
Optimal Column Layout for Hybrid Workloads

Manos Athanassoulis
∗

Boston University

mathan@bu.edu

Kenneth S. Bøgh
†

Uber Technologies Inc.

bgh@uber.edu

Stratos Idreos
Harvard University

stratos@seas.harvard.edu

ABSTRACT
Data-intensive analytical applications need to support both efficient
reads and writes. However, what is usually a good data layout for
an update-heavy workload, is not well-suited for a read-mostly one
and vice versa. Modern analytical data systems rely on columnar
layouts and employ delta stores to inject new data and updates.

We show that for hybrid workloads we can achieve close to one
order of magnitude better performance by tailoring the column lay-
out design to the data and query workload. Our approach navigates
the possible design space of the physical layout: it organizes each
column’s data by determining the number of partitions, their corre-
sponding sizes and ranges, and the amount of buffer space and how
it is allocated. We frame these design decisions as an optimiza-
tion problem that, given workload knowledge and performance re-
quirements, provides an optimal physical layout for the workload
at hand. To evaluate this work, we build an in-memory storage en-
gine, Casper, and we show that it outperforms state-of-the-art data
layouts of analytical systems for hybrid workloads. Casper deliv-
ers up to 2.32× higher throughput for update-intensive workloads
and up to 2.14× higher throughput for hybrid workloads. We fur-
ther show how to make data layout decisions robust to workload
variation by carefully selecting the input of the optimization.

PVLDB Reference Format:
Manos Athanassoulis, Kenneth S. Bøgh, Stratos Idreos. Optimal Column
Layout for Hybrid Workloads. PVLDB, 12(13): 2393-2407, 2019.
DOI: https://doi.org/10.14778/3358701.3358707

1. INTRODUCTION
Modern data analytics systems primarily employ columnar stor-

age because of its benefits when it comes to evaluating read-heavy
analytic workloads [1]. Examples include both applications and
systems that range from relational systems to big data applications
like Vertica [48], Actian Vector (formerly Vectorwise [84]), Oracle
[47], IBM DB2 [17], MS SQL Server [51], Snowflake [30], and in
the Apache Ecosystem, the Apache Parquet [9] data storage format.
∗Part of this work was done while the author was a postdoctoral researcher
at Harvard University.
†Work done while the author was a visiting student at Harvard University.

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 12, No. 13
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3358701.3358707

0
200
400
600
800
1000
1200

0

50

100

150

200

250

optimal column layout
(Casper)

col-store with delta
(state-of-art)

vanilla column-store
(baseline)

T
hr

ou
gh

pu
t

(o
p/

s)

La
te

nc
y

(m
s)

Point Query Range Query (TPCH Q6) Insert Workload Throughput

390

Figure 1: Existing analytical systems have 2× higher perfor-
mance than vanilla column-stores on hybrid workloads by uti-
lizing a delta-store. Using a workload-tailored optimal column
layout, Casper brings an additional 4× performance benefit.

The HTAP Evolution. Analytical applications are quickly transi-
tioning from read-mostly workloads to hybrid workloads where a
substantial amount of write operations also needs to be supported
efficiently. These hybrid transactional analytical workloads (HTAP)
typically target state-of-the-art analytics, while still supporting ef-
ficient data ingestion [62, 66]. New designs targeting HTAP work-
loads are coming both from academic research projects [10, 11, 45,
49, 54, 58, 64, 67] and commercial products like SAP Hana [33, 68,
77], Oracle [61], Microsoft SQL Server [50], and MemSQL [76].
The Problem: Conflicting Design Goals for HTAP. One big chal-
lenge when designing systems for HTAP workloads comes from
the fact that data layout decisions designed for read-intensive sce-
narios do not typically work well for write-intensive scenarios and
vice versa. Finding the optimal layout can give a massive perfor-
mance benefit, however, existing data systems come with a fixed
design for many core data layout decisions. This means that they
are locked into a specific behavior and are unable to approach the
theoretical optimal, thus, missing out on significant benefits.
The Solution: Learning Column Layouts. Our insight is that
there are certain design choices for which we should not be mak-
ing a fixed a priori decision. Instead, we can learn their optimal
tuning to efficiently support HTAP workloads with a single copy of
the data. In modern analytical systems there is a set of decisions
that always makes sense. For example, nearly all systems choose
to store columns as fixed-width arrays, which helps with hardware-
conscious optimizations, like vectorization, SIMD processing, and
compression. Other decisions are typically fixed, though in prac-
tice, the optimal choice depends on the workload. In particular, in
this paper, we focus on three prominent design decisions: (i) how
to physically order data [40, 78], (ii) whether columns should be
dense, and (iii) how to allocate buffer space for updates (e.g., delta-
store [38, 48] and ghost values [18, 19, 44]). We show that systems
should be tunable along those decisions for a given application, and
we demonstrate how to do this in an optimal and robust way.
Example. Figure 1 shows the performance of a workload with
both transactional (point queries and TPC-H updates) and analyti-

2393

cal (TPC-H Q6) access patterns, when executed using three differ-
ent approaches: base column-stores (without any write optimiza-
tions), state-of-the-art columnar layouts with a delta store, and a
workload-tailored optimal column layout proposed by our system,
Casper. We implemented all approaches in a state-of-the-art column-
store system that exploits parallelism (using all 32 cores). Our
implementation supports fast scans that employ tight for loops,
multi-core execution, and work over compressed data.

The state-of-the-art approach, which sorts the queried columns
and maintains a delta-store, leads to a 1.9× increase in throughput
when compared to the baseline column-store. In comparison, the
optimal layout determined by Casper leads to 8× improvement in
overall performance. Casper’s physical design decisions combine
fine-grained partitioning with modest space for update buffering
(1% of the data size in this experiment) which is distributed per
partition (details for the partitioning process in §4 and §5).
Challenge 1: Fast Layout Discovery. The fact that we can see
massive improvements when we tailor the layout of a system to
the access patterns is not by itself surprising. There are several
challenges though. First, finding this optimal layout is expensive:
in the worst case, an exponential number of data layout strategies
needs to be enumerated and evaluated.

To be able to make fast decisions, we formulate the data lay-
out problem as a binary optimization problem and we solve it with
an off-the-shelf solver [8]. We keep the optimization time low by
dividing the problem into smaller sub-problems. We exploit that
columns are physically stored in column chunks, and we partition
each chunk independently, thus reducing the overall complexity by
several orders of magnitude (§6.3).
Challenge 2: Workload Tailoring. Second, we rely on having a
representative workload sample. We analyze this sample to quan-
tify the access frequency and the access type for each part of the
dataset. As part of our analysis, we maintain workload access
pattern statistics for both read operations (point queries and range
queries) and write operations (inserts, deletes, and updates).

The column layouts can be tailored along many dimensions. The
design space covers unordered columns to fully sorted columns,
along with everything in between; that is, columns partitioned in
arbitrary ways. We also consider the update policy and ghost val-
ues, which balance reads and writes with respect to their memory
amplification [15]. Ghost values are empty slots in an otherwise
dense column, creating a per-partition buffer space. Our data lay-
out scheme creates partitions of variable length to match the given
workload: short granular partitions for frequently read data, large
partitions to avoid data movement in frequently updated ranges,
while striking a balance when reads and updates compete.
Challenge 3: Robustness. Third, when tailoring a layout to a given
workload, there is the chance of overfitting. In practice, workload
knowledge may be inaccurate and for dynamic applications may
vary with time. A system with a layout that works perfectly for one
scenario may suffer in light of workload uncertainty. We show that
we can tailor the layout for a workload without losing performance
up to a level of uncertainty.
Positioning. We focus on analytical applications with relatively
stable workloads which implies that a workload sample is possible
to achieve. For example, this is the case for most analytical appli-
cations that provide a regular dashboard report. In this case, our
tool analyzes the expected workload and prepares the desired data
layout offline, similar to index advisors in modern systems [3, 83].

For more dynamic applications with unpredictable workloads,
an adaptive solution is more appropriate. Our techniques can be
extended for such dynamic settings as well, by periodically analyz-

N
or

m
. L

at
en

cy

Read Cost
Write Cost

N
or

m
. L

at
en

cy

Read Cost
Write Cost

non-overlapping partitions memory amplification
(a) Impact of structure (b) Impact of ghost values

Figure 2: Accessing a column is heavily affected by the struc-
ture of the column (e.g., sorted, partitioned). Read cost (a) log-
arithmically decreases by adding structure (partitions), while
using ghost values to expand the column layout design space
(b) reduces write cost linearly w.r.t. memory amplification.

ing the workload online (similar to how offline indexing techniques
were repurposed for online indexing [24]) and reapplying the new
format if the expected benefit crosses a desired threshold.
Contributions. Our contributions are summarized below:
• We describe the design space of column layouts containing par-

titioning, update policy, and buffer space (§2), a rich design
space that supports a diverse set of workloads.
• We introduce (i) the Frequency Model that overlays access pat-

terns on the data distribution (§4.2); (ii) a detailed cost model of
operations over partitioned columns (§4.4); and (iii) an alloca-
tion mechanism for ghost values (§4.6).
• We formalize the column layout problem as a workload-driven,

binary integer optimization problem that balances read and up-
date performance, supports service-level agreements (SLAs) as
constraints, and offers robust performance even when the train-
ing and the actual workloads are not a perfect match (§5).
• We integrate the proposed column layout strategies in our stor-

age engine Casper (§6). We show that Casper finds the optimal
data layout quickly (§6.3), and that it provides up to 2.3× per-
formance improvement over state-of-the-art layouts (§7).

2. COLUMN LAYOUT DESIGN SPACE
In this section, we define the problem and the scope of the pro-

posed approach. State-of-the-art analytical storage engines, store
columns either sorted based on a sort key (i.e., one of the columns),
or following insertion order. On the other hand updates are usually
applied out-of-place using a global buffer [1, 39, 48, 84]. Casper
explores a richer design space that (i) uses range partitioning as
an additional data organization scheme, (ii) supports in-place, out-
of-place, and hybrid updates, and (iii) supports either no, global, or
per-partition buffering as shown in Table 1. By considering a wider
design space, we allow for further performance optimizations with-
out discarding the key design principles of analytical engines that
benefit hybrid analytical workloads.

Table 1: Design space of column layouts.
Data Organization Update Policy Buffering
(a) insertion order (a) in-place (a) none

(b) sorted (b) out-of-place (b) global
(c) partitioned (c) hybrid (c) per-partition

Scope of the Solution. Casper targets applications with a hybrid
transactional analytical nature, with an arbitrary yet static workload
profile. Casper uses this workload knowledge to find a custom-
tailored column layout that outperforms the state of the art.
Horizontal Partitioning vs. Vertical Partitioning. Casper’s de-
sign space includes the traditional global buffering approach of
write-stores [78] and operates orthogonally to schemes that em-
ploy arbitrary vertical partitioning (e.g., tiles [11]). As a result, our

2394

3 1 2 4 8 7 5 15 19 20 55 32 23 65 67 125 82 71 3 1 2 4 8 7 5 15 19 20 55 32 23 65 67 125 82 71 3 1 2 4 8 7 5 15 19 20 55 32 23 65 67 125 82 71

(a) A range partitioned column. (b) Looking for value 15. (c) Looking for values in [6,43).

Figure 3: Maintaining range partitions in a column chunk allows for fast execution of read queries. For point queries (b), the
partition that may contain the value in question is fully scanned. For range queries (c) the partitions that (may) contain the first and
the last element belonging to the range are scanned, while any intermediate partitions are blindly consumed.

18

3 1 2 4 8 7 5 15 19 20 __ 32 23 65 55 125 82 71 67

3 1 2 4 8 7 5 15 19 20 55 32 23 65 67 125 82 71

3 1 2 4 8 7 5 15 19 20 18 32 23 65 55 125 82 71 67

(a) Inserting value 18.

3 1 2 4 8 7 5 15 19 20 18 32 55 65 71 125 82 67

3 1 2 4 8 7 5 15 19 20 18 32 23 65 55 125 82 67 71

(b) Deleting value 23.
Figure 4: Inserting and deleting data in a partitioned column
chunk uses rippling and restricts data movement.

column layout strategies can also be used for tables with tiles or
projections [78]. In the case of projections, the read workload is
distributed amongst the different projections. As a result, the col-
umn layout can be further tailored for each projection leading to
potentially greater benefits.
Partitioning as an Update Tuning Knob. The core intuition about
why range partitioning can work as a way to balance read and write
costs is twofold: read queries with small selectivity favor high num-
ber of partitions (more structure) because then they will only read
the relevant data, while updates, insert, and deletes, favor a low
number of partitions (less structure) because each such operation
can operate by moving data across partition boundaries. With re-
spect to read-only workloads, different partitioning strategies have
different impact. If a workload has different access patterns in dif-
ferent parts of the domain, equi-width partitioning can lead to un-
necessary reads. Narrow partitions are needed for the parts of the
data that correspond to point queries, or to the beginning/end of
range queries. On the other hand, for the part of the domain which
is less frequently queried, coarser partitioning is enough.

The impact of adding structure to the data on the read and write
costs is conceptually shown in Figure 2a. For example, when a
column chunk with MC elements is partitioned in k partitions, the
estimated cost of a point query is on average the cost of reading MC

k
elements, assuming equi-width partitions. On the other hand, the
cost of inserts (and deletes) is on average k/2. Hence, the num-
ber of partitions k is an explicit tuning knob between read and
update performance. Ideally, however, a locally optimized parti-
tioning scheme would allow a workload with skewed accesses in
different parts of the domain to achieve optimal latency.
Ghost Values. Delete, insert, and update approaches require data
movement that can be reduced if we relax the requirement to have
the whole column contiguous. Allowing deletes to introduce empty
slots in a partition results in a delete operation that only needs to
find the right partition and flag the value as deleted. To better op-
timize for future usage, the empty slot is moved to the end of the
partition to be easily consumed when an insert arrives, or when a

3 1 2 4 _ 8 7 5 _ _ 15 19 20 18 32 55 65 _ _ 125 82 67 71 _ _

Figure 5: Adding ghost values allows for less data movement;
inserts use empty slots and deletes create new ones.

neighboring partition needs to facilitate an insert and has no empty
slots of its own. These empty slots, called ghost values, require
extra bookkeeping but allow for a versatile and easy-to-update par-
titioned column layout with per-partition buffering. Ghost values
expand the design space by reducing the update cost at the expense
of increased memory usage, trading space amplification for update
performance [14, 15].
Workload-Driven Decisions. Employing range partitioning and
ghost values allows Casper to have a tunable performance that can
accurately capture the requirements of hybrid workloads. Casper
adjusts the granularity of partitions and the buffer space to navi-
gate different performance profiles. In particular, by increasing the
number of partitions, we achieve logarithmically lower read cost
at the expense of a linear increase of write cost (Fig. 2a), and by
increasing the buffer space, we achieve linearly lower write cost
at the expense of a sublinear read performance penalty (Fig. 2b).
Contrary to the previous workload-driven approaches, Casper does
not care only for what types of operations are executed and at what
frequency. Rather, it takes into account the access pattern distri-
bution with respect to the data domain, hence making fine-grained
workload-driven partitioning decisions. Overall, Casper collects
detailed information about the access distribution of each opera-
tion in the form of histograms with variable granularity and uses it
to inform the cost models that we develop in the following sections.

3. ACCESSING PARTITIONED COLUMNS
In this section, we describe Casper’s standard repertoire of stor-

age engine operations. We further provide the necessary back-
ground on operating over partitioned columns, as well as the build-
ing blocks needed to develop the intuition about how to use parti-
tioning for balancing read and write performance. Casper supports
the fundamental access patterns of point queries, range queries,
deletes, inserts, and updates [57]. For the following discussion,
we assume a partition scheme P with k partitions of variable size.
A fixed-cost light-weight partition index is also kept in the form of
a shallow k-ary tree (Fig. 3a).
Point Queries. The partition index provides the partition ID, and
then the entire partition is fully consumed with a tight for loop
scan to verify which data items of the partition qualify, as shown
in Figure 3b. The cost of the query is given by the shallow index
probe and the scan of the partition. Once the corresponding values
are verified the query returns the positions of the qualifying values
or directly the values (depending on the API of the select operator)
to be consumed by the remaining operators of the query plan.
Range Queries. Similarly to point queries, a range query over
partitioned data needs to probe the shallow index to find the first
and the last partitions of the query result (Fig. 3c). The first and
the last partitions are filtered, while the rest of the partitions are
accessed when the result is materialized and can simply be copied
to the next query operator as we know that all values qualify.

2395

3 1 5 4 7 8 15 18 20 19 32 55 65 67 82 95

p0 p1 p2 p3 p4 p5 p6 p7

(a) General representation of a partitioning.
0 0 1 0 1 1 0 1

3 1 5 4 7 8 15 18 20 19 32 55 65 67 82 95

(b) Partition boundaries 8, 20, 55.
0 1 0 1 0 1 0 1

3 1 5 4 7 8 15 18 20 19 32 55 65 67 82 95

(c) Partition boundaries 5, 18, 55.
Figure 6: Representing different partitioning schemes (b) and
(c) with block size B = 2.

Inserts. An insert to a range partitioned column chunk can be ex-
ecuted using the ripple-insert algorithm [41] causing O(k) data ac-
cesses (Fig. 4a). When a value needs to be inserted in a partition,
the ripple-insert brings an empty slot from the end of the column
to that partition. Starting from the last partition, it moves the first
element of each partition to the beginning of the next partition. The
first movement happens between the first element of the last par-
tition and the (already) available empty slot at the end of the col-
umn. If no empty slots are available, the column is expanded. Then,
starting from the last partition and moving toward the partition tar-
geted by the insert, the first elements of consecutive partitions are
swapped, in order to create an empty slot right after the end of the
partition receiving the insert. The new value is inserted there and
the partition boundaries of all trailing partitions are moved by one
position. When inserting in the mth partition the overall cost is
(k−m), and, if data is uniform, k/2 on average.
Deletes. When a value (or row ID) to delete is received, the first
step is to identify the partition that may hold this value using the
shallow index. The next step is to identify the value or values to be
deleted and move them to the end of the partition. Then, following
the inverse of the previous process, the empty slots are moved to-
wards the end of the column, where they can remain as empty slots
for future usage. The data movement is now (k−m) · del card,
where m is the partition to delete from, and del card is the number
of values that qualified for deletion.
Updates. An update is handled as a delete followed by an insert.
This approach is followed in state-of-the-art systems and allows for
code re-use. Alternatively, the shallow index is probed twice to find
the source (update from) and the destination (update to) partitions,
followed by a direct ripple update between these two partitions.

4. MODELING COLUMN LAYOUTS
In this section, we provide the necessary modeling tools to view

the column layout decision as an optimization problem, which cap-
tures the workload access patterns and the impact of ghost values.
We model the operations over partitioned columns with ghost val-
ues (§4) and we show how to find the optimal column layout (§5).
Problem Setup. Each of the five operations may have an arbitrary
frequency and access skew. In this general case, the ideal column
layout forms partitions that minimize the overall workload latency,
taking into account that each operation is affected differently from
layout decisions. For ease of presentation, we first build a model
without ghost values, incorporating them later on.

We formalize this as an optimization problem, where we want
to find the partitioning scheme P that minimizes the overall cost of
executing a workload W over a dataset D:

argminP cost(W,D,P) (1)

This formulation takes into account both the dataset and a sam-
ple workload and aims to provide as output the ideal partitioning.
It does so by first combining the distribution of the values of the
domain with the distribution of the access patterns of the workload
to form the effective access distribution, by overlaying the access
patterns on the data distribution. In order to formalize this problem
accurately, we first need to define a way to represent an arbitrary
partitioning scheme (§4.1), and subsequently, a way to overlay on it
the representation of an arbitrary workload (§4.2). Next, we present
a detailed cost model for each workload operation (§4.4). Finally,
we consider how to allocate ghost values (§4.6).

4.1 Representing a Partitioning Scheme
We represent a partitioning scheme by identifying the positions

of values that mark a partition boundary using a bit vector. In gen-
eral, we can have as many partitions as the number of values in
the column, however, there is no practical gain in having partitions
smaller than a cache-line for main-memory processing. In fact,
having a block size of several cache-lines is often more preferable
because it naturally supports locality and sequential access perfor-
mance. Note that duplicate values should be in the same partition.

A column is organized into Nb equally-sized blocks. The size of
each block is decided in conjunction with the chunk size to guaran-
tee that the partitioning problem is feasible (more in §6.3). We rep-
resent a partitioning scheme by Nb Boolean variables {pi, for i =
0, 1, ..., Nb−1}. Each variable pi is set to one when block i serves
as a partition boundary, i.e., a partition ends at the end of this block.
Note that the first block is before p0. The exact block size is tun-
able to any multiple of cache-line size, and affects the level of the
detail of the final partitioning we provide. The smaller meaningful
value is a cache-line, but in practice, a much coarser level of granu-
larity is sufficient. Figure 6a shows an example dataset with blocks
of size two and eight Boolean variables {p0, ..., p7}. Figures 6b
and 6c show two different partitioning schemes. In Figure 6b, the
first partition is three blocks wide, the second spans two blocks, the
third is a single block, and the fourth spans two blocks. Figure 6c
shows another partitioning scheme with four partitions, each one
two blocks wide. This scheme captures any partitioning strategy, at
the granularity of the block size or any coarser granularity chosen.

4.2 The Frequency Model
We now present a new access pattern representation scheme on

top of the partitioning scheme of the previous section. The accessed
data is organized in logical blocks (like in Figure 6) and the access
patterns of each operation per block are documented. The size of
a logical block is tunable, which allows for a variable resolution of
access patterns, which, in turn, controls the partitioning overhead.
The basic access patterns are produced by the five operations, how-
ever, each one causes different types of accesses. Next, we describe
in detail the information captured from a sample workload.

Given a representative sample workload and a column split into
its blocks we capture which blocks are accessed and by which oper-
ation, forming a set of histograms. We refer to this set of histograms
as the Frequency Model (FM) because it stores the frequency of ac-
cessing each part of the domain, which translates to access patterns
in the physical layer. FM captures the accesses on the blocks, while
the common cost to locate a partition is not kept as it is shared for
each operation. The overall idea is that we capture accesses to each
individual column block, in order to synthesize these blocks into
partitions in a way that maximizes performance for the specific ef-
fective access distribution.

While we model five general operations (point, and range queries,
deletes, inserts, and updates), the different ways of accessing each

2396

p0 p1 p2 p3 p4 p5 p6 p7

pq0:0 pq1:1 pq2:0 pq3:0 pq4:0 pq5:0 pq6:0 pq7:0

3 1 5 4 7 8 15 18 20 19 32 55 65 67 82 95

(a) PQ looking for value 4.
p0 p1 p2 p3 p4 p5 p6 p7

rs0:0 rs1:1 rs2:0 rs3:0 rs4:0 rs5:0 rs6:0 rs7:0
sc0:0 sc1:0 sc2:1 sc3:1 sc4:0 sc5:0 sc6:0 sc7:0
re0:0 re1:0 re2:0 re3:0 re4:1 re5:0 re6:0 re7:0

3 1 5 4 7 8 15 18 20 19 32 55 65 67 82 95

(b) RQ looking for range 4 to 19.
p0 p1 p2 p3 p4 p5 p6 p7

rs0:1 rs1:1 rs2:0 rs3:0 rs4:0 rs5:0 rs6:0 rs7:0
sc0:0 sc1:1 sc2:2 sc3:2 sc4:1 sc5:1 sc6:0 sc7:0
re0:0 re1:0 re2:0 re3:0 re4:1 re5:0 re6:1 re7:0

3 1 5 4 7 8 15 18 20 19 32 55 65 67 82 95

(c) RQ looking for range 2 to 66.
p0 p1 p2 p3 p4 p5 p6 p7

de0:0 de1:0 de2:0 de3:0 de4:0 de5:1 de6:0 de7:0

3 1 5 4 7 8 15 18 20 19 32 55 65 67 82 95

(d) Deleting value 32.
p0 p1 p2 p3 p4 p5 p6 p7

in0:0 in1:0 in2:0 in3:1 in4:0 in5:0 in6:0 in7:0

3 1 5 4 7 8 15 18 20 19 32 55 65 67 82 95

(e) Inserting value 16.
p0 p1 p2 p3 p4 p5 p6 p7

udf0:1 udf1:0 udf2:0 udf3:0 udf4:0 udf5:0 udf6:0 udf7:0
utf0:0 utf1:0 utf2:0 utf3:1 utf4:0 utf5:0 utf6:0 utf7:0

3 1 5 4 7 8 15 18 20 19 32 55 65 67 82 95

(f) Updating 3 to 16.
p0 p1 p2 p3 p4 p5 p6 p7

udb0:0 udb1:0 udb2:0 udb3:0 udb4:0 udb5:1 udb6:0 udb7:0
utb0:0 utb1:0 utb2:0 utb3:1 utb4:0 utb5:0 utb6:0 utb7:0

3 1 5 4 7 8 15 18 20 19 32 55 65 67 82 95

(g) Updating 55 to 17.
Figure 7: Frequency model in action. Here we show for each
operation which partitions are accessed, and consequently,
which histogram buckets are updated.

block are, in fact, more complex. FM utilizes ten histograms, each
storing the frequency of a different sub-operation: (i) pq counts
block accesses for each point query, (ii) rs counts block accesses
for each range query start, (iii) re counts block accesses for each
range query end, (iv) sc counts full block scans for each range
query, (v) de counts deletes for each block, (vi) in counts inserts
to each block, (vii) udf and (viii) udb store when a block contains
a value to update from and it generates a forward/backward ripple,
and, (ix) utf and (x) utb storeswhen a block contains a value to
update to and it generates a forward/backward ripple.

Update operations are captured by a set of four histograms to ac-
count for the possible ripple action between the block we update
from and the block we update into. In addition, we differentiate a
forward ripple from a backward ripple to account for subtle model-
ing details (discussed in §4.4). Each of the ten histograms contains
a counter per block to reflect the respective accesses to this block,
i.e., each bin of the histogram corresponds to a block. When calcu-
lating the histograms from a sample workload, we do not actually
materialize the results or modify the data; instead, we capture the
access patterns as if each operation is executed on the initial dataset.
Example. We now explain how the histograms are populated using
a series of examples in Figure 7. A point query touches a single
block, which increments the relevant bin of the pq histogram. For

Workload
Sample(a) (b)

Figure 8: Learning FM from (a) samples or (b) distributions.

example a point query for value 4 would be simulated by incre-
menting pq1 (Fig. 7a). In the general case, a range query touches
several blocks. In particular, one access is documented for the first
block of the range at rs, one access for the last block of the range
at re, and one access for each block between the two increasing
the value of the sc bins of the intermediate blocks. For example, a
query looking for values 4 ≤ v ≤ 19 will increment rs1, sc2, sc3,
and re4, because the range query starts in block #1, scans block
#2 and block #3, and finishes in block #4 (Fig. 7b). When another
range query is documented, the buckets that are accessed by both
will be further incremented (Fig. 7c). For each delete operation,
the de histogram corresponding to the block that contains the value
to be deleted is incremented. Thus, the deletion of the value 32
increments de5 (Fig. 7d). Inserts increment the in histogram cor-
responding to the block that the value would be inserted to. For
example, inserting 16 in the previous example results in increment-
ing in3 (Fig. 7e). Finally, updates increment udf for the old value
and utf for the new value, or udb and utb respectively. The choice
depends on the relationship of the old value with the new value. If
the new value is larger, then udf and utf are incremented, and when
the new value is smaller, udb and utb are incremented. For exam-
ple, updating the value 3 to be 16 results in incrementing udf 0 and
utf 3 (Fig. 7f). Similarly, updating 55 to 17 results in incrementing
udb5 and utb3 (Fig. 7f).

The Frequency Model is built once all operations of the sample
workload have contributed to the bins of the ten histograms. The
ten histograms are represented by ten vectors. The rsi bins form the
vector

−→
RS = {rs0, rs1, . . . , rsN−1}, and similarly, the vectors

−→
RE,

−→
SC,
−→
PQ,
−→
DE,
−→
IN,
−−−→
UDF ,

−−−→
UT F ,

−−→
UDB, and

−−→
UT B represent the cor-

responding histograms. Using these vectors we build a cost-model
that provides the cost of each operation for partitions of arbitrary
size (multiple of block size) in §4.4.
Columns and Column-Groups. For ease of presentation our run-
ning examples depict only one column, however, the same analysis
can be directly applied to groups of columns since the Frequency
Model is oblivious to whether each data item consists of a single
value or multiple. Thus, the Frequency Model can generate the ef-
fective access pattern of a workload over a table resulting in multi-
dimensional dynamic range partitioning. Once the workload access
patterns are documented, any further decisions are taken based on
the Frequency Model alone. We collect information on a per block
basis regardless of the contents of the block.

4.3 Learning the FM from Access Patterns
The previous discussion assumes that the Frequency Model uses

a sample workload to estimate the histograms of each operations
as shown in Figure 8a. The Frequency Model, however, can also
use statistical knowledge of the workload access patterns to create
access distribution histograms with the desired granularity. Having
estimated the distribution of the access pattern of each operation
as well as the data distribution, we can efficiently construct a his-
togram with variable number of buckets as shown in Figure 8b. By
default, each bucket corresponds to a memory block, however, this
parameter is tunable. Finer granularity leads to better performance,
at the cost of longer optimization runtime, and vice versa. In addi-
tion, Casper can combine the two approaches and benefit from the
recent advancements in learning data distributions from the work-
load [46], and estimate online the access pattern distributions dur-
ing normal operation.

2397

4.4 Cost Functions
Now we model the cost of each access operation. Assuming

a dataset with M values, and using block size B we have up to
N = dM

B e partitions. We assume that every partitioning scheme can
support up to N partitions, which in practice, depends on M and
can be controlled by choosing B. We assume that accessing blocks
comes at a cost following a standard I/O model where we have four
main access patterns: random read RR, random write RW , sequen-
tial read SR, and sequential write SW . The exact values are deter-
mined by micro-benchmarking of the in-memory performance of
the system as well as the selected block size. In addition, once an
operation falls within a block we account for the cost of reading the
whole block because there is no further navigation structure within
a block. Finally, while the initial partitioning is only on logical
block boundaries, during workload execution the partition bound-
aries may move freely, allowing for variable partitioning granular-
ity. Next, we introduce the cost functions.
Range Queries. Every range query scans all partitions that may
contain values that are part of the result. Using a lightweight par-
tition index we find the first, last, and all intermediate partitions.
We differentiate between the three types because the first and the
last may contain values that are not part of the result, while all the
intermediate partitions are known to contain only qualifying values
and the query simply needs to scan them. In practice, this depends
on the select operator. For example, to return positions we do not
need to scan the middle pieces, however, we do need to scan the
corresponding pieces of other columns in this projection if they are
part of the selection. We also need to scan the middle pieces of the
accessed column if the query needs to fetch its contents.

When the first and the last partitions contain many values that are
not part of the result, the range scan performs unnecessary reads. A
range query starting at a given block is only negatively impacted if
there are blocks before it that belong to the same partition. Consider
the third block in Figure 7c. The relevant counter is rs2. If p1
is not set, then each range query starting in the third block will
have to perform at least one additional read (the leading block) as
compared to the optimal scenario. If both p0 and p1 are not set then
every query starting in the third block will always read the first two
blocks without having any qualifying values. On the other hand,
if p1 is set, then no unnecessary reads will be incurred. This is
captured mathematically using rs2 ·RR+ rs2 ·SR · ((1− p1)+(1−
p1)(1− p0)). This means that every range query that begins in the
third block will pay the cost of a random read to reach its first block
and then, depending on where the partition boundaries are present,
additional sequential read costs (that can be avoided in the “ideal”
partitioning). The second term uses the binary representation of
the partition boundaries in

−→
P . Thus, each of the products will only

evaluate to one if all the pi’s contained in it are equal to zero. This
also captures that these are sequential reads. This second term is
generalized in Eq. 2. Finally, the cost of accessing the block at the
beginning of the range is given in Eq. 3.

bck read(i) =
i−1

∑
j=0

i−1

∏
k= j

(1− pk) (2)

cost rs(rsi) = rsi ·RR+ rsi ·SR ·bck read(i) (3)

The end of the range query (re) has a dual behavior. Consider
the fifth block in the example in Figure 6a. If there is no partition
boundary in p4 the range queries ending at the fifth block will have
to read one more block than what is optimal. If neither p4 nor p5
is set, the queries will do two additional reads. We describe this
similar pattern as forward reads, and we capture it in Eq. 4. The
equation is very similar to Eq. 2, having, however, different limits
to reflect that forward reads are towards the end of the column. The

overall range end cost is captured in Eq. 5, which is again similar
to Eq. 3. The main difference is all reads, including the first, are
sequential, because this cost refers to the end of a range query.

f wd read(i) =
N−i−1

∑
j=0

N− j−1

∏
k=i

(1− pk) (4)

cost re(rei) = rei ·SR+ rei ·SR · f wd read(i) (5)

Finally, all the intermediate blocks are scanned irrespectively of
the partitioning scheme, with cost as shown in Eq. 6.

cost sc(sci) = sci ·SR (6)

Thus, given any partitioning, we can compute the cost of the
range queries of the sample workload, by computing the sum of
cost rs, cost sc, and cost re for all blocks:

N−1

∑
i=0

cost rs(rsi)+ cost sc(sci)+ cost re(rei)

Point Queries. Every point query scans the entire partition that
the value may belong to, because there is no information as to in
which part of the partition the value may reside. Ideally, a point
query would scan only a single block, however, in case of a parti-
tion that spans multiple blocks, all will be scanned. For example,
when searching for value 7 in the data shown in Figure 6a, if p1
and p2 are partition boundaries (set to one) then the point query
will read only one block. If, however, p0 = p1 = p2 = 0 and only
p3 = 1 then this point query will read all four blocks. The same
analysis holds for empty point queries. In general, the cost of a
point query is derived similarly to the cost of a range query. If a
partition boundary on either side of a given block is not present,
it adds one additional read to all point queries of that block, when
compared to the optimal. Thus, the definitions of f wd read and
bck read are re-used to compute the cost of the point queries of a
given block (Eq. 7). A point query always incurs at least one ran-
dom read (the ideal case), which is captured by the first term. Any
unnecessary reads are captured by the last two terms.

A key observation of the point query cost is that the more par-
titions we have (i.e., the more structure imposed on the data), the
cheaper the point query becomes, since f wd read(i) and bck read(i)
will have smaller values (0 if a partition is a single block).

cost pq(pqi) = pqi ·RR+

pqi ·SR · (f wd read (i)+bck read (i))
(7)

Inserts. Having adopted the model of partitioned chunks, each
insert operation within a chunk is modeled using the ripple insert
algorithm as discussed in Section 3 and shown in Figure 4a. An
insertion involves touching two blocks in the last partition, and one
block in each of the other partitions between the last and the one
we insert into. In every partition, a read and a write operation takes
place. Contrary to the cost of read queries, the higher the number
of partitions the higher the cost of inserts will be (unless they all
belong to the last partition). Hence, in general, inserts and read
queries favor different layouts, and a partitioning must strike a bal-
ance between the two. The cost of an insert is affected differently
by the partition boundaries than that of the read operations. Indeed,
any partition that is present after a given block will affect the cost
of inserting in that block, which is captured in Eq. 8. Since each
pi is always either zero or one, the sum captures the number of
partitions trailing the given partition. The insert cost is captured
in Eq. 9, where for every partition trailing the one we insert into,
one block is read and one is written. The term before the sum cap-
tures that there is one additional random read and one random write
(in the last partition). Since each access “jumps” from partition to
partition, all reads and writes are random.

2398

trail parts(i) =
N−1

∑
j=i

p j (8)

cost in(ini) = ini · (RR+RW) · (1+ trail parts(i)) (9)

Deletes. Similarly to inserts, a delete maintains a dense column
by rippling the deleted slot to the end of the column. An exam-
ple is shown in Figure 4b and the access patterns of a delete are
depicted in Figure 7d. In order to find whether there is a value
to delete a point query is first executed. Consequently, a “hole”
is created in the partition containing the deleted value, which is
eventually rippled to the end of the column. The data access pat-
terns are similar to that of an insert operation, however, they are
not exactly the same. In general, a delete touches two blocks in the
partition we are deleting from, and one in each subsequent parti-
tion. In addition, since a point query is first needed to locate the
partition containing the deleted value, deletes face conflicting re-
quirements. The initial point query favors small partitions to have
a small number of unnecessary reads, and the actual delete opera-
tion favors fewer (and thus larger) partitions in order to minimize
the cost of rippling. Compared to inserts that favor few partitions,
deletes favor more complex partitioning decisions, affected by ac-
cess skew. These observations are reflected in the cost of a delete.

cost rd(dei) = dei ·RW +dei (RR+RW) · trail parts(i) (10)

Each delete requires a point query, followed by the cost of the
ripple delete. The ripple delete accounts for the fact that the block
containing the deleted value is always updated, and the trail parts(i)
term accounts for the cost incurred by each partition between the
one we deleted from and the last. The ripple delete cost is shown in
Eq. 10. The overall cost of a delete operation is given by the point
query and the ripple delete cost as shown in Eq. 11, which contains
the partitioning representation in the form of the pi variables.

cost de(dei) = cost pq(dei)+ cost rd(dei) (11)
Updates. Finally, we consider updates. In many systems updates
are implemented as deletes followed by inserts [41]. A more effi-
cient approach is to perform a ripple update directly from the source
block to the target block. We model the latter. For example, as
shown in Figures 7f and 7g, an update requires a point query to
retrieve the source partition, and then it can ripple either forward
or backward until it reaches the target partition. Regardless of the
direction, the ripple always touches one block per partition, except
for the first partition, in which it touches two blocks – the extra
block being the one needed to touch to move the hole to the end
of the partition. The Frequency Model captures this by recording
deletes incurred by updates (udf, udb), and the corresponding ripple
inserts towards the target blocks (utf, utb).

Assuming a general update operation of a value that exists in
block i to a value that should be placed to block j (w.l.o.g. i < j),
the update cost will entail a point query to find the old value, and a
delete action that will move the newly created hole at the end of the
partition: cost pq(ud fi)+ud fi · (RW +RR+RW). Next, we need
to account for rippling the hole from block i, toward block j (since
i < j rippling the hole forward). The number of partitions between
block i and j is equal to the sum pi + · · ·+ p j−1, which is equal to
trail parts(i)− trail parts(j). Hence, if we keep track of all the
blocks we update from (udf) and all the blocks we update to (utf),
the cost is:

cost ud f (ud fi) = cost pq(ud fi)+ud fi · (RR+2 ·RW) (12)
+ud fi · (RR+RW) · trail parts(i)

cost ut f (ut fi) = −ut fi · (RR+RW) · trail parts(i) (13)

Similarly, when i >= j, the update operation ripples backward
hence the sign of the trailing partitions calculation is reversed. Note
that the case i = j is correctly handled by either pair of equations;
by convention, we pick the latter.

0
1
2
3
4
5
6
7
8

0
5

10
15
20
25
30
35

0 10 20 30 40 50 60 70 80 90 100

In
se

rt
La

te
nc

y
(µ

s)

Partition ID

Inserts Measured
Inserts Model
Ratio

0

1

2

3

4

5

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

0 5 10 15

PQ
 L

at
en

cy
 (µ

s)

Partition ID

Point Queries Measured
Point Queries Model
Ratio

(a) Inserts. (b) Point queries.

Figure 9: Cost model verification for (a) inserts and (b) point
queries (10M chunk, exponentially increasing partition size).

cost udb(udbi) = cost pq(udbi)+udbi · (RR+2 ·RW) (14)
−udbi · (RR+RW) · trail parts(i)

cost utb(utbi) = utbi · (RR+RW) · trail parts(i) (15)

Overall Workload Cost. After deriving the cost for each operation
per block, we can now express the total workload execution cost as
a function of any given partition. This cost is given by Eq. 16,
which adds the previously missing link of the workload cost in the
optimization problem defined in Eq. 1. The Frequency Model now
captures the data distribution and the access patterns of the opera-
tions and the remaining free variable is the partitioning vector

−→
P .

cost
(−→

P ,F M
)
=

N−1

∑
i=0

(
f ixed termi +bck termi ·bck read(i)

+ f wd termi · f wd read(i)+ parts termi · trail parts(i)
)

(16)

where, ∀i = 0,1, . . . ,N−1:

f ixed termi = RR · (rsi + pqi + ini +dei +2 ·ud fi +2 ·udbi) +

SR · (rei + sci)+RW · (ini +dei +2 ·ud fi +2 ·udbi)

bck termi = SR · (rsi + pqi +dei +ud fi +udbi) (17)
f wd termi = SR · (rei + pqi +dei +ud fi +udbi)

parts termi = (RR+RW) · (ini +dei +ud fi−ut fi−udbi +utbi)

and F M = {−→RS,
−→
SC,
−→
RE,
−→
PQ,
−→
IN,
−→
DE,
−−−→
UDF ,

−−−→
UT F ,

−−→
UDB,

−−→
UT B} .

Note that the total cost in Eq. 16 is a function of quantities that ei-
ther (a) depend on the Frequency Model only (f ixed termi, bck termi,
f wd termi, parts termi) or (b) depend on the partitioning strategy
and the Frequency Model (bck read(i), f wd read(i), trail parts(i)).

4.5 Cost Model Verification
The cost model captures the cost of the basic storage engine op-

erations by accurately quantifying the cost of random and sequen-
tial block memory accesses. As a result, the model only needs
to tune very few parameters (the random and sequential memory
block access costs for read and write operations). For every in-
stance of Casper deployed, we first need to establish these values
through micro-benchmarking. Subsequently, we can verify the ac-
curacy of the overall cost model. It suffices to verify the estimated
cost of insert and point read operations because they contain the
two main cost functions of the model: (i) the number of trailing
partitions for each partition (Eq. 8), and (ii) the size of each parti-
tion, i.e., the sum of f wd read (Eq. 4) and back read (Eq. 2).

Figure 9 shows that the proposed model accurately quantifies the
costs of each operation using the fitted constants of the model. The
random read latency and the random write latency in a memory
block is 100ns, while the sequential read is amortized, leading to
14× lower cost per block. We further observe that the partition in-
dex has a cumulative cost of 8.5µs per operation, which is shared
across all operations and does not influence the partitioning pro-
cess. Figure 9a shows the measured and the model-based insert cost
when using chunks of 10M elements, each with 100 partitions. The
experiment corroborates a strong linear relation of the cost to the

2399

number of trailing partitions. Figure 9b shows the measured and
the model-based point query cost. In this experiment, the chunk
has 15 partitions with exponentially increasing size, ranging from
29 elements for the first partition to 222 elements for the last parti-
tion. Here the experiment supports a strong linear relation between
the cost of a point query and the partition size. Note that in both
figures the grey points indicate the ratio between the measured and
the model-based cost which is always very close to 1.0 (y-axis on
the right hand-side).

4.6 Considering Ghost Values
Ghost Values Benefit Performance. Ghost values enable a trade-
off between memory utilization and data movement. In particular,
delete operations simply create a hole in the partition they target.
Insert operations do not need to create space by rippling if there
are available ghost values. Finally, update operations can create a
new empty slot in the partition they update from and simply use
available slots to store the new values.
Distributing Ghost Values to Partitions. Given

−→
P , F M , and a

total budget of ghost values GVtot , the goal is to distribute them in a
way that minimizes the overall cost. The operations that can bene-
fit from having ghost values in the partitions they target are inserts
and updates. For every partition that an operation inserts into, a
ghost value can help to entirely avoid the ripple insert. Similarly,
for every update operation (either with forward or backward rip-
ple), the partitions that have incoming updates will avoid a ripple
insert (in the worst case) by using the available ghost values. To
cover this worst case, in the remainder of the ghost value analysis,
we consider that every insert and update to operation requires a rip-
ple insert. The distribution of ghost values for block i, GValloc(i)
is given by Eq. 18, which uses the data movement per block as a
result of inserts and updates (dm part(i)), as well as the total data
movement (dm tot), to distribute ghost values proportionally to the
performance benefit they offer.

GValloc(i) =
dm part(i)

dm tot
·GVtot (18)

5. OPTIMAL COLUMN LAYOUT
Minimizing Total Workload Cost. Using the column layout cost
model, we formulate the following optimization problem:

minimize ∑
N−1
i=0

(
f ixed termi

+bck termi ·∑i−1
j=0 ∏

i−1
k= j (1− pk)

+ f wd termi ·∑N−i−1
j=0 ∏

N− j−1
k=i (1− pk)

+parts termi ·∑N−1
j=i p j

)
subject to pN−1 = 1

pi ∈ {0,1}, i =∈ {0,1, . . . ,N−2}

(19)

The constraint pN−1 = 1 guarantees that the dataset forms at
least one partition (zero partitions has no real meaning), and pi ∈
{0,1} guarantees that each pi is a binary variable.

The binary optimization problem formulated above, however,
contains products between groups of variables, and cannot be solved
by linear optimization solvers. Products between variables can be
replaced by new variables and additional constraints [22]. The
final binary linear optimization problem formulation is shown in
Eq. 20. Note the new constraints on the two-dimensional variables
yi, j, which guarantee that each yi, j corresponds to the product it
replaced.
Performance Constraints. The minimization in Eq. 20 is also aug-
mented with performance SLAs. In particular, an application may

online model
training

Mosek BIP solver

Casper

Core Storage Engine

Storage
Engine API

re
ad

/w
ri

te

op
er

at
io

ns

offline workload
model training

partitioning

workload model

Partitioner

applying physical layout

B

C

A’

A

Figure 10: System architecture. (A) Casper uses offline work-
load information, (B) solves the BIP and (C) applies the par-
titioning. (A′) During execution monitoring, if the access pat-
terns change, a re-partitioning cycle is triggered.

require read queries to respect a readSLA, or updates to respect an
updateSLA. Such constraints are expressed as a function of

−→
P .

minimize ∑
N−1
i=0

(
f ixed termi +bck termi ·∑i−1

j=0 y j,i−1

+ f wd termi ·∑N−i−1
j=0 yi,N− j−1

+parts termi ·∑N−1
j=i p j

)
subject to pN−1 = 1

pi ∈ {0,1}, i =∈ {0,1, . . . ,N−2}
yi,i = 1− pi, i =∈ {0,1, . . . ,N−1}
yi, j ≤ 1− p j, i, j =∈ {0,1, . . . ,N−1}, i < j
yi, j ≥ 1−∑

j
k=i pk

yi, j ∈ {0,1}

(20)

Update Latency Constraint. An update/insert SLA dictates that
all update/insert operations are faster than a maximum allowed la-
tency updateSLA. The most expensive operation has to ripple through
all partitions, so this constraint can be expressed as follows:

(RR+RW) · (1+
N−1

∑
i=0

pi)≤ updateSLA⇒
N−1

∑
i=0

pi ≤
updateSLA

RR+RW
−1

Read Latency Constraint. A SLA for read queries dictates the
maximum read cost for a point query, which in turn, is quantified by
the size of the maximum allowed partition size (MPS), as follows:

RR+SR ·MPS = readSLA⇒MPS =
readSLA−RR

SR
In order to ensure that the largest partition is at most MPS blocks

wide, we need to make sure that for every MPS consecutive pi’s at
least one of them is equal to 1. In other words ∀ j = 0, . . . ,N−MPS:
∑

MPS−1
i=0 p j+i ≥ 1.
Overall, the performance constraints augment the binary linear

optimization formulation with the following bounds:

bounds ∑
N−1
i=0 pi ≤ updateSLA

RR+RW −1
∀ j = {0,1, . . . ,N−MPS} : ∑

MPS−1
i=0 p j+i ≥ 1

where MPS = readSLA−RR
SR −1

(21)

Adding the bounds of Eq. 21 to the optimization problem in
Eq. 20 completes the formalization of partitioning as a binary linear
optimization problem, for which we use the Mosek solver [8].

6. Casper STORAGE ENGINE
We implement the Casper storage engine in C++. Casper fully

supports all five access patterns described in Section 3, effectively
being a drop-in replacement for any relational scan operator with
support for updates. Casper supports all the common access pat-
terns, hence, it provides general support for accessing data for re-
lational operators. The size of the code added to implement the
Casper column layout decision method described in Sections 4 and 5
is in the order of 4K lines of code. Figure 10 shows the overall ar-
chitecture of Casper. The key components are (i) the Frequency
Model that maintains an accurate estimation of the access patterns

2400

over the physical storage, (ii) the optimization component that em-
ploys the state-of-the-art solver Mosek [8], (iii) the partitioner that
implements the physical layout decisions, and (iv) the core storage
engine that implements the update and access operations over the
partitioned data. Casper naturally supports multi-threaded execu-
tion since the column layouts create regions of the data that can
be processed in parallel without any interference. Some of the op-
erations require to update the contents of other partitions (when a
ripple is necessary), hence, correct execution needs a way to pro-
tect the atomicity of each operation through snapshot isolation or
locking. Ghost values allow Casper to reduce contention by allow-
ing an update, delete or insert, to affect in the best case, only one
partition and avoid rippling.

6.1 Transaction Support
Hybrid workloads consist of long-running analytical queries and

short-lived transactions. The systems that support hybrid work-
loads must ensure that the long running queries are executed with-
out being affected by the transactions, neither with respect to per-
formance, nor the correctness of the values read. Casper supports
general transactions through snapshot isolation [20], which isolates
a snapshot of the database observed at the beginning of each trans-
action, and works only on that.
Snapshot Isolation through Multi-version Concurrency Con-
trol. Recent HTAP systems and storage engines employ variations
of multi-version concurrency control (MVCC) [11, 58, 74, 76] that
allows for snapshot isolation [20]. Casper takes a similar approach:
each transaction is allowed to work on the data by assigning times-
tamps to every row when inserted or updated, initially maintained
in a local per-transaction buffer. For the frequent cases, the short-
lived transactions will be operating over disjoint sets of rows hence
there will be no conflicts. In the rare case that multiple transactions
are trying to access the same object, the first one to commit wins
and the other transactions abort and roll back.
Reducing the Ripple Contention. In order to reduce the con-
tention of moving ghost values to the partition we are inserting into,
(i) Casper moves a block of ghost values every time one is neces-
sary, which can be used by neighboring partitions in the future, and
(ii) we decouple the ghost value rippling from the transaction since
it does not affect correctness. Hence, even if a transaction is rolled
back, the already completed fetching of ghost values will persist
and will benefit future inserts or updates.

6.2 Compression
Casper natively supports the dictionary and frame-of-reference

(or delta) compression schemes, the most commonly employed in
modern column-store data systems [1, 2, 85]. First, dictionary
compression is supported by Casper as-is. The performance con-
stants of the model are changed to reflect the compressed data size,
and Casper’s behavior remains qualitatively the same. Second,
when delta encoding is used, a synergy between the partitioning
and the compression effort is created. In fact, Casper tends to finely
partition areas that attract more queries, thus, enabling better delta
compression since the value range of small partitions is also small.
This has a multiplicative impact on the savings in memory band-
width per item. The more we read a partition the more compressed
it is, leading to less overall data movement. Casper compresses our
micro-benchmark data by 2.5× and TPC-H data by 4.5×.

Another compression approach used in columnar systems is run-
length encoding (RLE) [2]. RLE requires the data to be sorted in
order to calculate the run lengths, and it always requires a more
expensive “decoding” step when updating (similar to bit-wise RLE
for bitmap indexes [16]). RLE often has better compression rate

1.E+01
1.E+02
1.E+03
1.E+04
1.E+05
1.E+06
1.E+07
1.E+08

1.E+04 1.E+05 1.E+06 1.E+07 1.E+08 1.E+09

Pa
rti

tio
ni

ng
 D

ec
is

io
n

La
te

nc
y

(m
s)

Data Size (#values)

Single Job
Chunked-100
Chunked-1000
Chunked-10000
Chunked-100000

Figure 11: Casper partitioning scales with data size.

than dictionary or delta compression, however, it has higher con-
struction cost (it needs sorting), higher execution cost (decoding)
and higher update cost (decode/re-encode). Hence, typically dictio-
nary and delta compression schemes are preferred over RLE [85].

6.3 Scalability with Problem Size
Casper formulates and solves a binary integer problem with N bi-

nary variables, having an exponential (2N) solution space. Modern
optimization techniques allow to search this space in polynomial
time. In particular, we use the optimization problem solver Mosek,
which relaxes non-convex problems using semidefinite optimiza-
tion [8]. This allows the Casper column layout decision process to
have cubic complexity. For a dataset with M values, and B values
per block, Casper needs O((M/B)3) time. In order to maintain the
column layout decision cost low, we can either increase the block
size or divide the problem into smaller sub-problems by creating C
chunks. The former produces solutions with lower quality (coarser
partitioning granularity), hence, using column chunks is preferred.
The histograms are created per chunk, and, similarly, design deci-
sions are made for each chunk without any need for communication
with other chunks. This allows us to arbitrarily reduce the partition-
ing complexity. For a level of parallelism equal to CPU , we execute
CPU sub-problems at the same time and exploit their embarrass-
ingly parallel nature for an overall cost O((C/CPU) ·(M/(B ·C))3).
In practice, we find the optimal layout of a 109-element relation
using 64 cores and a block size of 4096 bytes, in about 10 seconds
(Fig. 11), while the estimated time without chunking and paral-
lelism is 1015 seconds.
Variable Histogram Granularity. Casper can vary the granular-
ity of the histograms to match a multiple of the page size either by
aggregating histogram values, or by using data and access distribu-
tions to calculate coarser granularity histograms (following §4.3).
Locating Partitions. Casper stores partition-wise metadata to be
able to find and discard partitions for each query. For every par-
tition, the minimum and the maximum value of the domain they
cover is stored, along with positional information within the chunk.
The metadata enable efficient searching with a k-ary search tree.
If the chunk size is small or the average partition size is large,
the number of partitions is small enough to fit in the higher lev-
els of cache memory. In that case, the metadata can be treated as
Zonemaps [35, 55] and they can be very efficiently scanned.

6.4 Casper as a Generic Storage Engine
Casper implements a repertoire of standard storage engine API

calls including (i) scanning an entire column (or groups of columns),
(ii) search for a specific value, (iii) search for a specific range of
values, (iv) insert a new entry, and (v) update or delete an exist-
ing entry. This generic API is supported by systems that target
either analytical or transactional workloads and is compatible with
state-of-the-art storage engines [57]. As a result, Casper can be
easily integrated into existing systems. Note that mixed workloads
refer to interleaving long read queries with short updates/inserts.
Similarly to both transactional-optimized and analytical-optimized
storage engines, Casper supports all operations. Using workload

2401

1.75

2.14

1.16
0.95

2.28 2.32

0.0

0.5

1.0

1.5

2.0

2.5

hybrid, skewed hybrid, range, skewed read-only, skewed read-only, uniform update-only, skewed update-only, uniform

N
or

m
. T

hr
ou

gh
pu

t

Casper Equi-GV Equi

State-of-art Sorted No Order

Figure 12: Casper matches or significantly outperforms other column layouts approaches for a variety of workloads (experiments
with 16 threads, chunks of 1M values, block size 16KB, and ghost values 0.1%).

knowledge, Casper offers physical layouts for hybrid workloads
that outperform state-of-the-art physical designs.
Multi-Column Range Queries. Casper natively supports multi-
column range queries. Similar to state-of-the-art storage engines,
Casper evaluates the first (typically the most selective) filter and
retrieves the qualifying positions to evaluate the subsequent filters
(further accelerated using Zonemaps [55]). We refer to Figure 1 for
an experiment with multi-column range queries (TPC-H Q6 [81])
that shows Casper outperforming the state of the art by 2.5×.

7. EXPERIMENTAL EVALUATION
Experimental Setup. We deploy Casper in a memory-optimized
server from Amazon EC2 (instance type m4.16xlarge) with a 64-bit
Ubuntu 16.04.3 on Linux 4.4.0. The machine has 256GB of main
memory and two sockets each having an Intel Xeon E5-2686 v4
processor running at 2.3GHz with 45MB of L3 cache. Each pro-
cessor supports 32 hardware threads (a total of 64 for the server).
Experimental Methodology. For fair comparison, Casper inte-
grates all tested column layout strategies. In particular, Casper
has six distinct operation modes: (i) plain column-store with no
data organization (No Order), (ii) column-store with sorted data
in the leading column (Sorted), (iii) state-of-the-art update-aware
column-store with sorted columns and a delta store for incoming
updates (State-of-art), (iv) column-store with equi-width partitioned
data (Equi), (v) column-store with equi-width partitioned data and
ghost values (Equi-GV), and (vi) Casper that puts everything to-
gether. For fairness and in order to have low experimental design
complexity, we allow Casper to have as many partitions as the equi-
width partitioning schemes, but it has the freedom to allocate their
sizes according to the optimization problem.
Column Chunks. The storage engine uses a column-chunk based
layout. Each column is not a single contiguous column; instead, it
is a collection of column chunks, each one stored and managed sep-
arately. This technique is employed by numerous modern systems
giving flexibility for updates [30], and serves as the main state-of-
the-art competitor in our experimentation. We use column chunks
that hold 1M values each. Unless otherwise noted, we use 16
threads. Each experiment comprises of 10000 operations. We re-
peat each experiment multiple times, and we report measurements
with low standard deviation.

7.1 HAP Benchmark
We first describe the evaluation benchmark. Since there is cur-

rently a scarcity of benchmarks for hybrid workloads we develop
our own benchmark that we call Hybrid Access Patterns (HAP)
benchmark. HAP is based on the ADAPT benchmark [11], and is
composed of queries that are common in enterprise workloads [68],
as well as transactional (small) general update queries that are typ-
ically tested in hybrid storage engines [25, 31].

The HAP benchmark has two tables, a narrow table with 16
columns and a wide one with 160 columns. Each table contains tu-
ples with a 8-byte integer primary key a0 and a payload of p 4-byte

columns (a1,a2, . . . ,ap). In all of our experiments, we load 100M
tuples in the database in order to report a steady-state performance.

The benchmark consists of six queries: (Q1) a point query that
requests the contents of a row, (Q2) an aggregate range query that
counts the rows in a range, (Q3) an arithmetic range query that
sums a subset of attributes of the selected rows, (Q4) an insert
query that adds a new tuple in the relation, (Q5) a delete query
that deletes a specific tuple, and (Q6) an update query that fixes an
error in a data entry by correcting its primary key value. The SQL
code for each of the queries is available below:

Q1: SELECT a1,a2, . . . ,ak FROM R WHERE a0 = v
Q2: SELECT count(∗) FROM R WHERE a0 ∈ [vs,ve)
Q3: SELECT a1+a2+ · · ·+ak FROM R WHERE a0 ∈ [vs,ve)
Q4: INSERT INTO R VALUES (a0, a1, a2, . . . , ap)
Q5: DELETE FROM R WHERE a0 = v
Q6: UPDATE R SET a0 = vnew WHERE a0 = v

With different values of k, v, vs, and ve, we test various different
aspects of the workloads including projectivity, selectivity, overlap
between queries, and hot and cold regions of the domain. Unless
otherwise noted, we experiment with datasets of 100M tuples and
16 columns, with uniformly distributed integer values.
Logical and Physical Benchmarking. We develop a specialized
benchmark for storage engines for hybrid workloads, which we
view as a “physical” benchmark for the supported access paths.
Similar to recent research on new storage engines, we stress-test
the access path and the update performance [11, 25, 28, 31].

To stress different aspects of Casper, we test various combina-
tions of queries Q1 through Q6. In particular, we synthesize three
different types of workloads: (i) hybrid, (ii) read-only, and (iii)
update-only. We have two versions of the hybrid workload, one
with Q1 and Q4 that has equality searches and one with Q3 and
Q4 that has range searches. For the read-only and the update-only
workloads we have two versions: one with uniform accesses and
one with skewed accesses. Every workload has a small fraction
(1%) of updates (Q6) uniformly distributed across the whole do-
main to mimic updates and corrections frequently taking place in
mixed analytical and transactional processing.

7.2 Casper Improves Overall Throughput
Figure 12 shows that Casper matches or significantly outper-

forms most of the different approaches frequently used for han-
dling hybrid workloads. The figure compares the throughput of
all tested approaches normalized against the column-store state-of-
the-art design that employs a delta store. The first two workloads
are hybrid with skewed accessed to more recent data. The main dif-
ference between the two is that the first has equality queries (Q1)
and the second has range queries (Q3). Casper leads to a 1.75× to
2.14× performance improvement over the state of the art. With
respect to the different configurations we tried, we observe that
equi-width partitioning is slower than the state of the art (equal-
ity queries have to read whole partitions even when not needed),
while it actually leads to a small performance improvement for

2402

0
2
4
6
8
10
12

1.E+00
1.E+01
1.E+02
1.E+03
1.E+04

Casper Equi-GV Equi St-of-art Sorted No Order T
hr

ou
gh

pu
t (

K
op

s)

La
te

nc
y

(μ
s)

Q1 (49%) Q4 (50%) Q6 (1%) Workload Throughput

0

2

4

6

8

1.E+00
1.E+01
1.E+02
1.E+03
1.E+04
1.E+05
1.E+06

Casper Equi-GV Equi St-of-art Sorted No Order

T
hr

ou
gh

pu
t (

K
op

s)

La
te

nc
y

(μ
s)

Q1 (94%) Q2 (5%) Q6 (1%) Workload Throughput

0
10
20
30
40
50

1.E+00
1.E+01
1.E+02
1.E+03
1.E+04
1.E+05

Casper Equi-GV Equi St-of-art Sorted No Order T
hr

ou
gh

pu
t (

K
op

s)

La
te

nc
y

(μ
s)

Q4 (80%) Q5 (19%) Q6 (1%) Workload Throughput

(a) hybrid (Q1,Q4,Q6), skew (b) read-only (Q1,Q2,Q6), skew (c) update-only (Q4,Q5,Q6), uniform

Figure 13: Casper offers significant performance benefits. In (a) for a hybrid workload with skewed point queries and inserts, Casper
outperforms all approaches by balancing the read and update performance. In (b) for a read-heavy workload with range queries,
point queries, and a few inserts, Casper matches the state-of-the-art delta-store design. Finally, in (c) for an update-only workload,
Casper significantly outperforms by 2× or more all other approaches .

0

10

20

30

40

50

UDI1 UDI2 YCSB-A2

In
se

rt
 L

at
. (

μs
) 0.01% 0.1% 1% 10%

update-only,
skewed

update-only,
uniform

hybrid, skewed

Figure 14: Using ghost values (4 thr., 1M chunks, 16KB blocks).

0

1

2

3

1.E+00

1.E+01

1.E+02

1.E+03

None 12.5 10 7.5 6.25 3.75 2.5 2 1.5 T
hr

ou
gh

pu
t (

K
op

s)

La
te

nc
y

(μ
s)

Insert SLA (μs)

Q1 (89%) Q4 (10%) Q6 (1%) Throughput
Figure 15: Casper meets performance SLA executing a hybrid
workload (Q1,Q4,Q6) (1M chunk size, 16KB block size).

range searches. As Casper targets mixed workloads, it cannot al-
ways offer the best performance for read-only workloads (Q1 and
Q2). In particular, the state of the art has 5% higher throughput for
skewed read-only queries. On the other hand, for uniform accesses,
Casper leads to 1.44× higher throughput. For these cases, however,
even simply equi-width partitioning and maintaining data sorted on
the search attribute delivers competitive performance. Finally, for
the update-intensive workloads (Q4 and Q5), Casper offers 2.28-
2.32× higher throughput by exploiting ghost values and avoiding
frequent data reorganization (which the state of the art does).

7.3 Casper’s Impact on Update Performance
Casper Offers Better Read/Write Balance. Next, we drill-down
to understand where the benefits of Casper come from, by measur-
ing the latency of each operation for each workload in Figure 13.
For the hybrid workload with equality queries and skewed accesses
(Fig. 13a), Casper offers three orders of magnitude faster inserts
(Q4) than the other column layouts without hurting the latency of
Q1. For a read-only workload with both equality searches and
range searches (Fig. 13b), even a small number of updates (<1%
of the workload) disrupts the performance of all other column lay-
outs except Casper. The reason is that Casper executes read queries
without having as many partitions as the equi-width partitioned ap-
proaches, nor having the cost to maintain and continuously inte-
grate a delta storage. For the update-only workload, the difference
is more pronounced (Fig. 13c); Casper limits the number of parti-
tions and distributes more effectively the ghost values.
Casper Leverages Ghost Values. We now demonstrate that Casper
can leverage ghost values to optimize inserts. Figure 14 shows that
insert latency scales as we increase the number of ghost values from
0.01% of the dataset to 10%, for update-intensive and hybrid work-

PQ Insert histogram

0.0
0.5
1.0
1.5

0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50%N
or

m
. L

at
ne

nc
y

rotational shift

-25% -15% 0%
+15% +25% mass shift

(a) Workload histograms (b) Normalized latency
over normalized domain. with workload uncertainty.

Figure 16: Testing Casper’s robustness.

loads. We observe that in all cases Casper takes advantage of the
additional ghost values to further reduce the insert latency; using as
low as 1% ghost values, Casper reduces insert latency by 2×.

7.4 Meeting Performance Constraints
Our next experiment showcases how Casper matches a given

performance requirement without sacrificing overall system perfor-
mance using a hybrid workload with equality searches (Q1), inserts
(Q4), and a tiny fraction of updates (Q6). Figure 15 shows the la-
tency of each query, as well as the system throughput for different
insert SLAs on the x-axis. When no SLA is set, Casper achieves
the highest throughput. As we decrease the maximum allowed in-
sert latency, the insert cost decreases proportionally (we report both
the average and the 99.9% percentile with the error bars), with neg-
ligible impact on the overall system throughput. Interestingly, for
lower insert SLA the update cost increases. The lower insert la-
tency is achieved by having fewer partitions. This leads to more ex-
pensive point queries to locate the deleted value when executing the
delete part of the update. Casper balances the overall throughput
and respects the insert SLA with a small performance hit (< 3%).

7.5 Robustness to Workload Uncertainty
Our final experiment tests the robustness of the physical layout

proposed and shows that Casper is robust up to a level of workload
uncertainty, after which, there is a performance cliff. Figure 16a
shows a summarization of the histograms used as input to the Fre-
quency Model for point queries and inserts. Both operations occur
with frequency 50%, however, point queries mostly target the latter
part of the domain, and inserts the first part of the domain. Next,
we consider two types of uncertainty in Figure 16b: (i) mass shift
from point queries to inserts (shown as different lines), and (ii) rota-
tional shift with respect to the targeted part of the domain (x-axis).
Figure 16b shows that Casper offers a robust physical layout which
absorbs uncertainty both in terms of mass shift up to 15% and in
terms of rotational shift up to 10% without any significant penalty.
As the uncertainty increases, however, we observe a performance
penalty of up to 60%. We believe that a new optimization paradigm
is warranted when the workload knowledge is given with such un-
certainty. We further experiment with various workload profiles
and observe that for some workloads the penalty increases earlier,
hence, there is an opportunity for higher benefits by developing a
new robust tuning paradigm. We leave as future work a new prob-
lem formulation using robust optimization techniques [21, 56].

2403

7.6 Discussion
We summarize our observations about column layouts for hybrid

workloads. (1) Existing column layouts have different performance
profiles. For example, a delta-store efficiently supports update-
heavy workloads, and equi-width partitioning supports read-intensi-
ve workloads, while Casper balances both. (2) Contrary to standard
design for data analytical systems, sorting columns is not always
optimal. (3) Equi-width partitioning following the effective access
distribution provides a good layout when range queries dominate.
(4) Ghost values significantly affect the quality of a column layout.
Distributing ghost values equally without re-evaluating the impact
on the fundamental operations does not always provide a good so-
lution. Re-partitioning data and re-distributing ghost values adap-
tively are left as follow-up work. (5) Finally, ghost values bring a
significant performance gain for updates with a small overhead for
reads. While there is an update vs. read (and vs. space) tradeoff,
overall, Casper offers performance savings at the expense of small
additional memory consumption.

8. RELATED WORK
Offline Physical Design and Data Partitioning. Offline physical
tools offer support for offline analysis for physical design (auto-
tuning). They rely on what-if analysis, and are tightly integrated
with the query optimizer of each system [4, 27, 34, 37, 3, 83, 59,
65, 82]. Partitioning a relation is NP-hard [72]. Data partitioning
covers both the problem of partitioning a relation across multiple
servers and within a single server [63, 79, 80]. Partitioning across
both rows and columns is introduced by several systems to account
for different read access patterns (e.g., on fact tables and dimension
tables) [4, 11, 26]. The workload is frequently modeled as a graph
[29, 69, 75]. Other approaches extract features from each workload
operation based on its predicates [79, 80].

Casper offers a partitioning design tool that supports a general
hybrid workload, and uses the access patterns of both read and up-
date operations to form an optimization problem that has an exact
solution. We keep the partitioning time low by introducing a knob
between quality of the solution and partitioning time. Casper is the
first approach to navigate a three-way tradeoff between read perfor-
mance, update performance, and memory utilization, through the
partitioning decision and the use of additional space (ghost values)
for the update-heavy partitions.
Physical Design by Querying. The cost of offline physical design
was addressed by a collection of approaches that use the workload
as an advice to perform physical design “as-we-go”, like online
analysis [23, 24, 73, 52] and database cracking [40]. Online anal-
ysis uses cycles between workload execution and offline analysis,
while database cracking immediately starts executing queries, and
treats each as a hint to further partition data. The problem of updat-
ing in the context of database cracking has also been studied [41].
While some online tools evaluate index selection iteratively, crack-
ing [40] and adaptive indexing [36] are gradually partitioning the
data in an online, workload-aware manner.

Contrary to past work on cracking and adaptive indexing that
uses read queries as hints for physical design, Casper uses both read
and update access patterns as input to finding the optimal phys-
ical design. In cracking, updates are treated as adversarial work-
load, they are buffered and periodically merged with the main data.
Further, adaptive indexing does not control the extent of additional
space and, hence, cannot navigate the update vs. space tradeoff.
Learning Database Tuning. More recently, the complete automa-
tion of data system design decisions has re-emerged as a research

goal [42, 43, 64], aiming to exploit the recent algorithmic advance-
ments in deep learning, hardware, and adaptive database architec-
tures. Recent work reposes the question of physical design [6, 31,
32, 42, 43, 59] and workload prediction [53] using mathematical
tools (machine learning, optimization, numerical methods).

Casper is philosophically in the same path, and it focuses on the
column physical organization problem for hybrid workloads. To
the best of our knowledge, it is the first approach that uses horizon-
tal partitioning, a hybrid update policy and ghost values as a means
of balancing read and update cost in a workload-driven manner.
Column-Stores and Updates. Supporting updates in columnar
systems has been the object of several research efforts. Several ap-
proaches use additional metadata to capture and temporarily store
updates. For example, fractured mirrors use both a columnar and a
row-wise data representation [70, 71]. Other approaches employ a
variation of LSM-Trees [60] which implement differential updates
[12, 13, 48, 67, 78]. Data Blocks [49] support a hybrid block lay-
out and store chunks of data along with metadata that allows for
efficient searching, querying, and updating. Another approach is
to augment a column-store with an index that supports positional
updates, a different way to implement out-of-place updates that re-
duces the cost of query processing when using a delta store [38].

Casper enables tuning along three dimensions, balancing read
performance, update performance, and memory utilization. In ad-
dition, Casper supports constraints along those three metrics. Casper
enables principled tuning depending on the exact HTAP scenario
as opposed to working with a fixed balance. More interestingly
Casper expands the design space as it can be combined with any of
the above approaches to provide a hybrid behavior. For example,
given that Casper controls the column layout only, any decision
across columns can be done in an orthogonal way. That is, the
column-oriented part of a fractured mirrors-like approach [7, 11]
can use Casper for each column layout to reach the desired HTAP
balance and to speed up merging new values from the write-store
to the read-store. The same is true for PAX layouts [5]. In this way,
Casper opens up new opportunities to think about the design space
broadly across all the above options.
Ghost Values. The columnar design of modern systems takes ad-
vantage of the dense layout of columns to use a number of opti-
mizations like vectorized processing, SIMD processing, and com-
pression. While this offers superb read performance it makes in-
place updates virtually impossible. Past research has studied the
use of interspersing empty slots (ghost values) throughout the col-
umn to allow cheaper updates, deletes, and inserts [18, 19]. Our
work extends the state of the art as it combines ghost values with
range partitioning to create a column layout that balances read per-
formance, update performance, and memory amplification.

9. CONCLUSIONS
We show that analytical systems relying on columnar storage can

use tailored column layouts to support mixed workloads with both
reads and writes (using horizontal partitioning, a hybrid update pol-
icy, and ghost values). Performance can be 2− 4× better than
that of fixed state-of-the-art designs that rely on delta storage. We
frame these column layout questions as an optimization problem
that, given workload knowledge and performance requirements,
provides an optimal physical layout for the workload at hand, while
remaining robust to limited workload changes.
Acknowledgments. We thank the reviewers for their valuable feed-
back and Andy Huynh for his help in further quantifying the robust-
ness of our approach. This work is supported by NSF Grants No.
IIS-1850202 and No. IIS-1452595.

2404

10. REFERENCES
[1] D. J. Abadi, P. A. Boncz, S. Harizopoulos, S. Idreos, and

S. Madden. The Design and Implementation of Modern
Column-Oriented Database Systems. Foundations and
Trends in Databases, 5(3):197–280, 2013.

[2] D. J. Abadi, S. Madden, and M. Ferreira. Integrating
Compression and Execution in Column-oriented Database
Systems. In Proceedings of the ACM SIGMOD International
Conference on Management of Data, pages 671–682, 2006.

[3] S. Agrawal, S. Chaudhuri, L. Kollár, A. P. Marathe, V. R.
Narasayya, and M. Syamala. Database Tuning Advisor for
Microsoft SQL Server 2005. In Proceedings of the
International Conference on Very Large Data Bases (VLDB),
pages 1110–1121, 2004.

[4] S. Agrawal, V. R. Narasayya, and B. Yang. Integrating
Vertical and Horizontal Partitioning into Automated Physical
Database Design. In Proceedings of the ACM SIGMOD
International Conference on Management of Data, pages
359–370, 2004.

[5] A. Ailamaki, D. J. DeWitt, M. D. Hill, and M. Skounakis.
Weaving Relations for Cache Performance. In Proceedings
of the International Conference on Very Large Data Bases
(VLDB), pages 169–180, 2001.

[6] D. V. Aken, A. Pavlo, G. J. Gordon, and B. Zhang.
Automatic Database Management System Tuning Through
Large-scale Machine Learning. In Proceedings of the ACM
SIGMOD International Conference on Management of Data,
pages 1009–1024, 2017.

[7] I. Alagiannis, S. Idreos, and A. Ailamaki. H2O: A
Hands-free Adaptive Store. In Proceedings of the ACM
SIGMOD International Conference on Management of Data,
pages 1103–1114, 2014.

[8] E. D. Andersen and K. D. Andersen. The Mosek Interior
Point Optimizer for Linear Programming: An
Implementation of the Homogeneous Algorithm. High
Performance Optimization, 33:197–232, 2000.

[9] Apache. Parquet. https://parquet.apache.org/.
[10] R. Appuswamy, M. Karpathiotakis, D. Porobic, and

A. Ailamaki. The Case For Heterogeneous HTAP. In
Proceedings of the Biennial Conference on Innovative Data
Systems Research (CIDR), 2017.

[11] J. Arulraj, A. Pavlo, and P. Menon. Bridging the Archipelago
between Row-Stores and Column-Stores for Hybrid
Workloads. In Proceedings of the ACM SIGMOD
International Conference on Management of Data, 2016.

[12] M. Athanassoulis, S. Chen, A. Ailamaki, P. B. Gibbons, and
R. Stoica. MaSM: Efficient Online Updates in Data
Warehouses. In Proceedings of the ACM SIGMOD
International Conference on Management of Data, pages
865–876, 2011.

[13] M. Athanassoulis, S. Chen, A. Ailamaki, P. B. Gibbons, and
R. Stoica. Online Updates on Data Warehouses via Judicious
Use of Solid-State Storage. ACM Transactions on Database
Systems (TODS), 40(1), 2015.

[14] M. Athanassoulis and S. Idreos. Design Tradeoffs of Data
Access Methods. In Proceedings of the ACM SIGMOD
International Conference on Management of Data, Tutorial,
2016.

[15] M. Athanassoulis, M. S. Kester, L. M. Maas, R. Stoica,
S. Idreos, A. Ailamaki, and M. Callaghan. Designing Access
Methods: The RUM Conjecture. In Proceedings of the
International Conference on Extending Database Technology

(EDBT), pages 461–466, 2016.
[16] M. Athanassoulis, Z. Yan, and S. Idreos. UpBit: Scalable

In-Memory Updatable Bitmap Indexing. In Proceedings of
the ACM SIGMOD International Conference on
Management of Data, 2016.

[17] R. Barber, G. M. Lohman, V. Raman, R. Sidle, S. Lightstone,
and B. Schiefer. In-Memory BLU Acceleration in IBM’s
DB2 and dashDB: Optimized for Modern Workloads and
Hardware Architectures. In Proceedings of the IEEE
International Conference on Data Engineering (ICDE),
2015.

[18] M. A. Bender, E. D. Demaine, and M. Farach-Colton.
Cache-Oblivious B-Trees. In Proceedings of the Annual
Symposium on Foundations of Computer Science (FOCS),
pages 399–409, 2000.

[19] M. A. Bender and H. Hu. An Adaptive Packed-Memory
Array. ACM Transactions on Database Systems (TODS),
32(4), 2007.

[20] H. Berenson, P. A. Bernstein, J. Gray, J. Melton, E. J.
O’Neil, and P. E. O’Neil. A critique of ANSI SQL isolation
levels. ACM SIGMOD Record, 24(2):1–10, 1995.

[21] D. Bertsimas, O. Nohadani, and K. M. Teo. Robust
Optimization for Unconstrained Simulation-Based Problems.
Operations Research, 58(1):161–178, 2010.

[22] J. Bisschop. AIMMS - Optimization Modeling. AIMMS,
2006.

[23] N. Bruno and S. Chaudhuri. To Tune or not to Tune? A
Lightweight Physical Design Alerter. In Proceedings of the
International Conference on Very Large Data Bases (VLDB),
pages 499–510, 2006.

[24] N. Bruno and S. Chaudhuri. An Online Approach to Physical
Design Tuning. In Proceedings of the IEEE International
Conference on Data Engineering (ICDE), pages 826–835,
2007.

[25] B. Chandramouli, G. Prasaad, D. Kossmann, J. J.
Levandoski, J. Hunter, and M. Barnett. FASTER: A
Concurrent Key-Value Store with In-Place Updates. In
Proceedings of the ACM SIGMOD International Conference
on Management of Data, pages 275–290, 2018.

[26] C. Chasseur and J. M. Patel. Design and Evaluation of
Storage Organizations for Read-Optimized Main Memory
Databases. PVLDB, 6(13):1474–1485, 2013.

[27] S. Chaudhuri and V. R. Narasayya. An Efficient Cost-Driven
Index Selection Tool for Microsoft SQL Server. In
Proceedings of the International Conference on Very Large
Data Bases (VLDB), pages 146–155, 1997.

[28] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and
R. Sears. Benchmarking cloud serving systems with YCSB.
In Proceedings of the ACM Symposium on Cloud Computing
(SoCC), pages 143–154, 2010.

[29] C. Curino, Y. Zhang, E. P. C. Jones, and S. Madden. Schism:
A Workload-Driven Approach to Database Replication and
Partitioning. PVLDB, 3(1):48–57, 2010.

[30] B. Dageville, T. Cruanes, M. Zukowski, V. Antonov,
A. Avanes, J. Bock, J. Claybaugh, D. Engovatov,
M. Hentschel, J. Huang, A. W. Lee, A. Motivala, A. Q.
Munir, S. Pelley, P. Povinec, G. Rahn, S. Triantafyllis, and
P. Unterbrunner. The Snowflake Elastic Data Warehouse. In
Proceedings of the ACM SIGMOD International Conference
on Management of Data, pages 215–226, 2016.

[31] N. Dayan, M. Athanassoulis, and S. Idreos. Monkey:
Optimal Navigable Key-Value Store. In Proceedings of the

2405

ACM SIGMOD International Conference on Management of
Data, pages 79–94, 2017.

[32] N. Dayan, M. Athanassoulis, and S. Idreos. Optimal Bloom
Filters and Adaptive Merging for LSM-Trees. ACM
Transactions on Database Systems (TODS),
43(4):16:1–16:48, 2018.

[33] F. Färber, N. May, W. Lehner, P. Große, I. Müller, H. Rauhe,
and J. Dees. The SAP HANA Database – An Architecture
Overview. IEEE Data Engineering Bulletin, 35(1):28–33,
2012.

[34] S. J. Finkelstein, M. Schkolnick, and P. Tiberio. Physical
Database Design for Relational Databases. ACM
Transactions on Database Systems (TODS), 13(1):91–128,
1988.

[35] P. Francisco. The Netezza Data Appliance Architecture: A
Platform for High Performance Data Warehousing and
Analytics. IBM Redbooks, 2011.

[36] G. Graefe and H. Kuno. Self-selecting, self-tuning,
incrementally optimized indexes. In Proceedings of the
International Conference on Extending Database Technology
(EDBT), pages 371–381, 2010.

[37] T. Härder. Selecting an Optimal Set of Secondary Indices. In
Proceedings of the European Cooperation in Informatics
(ECI), pages 146–160, 1976.

[38] S. Héman, M. Zukowski, and N. J. Nes. Positional Update
Handling in Column Stores. In Proceedings of the ACM
SIGMOD International Conference on Management of Data,
pages 543–554, 2010.

[39] S. Idreos, F. Groffen, N. Nes, S. Manegold, K. S. Mullender,
and M. L. Kersten. MonetDB: Two Decades of Research in
Column-oriented Database Architectures. IEEE Data
Engineering Bulletin, 35(1):40–45, 2012.

[40] S. Idreos, M. L. Kersten, and S. Manegold. Database
Cracking. In Proceedings of the Biennial Conference on
Innovative Data Systems Research (CIDR), 2007.

[41] S. Idreos, M. L. Kersten, and S. Manegold. Updating a
Cracked Database. In Proceedings of the ACM SIGMOD
International Conference on Management of Data, pages
413–424, 2007.

[42] S. Idreos, K. Zoumpatianos, M. Athanassoulis, N. Dayan,
B. Hentschel, M. S. Kester, D. Guo, L. M. Maas, W. Qin,
A. Wasay, and Y. Sun. The Periodic Table of Data Structures.
IEEE Data Engineering Bulletin, 41(3):64–75, 2018.

[43] S. Idreos, K. Zoumpatianos, B. Hentschel, M. S. Kester, and
D. Guo. The Data Calculator: Data Structure Design and
Cost Synthesis from First Principles and Learned Cost
Models. In Proceedings of the ACM SIGMOD International
Conference on Management of Data, pages 535–550, 2018.

[44] T. Johnson and D. Shasha. Utilization of B-trees with Inserts,
Deletes and Modifies. In Proceedings of the ACM
Symposium on Principles of Database Systems (PODS),
pages 235–246, 1989.

[45] A. Kemper and T. Neumann. HyPer: A Hybrid OLTP &
OLAP Main Memory Database System Based on Virtual
Memory Snapshots. In Proceedings of the IEEE
International Conference on Data Engineering (ICDE),
pages 195–206, 2011.

[46] T. Kraska, A. Beutel, E. H. Chi, J. Dean, and N. Polyzotis.
The Case for Learned Index Structures. In Proceedings of the
ACM SIGMOD International Conference on Management of
Data, pages 489–504, 2018.

[47] T. Lahiri, S. Chavan, M. Colgan, D. Das, A. Ganesh,

M. Gleeson, S. Hase, A. Holloway, J. Kamp, T.-H. Lee,
J. Loaiza, N. Macnaughton, V. Marwah, N. Mukherjee,
A. Mullick, S. Muthulingam, V. Raja, M. Roth, E. Soylemez,
and M. Zait. Oracle Database In-Memory: A Dual Format
In-Memory Database. In Proceedings of the IEEE
International Conference on Data Engineering (ICDE),
2015.

[48] A. Lamb, M. Fuller, and R. Varadarajan. The Vertica
Analytic Database: C-Store 7 Years Later. PVLDB,
5(12):1790–1801, 2012.

[49] H. Lang, T. Mühlbauer, F. Funke, P. A. Boncz, T. Neumann,
and A. Kemper. Data Blocks: Hybrid OLTP and OLAP on
Compressed Storage using both Vectorization and
Compilation. In Proceedings of the ACM SIGMOD
International Conference on Management of Data, 2016.

[50] P.-Å. Larson, A. Birka, E. N. Hanson, W. Huang,
M. Nowakiewicz, and V. Papadimos. Real-Time Analytical
Processing with SQL Server. PVLDB, 8(12):1740–1751,
2015.

[51] P.-A. Larson, R. Rusanu, M. Saubhasik, C. Clinciu,
C. Fraser, E. N. Hanson, M. Mokhtar, M. Nowakiewicz,
V. Papadimos, S. L. Price, and S. Rangarajan. Enhancements
to SQL server column stores. In Proceedings of the ACM
SIGMOD International Conference on Management of Data,
pages 1159–1168, 2013.

[52] M. Luhring, K.-U. Sattler, K. Schmidt, and E. Schallehn.
Autonomous Management of Soft Indexes. In Proceedings of
the IEEE International Conference on Data Engineering
Workshops (ICDEW), pages 450–458, 2007.

[53] L. Ma, D. V. Aken, A. Hefny, G. Mezerhane, A. Pavlo, and
G. J. Gordon. Query-based Workload Forecasting for
Self-Driving Database Management Systems. In Proceedings
of the ACM SIGMOD International Conference on
Management of Data, pages 631–645, 2018.

[54] D. Makreshanski, J. Giceva, C. Barthels, and G. Alonso.
BatchDB: Efficient Isolated Execution of Hybrid
OLTP+OLAP Workloads for Interactive Applications. In
Proceedings of the ACM SIGMOD International Conference
on Management of Data, pages 37–50, 2017.

[55] G. Moerkotte. Small Materialized Aggregates: A Light
Weight Index Structure for Data Warehousing. In
Proceedings of the International Conference on Very Large
Data Bases (VLDB), pages 476–487, 1998.

[56] B. Mozafari, E. Z. Y. Goh, and D. Y. Yoon. CliffGuard: A
Principled Framework for Finding Robust Database Designs.
In Proceedings of the ACM SIGMOD International
Conference on Management of Data, pages 1167–1182,
2015.

[57] MySQL. Online Reference for Storage Engine API.
https://dev.mysql.com/doc/internals/en/custom-engine.html,
2019.

[58] T. Neumann, T. Mühlbauer, and A. Kemper. Fast Serializable
Multi-Version Concurrency Control for Main-Memory
Database Systems. In Proceedings of the ACM SIGMOD
International Conference on Management of Data, pages
677–689, 2015.

[59] M. Olma, M. Karpathiotakis, I. Alagiannis,
M. Athanassoulis, and A. Ailamaki. Slalom: Coasting
Through Raw Data via Adaptive Partitioning and Indexing.
PVLDB, 10(10):1106–1117, 2017.

[60] P. E. O’Neil, E. Cheng, D. Gawlick, and E. J. O’Neil. The
log-structured merge-tree (LSM-tree). Acta Informatica,

2406

33(4):351–385, 1996.
[61] Oracle. Introducing Oracle Database 18c. White Paper, 2018.
[62] F. Özcan, Y. Tian, and P. Tözün. Hybrid

Transactional/Analytical Processing: A Survey. In
Proceedings of the ACM SIGMOD International Conference
on Management of Data, pages 1771–1775, 2017.

[63] I. Pandis, P. Tözün, R. Johnson, and A. Ailamaki. PLP: Page
Latch-free Shared-everything OLTP. PVLDB,
4(10):610–621, 2011.

[64] A. Pavlo, G. Angulo, J. Arulraj, H. Lin, J. Lin, L. Ma,
P. Menon, T. C. Mowry, M. Perron, I. Quah, S. Santurkar,
A. Tomasic, S. Toor, D. V. Aken, Z. Wang, Y. Wu, R. Xian,
and T. Zhang. Self-Driving Database Management Systems.
In Proceedings of the Biennial Conference on Innovative
Data Systems Research (CIDR), 2017.

[65] A. Pavlo, C. Curino, and S. B. Zdonik. Skew-Aware
Automatic Database Partitioning in Shared-Nothing, Parallel
OLTP Systems. In Proceedings of the ACM SIGMOD
International Conference on Management of Data, pages
61–72, 2012.

[66] M. Pezzini, D. Feinberg, N. Rayner, and R. Edjlali. Hybrid
Transaction/Analytical Processing Will Foster Opportunities
for Dramatic Business Innovation.
https://www.gartner.com/doc/2657815/, 2014.

[67] M. Pilman, K. Bocksrocker, L. Braun, R. Marroquin, and
D. Kossmann. Fast Scans on Key-Value Stores. PVLDB,
10(11):1526–1537, 2017.

[68] H. Plattner. A Common Database Approach for OLTP and
OLAP Using an In-Memory Column Database. In
Proceedings of the ACM SIGMOD International Conference
on Management of Data, pages 1–2, 2009.

[69] A. Quamar, K. A. Kumar, and A. Deshpande. SWORD:
Scalable Workload-Aware Data Placement for Transactional
Workloads. In Proceedings of the International Conference
on Extending Database Technology (EDBT), pages 430–441,
2013.

[70] R. Ramamurthy, D. J. DeWitt, and Q. Su. A Case for
Fractured Mirrors. In Proceedings of the International
Conference on Very Large Data Bases (VLDB), pages
430–441, 2002.

[71] R. Ramamurthy, D. J. DeWitt, and Q. Su. A Case for
Fractured Mirrors. The VLDB Journal, 12(2):89–101, 2003.

[72] D. Saccà and G. Wiederhold. Database Partitioning in a
Cluster of Processors. ACM Transactions on Database
Systems (TODS), 10(1):29–56, 1985.

[73] K. Schnaitter, S. Abiteboul, T. Milo, and N. Polyzotis.
COLT: Continuous On-Line Database Tuning. In

Proceedings of the ACM SIGMOD International Conference
on Management of Data, pages 793–795, 2006.

[74] D. Schwalb, M. Faust, J. Wust, M. Grund, and H. Plattner.
Efficient Transaction Processing for Hyrise in Mixed
Workload Environments. In Proceedings of the International
Workshop on In Memory Data Management and Analytics
(IMDM), pages 16–29, 2014.

[75] M. Serafini, R. Taft, A. J. Elmore, A. Pavlo, A. Aboulnaga,
and M. Stonebraker. Clay: Fine-Grained Adaptive
Partitioning for General Database Schemas. PVLDB,
10(4):445–456, 2016.

[76] N. Shamgunov. The MemSQL In-Memory Database System.
In Proceedings of the International Workshop on In-Memory
Data Management and Analytics (IMDM), 2014.

[77] V. Sikka, F. Färber, A. K. Goel, and W. Lehner. SAP HANA:
The Evolution from a Modern Main-Memory Data Platform
to an Enterprise Application Platform. PVLDB,
6(11):1184–1185, 2013.

[78] M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen,
M. Cherniack, M. Ferreira, E. Lau, A. Lin, S. R. Madden,
E. J. O’Neil, P. E. O’Neil, A. Rasin, N. Tran, and S. Zdonik.
C-Store: A Column-oriented DBMS. In Proceedings of the
International Conference on Very Large Data Bases (VLDB),
pages 553–564, 2005.

[79] L. Sun, M. J. Franklin, S. Krishnan, and R. S. Xin.
Fine-grained Partitioning for Aggressive Data Skipping. In
Proceedings of the ACM SIGMOD International Conference
on Management of Data, pages 1115–1126, 2014.

[80] L. Sun, M. J. Franklin, J. Wang, and E. Wu.
Skipping-oriented Partitioning for Columnar Layouts.
PVLDB, 10(4):421–432, 2016.

[81] TPC. Specification of TPC-H benchmark.
http://www.tpc.org/tpch/, 2018.

[82] E. Wu and S. Madden. Partitioning Techniques for
Fine-grained Indexing. In Proceedings of the IEEE
International Conference on Data Engineering (ICDE),
pages 1127–1138, 2011.

[83] D. C. Zilio, J. Rao, S. Lightstone, G. M. Lohman, A. Storm,
C. Garcia-Arellano, and S. Fadden. DB2 Design Advisor:
Integrated Automatic Physical Database Design. In
Proceedings of the International Conference on Very Large
Data Bases (VLDB), pages 1087–1097, 2004.

[84] M. Zukowski and P. A. Boncz. Vectorwise: Beyond Column
Stores. IEEE Data Engineering Bulletin, 35(1):21–27, 2012.

[85] M. Zukowski, S. Héman, N. Nes, and P. A. Boncz.
Super-Scalar RAM-CPU Cache Compression. In
Proceedings of the IEEE International Conference on Data
Engineering (ICDE), page 59, 2006.

2407

	Introduction
	Column Layout Design Space
	Accessing Partitioned Columns
	Modeling Column Layouts
	Representing a Partitioning Scheme
	The Frequency Model
	Learning the FM from Access Patterns
	Cost Functions
	Cost Model Verification
	Considering Ghost Values

	Optimal Column Layout
	Casper Storage Engine
	Transaction Support
	Compression
	Scalability with Problem Size
	Casper as a Generic Storage Engine

	Experimental Evaluation
	HAP Benchmark
	Casper Improves Overall Throughput
	Casper's Impact on Update Performance
	Meeting Performance Constraints
	Robustness to Workload Uncertainty
	Discussion

	Related Work
	Conclusions
	References

