
Distributed Edge Partitioning for Trillion-edge Graphs

Masatoshi Hanai 1∗

mhanai@acm.org
Toyotaro Suzumura 2

suzumura@acm.org
Wen Jun Tan 3

wtan047@e.ntu.edu.sg

Elvis Liu 1

esyliu@sustc.edu.cn
Georgios Theodoropoulos 1†

georgios@sustc.edu.cn
Wentong Cai 3

aswtcai@ntu.edu.sg
1Southern University of Science and Technology, Shenzhen, China

2IBM T.J. Watson Research Center, New York, USA
3Nanyang Technological University, Singapore

ABSTRACT
We propose Distributed Neighbor Expansion (Distributed
NE), a parallel and distributed graph partitioning method
that can scale to trillion-edge graphs while providing high
partitioning quality. Distributed NE is based on a new
heuristic, called parallel expansion, where each partition is
constructed in parallel by greedily expanding its edge set
from a single vertex in such a way that the increase of
the vertex cuts becomes local minimal. We theoretically
prove that the proposed method has the upper bound in the
partitioning quality. The empirical evaluation with various
graphs shows that the proposed method produces higher-
quality partitions than the state-of-the-art distributed graph
partitioning algorithms. The performance evaluation shows
that the space efficiency of the proposed method is an order-
of-magnitude better than the existing algorithms, keeping
its time efficiency comparable. As a result, Distributed NE
can partition a trillion-edge graph using only 256 machines
within 70 minutes.

PVLDB Reference Format:
Masatoshi Hanai, Toyotaro Suzumura, Wen Jun Tan, Elvis Liu,
Georgios Theodoropoulos and Wentong Cai. Distributed Edge
Partitioning for Trillion-edge Graphs. PVLDB, 12(13): 2379-
2392, 2019.
DOI: https://doi.org/10.14778/3358701.3358706

1. INTRODUCTION
Graph partitioning plays a critical role to efficiently ana-

lyze large-scale graphs on distributed graph-processing sys-
tems, such as Pregel, Giraph, GraphX, GPS, PowerGraph,
Pregel+, PGX.D, X-Stream, ScaleGraph, GraM, PowerLyra,
Gemini, and LA3 [34, 1, 17, 32, 16, 40, 24, 41, 43, 50, 20,

∗This work is initiated when Dr. Hanai was in NTU.
†Corresponding author.

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 12, No. 13
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3358701.3358706

Figure 1: (a) Edge Partition (Vertex-Cut Partition)
vs (b) Vertex Partition (Edge-Cut Partition).

48, 13, 55, 6]. Graph partitioning aims to divide the in-
put graph into parts in such a way that the communication
cost among the distributed processes becomes minimal while
keeping the distributed load balanced.

In recent research [16, 40, 17], edge partitioning is shown
to be more effective than the traditional vertex partitioning
in large-scale real-world graphs, such as web or social graphs.
The edge partitioning divides the edges of the entire graph
into disjoint parts as shown in Figure 1(a), whereas the
vertex partitioning divides the vertices disjointly as shown
in Figure 1(b). The edge partitioning provides the bet-
ter workload balance because the computational cost of the
graph processing essentially depends on the number of edges
rather than the number of vertices. The vertex partition-
ing causes serious workload imbalance between high-degree
vertices and low-degree vertices in the large-scale real-world
graph, which mostly has skewed-degree distribution, namely,
there are a few high-degree vertices, whereas the rest of
the vertices have low degree [29] (e.g., web [25] and social
graphs [38]). In this paper, we focus on the edge partitioning
of such skewed graphs.

The research challenges of the edge partitioning fall into
two different key issues: quality and scalability. First, high
partitioning quality, which is measured by the total number
of vertex cuts, is difficult to obtain since the minimization
of the vertex cuts is proved to be an NP-hard problem [54].
Second, the edge partitioning algorithm is required to scale
to deal with trillion-edge graphs since the real-world graphs
have been growing larger and larger, e.g., the social graph
in Facebook consists of over one trillion edges [14]. The
targeting scale of the recent graph analysis has been sifting
from the billion-edge to the trillion-edge scale [14, 48, 33].

However, no existing edge partitioning algorithms satisfy
both the quality and scalability requirements for the trillion-
edge graph. On one hand, the scalable hash-based methods,
such as 1D hash, 2D hash, DBH [49], Hybrid Hash [13], pro-

2379

Figure 2: Parallel Expansion. 3 parts greedily ex-
pand in parallel to partition a graph.

duce the low-quality partitions because the edges are gen-
erally allocated at random by a hash operation. Although
some iterative local refinements of the random allocation
are proposed to improve the quality, such as Oblivious [16]
and Hybrid Ginger [13], their improvement is still limited.
On the other hand, the high-quality edge partitioning al-
gorithms have a limit in their scalability. Sequential algo-
rithms [39, 54] are not applicable for the trillion-edge graph
because of the performance. Even in the state-of-art high-
quality distributed method, Sheep [35] cannot scale to the
trillion-edge graph because the speed up as the increase of
machines is very limited.

In this paper, we propose Distributed Neighbor Expansion
(Distributed NE), a novel distributed edge partitioning algo-
rithm to solve the quality and scalability issues. Distributed
NE is based on a new simple greedy heuristic, called par-
allel expansion as illustrated in Figure 2. The main idea
is that the algorithm starts from multiple random vertices
and greedily expands each edge set in parallel such that the
increase of the vertex cuts becomes minimal. Such a greedy
approach provides higher-quality edge partitions because it
allocates most edges in a locally optimal way and seldom
includes the random allocation.

The key contributions of this paper are as follows:

A Scalable and Efficient Algorithm. Distributed NE is
scalable and efficient. We carefully design the distributed
algorithm (§ 3) and propose a novel distributed edge alloca-
tion to solve the scalability and performance issues (§ 4). We
then propose a further optimization method which speeds
up Distributed NE while keeping the quality (§ 5). Due
to the scalable and efficient design, our implementation can
handle the trillion-edge graph using only a few hundreds of
machines (§ 7).

High-Quality Partition with Theoretical Bound. Dis-
tributed NE provides high-quality partitioning, which has
a theoretical upper bound. Our theoretical analysis proves
that the number of the vertex cuts computed by Distributed
NE is bounded from above. Its upper bound is shown to be
better than that of the existing distributed methods (§ 6).
Moreover, we empirically show that Distributed NE pro-
duces significantly higher-quality partitions than the exist-
ing distributed methods in various skewed graphs (§ 7).

2. BACKGROUND
This section provides a formulation of the problem and an

outline of related work.

2.1 Notation and Problem Definition
LetG(V,E) be an undirected and unweighted graph which

consists of a set of vertices, V , and edges, E. The vertex
set involved in E is defined as V (E). An edge, e (∈ E),
connecting vertices, v and u, is represented by ev,u. Let p
be a partition id and P be the set of partition ids. The
number of elements in a set is represented by | · |, e.g., |V |
and |P |.

The objective of the edge partitioning is to divide E into
the disjoint subsets Ep (

⋃
p∈P Ep = E) such that the number

of vertex cuts becomes as minimal as possible while keeping
the balance of the subsets. We usually measure the number
of vertex replications, which is defined as

∑
p∈P |V (Ep)|, in-

stead of vertex cuts. The number of vertex replications is
normalized as follows:

1

|V |
∑
p∈P

|V (Ep)|, (1)

which is called replication factor [16]. Based on the replica-
tion factor, the objective of a balanced |P |-way edge parti-
tioning of G [16] is formalized as follows:

min
f∈F

1

|V |
∑

Ep∈f(E)

|V (Ep)|, s.t. max
p∈P
|Ep| < α

|E|
|P | , (2)

where f : E 7→ {Ep : p ∈ P} is a partitioning method, and F
is the set of all partitioning methods. The imbalance factor,
α ≥ 1.0, is a constant parameter.

2.2 Related Work
The graph partitioning problem has been extensively in-

vestigated. We refer the reader to the comprehensive sur-
veys by Buluç et al. [11]. Here, we provide a review of the
edge partitioning methods and the vertex partitioning meth-
ods that have been proposed for trillion-edge graphs.

Edge Partitioning. One of the major approaches to edge
partitioning is based on the random hash. The most straight-
forward approach is 1D-hash partitioning, where the edge is
randomly assigned to a one-dimensional partitioning space.
Another approach uses 2D-hash partitioning, where the edge
is assigned to two-dimensional partitioning space by hash-
ing the adjacent vertices separately [53, 9, 4, 17]. The latest
hash-based approaches utilize the degree of vertices, where
the edge is randomly assigned so that high-degree vertices
are divided into more partitions than low-degree ones. The
examples are Hybrid Hashing [13] and DBH [49]. Oblivi-
ous [16] and Hybrid Ginger [13] are a heuristic to iteratively
refine the assignment after the hash partitioning for the im-
provement of partitioning quality. Since the hash opera-
tion is lightweight, this approach efficiently partitions the
trillion-edge graph, but the random allocation causes the
serious quality loss.

A more recent approach for the large-scale graph is based
on streaming methods, such as FENNEL-based edge parti-
tioning [45, 10], HDRF [39], and SNE [54], where the input
graph is represented as a sequence of edges and processed
one-by-one without the entire information. Since only a part
of the entire graph is deployed on the main memory, it can
handle a large graph whose size is more than the main mem-
ory. However, since the algorithm does not fully make use of
the information of the entire graph, the partitioning quality
is limited. Moreover, these methods basically assume the se-
quential processing, and thus, their performance is limited.

Sheep [35] is the state-of-the-art distributed edge partition
method, where the graph is parallelly translated into the
elimination tree before applying tree partitioning. Although
the algorithm can be executed on the distributed memory,
it does not speed up well as the increase of the machines
as reported in the paper. Moreover, the algorithm does not
provide any theoretical guarantee of the partitioning quality,
such as the upper bound.

2380

Figure 3: Expansion Approach. First heuristic se-
lects v from the boundary and allocates ev,u. Then,
second heuristic allocates eu,w. This figure is modi-
fied from [54].

Most related work to ours is a greedy approach [10, 54].
NE [54] is the state-of-the-art greedy algorithm based on
the expansion of the edge set. It currently provides the best
quality in practice, but the scalability is limited since it is
an offline sequential algorithm, where the entire graph is
deployed on the main memory on a single machine.

Vertex Partitioning of Trillion-edge Graphs. Recently,
a few distributed vertex partitioning methods which can
handle the trillion-edge graph have been proposed. Xtra-
PuLP [42] can scale to the trillion-edge graph, but it requires
over 8K machines, which are excessive because PageRank of
Facebook’s trillion-edge graph can be calculated on only a
few hundreds of machines [14]. Spinner [36] is reported to
partition the trillion-edge graph by using a few hundreds of
machines, but it generates low-quality partitions because it
involves the initial random allocation in the same way as
the hash-based edge partitioning methods. Moreover, these
methods do not give the theoretical guarantee of the parti-
tioning quality.

3. DISTRIBUTED NEIGHBOR EXPANSION
In this section, we first illustrate the greedy expansion ap-

proach, which forms the basis of our distributed algorithm.
Second, we summarize challenging issues towards the scal-
able distributed algorithm. Finally, we give an overview of
our proposal.

3.1 Edge Partitioning Based on Expansion
We first provide a short overview of the expansion of an

edge set for partitioning. After that, we review two greedy
heuristics for effective expansion.

Edge Partitioning Using Expansion of Edge Set. For
G(V,E), let X be an edge set (X ⊂ E). We refer to the
vertex set B(X) := {v | v ∈ V (X) ∧ ∃ev,u ∈ E\X} as
boundary of X. The expansion of X is an operation defined
as follows:

Select v ∈ B(X), and X ← X ∪ {ev,u | ev,u ∈ E \X},

where we also suppose that if B(X) is empty, v is selected
at random from V (E \X).

Based on the expansion, we can simply generate |P | edge
partitions of G(V,E) as the following algorithm:

(i) The computation for each partition begins with a sin-
gle boundary vertex and an empty edge set.

(ii) The edge set is expanded until its size reaches to the
limit (i.e., α|E|/|P | as discussed in Section 2) or there
is no edge for expansion. The generated edge set is
one of the edge partitions, and it is removed from E.

(iii) The next partition is computed for the remaining edges
E. If E is empty, the algorithm terminates.

There are two basic heuristics [16, 10, 39, 13, 54] to obtain
high-quality edge partitions by using the expansion. One

aims to select a vertex from the boundary in such a way
that the increase of vertex replications becomes minimal.
The other is used during expansion to allocate additional
edges which do not increase the replication vertices anymore.
Figure 3 shows the overview of how the edge set is expanded
by using these heuristics.

Heuristic for Vertex Selection from Boundary. In the
above algorithm, let Ep(t) be the set of p’s edge set allocated
so far until t, where t is a counter of the expansions. Based
on Formula (1), the number of p’s vertex replications at t is
represented as |V (Ep(t))|.

The increase of the vertex replications by the new bound-
ary vertex v from t to t+ 1 is equal to the v’s degree in the
remaining edges.

|V (Ep(t+ 1))| − |V (Ep(t))| = Drest(v), (3)

where Drest(v) := |N(v) ∩ E|; N(v) is a set of v’s neighbor
edges; and E is the remaining edges. Thus, new vertex which
minimizes the increase of the vertex replications, vmin, is
represented as follows:

vmin := argmin
x∈B

Drest(x). (4)

For example in Figure 3, Drest(w) is 3 , and thus the
number of vertex replications would increase by 3 if w is se-
lected; whereas Drest(v) is 1, and the number of replications
increases by 1 if v is selected. Finally, v is selected in this
case (i.e., vmin = v).

Heuristic for Edge Allocation. In the above algorithm,
two-hop neighbors of the selected vertex may include some
edges which never increase the replication vertices. Such
edges can be easily found with a simple yet important fact,
that is commonly used in the existing algorithms [16, 10, 39,
13, 54], as follows:

If both vertex v and u are involved in V (Ep(t)), then

allocation of ev,u to p does not increase replications. (5)

By this fact, when allocating an edge to p, if a two-hop-
neighbor vertex from the selected vertex is already allocated
to p, then the edge from the one-hop-neighbor vertex to the
two-hop-neighbor vertex is allocated.

For example in Figure 3, eu,w is additionally allocated
during the expansion. The allocation of eu,w does not in-
crease the number of the vertex replications because one of
the edges to w and one of the edges to v are already allocated
to the same partition.

3.2 Challenges to Distributed Algorithm
The main idea behind our proposed approach is to ex-

ecute the expansion for each partition in parallel. Even
though the core idea of the parallel expansion is simple,
to achieve a highly scalable distributed algorithm which en-
ables us to partition trillion-edge graphs is a challenging
endeavour. The challenges are summarized as follows:

Scalability. The primal issue is constraints on the scala-
bility of the partitioning algorithm imposed by the limited
memory size. The parallel expansion is an offline algorithm,
where the entire input graph is necessary to be accessible
from the beginning of the algorithm. The effective initial
deployment of the input graph to the distributed main mem-
ories is required for scalability and efficiency.

2381

Figure 4: Overview of Distributed NE. A dotted and solid arrow represent a work and data flow, respectively.

Concurrent Allocation. Concurrency issues appear dur-
ing the parallel expansion when multiple expanded parts
simultaneously try to allocate the same graph element (i.e.,
vertex or edge). If the element is replicated among the
distributed processes, the global synchronization of the al-
located information is necessary among the replications to
maintain consistency.

Distributed Two-hop-neighbor Search. Another issue
is introduced by a two-hop-neighbor search in the greedy
expansion. The search of the two-hop neighbors from the
current expanded part is necessary to greedily decide which
edges should be allocated next. However, in the general
distributed graph, each vertex has basically only its one-
hop-neighbor vertices and edges (i.e., adjacent vertices and
edges), and the two-hop-neighbor search cannot be fully lo-
calized. It must include the communication among the dis-
tributed processes. The efficient two-hop-neighbor search is
a key challenge, which differentiates Distributed NE from
the other typical distributed graph algorithms based on the
one-hop-neighbor accesses.

3.3 Proposed Distributed Approach
In this subsection, Distributed NE is presented. Suppose

there are |P | machines available. Since the graph partition-
ing is used for the pre-processing of the distributed graph ap-
plications (such as shortest path and PageRank), the num-
ber of partitions generated by Distributed NE should be
equal to the most effective number for the distributed graph
processing systems, which we assume are the most efficient
when each partition is assigned to one machine. Thus, the
goal of the task is specified to be:

To compute |P |-way edge partitioning of the input graph and
distribute the |P | partitions into the |P | machines.

For the computation of the parallel expansion on the dis-
tributed environment, there are two basic requirements. First,
the entire input graph needs to be initially stored in the main
memories on the multiple machines for the graph traversal
during the expansion. Second, the boundary vertices of the
edge set in each partition need to be managed in a single
machine because the selection of the local-minimal vertex
from the boundary is executed locally for efficiency.

To meet the two requirements, two types of a distributed
process are used: an expansion process and an allocation
process. The expansion processes manage the boundary ver-
tices to compute local-optimal vertex selection. The alloca-

tion processes manage the input graph in the distributed
way and manage the allocation of vertices and edges.

The flow of the computation is illustrated in Figure 4.
The overall computation begins with launching |P | expan-
sion processes and |P | allocation processes (i.e., Expansion
Process 0,1,2 and Allocation Process 0,1,2 in Figure 4). Each
expansion process and allocation process is deployed to one
of the |P | machines. First, the input graph is randomly
distributed to the allocation processes. The expansion in
each expansion process begins with a random-selected ver-
tex. The algorithm is executed iteratively as illustrated by
Step 1–6 in Figure 4. During the iterations, the allocated
edges are copied and sent from the allocation processes to
the expansion processes, and at the end of the computa-
tion, the entire edges are distributed to the |P | expansion
processes.

Expansion Process. Each expansion process computes in
parallel the selection of a new vertex from the boundary, Bp
to expand the edge set, Ep.

Algorithm 1 shows the details of the computation in each
expansion process. Each partition is computed iteratively,
including the vertex selection (Line 3 – 7), the allocation
request (Line 8), and the update of the boundary and the
edge set (Line 10 – 13). In the vertex selection, a vertex,
vmin , which has the minimal degree for the remaining edges
as discussed in Equation (4), is selected from Bp if it is not
empty; otherwise, vmin is chosen at random from vertices
with non-allocated edges. The random vertex is basically
taken from the allocation process in the same machine. It is
from the other machines only if necessary. After that, in the
allocation request, each expansion process multicasts vmin to
allocation processes in charge, and waits for the edge alloca-
tion by the allocation processes. When the edge allocation is
done, each expansion process receives new boundary, Bnew ,
which also includes Drest score of each vertex as discussed
in Equation (3), and newly allocated edges, Enew . Bnew and
Enew are inserted to Bp and Ep respectively. Finally, the
expansion process checks for the termination condition and
stops accordingly.

Allocation Process. The allocation processes take the
selected vertices from the expansion processes and return
newly allocated edges and new boundary vertices with their
Drest scores. For each selected vertex v of partition p, two
types of edges are allocated as discussed in Section 3.1.

(i) v’s one-hop neighbor edges, {ev,u}.

2382

Algorithm 1: Expansion Process for Partition p

Input: p – This Partition ID, P – Set of Partition IDs
Output: Ep – Partitioned Edges for p

Var: Bp – Priority Queue of 〈Drest(v), v〉
: |E| – Total # of Allocated Edges
: |Einit | – Total # of Initial Edges

1 Ep ← ∅, Bp ← ∅
2 while true do

/* Selection of Expansion Vertex */
3 vmin ← ∅
4 if Bp 6= ∅ then
5 vmin ← Bp.popMinDrestVertex()
6 else
7 vmin ← getRandomVertex()

/* Request Allocation */
8 MulticastVertexToAllocators(vmin,p)
9 Barrier() /* Wait for Allocation */

/* Update Boundary and Edge Sets */
10 Bnew ← ReceiveNewBoundaryWithDrest()

11 Bp.insert(Bnew)

12 Enew ← ReceiveNewAllocatedEdges()

13 Ep ← Ep ∪ Enew

/* Check Termination */
14 |E| ← AllGatherSum(|Ep|)
15 if Ep > α · |Einit |/|P | ∨ |E| = |Einit | then break

(ii) v’s two-hop neighbor edges which do not increase the
vertex replications, namely, which satisfy Condition (5).

Unlike the single machine environment, where these edges
are straightforwardly searched and allocated, the allocation
on the distributed environment causes two issues: the man-
agement of concurrent allocation and the two-hop neighbor
search. In the next section, we propose a new technique to
solve the issues.

4. DISTRIBUTED EDGE ALLOCATION
In this section, an edge allocation algorithm to utilize in

the distributed allocation processes is proposed. We first
present a basic data structure which is used to divide the
input graph and to store the divided graphs. The input
graph needs to be evenly divided for workload balancing and
to be stored in a space-efficient way. Second, we present an
algorithm which efficiently allocates one-hop and two-hop
neighbors while solving concurrency problems.

Data Structure. In the allocation processes, the input
graph is distributed by the edge partitioning algorithm, which
uniquely divides the edges and replicates the vertices among
the allocation processes. Specifically, we use 2D-hash parti-
tioning and compressed sparse row (CSR) [53, 9, 4, 17] for
the initial distribution of the input graph. In 2D-hash par-
titioning, the metadata of replicated vertices (i.e., process
ids of each vertex) can be calculated from vertex id instead
of storing pairs of vertex and process id, which suppresses
memory space in the case of trillion-edges graphs.

On the edge-partitioned graph, global synchronization is
executed only in the vertex replications, whereas the edge’s
allocation information does not need to synchronize since
it is unique. For example in Figure 4, the input edges are
uniquely divided into three processes (solid line, dotted line

Algorithm 2: Overview of Edge Allocation

Args: VP rec – Received {〈vmin , p〉} via Line 8 in Alg. 1

Var : BPnew – New Boundary-Partition Pairs {〈v, p〉}
EP1hop – Alloc. 1Hop-Partition Pairs {〈e, p〉}
EP2hop – Alloc. 2Hop-Partition Pairs {〈e, p〉}
LDrest – Local Drest Scores {〈v,Drest(v)〉}

/* This function is called after all the selected vertices
* are received. (After Line 8 in Algorithm 1) */

1 EdgeAllocation(VP rec)

2 〈BP local
new , EP1hop〉 ←

AllocteOneHopNeighbors(VP rec)

3 BPnew ← SyncVertexAllocations(BP local
new)

4 EP2hop ← AllocateTwoHopNeighbors(BPnew)

5 LDrest ← ComputeLocalDrest(BPnew)

6 SendNewBoundaryWithLocalDrest(BPnew, LDrest)

7 SendNewAllocatedEdges(EP1hop ∪ EP2hop)

and double line). The vertices are replicated to the three
processes and synchronize their allocation information dur-
ing the computation.

There are two main advantages of this vertex-replicated
approach compared to other approaches, such as replicating
edges only or replicating both edges and vertices hybridly.

First, this approach can locally solve the allocation con-
flict, which occurs only in the edge and not in the vertex.
On one hand, the edge allocation may result in conflicts be-
cause each edge is allocated by the unique partition. Thus, if
the multiple partitions concurrently try to allocate the same
edge, then conflict resolution is necessary to decide which
partition actually allocates the edge. On the other hand,
the vertex allocation does not cause any conflict because a
vertex may be allocated by the multiple partitions. If the
multiple partitions concurrently allocate the same vertex,
these partitions can be simply assigned to the vertex.

Second, the replication of vertices is space efficient com-
pared to the replication of edges because skewed graphs have
much more edges than vertices (e.g., Facebook graph [14]
contains 1.45B vertices and 1T edges). Replications of ver-
tices generally require less memory than that of edges.

Algorithm. The key idea of the algorithm is to first al-
locate the one-hop-neighbor edges and then allocate two-
hop-neighbor edges which satisfy Condition (5). Between
the one-hop-neighbor and two-hop-neighbor allocation, syn-
chronization is executed to detect two-hop neighbors on the
other processes and to make the allocation information con-
sistent among the replications. The conflicts of the edge
allocation are solved locally. Algorithms 2 and 3 provide a
high level and a detailed description of the algorithm respec-
tively. Figure 5 illustrates the edge allocation for the graph
in Figure 1.

Specifically, EdgeAllocation() in Algorithm 2 is called
after receiving all the selected vertices with their partition
id, VP rec , from the expansion processes (i.e., after all the
expansion processes call MulticastVertexToAllocators()

at Line 8 in Algorithm 1).
The function consists of 4 phases as follows.

(1) Expansion and One-hop-neighbor Allocation.
In AllocteOneHopNeighbors(), for each received vertex and
its associated partition 〈v, p〉, v’s one-hop-neighbor edge and

2383

Figure 5: Distributed Edge Allocation. Each line type (solid, dotted, double) represents the initial partition
for allocation process. Each color (blue, red, green) is the final partitioning result.

Algorithm 3: Details of Algorithm 2

SubGraph: SubG – Initial Distributed Subgraph

1 AllocteOneHopNeighbors(VP rec)

2 BP local
new ← ∅; EP1hop ← ∅

3 for 〈v, p〉 ∈ VP rec do in parallel
4 for ev,u ∈ SubG.NonAllocNeighbors(v) do
5 SubG.AppendVertexPartition(u, p)
6 SubG.AllocateEdge(ev,u, p)

7 BP local
new ← BP local

new ∪ {〈u, p〉}
8 EP1hop ← EP1hop ∪ {〈ev,u, p〉}

9 return 〈BP local
new , EP1hop〉

10 AllocateTwoHopNeighbors(BPnew)

11 EP2hop ← ∅
12 for 〈u, .〉 ∈ BPnew do in parallel
13 for eu,w ∈ SubG.NonAllocNeighbors(u) do
14 Pnew ← SubG.Parti(u) ∩ SubG.Parti(w)
15 if Pnew 6= ∅ then
16 pnew ← argmin

x∈Pnew

SubG.NumEdges(x)

17 SubG.AllocateEdge(eu,w, pnew)
18 EP2hop ← EP2hop ∪ {〈eu,w, pnew 〉}

19 return EP2hop

vertex, ev,u and u, are allocated to p in parallel as shown in
Algorithm 3. 〈ev,u, p〉 and 〈u, p〉 are inserted to the new one-
hop-neighbor edges, EP1hop , and the new boundary, BP local

new ,
respectively. The conflict among different threads to allocate
the same edge is solved by a CAS operation for performance.

For example in Figure 5, at Iteration a-0, v0 is received
in the solid-line allocation process and the dotted-line one.
Then, e0,6 is allocated in the solid-line process, while e0,5 is
allocated in the dotted-line process. v6 and v5 become new
boundaries for the next iteration. In Iteration c-1, a conflict
in the edge allocation occurs at e7,10 if multiple threads si-
multaneously try to allocate e7,10 to different partitions. In
this case, the edge is finally allocated to the red partition.

(2) Synchronization of Vertex’s Allocation Ids.
SyncVertexAllocations() synchronizes vertices which are
newly allocated in the previous one-hop-neighbor allocation,
so that all vertex replications among the different machines
have the same allocation ids. Specifically, the local data of
the new boundaries, BP local

new , are sent to their replications
on the other machines. Then, in the other machines, the
allocation ids are appended to the associated vertices. The
synchronized allocation ids, BPnew , are used for the two-
hop-neighbor allocation. For example in Figure 5, at Itera-
tion a-2, v6 in the solid-line process is synchronized with its
replications in the dotted-line and the double-line ones.

(3) Two-hop-neighbor Allocation.
In AllocateTwoHopNeighbors(), the neighbors of BPnew

(thus, two-hop neighbors of the received vertex, vmin) are
processed in parallel as shown in Algorithm 3. For a two-
hop-neighbor edge, eu,w, if both u and w have been already
allocated to the same partitions, Pnew , then the algorithm
selects the minimal edge partition, pnew ∈ Pnew , and allo-
cates eu,w to pnew . The new allocated edges are stored to
EP2hop and sent back to the expansion processes. For ex-
ample in Figure 5, e5,6 at Iteration a-3 is allocated in this
phase because both v5 and v6 are allocated to blue.

(4) Calculation of Local Drest of New Boundaries.
Finally, in ComputeLocalDrest(), the local score of Drest in
each processes (as discussed in Equation (3)) is calculated
for each vertex in BPnew . At a later stage, the calculated
local scores will be communicated to and gathered in the
corresponding expansion process in order to compute the
global Drest score.

After completing the 4 phases, the new boundary vertices,
BPnew , with their local Drest score, LDrest , and the new allo-
cated edges, EP1hop∪EP2hop , are sent back to the expansion
processes. In the expansion processes, they are received via
ReceiveNewBoundaryWithDrest() at Line 10 in Algorithm 1
and ReceiveNewAllocatedEdges() at Line 12, respectively.
Before calling ReceiveNewBoundaryWithDrest(), the local
Drest scores for each vertex are summed up to calculate the
global score in each expansion process.

2384

5. ITERATION REDUCTION BY MULTI-
EXPANSION

In this section, we propose further performance optimiza-
tion of Distributed NE by reducing the number of itera-
tions in the expansion. Even though our algorithm uses
the efficient allocation method, performance bottleneck still
appears in communications among the allocation processes
because a large number of iterations are executed. As a
result, a large number of barrier operations are conducted,
and it causes a performance problem.

Suppose each process evenly allocates n edges per itera-
tion, the number of total iterations for computing the parti-
tion of G = (V,E) is represented as |E| / (n · |P |). Usually,
the number of edges |E| (e.g., 100K – 1T) is much larger than
the number of |P | (e.g., up to 1K). Therefore, the number
of allocating edges per iteration n is required to be large
enough to reduce the number of iterations.

Algorithm 4: Multi-Expansion (Corresponding to
Line 3–8 in Algorithm 1)

Variable: Vk-min – Expanding Vertices
Parameter: λ – Expansion Factor.

/* Multi-Expansion */
3 Vk-min ← ∅
4 if Bp 6= ∅ then
5 k ← λ · |Bp|
6 Vk-min ← Bp.popK-MinDrestVertices(k)

7 else
8 Vk-min ← Random Vertex

/* Request Allocation */
9 MulticastVerticesToAllocators(Vk-min,p)

Algorithm 4 is the modified algorithm from Algorithm 1
in Section 3. Line 3–8 in Algorithm 1 are replaced into
Line 3–9 in Algorithm 4. To increase the number of al-
locating edges per iteration, Algorithm 4 expands multiple
boundary vertices in one iteration. Instead of selecting a
single minimum scored vertex from the boundary, the algo-
rithm selects k-minimum vertices per iteration. The number
of expanding vertices k is determined by an expansion factor
λ (0 < λ ≤ 1). In the expansion, k = λ · |Bp| vertices are
expanded for allocating new edges. As λ approaches 1, the
number of expanded edges per iteration increases, and the
overall execution time is reduced. On the other hand, the
oversize λ causes quality loss since the greedy heuristic may
not work well.

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
-4

10
-3

10
-2

10
-1

10
0

λ

P����

F�����

L�����	�
��

O��	�

 0

 1

 2

 3

 4

 5

 6

10
-�

10
-�

10
-�

10
-�

10
0

λ

P����

Flickr

L�	�
�����

Orkut

Figure 6: Trend of # of Iterations and Replication
Factor on Different λ (32 Partitions).

Preliminary experiments have been conducted to select
the value for λ. Figure 6 shows the relationship between the
number of iterations and the replication factor (as discussed
in Equation (1)) under different λ on 32 partitions. The

number of iterations linearly decreases as the increase of λ.
In λ = 1.0, which means all boundary vertices are chosen
every iteration, the total number of iterations is less than 10
in all graph data. On the other hand, the replication factor
slightly decreases from λ = 10−4 to 10−1. Then, in λ =
1.0, it becomes worse in all graph data. We find the similar
characteristics in the other numbers of partitions such as 4,
8, 16, and 64 partitions. Based on these results, we choose λ
= 0.1 in our implementation to maximize the performance
and quality.

6. THEORETICAL ANALYSIS
In this section, we first analyze a theoretical upper bound

of the partitioning quality provided by Distributed NE (The-
orem 1, 2). We then provide the efficiency analysis of Dis-
tributed NE (Theorem 3).

The partitioning quality given by Distributed NE (with-
out the muti-expansion in Section 5) has the upper bound
and satisfies the following two theorems. The upper bound
of partitioning quality by the sequential expansion has been
obtained in [54], but it does not satisfy the parallel case be-
cause the bound strongly assumes the sequential processing.
We provide new upper bound for the parallel case.

Theorem 1 (Upper Bound). Edge partitions of a graph
G(V,E) computed by Distributed NE have replication factor
(RF), such that

RF ≤ |E|+ |V |+ |P ||V | ,

where |E|, |V | and |P | are the number of edges, vertices, and
partitions , respectively.

Proof. We will prove the formula using a potential function
as follows:

Φ(t) := |Erest(t)|+ |Vrest(t)|+ |Prest(t)|+
∑
p∈P

|V (Ep(t))|,

where t is the counter of the iteration in Algorithm 1; Erest(t)
is the set of non-allocated edges at t; Vrest(t) is the set of
vertices which has non-allocated adjacent edges at t; Prest(t)
is the set of parallely computed partitions whose edges are
less than the limit; Ep(t) is the set of allocated edges; and
V (Ep(t)) is the set of vertices covered by Ep(t).

Suppose Algorithm 1 is terminated at T , we will prove
ΦT ≤ Φ0. Let ∆(·) be the differentiation operator from t to
t+ 1 as ∆(·) := (·)(t+ 1)− (·)(t). Then, ∆Φ is represented
as follows:

∆Φ = ∆|Erest|+ ∆|Vrest|+ ∆|Prest|+
∑
p∈P

∆|V (Ep)|

Suppose a vertex xp is selected from the boundary set Bp
for each partition p ∈ Prest(t) in parallel at t as shown in
Algorithm 1. Let np be the number of xp’s one-hop-neighbor
edges added to Ep(t), and n′p be the number of the two-hop-
neighbor edges also added to Ep(t). Obviously, np and n′p
is equal to zero if p’s expansion has finished already. Then,
∆|Erest| is represented as follow.

∆|Erest| = −
∑
p∈P

(np + n′p)

|Vrest(t)| is a non-increasing function over t, and ∆|Vrest| can
be represented using an indicator function χ(p) as follow.

∆|Vrest| ≤ −
∑
p∈P

χ(p), χ(p) =

{
0 (p ends at t or earlier)

1 (Other)

2385

This means that if p’s computation is terminated at t, then
xp’s one-hop neighbors may not fully allocated, and |Vrest(t+
1)| at p may be equal to |Vrest(t)|. Otherwise, xp’s one-hop
neighbors are fully allocated, and |Vrest(t)| at p is always
decreased by up to one (xp and the other vertices due to the
allocation of the two-hop-neighbor edges).
|Prest(t)| is also a non-increasing function over t.

∆|Prest| = −
∑
p∈P

(1− χ(p))

If p’s computation is terminated at t, then the number of
computed partition |Prest(t)| is decreased (∵ χ(p) = 0); oth-
erwise it is constant (∵ χ(p) = 1).
|V (Ep(t))| is a increasing function over t, and ∆|V (Ep)|

can be represented as ∆|V (Ep)| ≤ np + 1, where np + 1
means the number of xp’s allocated neighbors plus xp itself.

To sum up above, the difference of the potential function
from t to t+ 1 is represented as follow:

∆Φ = ∆|Erest|+ ∆|Vrest|+ ∆|Prest|+
∑

p∈Prest(t)

∆|V (Ep)|

≤ −
∑

p∈Prest(t)

{(np + n′p) + χ(p) + (1− χ(p))− (np + 1)}

= −
∑

p∈Prest(t)

n′p ≤ 0

Therefore, ∆Φ ≤ 0 for all t, and thus ΦT ≤ Φ0. The
following equation is established.

RF :=
∑
p∈P

|V (Ep)|
|V | =

ΦT
|V | ≤

Φ0

|V | =
|E|+ |V |+ |P |

|V |

Thus, Theorem 1 is proved.

In addition, the tightness of the upper bound (called UB)
is provided by the following theorem.

Theorem 2 (Tightness).

∃G(V,E),∃P s.t. RF ∼ UB as |V | → ∞.
Proof. Suppose a graph consisting of two isolated sub-graphs:
a complete graph and a ring. We assume that the complete
graph includes n vertices and 1

2
n(n− 1) edges, and that the

ring has 1
2
n(n − 1) vertices and 1

2
n(n − 1) edges. We will

show the graph satisfies the condition of the theorem in a
certain number of partitions. Specifically, we will prove that
for the graph,

|P | = 2−1n(n− 1)⇒ RF ∼ UB as |V | → ∞.

Figure 7 shows the example of the case n = 4. In general,
the total number of vertices |V | is equal to 1

2
n(n−1)+n. The

total number of edges |E| is 1
2
n(n−1)+ 1

2
n(n−1) = n(n−1).

Figure 7: Partitions of Ring + Complete Graph.

Consider a case where the initial random vertex selection
for each partition is from the ring, and each partition al-
locates one of the edges. Then, in the next iteration, the
random vertex selection occurs again in the complete graph
since no partitions have boundary vertices. Each partition

allocates one of its one-hop-neighbor edges and then termi-
nates the expansion because the number of allocated edges

reaches to the limit (|E||P | = n(n−1)

2−1n(n−1)
= 2). Finally, each

edge in the complete graph is allocated to one of the par-
titions. Figure 7 shows the final condition, where different
colors represent different partitions. In each partition, the
allocated edges are disconnected.

In this case, both the complete graph and the ring have
n(n− 1) vertex replications. The replication factor is repre-
sented as follows:

RF = |V |−1{n(n− 1) + n(n− 1))} = |V |−1{2n(n− 1)}

The upper bound is represented as follows:

UB := |V |−1(|E|+ |V |+ |P |)
= |V |−1{n(n− 1) + 2−1n(n− 1) + n+ 2−1n(n− 1)}
= |V |−1{2n(n− 1) + n}

Therefore,

lim
|V |→∞

RF

UB
= lim
n→∞

2n(n− 1)

2n(n− 1) + n
= 1 ∴ RF ∼ UB

Comparison with the Other Distributed Methods.
We compare the theoretical upper bound of Distributed NE
with the other distributed edge partitioning methods dis-
cussed in [49]. In the paper, the theoretical upper bounds
of three hash-based methods (Random, Grid, and DBH) are
formulated in the case of power-law graphs.

Since our upper bound is for the general graph, we will
apply it to the power-law graph. Based on the formulation
of the power-law distribution by Clauset et al. [15], we use
a graph, Gζ(V,E), satisfying the following condition.

Pr[d] = d−α · ζ(d, dmin)−1, (6)

where Pr[d] is the probability that vertex’s degree becomes
d; α is the scaling parameter (Typically, 2 < α < 3); ζ(d, dmin)
is the generalized (or Hurwitz) zeta function; and dmin is
the minimum degree. We assume that dmin = 1 (thus,
ζ(d, dmin) becomes Riemann zeta function) and that |V | is
much bigger than |P | such that |P |/|V | ≈ 0.

In Gζ , the expected upper bound of Distributed NE is
represented as

E[UB] ≈ E
[
|E|
|V |

]
+ 1 =

1

2
· ζ(α− 1, 1)

ζ(α, 1)
+ 1.

This is because the mean of (6) is equal to ζ(α−1, 1)/ζ(α, 1)
when dmin = 1, while the mean degree of a graph is gener-
ally 2× E[|E|/|V |].

Table 1 shows the calculation result in various α under
|P | = 256. We calculate the existing upper bound based on
the formulas provided in [49]. Distributed NE always pro-
vides the better upper bound than the existing distributed
methods. Especially, in the smaller α, the difference is more
significant.

Table 1: Theoretical Upper Bound of Replication
Factor in Power-law Graph (256 Partition).

Partitioner α = 2.2 2.4 2.6 2.8

Random (1D-hash) 5.88 3.46 2.64 2.23
Grid (2D-hash) 4.82 3.13 2.47 2.13
DBH [49] 5.54 3.19 2.42 2.05
Distributed NE 2.88 2.12 1.88 1.75

2386

We provide the time complexity for each computing unit
since Distributed NE is executed in parallel. Let n be the
number of the computing units (i.e., the cores in practice).

Theorem 3 (Efficiency). In Distributed NE, suppose the
initial graph is evenly distributed to each allocation process;
the workload in each machine is evenly assigned to its com-
puting units; and |V |, |E| � |P |, n. The worst-case time

complexity of the local computation per unit is O
(
d|E|(|P |+d)

n|P |

)
,

where d is the maximum degree.

Proof. The dominant part in the local computation is
AllocateTwoHopNeighbors() in Algorithm 3. In the worst
case, the number of messages in BPnew is O(|E|/|P |). In
Line 12, |BPnew|/n = O(|E|/n|P |) vertices per unit are
processed. For each vertex u, O(d) neighbors are processed.
The complexity from Line 13 to 18 is O(|P | + d) since the
time complexity is O(|P |) at Line 14,16 and O(d) at Line
17. Therefore, the total time complexity of the function is

O
(
|E|
n|P |

)
×O(d)×O(|P |+ d) = O

(
d|E|(|P |+d)

n|P |

)
7. EMPIRICAL EVALUATION

In this section, we discuss the empirical analysis of the
quality, scalability, and efficiency. Our claims are as follows:

Highest Quality. In various types of skewed graphs, Dis-
tributed NE always generates higher-quality partitions than
any other state-of-the-art distributed methods.
Highest Scalability. Memory usage of Distributed NE is
an order of magnitude smaller than that of the state-of-the-
art high-quality distributed methods. It can handle a larger
graph with fewer machines than the existing methods.
Comparable Efficiency. The elapsed time of Distributed
NE is comparable to or better than the state-of-the-art high-
quality distributed methods.
Trillion-edge Graph. Due to its scalability and efficiency,
Distributed NE can generate high-quality partitions of the
trillion-edge graph using only a few hundreds of machines.

7.1 Benchmarks and Setup
Real-world Datasets. For the evaluation, we use different
graph datasets with over a billion of vertices, provided by
SNAP [30], KONECT [26, 27] and LWA [3]. We use 7 real-
world skewed graphs as summarized in Table 2.

Table 2: Real-world Skewed Graphs
Dataset Vertices Edges Dataset Vertices Edges

Pokec [44] 1.63M 30.62M Twitter [28] 41.65M 1.46B
Flickr [37] 2.30M 33.14M Friendster [51] 65.60M 1.80B
LiveJ. [7] 4.84M 68.47M WebUK [8] 105.15M 3.72B
Orkut [52] 3.07M 117.18M

Synthetic Datasets and Trillion-edge Graph. Since
each real-world dataset has the entirely different graph fea-
ture, the results would not provide any common perfor-
mance characteristics. Thus, further experiments are con-
ducted using various sizes of synthetically generated graphs
which have the similar graph features. We use RMAT [12,
29] graphs whose vertex size are from Scale20 to Scale30,
where ScaleN is referred to as a graph with 2N vertices.
Their average number of edges per vertex, called edge fac-
tor (EF), ranges from 24 to 210 according to Graph500 set-
ting [2] (the edge factor is 24) and Facebook’s trillion-edge
graph [14], which is reported to have 1.45 billions vertices
and 1 trillion edges (thus, the edge factor is around 210).

The trillion-edge graph is simulated using RMAT with the
same scale as Facebook’s trillion-edge graph because no real-
world trillion-edge graph is publicly available. The graph is
Scale30 with Edge factor 210, namely, the graph consists
of 1, 073, 741, 824 (= 230) vertices and 1, 099, 511, 627, 776
(= 230 × 210) edges.
Benchmark Partitioning Algorithms. We compare Dis-
tributed NE with 8 distributed partitioning methods. Ran-
dom is the simple one-dimensional hashing. 2D-Random
(or referred to as Grid) is the two-dimensional hashing,
which is used for the initial assignment of Distributed NE.
Oblivious [16] and Hybrid Ginger [13] are the state-of-the-
art hash-based edge partitioning methods including iterative
refinements. Spinner [36] is the state-of-the-art hash-based
vertex partitioning method, where vertices are assigned ran-
domly followed by the iterative refinements based on Label
Propagation. ParMETIS [23] is the standard multi-level
vertex partitioning. Sheep [35] is the state-of-the-art high-
quality distributed edge partitioning method based on the
elimination-tree conversion. XtraPuLP [42] is the state-of-
the-art high-quality distributed vertex partitioning method,
where vertices are directly assigned based on Label Propa-
gation without initial random allocation. For the compar-
ison of the partitioning quality with the vertex partition-
ing methods, such as ParMETIS, Spinner, and XtraPuLP,
we convert their vertex-partitioned graphs into the edge-
partitioned ones as demonstrated in [10], that is, each edge
is randomly assigned to one of its adjacent vertices’ parti-
tions.
Parameter Setting. The imbalance factor α discussed
in Section 2 is set to 1.1. Moreover, we set the expansion
factor λ equal to 0.1 to balance the quality and performance
as discussed in Section 5.

7.2 Quality Evaluation
The quality of partitioning is evaluated by means of the

replication factor (RF) as Equation (1) in Section 2. We
execute Distributed NE with five different random seeds and
show the median value, where the relative standard error of
the result is less than 5%.

Figure 8(a) to 8(g) show the replication factor of real-
world graphs on different numbers of partitions from 4 to
64. Note that even on our big memory server (around 1TB),
ParMETIS is unable to process Twitter, Friendster, and
WebUK due to the insufficient memory space.

Overall, Distributed NE outperforms the other methods
in real-world graphs. Especially in the severe cases, such
as, a case of more partitions or a case where replication fac-
tor is relatively high (e.g., Orkut, Pokec, and Friendster),
the improvement from the others is much more significant.
Only in the smaller number of partitions or in graphs whose
replication factor is low, the other methods are comparable
to Distributed NE. For example, in Flickr and Twitter of
4 to 16 partitions, Sheep is slightly better than Distributed
NE. In LiveJ., ParMETIS is also slightly better than Dis-
tributed NE in 4 to 16 partitions. In WebUK, replication fac-
tor of Distributed NE is similar quality to that of Sheep and
XtraPuLP. Their scores are less than 1.1, which is a nearly
ideal case, that is, there are no vertex replications, and repli-
cation factor is equal to 1.

Moreover, the partitioning quality of Distributed NE is
stable. It always provides high-quality partitions. On the
other hand, the other methods have some specific graphs
which are unsuited to partition. For example, Sheep gener-

2387

 0

 5

 10

 15

 20

4 8 16 32 64R
e
p
lic
a
ti
o
n

 F
a
c
to
r

of Partitions

Random 2D-Rand.

(a) Pokec

 0

 2

 4

 6

 8

4 8 16 32 64

of Partitions

Oblivous Hybrid Ginger

(b) Flickr

 0

 2

 4

 6

 8

 10

 12

4 8 16 32 64

of Partitions

Spinner ParMETIS

(c) LiveJ.

 0

 5

 10

 15

 20

 25

 30

 35

4 8 16 32 64

of Partitions

Sheep XtraPuLP

(d) Orkut

 0
 2
 4
 6
 8

 10
 12
 14
 16

4 8 16 32 64

of Partitions

Distributed NE

(e) Twitter

 0

 3

 6

 9

 12

 15

 18

 21

4 8 16 32 64

of Partitions

(f) Friendster

 0

 2

 4

 6

 8

 10

 12

 14

 16

4 8 16 32 64

of Partitions

(g) WebUK

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

16 64 256 1024

Edge Factor

(h) RMAT Scale20

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

16 64 256 1024

Edge Factor

(i) RMAT Scale21

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

16 64 256 1024

Edge Factor

(j) RMAT Scale22

Figure 8: Replication Factor of Real-world Graphs and RMAT Graphs. |P | = 64 in RMAT Graphs.

ates high-quality partitions in Twitter but worse in Pokec,
LiveJ., Orkut and Friendster. XtraPuLP is significantly
worse in Twitter, and Friendster and RMAT graphs dis-
cussed below.

Figure 8(h) to 8(j) show the replication factor of RMAT
synthetic graphs on 64 partitions. Note that ParMETIS
is unable to process 256 and 1024 in all scales due to the
insufficient memory space.

As with the real-world graphs, Distributed NE outper-
forms the other methods. In general, the replication factor
becomes higher as the increase of the edge factor. The re-
sult is intuitive since graphs become more complicated as
the increase of edges, and thus it becomes more difficult
to generate high-quality partitions. Moreover, in the same
edge factor, the replication factor is almost the same in the
different scales: Scale20, Scale21, and Scale22. This means
that the difficulty in partitioning a graph depends on its
complexity rather than its scale.

To summarize, we can classify all the methods into 3 cate-
gories. The first categories are based on the hashing, such as
Random, 2D-Random, Oblivious, Hybrid Ginger and Spin-
ner. These methods provide low quality due to the ran-
domness. The methods of the second category indirectly
solve the graph partitioning problem by converting it into
the other similar problem, such as label propagation (Xtra-
PuLP) or tree partitioning (Sheep). Such indirect methods
provide high-quality partitions only for some cases. Finally,
the methods of the last category directly solve the optimiza-
tion problem based on the approximate algorithm, such as
ParMETIS and Distributed NE. These methods stably gen-
erate high-quality partitions.

7.3 Performance Evaluation
The performance of the partitioning algorithms is evalu-

ated. We compare the memory consumption and elapsed
time of Distribute NE with the three high-quality parti-
tioning methods: ParMETIS, Sheep, and XtraPuLP. Hash-
based algorithms, such as Random, Oblivious, Hybrid Gin-
ger, and Spinner, are omitted from the performance evalua-
tion because the partitions by these algorithms do not reach
to the sufficient quality as shown previously. Instead, these
algorithms is efficient and scalable since they only include
light-weight hash calculation and local refinements.

Table 3 shows the configuration of the distributed envi-
ronment used to evaluate the performance. According to
Facebook’s work [14], where trillion-edge graph can be pro-
cessed on only 200 machines, we use the similar scale of the

Table 3: Computational Environment
Service ASPIRE 1 in NSCC Singapore
CPUs per Machine Dual Sockets Intel E5-2690v3 (2 × 12 cores)
Memory / Network 98 GB per Machine / InfiniBand EDR
of Machines 4 to 256 (22 to 28)
C++ Compiler / MPI GCC 5.4 (–O3 flag) / IntelMPI 5.1.2
OS Red Hat Server release 6.9

distributed environment consisting of up to 256 machines.
Memory Consumption. The scalability of the graph
partitioning is evaluated with memory consumption. Fig-
ure 9(a) shows the memory consumption with the real-world
graphs on 64 machines (64 processes). We take snapshots
of all distributed processes every 0.5 second during execu-
tion to get their memory usage. Then, we use the snapshot,
smax, at which the total memory usage of the processes be-
comes maximum. The score is normalized by the number of
edges, that is,

(Mem Score) :=
1

|E|
∑
pr∈Pr

{pr’s Mem. Usage (byte) at smax},

where pr is a process, and Pr is a set of the processes. Over-
all, Distributed NE outperform the other methods by around
one order of magnitude. On average, its mem score is only
5.89 % of the other methods. The mem score slightly de-
creases as the increase of the graph size because the pro-
portion of the edges to the total memory usage becomes
decrease accordingly.

2
0

2
2

2
4

2
6

2
8

2
10

2
12

ParMETIS Sheep

(a) Real-world Graphs

2
0

2
2

2
4

2
6

2
8

2
10

2
12

2
14

1
6
6
4

1
6
6
4

1
6
6
4

 NE

(b) RMAT Graphs

Figure 9: Memory Consumption. Mem Score is a
total memory usage (byte) normalized by # edges.

Distributed NE is highly space-efficient because of two
main reasons. First, each distributed edge is unique with-
out any replication among machines, while vertices are repli-
cated. In general, the replication of vertices is more space-
efficient than that of edges since the vertex requires fewer
bytes than the edge. In the vertex partitioning such as
ParMETIS and XtraPuLP, the memory consumption may
become higher since the edges are replicated among ma-
chines instead of vertices. Especially in the skewed graph,

2388

 0

 5

 10

 15

 20

 25

 30

4 8 16 32 64E
la
p
s
e
d

 T
im
e

 (
s
e
c
)

of Machines (= # of Partitions)

ParMETIS Sheep

(a) Pokec

 0
 5

 10
 15
 20
 25
 30
 35
 40

4 8 16 32 64

of Machines (= # of Partitions)

XtraPuLP Distributed NE

(b) Flickr

 0

 10

 20

 30

 40

 50

 60

 70

 80

4 8 16 32 64

of Machines (= # of Partitions)

(c) LiveJ.

 0

 20

 40

 60

 80

 100

 120

4 8 16 32 64

of Machines (= # of Partitions)

(d) Orkut

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

4 8 16 32 64

of Machines (= # of Partitions)

(e) Twitter

 0

 200

 400

 600

 800

 1000

 1200

 1400

4 8 16 32 64

of Machines (= # of Partitions)

(f) Friendster

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

4 8 16 32 64

of Machines (= # of Partitions)

(g) WebUK

10
0

10
1

10
2

10
3

 of Avg. Edges / Vertex

(h) RMAT Different EFs

10
0

10
1

10
2

10
3

Scale20 Scale21 Scale22

 Vertices

(i) RMAT Different Scales

 0

 1000

 2000

 3000

 4000

416 64 256

of Machines (= # of Partitions)

EF16 64 256 1024

(j) Trillion Edges

Figure 10: Elapsed Time (sec) to Partition Real-world Graphs and RMAT Graphs.

the vertex replication is better since there are much more
edges than vertices. Moreover, in the common multiple
coarsening-refinement approaches such as ParMETIS, graph
data are replicated multiple times for coarsening, and it re-
quires much more memory than the others. Second, in Dis-
tributed NE, the graph data are stored without any memory-
consuming data structure such as the hash map, which usu-
ally consumes around an order of magnitude memory space
compared to the continuous array. The core components of
the graph are stored in CSR, and their metadata is func-
tionally computed instead of storing them.

Figure 9(b) shows the memory consumption of the RMAT
graphs on 64 machines. ParMETIS is unable to run all
scales with 1024 and Scale22 with 256 due to out-of-memory.
As with the real-world graphs, Distributed NE is much bet-
ter than the others. In Distributed NE, the mem score shows
the substantial decrease as the increase of the edge factor be-
cause during computation it compacts the duplicated edges,
which have the same sources and destinations. The dupli-
cation often appears in the higher edge factor.

Elapsed Time. The efficiency is evaluated with the elapsed
time. We measure the time to compute partitions excluding
the loading time to deploy input graph data. The conver-
sion time from the vertex partition to the edge partition
is also excluded in XtraPuLP and ParMETIS. We run the
programs ten times and show the median value.

Figure 10(a) to 10(g) show the elapsed time in the real-
world graphs. Overall, Distributed NE outperform ParMETIS
and Sheep. In 64 partition, its speed up over ParMETIS is
up to 9.1 in LiveJ.. The speed up over Sheep is up to
19.8 in Twitter. Its performance is basically comparable
to XtraPuLP and slightly worse in Flickr on 64 machines
and Friendster. In Flickr on 64 machines, Distributed
NE takes lots of iterations at the final part of the compu-
tation because many isolated edges remain to be allocated.
In the situation, edges are allocated by the random selec-
tion, but the number of allocated edges per iteration is few.
Friendster is the special case for XtraPuLP to execute very
fast as mentioned in the original paper [42].

Figure 10(h) shows the elapsed time to partition Scale22
into 64 partitions on the different edge factors (EFs). As the
edge factor increases exponentially, so does the elapsed time
in all algorithms. The rate of the increase in Distributed
NE is lower than the others. As a result, Distributed NE is
slower than XtraPuLP in 16 and 64, but it becomes faster
in 256 and 1024.

Figure 10(i) shows the elapsed time of RMAT with Edge
factor 1024 on the different scales using 64 machines. The
result is straightforward. The elapsed time increases as the
scale of RMAT graph. Their increasing rates are similar in
all algorithms.

7.4 Scalability to Trillion-edge Graph
Figure 10(j) shows the scalability of Distributed NE to

trillion-edge graph. We fix the number of vertices per ma-
chine as 222 and change the number of machines (= the
number of partitions). Namely, we use Scale24 on 4 ma-
chines, Scale26 on 16 machines, Scale28 on 64 machines,
and Scale30 on 256 machines, respectively. As the number
of machines increases, so does the elapsed time linearly. This
is mainly because workload imbalance occurs in the vertex
selection in expansion processes. Since the expansion rate is
completely different in each partition, few partitions which
have much more boundary vertices become the bottleneck of
the entire processing. For example in Edge factor 1024 (EF
1024), the elapsed time of the vertex selection on 4 machines
is less than 1 % of the entire processing, but it becomes 30.3
% on 256 machines. The communication cost also linearly
increases as the increase of the number of machines.

Finally, due to the space-efficient design and implementa-
tion, Distributed NE can cope with the trillion-edge graph
(Scale30, EF 1024) using only 256 machines. Its elapsed
time is 69.7 minutes.

7.5 Comparison with Sequential Algorithms
Table 6 shows the comparison with the state-of-the-art

sequential and streaming algorithms in the middle-scale real-
world graphs. NE is the sequential offline algorithm, whereas
HDRF and SNE are the sequential streaming algorithms.
Each graph is partitioned into 64 subgraphs. Thus, Dis-
tributed NE are computed on 64 machines. Although NE
provides the best replication factor, Distributed NE is much
faster than the sequential algorithms.

Table 4: Comparison with Sequential Algorithms.
Pokec Flickr LiveJ. Orkut

R
F

HDRF [39] 6.92 3.33 4.71 10.42
NE [54] 2.71 1.51 1.72 3.05
SNE [54] 3.89 1.78 2.12 5.66
Distributed NE 3.92 1.72 2.19 4.60

T
im

e
(s
ec
) HDRF 24.310 24.370 57.228 92.479

NE 61.890 62.910 143.690 182.288
SNE 82.999 131.926 370.335 206.482
Distributed NE 1.029 7.523 3.309 3.224

2389

Table 5: Performance of Graph Applications (SSSP, WCC, PageRank) on 64 Partitions. EB is Edge Balance.
VB is Vertex Balance. ET is Elapsed Time (sec). COM is COMmunication cost (GB). WB is Workload Balance.

Flickr Pokec LiveJ. Orkut Twitter FriendSter WebUK

RF EB VB RF EB VB RF EB VB RF EB VB RF EB VB RF EB VB RF EB VB

Q
u

a
li

ty

Rand. 7.3 1.0 1.0 18.1 1.0 1.0 11.8 1.0 1.0 33.4 1.0 1.0 17.8 1.0 1.0 20.0 1.0 1.0 21.6 1.0 1.0
2D-R. 4.4 1.0 1.0 9.1 1.0 1.0 6.8 1.0 1.0 12.7 1.0 1.0 9.1 1.0 1.0 8.3 1.0 1.0 10.1 1.0 1.0
Obli. 6.3 1.7 1.1 13.6 1.6 1.1 9.0 1.1 1.0 20.9 1.3 1.0 13.8 1.0 1.0 14.3 1.0 1.0 4.0 1.3 1.0
H.G. 4.0 1.2 1.0 10.2 1.2 1.1 6.0 1.1 1.1 14.3 2.5 1.1 5.5 1.3 1.1 9.6 1.3 1.0 3.4 1.0 1.0
D.NE 1.8 1.1 3.5 4.3 1.1 1.2 2.5 1.1 1.3 5.1 1.1 1.6 2.9 1.1 1.6 3.5 1.1 1.9 1.5 1.1 1.6

ET COM WB ET COM WB ET COM WB ET COM WB ET COM WB ET COM WB ET COM WB

S
S
S
P

Rand. 2.96 1.78 1.58 2.91 3.10 1.46 4.08 6.02 1.41 4.45 11.3 1.25 22.7 87 1.15 50.3 146 1.20 88.4 254 1.27
2D-R. 2.98 1.16 1.36 2.63 1.70 1.32 3.36 3.70 1.16 3.25 5.2 1.22 14.0 53 1.22 27.3 73 1.27 60.6 141 1.21
Obli. 2.99 1.57 1.57 2.77 2.40 1.68 3.67 4.68 1.38 3.61 7.6 1.32 19.4 73 1.15 38.7 112 1.22 39.4 83 1.21
H.G. 2.98 2.75 1.56 3.46 3.01 1.67 3.18 6.45 1.43 3.24 9.0 1.24 11.6 88 1.25 26.8 145 1.23 N/A N/A N/A
D.NE 2.94 0.63 1.28 2.63 1.03 1.42 3.15 1.83 1.46 2.48 3.1 1.71 7.8 30 1.34 17.6 44 1.42 28.5 58 1.43

W
C
C

Rand. 4.77 3.87 1.30 6.58 8.33 1.30 10.08 14.7 1.25 17.50 31.1 1.16 89.3 156 1.18 286.0 406 1.12 396.2 733 1.16
2D-R. 3.90 2.33 1.18 4.24 4.26 1.19 6.65 8.5 1.16 9.53 12.3 1.11 56.9 85 1.15 169.6 173 1.18 231.6 350 1.22
Obli. 4.59 3.36 1.38 5.44 6.24 1.40 8.54 10.9 1.30 13.70 19.9 1.13 74.5 122 1.14 217.6 293 1.12 108.7 144 1.25
H.G. 3.97 3.43 1.37 4.64 5.60 1.33 6.44 9.8 1.27 10.84 15.7 1.35 41.1 91 1.20 159.2 239 1.18 119 232 1.06
D.NE 3.48 0.74 1.31 3.55 1.94 1.30 4.69 2.7 1.34 7.09 5.2 1.24 31.1 31 1.28 115.3 71 1.26 61.2 55 1.25

P
a
ge
R
a
n
k Rand. 51.2 35.0 1.32 72.8 65.6 1.29 120.1 130 1.23 182.0 228 1.11 1568 1607 1.14 2820 2942 1.11 3370 3853 1.12

2D-R. 36.2 19.8 1.14 45.4 32.6 1.13 79.1 71 1.13 93.2 91 1.05 863 798 1.11 1407 1239 1.07 1650 1826 1.09
Obli. 45.6 28.9 1.38 63.0 51.2 1.39 100.7 96 1.28 129.2 147 1.10 1223 1252 1.14 2070 2112 1.12 769 776 1.15
H.G. 31.1 14.9 1.23 41.3 24.4 1.26 61.8 43 1.33 87.1 74 1.14 446 462 1.19 1253 1151 1.20 682 687 1.06
D.NE 28.0 4.6 1.69 34.4 14.0 1.33 49.4 20 1.36 65.4 33 1.44 362 216 1.35 806 432 1.22 289 137 1.36

7.6 Effect on Distributed Graph Applications
We briefly evaluate the effect of the partitioning methods

on the distributed graph applications with the different real-
world graphs (see Table 2). We use 3 common graph applica-
tions which have different communication patterns: Single
Source Shortest Path (SSSP), Weakly Connected Compo-
nent (WCC) and PageRank (PR). These are implemented
on PowerLyra [13] forked from PowerGraph [16]. SSSP is
the lightest workload and only involves a few communica-
tions; WCC is medium; and PR is the heaviest, where all
the vertices send messages to their destinations in every iter-
ation. We also refer the reader to the performance analysis
of distributed graph applications, such as [19, 18, 47, 5].
Our result is consistent with the results presented in these
analyses. In SSSP, we select Vertex 0 as the source. In PR,
we conduct 100 times iterations.

Table 5 shows the result with regard to partitioning qual-
ity, balanceness, elapsed time, and communication cost on
64 machines. In these result, we ignore the initialization
phase (e.g., system setup, data loading, and partitioning)
to show only the application performance. We run each
application 5 times and show the median. We compare Dis-
tributed NE (D.NE) with 4 methods in PowerLyra: Ran-
dom (Rand.), 2D-Radom(2D-R.), Oblivious(Obli.), and Hy-
brid Ginger (H.G.). N/A means that we cannot run the
program correctly due to the system error by PowerLyra.

The balanceness among partitions is generally defined as

B({xp| p ∈ P}) :=
max xp
x̄

, where x̄ :=
∑
xp
|P | . Therefore,

the edge balance (EB) is B({|Ep|}); the vertex balance (VB)
is B({|V (Ep)|}); and the workload balance is B({LT p}),
where LT p is the local elapsed time in Partition p.

Overall, Distributed NE outperforms the others in the
elapsed time for all the cases due to the reduction of the com-
munication cost. Especially, the improvement of the elapsed
time is significant in PR due to its high-communication
workload; on the contrary, that of SSSP is few due to its
low-communication workload.

Distributed NE achieves the good edge balance due to the
algorithmic constraint, whereas the vertex balance becomes
worse in some cases (e.g., Flickr). However, this does not
seriously affect the elapsed time. Although Distributed NE
is not explicitly aware of the vertex balance, it is not sig-

nificantly worse due to its algorithmic characteristics. That
is, during computation, each |V (Ep)| slightly increases at a
similar speed because each part greedily selects the next ex-
panding vertex so that the increase of |V (Ep)| is as minimal
as possible.

7.7 Evaluation with Non-skewed Graphs
We evaluate the effect of Distributed NE to 3 real-world

road networks (California: 1.96M vertices and 2.76M edges;
Pennsylvania: 1.08M vertices and 1.54M edges; and Texas:
1.37M vertices and 1.92M edges [31]) as the representative
example of the large-scale non-skewed graphs. Distributed
NE provides the similar or slightly better partitioning qual-
ity compared to the other methods. However, our claim is
that traditional vertex partitioning would be a good choice
in some cases because Distributed NE is basically developed
for skewed graphs as we already discussed in Section 1.

Table 6: Replication Factor of Road Networks [31].
Rand. 2D-R. Obli. H.G. P.M. Sheep X.P. D.NE

Calif. 3.72 3.54 2.13 2.32 1.002 1.03 1.12 1.02
Penn. 3.74 3.55 2.14 2.40 1.004 1.03 1.11 1.01
Tex. 3.70 3.51 2.13 2.35 1.003 1.03 1.12 1.02

8. CONCLUSION
In this paper, we presented Distributed NE, a parallel

and distributed edge partitioning algorithm, which produces
high-quality partitions of skewed graphs fast and at scale as
well as provides the theoretical upper bound of the parti-
tioning quality. There are two directions to improve our
proposal. On one hand, the further speed-up technique will
be established for coping with exascale graphs [46]. On the
other hand, the extension to more complicated graph struc-
tures, such as dynamic graphs [21], and hypergraphs [22],
will be investigated. Distributed NE is publicly avail-
able in http://www.masahanai.jp/DistributedNE/.

Acknowledgement
This research was supported in part under Singapore Min-
istry of Education (MoE) Academic Research Fund, Tier 1
Grant, No: RG20-14; Guangdong Province Innovative and
Entrepreneurial Team Programme, No: 2017ZT07X386; and
Shenzhen Peackock Programme, No: Y01276105.

2390

http://www.masahanai.jp/DistributedNE/

9. REFERENCES
[1] Apache Giraph. http://giraph.apache.org.

[2] Graph500. https://graph500.org/.

[3] Laboratory for web algorithmics (LWA).
http://law.di.unimi.it/index.php.

[4] On two-dimensional sparse matrix partitioning:
Models, methods, and a recipe. SIAM J. SCI.
COMPUT, 32(2):656–683, 2010.

[5] Z. Abbas, V. Kalavri, P. Carbone, and V. Vlassov.
Streaming graph partitioning: an experimental study.
PVLDB, 11(11):1590–1603, 2018.

[6] Y. Ahmad, O. Khattab, A. Malik, A. Musleh,
M. Hammoud, M. Kutlu, M. Shehata, and T. Elsayed.
LA3: A scalable link- and locality-aware linear
algebra-based graph analytics system. PVLDB,
11(8):920–933, 2018.

[7] L. Backstrom, D. Huttenlocher, J. Kleinberg, and
X. Lan. Group formation in large social networks:
Membership, growth, and evolution. In KDD, pages
44–54, 2006.

[8] P. Boldi, M. Santini, and S. Vigna. A large time-aware
graph. SIGIR Forum, 42(2):33–38, 2008.

[9] E. G. Boman, K. D. Devine, and S. Rajamanickam.
Scalable matrix computations on large scale-free
graphs using 2d graph partitioning. In SC, pages 1–12,
2013.

[10] F. Bourse, M. Lelarge, and M. Vojnovic. Balanced
graph edge partition. In KDD, pages 1456–1465, 2014.

[11] A. Buluç, H. Meyerhenke, I. Safro, P. Sanders, and
C. Schulz. Recent advances in graph partitioning.
Algorithm Engineering, pages 117–158, 2016.

[12] D. Chakrabarti, Y. Zhan, and C. Faloutsos. R-MAT:
A recursive model for graph mining. In SDM, pages
442–446, 2004.

[13] R. Chen, J. Shi, Y. Chen, and H. Chen. PowerLyra:
Differentiated graph computation and partitioning on
skewed graphs. In EuroSys, pages 1:1–1:15, 2015.

[14] A. Ching, S. Edunov, M. Kabiljo, D. Logothetis, and
S. Muthukrishnan. One trillion edges: Graph
processing at Facebook-scale. PVLDB,
8(12):1804–1815, 2015.

[15] A. Clauset, C. R. Shalizi, and M. E. Newman.
Power-law distributions in empirical data. SIAM
review, 51(4):661–703, 2009.

[16] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and
C. Guestrin. PowerGraph: Distributed graph-parallel
computation on natural graphs. In OSDI, pages
17–30, 2012.

[17] J. E. Gonzalez, R. S. Xin, A. Dave, D. Crankshaw,
M. J. Franklin, and I. Stoica. GraphX: Graph
processing in a distributed dataflow framework. In
OSDI, pages 599–613, 2014.

[18] Y. Guo, M. Biczak, A. L. Varbanescu, A. Iosup,
C. Martella, and T. L. Willke. How well do
graph-processing platforms perform? an empirical
performance evaluation and analysis. In IPDPS, pages
395–404, 2014.

[19] M. Han, K. Daudjee, K. Ammar, M. T. Özsu,
X. Wang, and T. Jin. An experimental comparison of
pregel-like graph processing systems. PVLDB,
7(12):1047–1058, 2014.

[20] S. Hong, S. Depner, T. Manhardt, J. Van Der Lugt,
M. Verstraaten, and H. Chafi. PGX. D: A fast
distributed graph processing engine. In SC, pages
58:1–58:12, 2015.

[21] J. Huang and D. J. Abadi. Leopard: Lightweight
edge-oriented partitioning and replication for dynamic
graphs. PVLDB, 9(7):540–551, 2016.

[22] I. Kabiljo, B. Karrer, M. Pundir, S. Pupyrev, and
A. Shalita. Social hash partitioner: a scalable
distributed hypergraph partitioner. PVLDB,
10(11):1418–1429, 2017.

[23] G. Karypis and V. Kumar. A parallel algorithm for
multilevel graph partitioning and sparse matrix
ordering. J. Parallel Distrib. Comput., 48(1):71–95,
1998.

[24] Z. Khayyat, K. Awara, A. Alonazi, H. Jamjoom,
D. Williams, and P. Kalnis. Mizan: a system for
dynamic load balancing in large-scale graph
processing. In EuroSys, pages 169–182, 2013.

[25] J. M. Kleinberg, R. Kumar, P. Raghavan,
S. Rajagopalan, and A. S. Tomkins. The Web As a
Graph: Measurements, Models, and Methods. In
COCOON, pages 1–17, 1999.

[26] konect network dataset KONECT.
http://konect.uni-koblenz.de.

[27] J. Kunegis. KONECT: The koblenz network collection.
In WWW Companion, pages 1343–1350, 2013.

[28] H. Kwak, C. Lee, H. Park, and S. Moon. What is
twitter, a social network or a news media? In WWW,
pages 591–600, 2010.

[29] J. Leskovec, D. Chakrabarti, J. Kleinberg,
C. Faloutsos, and Z. Ghahramani. Kronecker graphs:
An approach to modeling networks. J. Mach. Learn.
Res., 11:985–1042, 2010.

[30] J. Leskovec and A. Krevl. SNAP Datasets: Stanford
large network dataset collection.
http://snap.stanford.edu/data.

[31] J. Leskovec, K. J. Lang, A. Dasgupta, and M. W.
Mahoney. Community structure in large networks:
Natural cluster sizes and the absence of large
well-defined clusters. Internet Mathematics,
6(1):29–123, 2009.

[32] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin,
A. Kyrola, and J. M. Hellerstein. Distributed
GraphLab: a framework for machine learning and
data mining in the cloud. PVLDB, 5(8):716–727, 2012.

[33] S. Maass, C. Min, S. Kashyap, W. Kang, M. Kumar,
and T. Kim. MOSAIC: Processing a trillion-edge
graph on a single machine. In EuroSys, pages 527–543,
2017.

[34] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert,
I. Horn, N. Leiser, and G. Czajkowski. Pregel: a
system for large-scale graph processing. In SIGMOD,
pages 135–146, 2010.

[35] D. Margo and M. Seltzer. A scalable distributed graph
partitioner. PVLDB, 8(12):1478–1489, 2015.

[36] C. Martella, D. Logothetis, A. Loukas, and
G. Siganos. Spinner: Scalable graph partitioning in
the cloud. In ICDE, pages 1083–1094, 2017.

[37] A. Mislove, H. S. Koppula, K. P. Gummadi,
P. Druschel, and B. Bhattacharjee. Growth of the
flickr social network. In WOSN, pages 25–30, 2008.

2391

http://giraph.apache.org
https://graph500.org/
http://law.di.unimi.it/index.php
http://konect.uni-koblenz.de
http://snap.stanford.edu/data

[38] A. Mislove, M. Marcon, K. P. Gummadi, P. Druschel,
and B. Bhattacharjee. Measurement and analysis of
online social networks. In IMC, pages 29–42, 2007.

[39] F. Petroni, L. Querzoni, K. Daudjee, S. Kamali, and
G. Iacoboni. HDRF: Stream-based partitioning for
power-law graphs. In CIKM, pages 243–252, 2015.

[40] A. Roy, I. Mihailovic, and W. Zwaenepoel. X-stream:
Edge-centric graph processing using streaming
partitions. In SOSP, pages 472–488, 2013.

[41] S. Salihoglu and J. Widom. Optimizing graph
algorithms on pregel-like systems. PVLDB,
7(7):577–588, 2014.

[42] G. M. Slota, S. Rajamanickam, K. Devine, and
K. Madduri. Partitioning trillion-edge graphs in
minutes. In IPDPS, pages 646–655, 2017.

[43] T. Suzumura and K. Ueno. ScaleGraph: A
high-performance library for billion-scale graph
analytics. In BigData, pages 76–84, 2015.

[44] L. Takac and M. Zabovsky. Data analysis in public
social networks. In DTI, volume 1, 2012.

[45] C. Tsourakakis, C. Gkantsidis, B. Radunovic, and
M. Vojnovic. FENNEL: Streaming graph partitioning
for massive scale graphs. In WSDM, pages 333–342,
2014.

[46] K. Ueno, T. Suzumura, N. Maruyama, K. Fujisawa,
and S. Matsuoka. Efficient breadth-first search on
massively parallel and distributed-memory machines.
DSE, 2(1):22–35, 2017.

[47] S. Verma, L. M. Leslie, Y. Shin, and I. Gupta. An

experimental comparison of partitioning strategies in
distributed graph processing. PVLDB, 10(5):493–504,
2017.

[48] M. Wu, F. Yang, J. Xue, W. Xiao, Y. Miao, L. Wei,
H. Lin, Y. Dai, and L. Zhou. GraM: scaling graph
computation to the trillions. In SOCC, pages 408–421,
2015.

[49] C. Xie, L. Yan, W.-J. Li, and Z. Zhang. Distributed
power-law graph computing: Theoretical and
empirical analysis. In NIPS, pages 1673–1681, 2014.

[50] D. Yan, J. Cheng, Y. Lu, and W. Ng. Effective
techniques for message reduction and load balancing
in distributed graph computation. In WWW, pages
1307–1317, 2015.

[51] J. Yang and J. Leskovec. Defining and evaluating
network communities based on ground-truth. In
ICDM, pages 745–754, 2012.

[52] J. Yang and J. Leskovec. Defining and evaluating
network communities based on ground-truth. KAIS,
42(1):181–213, 2015.

[53] A. Yoo, A. H. Baker, R. Pearce, and V. E. Henson. A
scalable eigensolver for large scale-free graphs using 2d
graph partitioning. In SC, pages 63:1–63:11, 2011.

[54] C. Zhang, F. Wei, Q. Liu, Z. G. Tang, and Z. Li.
Graph edge partitioning via neighborhood heuristic.
In KDD, pages 605–614, 2017.

[55] X. Zhu, W. Chen, W. Zheng, and X. Ma. Gemini: A
computation-centric distributed graph processing
system. In OSDI, pages 301–316, 2016.

2392

	Introduction
	Background
	Notation and Problem Definition
	Related Work

	Distributed Neighbor Expansion
	Edge Partitioning Based on Expansion
	Challenges to Distributed Algorithm
	Proposed Distributed Approach

	Distributed Edge Allocation
	Iteration Reduction by Multi-Expansion
	Theoretical Analysis
	Empirical Evaluation
	Benchmarks and Setup
	Quality Evaluation
	Performance Evaluation
	Scalability to Trillion-edge Graph
	Comparison with Sequential Algorithms
	Effect on Distributed Graph Applications
	Evaluation with Non-skewed Graphs

	Conclusion
	References

