set N equal to two.

6.1 PSTHash Structure
In addition to a set of PS-Trees, PSTHash utilizes two

more data structures: a set of 2-dim predicate space IDs
and a hash table. A 2-dim predicate space ID is constructed
using 2 predicate space IDs. A predicate space ID is deter-
mined by a dimension ID and space ID pair. Thus, a 2-dim
predicate space ID is represented by 2 pairs of 〈dimension
ID, space ID〉. The pairs are ordered in ascending order
by their dimension ID values. The key of the hash table is
a 2-dim predicate space ID, and the associated value is a
subscription linked list.

2We use the method of PSTBloom to address subscriptions
and events whose size is less than N .
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Figure 4: PSTHash index structure

Fig. 4 illustrates the index structure of PSTHash. Here,
there are four subscriptions, all of which contain three pred-
icates.

S1 : {attr1,=, 1}, {attr2,=,−1}, {attr3, <, 0}
S2 : {attr1,=, 1}, {attr2,=,−1}, {attr3, >, 0}
S3 : {attr1,=, 1}, {attr2, <,−1}, {attr3,=, 0}
S4 : {attr1, <, 1}, {attr2,=,−1}, {attr3,=, 0}

In this PSTHash index example, S1 and S2 are associated
with the 2-dim predicate space whose ID is [1-2][2-2]. This
ID indicates that the 2-dim predicate space is constructed
using the second predicate space of attr1 and the second
predicate space of attr2. Similarly, S3 is associated with
[1-2][3-2], and S4 is associated with [2-2][3-2].

Assume that an event E {〈attr1, 1〉, 〈attr2,−1〉, 〈attr3, 2〉}
is received. The event is matched against these three PS-Trees.
Three predicate spaces to which E belongs are identified:
[1-2], [2-2] and [3-1]. These three predicate spaces are used
to construct three 2-dim predicate spaces: [1-2][2-2], [1-2][3-1],
and [2-2][3-1]. PSTHash uses these 2-dim predicate space IDs
as keys to retrieve the candidate subscriptions S1 and S2.
These two candidate subscriptions are evaluated, and the
matching subscription S2 is found.

6.2 Index Construction
Alg. 6 processes subscriptions for insertion. When a sub-

scription S is received, two predicates with high selectivity
are selected as access predicates. Then, each access predi-
cate is inserted into a corresponding PS-Tree. A set of leaf
nodes is returned after invoking InsertPredicate. Using the
dimension IDs and space IDs of those leaf nodes, a number
of 2-dim predicate space IDs are constructed. The subscrip-
tion is inserted into the hash table with the 2-dim predicate
space ID as the key. When InsertPredicate is invoked, pred-
icate spaces may need to be partitioned. In this situation,
the records associated with the old space ID in the hash ta-
ble are copied to new records using the new space ID as the
key.

Algorithm 6 InsertSubscription(sub, psth)

1: accPreds←SelectAccPreds(sub, pstree, 2)
2: for each pred ∈ accPreds do
3: pstree←psth.pstrees[pred.attr]
4: leafNodes←InsertPredicate(pred, pstree)
5: for each node ∈ leafNodes do
6: spaceIdSets[pred.attr].add(node.spaceId)

7: for each spaceId1 ∈ spaceIdSets[attr1] do
8: for each spaceId2 ∈ spaceIdSets[attr2] do
9: key = [attr1-spaceId1][attr2-spaceId2]

10: psth.hash[key].add(sub)

6.3 Event Matching
As shown in Alg. 7, PSTHash takes three steps to match an

event against the subscriptions: (1) Match each attribute-
value pair in the event against a corresponding PS-Tree to
obtain |E| predicate space IDs. (2) Construct

(|E|
2

)
2-dim

predicate space IDs using those predicate space IDs and
retrieve the candidate subscriptions. (3) Match the event
against these subscriptions to find matched subscriptions.
In this step, the two access predicates no longer need to be
checked.

Algorithm 7 MatchEvent(event, psth)

1: for each pair ∈ event do
2: pstree←psth.pstrees[pair.attr]
3: leafNode←MatchPair(pair, pstree)
4: predSpaces.add(pair.attr, leafNode.spaceId)

5: spaceIds←ConstructSpaces(predSpaces)
6: for each spaceId ∈ spaceIds do
7: subLinkedList←psth.hash[spaceId]
8: for each sub ∈ subLinkedList do
9: if Match(event, sub) = True then

10: matchingSubs.add(sub.id)

11: return matchingSubs

6.4 Time and Space Analysis
Matching Time Complexity: Similar to PSTBloom, the

time complexity of locating the predicate spaces to which an
event E belongs is O(|E| ∗Ne). The number of 2-dim predi-

cate spaces is
(|E|

2

)
. Therefore, the matching time complex-

ity for PSTHash is O(|E| ∗Ne +
(|E|

2

)
+Nc), where Nc is the

number of candidate subscriptions.
Index Construction Time Complexity: Given a sub-

scription, PSTHash needs to insert its access predicates into
PS-Trees and insert that subscription into a number of slots
in the hash table. For these two operations, the time com-
plexity is O(Ne+Np) and O((Np)2), respectively. Therefore,
the index construction complexity of PSTHash isO(Ns∗(Ne+
(Np)2)), where Ns is the number of subscriptions.

Space Complexity: PSTHash needs memory to store a
PS-Tree, more specifically, PS-TreeH , for each dimension.
As analyzed in Sec. 4.6, the space complexity of PS-TreeH
is O(Ne + Np). Np is the number of access predicates in a
dimension. PSTHash also needs memory for the hash table.
In the worst case, the number of records in the hash table
is Nd ∗ (Np)2, where Nd is the number of dimensions. Thus,
the space complexity of PSTHash is O(Nd∗Ne∗Np)+O(Nd∗
(Np)2) = O(Nd ∗Np ∗ (Ne +Np)).

7. EVALUATION
This section evaluates PSTBloom, PSTHash, and PS-Tree

using both synthetic and real-world datasets. BE-Tree, OpIn-
dex, Propagation, k-index, and SCAN (a sequential scan of
the subscriptions) are selected as baselines. With the excep-
tion of SCAN, these algorithms have been shown to exhibit
good performance in the literature3. PS-Tree is compared
with Segment-Tree and Interval-Tree, which allows one
to query which of the stored intervals contain a given point.

3We also compared PSTBloom and PSTHash with SIFT,
Gryphon, REIN, and GEM. These algorithms do not exhibit
comparable performance; thus, we omitted the experimen-
tal results to focus on better-performing algorithms.
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All algorithms are implemented in C4 and compiled with
gcc 4.8.4 using the optimization level O3 on a Ubuntu 14.04
system. All experiments were run on an Intel 2.66 GHz
machine with 512 GB of memory.

In the experiments, we consider a variety of controlled ex-
perimental conditions: workload size, workload distribution,
dimension number, dimension cardinality, subscription size,
event size, matching probability, and predicate selectivity.

7.1 Workloads
We first used the BE-Gen workload generator [33] to gen-

erate synthetic workloads. Table 1 summarizes the parame-
ters and settings, with the default values highlighted in bold.
To evaluate scalability, we vary the number of subscriptions
from 300K to 100M. The attributes of the predicates were
drawn from the distribution P (r) = C

rα
, r 6= 0. When α is

0, the distribution is Uniform; otherwise, the distribution
is Zipf. The number of dimensions varies from 100 to 30K.
The default number of dimensions is set to 100 and 30K to
represent low and high dimensionality, respectively. We vary
the dimension cardinality from 3 to 1K. We vary the aver-
age subscription size from 5 to 30 and the event size from
30 to 130. The matching probability varies from 0.1% to
50%. The equality operator ratio varies from 0% to 100% to
represent different predicate selectivities. Compared with
the related approaches, our workloads are comprehensive,
thereby exploring a richer parameter space. For example,
the workloads used by OpIndex all follow the Uniform dis-
tribution, and the number of subscriptions increases to only
1M in BE-Tree.

Table 1: Parameters of the Synthetic Datasets

Subscription Number 300K, 1M, 3M, 10M, 30M, 100M
The α in Zipf 0, 1, 2, 3, 4, 5
Dimension Number 100, 300, 1K, 3K, 10K, 30K
Dimension Cardinality 3, 10, 30, 100, 300, 1K
Avg. Subscription Size 5, 10, 15, 20, 25, 30
Avg. Event size 30, 42, 54, 66, 78, 90
Matching Probability 0.001, 0.005, 0.01, 0.05, 0.1, 0.5
Equal. Operator Ratio 0, 0.2, 0.4, 0.6, 0.8, 1.0

The second synthetic dataset uses the query logs from the
SIGMOD 2013 contest to represent keyword-based subscrip-
tions [1]. We transform a query into a Boolean expression
whereby each keyword is treated as an equality predicate. If
a keyword has more than six characters, we transform it into
a predicate using the first three characters as the attribute
name and the next three characters as the attribute value.
For example, “boolean” is transformed into {boo,=, “lea”}.
Otherwise, a keyword is transformed into a predicate using
the first half of its characters as the attribute name and the
remaining characters as the attribute value. For example,
“vldb” is transformed into {vl,=, “db”}. This transforma-
tion results in Boolean expressions in a space of 17,577 di-
mensions. The document dataset is transformed into events
using a similar method.

In addition to these synthetic datasets, we also derived
a real-world workload based on a display ads dataset of an

4The authors of some related approaches kindly provided
the source code of their implementations [33, 39, 30]. For
consistency, we reimplemented OpIndex and REIN in C be-
cause the original versions were written in C++.

online shopping site for subscriptions and events. When a
user visits the site, product advertisements are shown to
the user. In the backend advertisement inventory, an adver-
tisement specifies conditions to promote products to users.
The conditions include channel (e.g., mobile, PC, or tablet),
region (e.g., CA, DE, or CN), ad position, etc. By translat-
ing conditions into predicates, we model advertisements as
subscriptions. When a user interacts with the website (e.g.,
surfs or logs in), the user’s session is bound to a set of at-
tributes such as the login channel, the login region and the
user’s profile. By translating the profile and attributes into
attribute-value pairs, we model each session as an event. For
example, if a user is male, the resulting event contains an
attribute-value pair 〈gender,male〉.

7.2 Experiments on Synthetic Workloads
The first set of experiments was conducted on the syn-

thetic datasets. We first report on the index construction
time. Then, we evaluate the matching performance with re-
spect to workload size, distribution, number of dimensions,
etc. Finally, the memory use of each index is reported.

7.2.1 Index Construction Time
Our experiments show that not only workload size but

also the number of dimensions, subscription size, and equal-
ity operator ratio affect the index construction time. As
shown in Fig. 5(a), all the algorithms’ index construction
times increase with the number of subscriptions. Among the
algorithms shown, PSTBloom exhibits the lowest index con-
struction time: when there are up to 100M subscriptions,
compared with the next-best algorithm BE-Tree, PSTBloom
reduces the index construction time by 78%.
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Figure 5: Index Construction Time

Fig. 5(b) shows how the number of dimensions affects the
index construction time. As shown, BE-Tree and Propagation

increase quickly with the number of dimensions, whereas
PSTBloom, PSTHash and k-index are not sensitive to the
number of dimensions. For OpIndex, after each subscrip-
tion is inserted, its index needs to be reordered before event
matching can resume. An optimization adopted by OpIndex

is to sort its index after all subscriptions are inserted. The
light brown line shows the index construction time of OpIndex
when this optimization is utilized. However, when the ar-
rivals of subscriptions and events overlaps, OpIndex cannot
operate in this manner. The brown line shows the index
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construction time of OpIndex when the index is kept up to
date after each subscription is inserted. As shown, for dense
workloads (when the number of dimensions is small), the
index construction time of OpIndex is three orders of mag-
nitude larger than that of PSTBloom, BE-Tree, and PSTHash.

Fig. 5(c) shows how the average subscription size affects
the index construction time. The index construction time
of PSTBloom, OpIndex and k-index increases with the sub-
scription size. BE-Tree and Propagation are not sensitive
to subscription size, whereas the index construction time of
PSTHash decreases. PSTHash possesses this advantage be-
cause it builds indexes only on access predicates. When
there are more predicates in each subscription, access pred-
icates with high selectivity are more likely to be selected.

The effect of the equality operator ratio on the index con-
struction time is shown in Fig. 5(d). All algorithms show a
decrease in the index construction time when the equality
operator ratio increases. PSTHash decreases most quickly
because a higher equality operator ratio results in fewer
predicate spaces being covered by the inserted predicate.
PSTBloom achieves the lowest index construction time. For
a similar reason, the advantage of PSTBloom is more obvious
when the equality operator ratio is high.

7.2.2 Matching Time
The matching time is among the most important metrics

for Boolean expression matching algorithms. In this sec-
tion, we present extensive experiments under a variety of
controlled conditions. In particular, the number of dimen-
sions is a distinguishing factor among matching algorithms.
For each controlled condition, we ran two experiments: (1)
with 100 dimensions and (2) with 30K dimensions. Since
the default number of subscriptions is 1M, these settings
represent dense and sparse workloads, respectively.

Workload Size: We consider the matching time as we
increase the number of subscriptions processed. As illus-
trated by Fig. 6, all algorithms scale linearly with respect
to the number of subscriptions. Among them, PSTHash in-
creases slowest, especially for dense workloads. In Fig. 6(a),
when there are 300K subscriptions, PSTBloom performs best.
Compared with OpIndex, PSTBloom reduces the matching
time by 84%. When the number of subscriptions is greater
than 1M, PSTHash performs best. When there are up to
100M subscriptions, PSTHash reduces the matching time by
92% compared to OpIndex. In Fig. 6(b), PSTHash performs
as well as OpIndex when the number of subscriptions in-
creases to 30M, and PSTBloom always performs best.
Workload Distribution: Workload distribution is an-

other distinguishing factor among matching algorithms. In
Fig. 7, the workload distribution is P (r) = C

rα
. When α

is 0, the distribution is Uniform; when α is greater than 0,
the distribution is Zipf. Given a Zipf distribution, a few
popular dimensions are associated with a large number of
subscriptions, resulting in dense workloads. As shown, un-
der the Zipf distribution, PSTHash performs best regardless
of the number of dimensions evaluated (here, 100 or 30K).
An interesting finding is that OpIndex outperforms BE-Tree
under the Uniform distribution; however, BE-Tree outper-
forms OpIndex under the Zipf distribution because the index
retrieval time of OpIndex increases when there are a large
number of subscriptions associated with a few popular di-
mensions. For a similar reason, under the Zipf distribution,
k-index performs even worse than SCAN.

Number of Dimensions: As shown in Fig. 8(a), when
the number of subscriptions is fixed and the number of di-
mensions increases, the matching times of all algorithms de-
crease, except for those of Propagation and SCAN. Compared
to PSTHash and BE-Tree, the matching times of PSTBloom,
OpIn- dex and k-index decrease quickly. Intuitively, these
three algorithms are more suitable for high-dimensional work-
loads. However, the prerequisite is that the number of sub-
scriptions does not increase simultaneously. In Fig. 8(b),
we increase the number of dimensions while keeping the
number of subscriptions per dimension fixed. As shown,
PSTBloom, OpIndex and k-index are no longer sensitive to
the number of dimensions. By combining the findings of
these two experiments, we observe that PSTBloom, OpIndex
and k-index are more suitable for sparse workloads. In this
experiment, when the number of dimensions is greater than
300, PSTBloom always achieves the best performance.
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Figure 6: Varying Workload Size on the X-axes
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Figure 7: Varying Workload Distribution on the X-axes
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Figure 8: Varying Number of Dimensions on the X-axes

Dimension Cardinality: Fig. 9 shows how the dimen-
sion cardinality affects the matching time. As shown in
Fig. 9(a), PSTHash performs best when the dimension car-
dinality is less than 300, while PSTBloom performs best for
higher-dimension cardinalities. For example, when the di-
mension cardinality is 1K, compared to that of OpIndex, the
matching time of PSTBloom is reduced by up to 91%.

Subscription Size: Another important workload char-
acteristic is the subscription size. As shown in Fig. 10(a),
given dense workloads, PSTBloom, PSTHash, BE-Tree, and
Propagation all present lower event matching times as the
average subscription size increases because these algorithms
select predicates with high selectivity to prune subscriptions.
When there are more predicates in a subscription, predicates

260



with high selectivity are more likely to be found. Under
sparse workloads, the effect of subscription size is not ob-
vious, except for Propagation. In these experiments, only
OpIndex performs worse as the average subscription size in-
creases. When the average subscription size increases from
5 to 30, the matching time of OpIndex increases by 350%
and 200% for dense and sparse workloads, respectively, be-
cause the index size of OpIndex increases linearly with the
total number of predicates. Larger subscription sizes result
in larger index scanning costs.
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Figure 9: Varying Dimension Cardinality on the X-axes
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Figure 10: Varying Subscription Size on the X-axes
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Figure 11: Varying Event Size on the X-axes

Event Size: When the average number of attribute-value
pairs of an event increases, there are more candidate sub-
scriptions. As shown in Fig. 11, under both dense and
sparse workloads, all algorithms, except for Propagation

and SCAN show higher matching times as the event size in-
creases. Given dense workloads, when the average event
size increases to 90, PSTHash performs best. Compared to
BE-Tree, PSTHash reduces the matching time by 85%. Given
sparse workloads, when the average event size increases to
90, PSTBloom performs best. Compared to OpIndex, PSTBloom
reduces the matching time by 80%.

Matching Probability: We refer to the matching prob-
ability as the expected ratio of subscriptions that match for
a given event. A higher matching probability means that
more subscriptions match. In Fig. 12, with the exception of
Propagation and SCAN, the algorithms’ matching times in-
crease with the matching probability under both dense and
sparse workloads. When the matching probability increases
to 50%, BE-Tree, OpIndex and Propagation show similar
matching times as that of SCAN. In contrast, both PSTBloom

and PSTHash need only approximately 25% of this matching
time for both dense and sparse workloads.

Equality Operator Ratio: In this experiment, we study
the effect of the ratio of equality vs. nonequality predi-
cates per subscription. Fig. 13 shows that the general trend
is that the matching time of all algorithms decreases as
the percentage of equality predicates increases. Most no-
tably, when subscriptions consist of only equality predicates,
Propagation achieves a substantial performance gain and is
as good as PSTBloom under sparse workloads. Given dense
workloads, the matching performance of PSTHash always
ranks first. Moreover, when the equality operator ratio is
higher, the advantage of PSTHash becomes more obvious.
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Figure 12: Varying Matching Probability on the X-axes
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Figure 13: Varying Equal Operator Ratio on the X-axes

7.2.3 Memory Consumption
All indexes considered in this paper are memory resident.

Here, we evaluate memory use. To accurately report the
memory consumption of each index, we calculate the mem-
ory use of the runtime processes before and after all sub-
scriptions are inserted into each index. Fig. 14(a) shows
the memory use as the number of subscriptions increases.
Unsurprisingly, all algorithms require more memory when
there are more subscriptions. However, the memory use of
PSTBloom and PSTHash increases slower than that of OpIndex
and BE-Tree because the number of predicate spaces main-
tained in PS-Trees increases slower than the number of sub-
scriptions. Fig. 14(b) shows the memory use as the aver-
age subscription size increases: OpIndex and k-index re-
quire more memory, BE-Tree and Propagation remain sta-
ble, and PSTBloom and PSTHash need less memory. In these
two experiments, Propagation needs the least amount of
memory. Compared with BE-Tree and OpIndex, PSTBloom
reduces memory use by up to 94% and 99%, respectively.

7.3 Experiments on Query Logs
In this synthetic dataset, which stems from query logs,

there are 2.1M subscriptions in a space of 17,577 dimen-
sions. On average, each subscription contains 2.78 predi-
cates, and each event contains 93.07 attribute-value pairs.
As shown in Fig. 15(a), under this high-dimensional work-
load, the matching performance ranking is in the follow-
ing order: PSTBloom, OpIndex, PSTHash, BE-Tree, k-index,
Propagation, and SCAN. OpIndex, PSTHash, and BE-Tree
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have similar matching latencies, and PSTBloom performs con-
siderably better than these three algorithms. Fig. 15(b)
shows the index construction time. The ranking of the in-
dex construction time is the same as that of the matching
time. The difference is that PSTBloom and BE-Tree have
similar index construction times as OpIndex and k-index,
respectively.
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Figure 14: Memory Consumption
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Figure 15: Varying Workload Size on the X-axes

7.4 Experiments on the Ads Dataset
By transforming advertisements into subscriptions, in this

workload, we obtain 3M subscriptions. The number of predi-
cates in a subscription ranges from 1 to 56. On average, each
subscription contains 8 predicates, and each event contains
20 attribute-value pairs. The number of dimensions is 122,
which means that this workload is a dense workload.

As shown in Table 2, under this workload, PSTHash achieves
the best matching performance, followed by PSTBloom. The
matching performance of BE-Tree is a little better than that
of OpIndex. Compared with BE-Tree, PSTHash reduces the
matching time by 89%. PSTBloom achieves the shortest in-
dex construction time. Moreover, compared with BE-Tree

and OpIndex, PSTBloom needs less memory. This experimen-
tal result is roughly consistent with the experimental results
on synthetic workloads.

Table 2: Experiments on the Ads Dataset

Index Matching Construction Memory
SCAN 435.27 ms - -
k-index 616.42 ms 140.76 s 7.32 GB
Propagation 168.73 ms 62.43 s 14.41 MB
OpIndex 3.21 ms 24.92 s 574.38 MB
BE-Tree 2.26 ms 13.70 s 393.21 MB
PSTBloom 0.82 ms 7.81 s 55.93 MB
PSTHash 0.24 ms 8.22 s 759.72 MB

7.5 Interval-Tree, Segment-Tree, and PS-Tree
PS-Tree, more precisely, PS-TreeB , can be interpreted to

store intervals and allows querying the stored intervals that
contain a given point. Interval-Tree [10] and Segment-Tree

[11] are two index structures that provide similar capabili-
ties. Thus, both represent approaches related to PS-Tree.
Here, we conduct the following comparative evaluations.

Table 3: PSTree Querying Performance

Index Querying Construction Memory
SCAN 23.11 s - -
Interval-Tree 2.52 s 16.02 ms 1.61 MB
Segment-Tree 6.27 ms 29.71 ms 6.86 MB
PS-Tree 0.71 ms 91.88 ms 54.13 MB

In this group of experiments, we compare the query time,
index construction time and memory consumption of PS-Tree,
Segment-Tree and Interval-Tree. SCAN, which represents
the naive scanning method, is used as a baseline. Table 3
shows the experimental results when there are 100K inter-
vals and 100K query points. As shown in this table, al-
though PS-Tree exhibits higher index construction time and
memory use, its query performance is the best. Compared
to Interval-Tree and Segment-Tree, PS-Tree reduces the
matching time by 99.97% and 89%, respectively, which sug-
gests that PS-Tree is more suitable for Boolean expression
matching, where the number of queries is much higher than
the number of intervals. Moreover, PS-Tree supports more
operators, such as “∈” and “>”, which are not supported
by Segment-Tree and Interval-Tree. Another advantage
of PS-Tree over Segment-Tree and Interval-Tree is that
the PSTHash algorithm can only be supported by PS-Tree.

8. CONCLUSIONS
In this paper, we proposed a new index, PS-Tree, which

efficiently constructs a many-to-many relationship between
predicate spaces and subscriptions. Through PS-Tree, the
problem of predicate matching is transformed into a problem
of locating the predicate space to which an attribute-value
pair belongs. PS-Tree offers excellent query performance
and good expressiveness.

Based on PS-Tree, we first propose the PSTBloom algo-
rithm. PSTBloom selects a predicate with high selectivity
as the access predicate for each subscription. Then, the
subscription is associated with its corresponding leaf nodes.
Through PS-Tree, PSTBloom can efficiently filter out all the
subscriptions whose access predicates do not match with a
received event. Then, Bloom filter signatures are used to
further filter out most unmatching subscriptions. PSTBloom

is efficient at handling many workload distributions, espe-
cially high-dimensional workloads. PSTBloom achieves fast
index construction and requires a small amount of mem-
ory. However, PSTBloom and other algorithms do not meet
the challenge presented by dense workloads. To overcome
this limitation, we further propose the PSTHash algorithm.
PSTHash selects more than one access predicate for each sub-
scription and constructs a many-to-many relationship be-
tween multidimensional predicate spaces and subscriptions.
Only when an event matches with all access predicates of a
subscription is the subscription identified as a candidate sub-
scription. Compared with PSTBloom and other existing al-
gorithms, PSTHash achieves the best matching performance
for dense workloads.

We conducted extensive experiments using both synthetic
and real-world datasets. The results show that our algo-
rithms outperform state-of-the-art approaches for both high-
dimensional and dense workloads.
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