
On Obtaining Stable Rankings
∗

Abolfazl Asudeh†, H. V. Jagadish†, Gerome Miklau††, Julia Stoyanovich‡

†University of Michigan, ††University of Massachusetts Amherst, ‡New York University

†{asudeh, jag}@umich.edu, ††miklau@cs.umass.edu, ‡stoyanovich@nyu.edu

ABSTRACT

Decision making is challenging when there is more than one crite-

rion to consider. In such cases, it is common to assign a goodness

score to each item as a weighted sum of its attribute values and

rank them accordingly. Clearly, the ranking obtained depends on

the weights used for this summation. Ideally, one would want the

ranked order not to change if the weights are changed slightly. We

call this property stability of the ranking. A consumer of a ranked

list may trust the ranking more if it has high stability. A producer of

a ranked list prefers to choose weights that result in a stable rank-

ing, both to earn the trust of potential consumers and because a

stable ranking is intrinsically likely to be more meaningful.

In this paper, we develop a framework that can be used to assess

the stability of a provided ranking and to obtain a stable ranking

within an “acceptable” range of weight values (called “the region

of interest”). We address the case where the user cares about the

rank order of the entire set of items, and also the case where the user

cares only about the top-k items. Using a geometric interpretation,

we propose algorithms that produce stable rankings. In addition

to theoretical analyses, we conduct extensive experiments on real

datasets that validate our proposal.

PVLDB Reference Format:
Abolfazl Asudeh, H. V. Jagadish, Gerome Miklau, Julia Stoyanovich. On
Obtaining Stable Rankings. PVLDB, 12(3): 237-250, 2018.
DOI: https://doi.org/10.14778/3291264.3291269

1. INTRODUCTION
It is often useful to rank items in a dataset. It is straightforward

to sort on a single attribute, but that is often not enough. When the

items have more than one attribute on which they can be compared,

it is challenging to place them in ranked order. Consider, for ex-

ample, the problem of ranking computer science departments. Var-

ious entities, such as U.S. News and World Report, Times Higher

Education, and the National Research Council, produce such rank-

ings. These rankings are impactful, yet heavily criticized. Several

of these rankings have deficiencies in the attributes they choose to

∗
This work was supported in part by NSF Grants No. 1741022, 1741254,

1741047, and 1250880.

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 12, No. 3
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3291264.3291269

measure and in their data collection methodology, not of relevance

to our paper now. Our concern is that even if these deficiencies were

addressed, we are compelled to obtain a single score/rank for a de-

partment by combining multiple objective measures, such as pub-

lications, citations, funding, and awards. Different ways of com-

bining values for these attributes can lead to very different rank-

ings. There are similar problems when we want to rank/seed sports

teams, rank order cars or other products, as Malcolm Gladwell has

nicely described [1].

Differences in rank order can have significant consequences. For

example, a company may promote high-ranked employees and fire

low-ranked employees. In university rankings, it is well-documented

that the ranking formula has a significant effect on policies adopted

by universities [2, 3]. In other words, it matters how we choose to

combine values of multiple attributes into a scoring formula. Even

when there is lack of consensus on a specific way to combine at-

tributes, we should make sure that the method we use is robust:

it should not be the case that small perturbations, such as small

changes in parameter values, can change the rank order.

In this paper we address the following problem: Assume that a

linear combination of the attribute values is used for assigning a

score to each item; then items are sorted to produce a final ranked

order. We want this ranking to be stable with respect to changes in

the weights used in scoring. Given a particular ranked list of items,

one question a consumer will ask is: how robust is the ranking? If

small changes in weights can change the ranked order, then there

cannot be much confidence in the correctness of the ranking.

A given ranking of a set of items can be generated by many

weight functions. Because this set of functions is continuous, we

can think of it as forming a region in the space of all possible weight

functions. We call a ranking of items stable if it is generated by a

weight function that corresponds to a large region of this space.

Note that if some items are very close in score, it is possible that

small changes to attribute values can change their relative ordering.

Such effects tend to be local, indicating that the affected items are

effectively “tied” so that the change in ranking is merely a breaking

of the tie. Past work [4] has considered the implications of data

uncertainty and sensitivity of rankings to imprecision; it is not our

focus here. Instead, we address a much bigger problem, that of

changes in the ranking even without any change to the attribute

values, but due to a small change in the weighting function used to

compute item scores. Such global changes can drastically affect the

ranked order, with far-reaching economic and societal effects [1].

Stability is a natural concern for consumers of a ranked list (i.e.

those who use the ranking to prioritize items and make decisions),

who should be able to assess the magnitude of the region in the

weight space that produces the observed ranking. If this region

is large, then the same ranked order would be obtained for many

237



choices of weights, and the ranking is stable. But if this region is

small, then we know that only a few weight choices can produce

the observed ranking. This may suggest that the ranking was en-

gineered or “cherry-picked” by the producer to obtain a specific

outcome.

Data scientists often act as producers of ranked lists (i.e. they

design weight functions that result in ranked lists), and desire to

produce stable results. We argued in [5] that stability in a ranked

output is an important aspect of algorithmic transparency, because

it allows the producer to justify their ranking methodology, and

to gain the trust of consumers. Of course, stability cannot be the

only criterion in the choice of a ranking function: the result may be

weights that seem “unreasonable” to the ranking producer. To sup-

port the producer, we allow them to specify a range of reasonable

weights, or an acceptable region in the space of functions, and help

the producer find stable rankings within this region.

Our work is motivated by the lack of formal understanding of

ranking stability and the consequent lack of tools for consumers

and producers to assess this critical property of rankings. We will

show that stability hinges on complex geometric properties of rank-

ings and weight functions. We will provide a novel technique to

identify stable rankings efficiently.

Our technique does not stop at proposing just the single most

stable choice, or even the h most stable choices for some pre-

determined fixed value of h. Rather, it will continue to propose

weight choices, and the corresponding rank ordering of items, be-

ginning with the most stable in the specified region of interest, and

continuing in decreasing order of stability, until the user finds one

that is satisfactory.

Alternatively, our technique can provide an overview of all the

rankings that occupy a large portion in the acceptable region, and

hence are stable, along with an indication of the fraction of the

acceptable region occupied by each. Thereby, the user can see at

a glance what the stable options are, and also how dominant these

are within the acceptable region.

We now motivate our techniques with an example.

EXAMPLE 1. CSMetrics [6] ranks computer science research

institutions based on the measured (M ) and predicted (P ) number

of citations. These values are appropriately scaled and used in

a weighted scoring formula, with parameter α ∈ [0, 1] that sets

their relative importance (see § 6.1 for details). CSMetrics includes

a handful of companies in its ranking, but we focus on academic

departments in this example.

As α ranges from 0 to 1, CSMetrics generates 336 distinct rank-

ings of the top-100 departments. Assuming (as a baseline) that

each ranking is equally likely, we would expect an arbitrarily cho-

sen ranking to occur 0.3% of the time, which we take to mean that it

occupies 0.3% of the volume in the space of attributes and weights.

We formalize this in § 2.2 and call it stability of a ranking.

Suppose that the ranking with α = 0.3 is released, placing Cor-

nell (a consumer) at rank 11, just missing the top-10. Cornell then

checks the stability of the ranking (see § 2.2.3), and learns that it’s

value is 0.3%, matching that of the uniform baseline. With this

finding, Cornell asks CSMetrics to justify its choice of α.

CSMetrics (the producer) can respond to Cornell by further in-

terrogating, and potentially revising the published ranking. It first

enumerates stable regions (see § 2.2.4) and finds that the most sta-

ble ranking indeed places Cornell at rank 10 (switching with the

University of Toronto), and represents 2% of the volume — an or-

der of magnitude more than the reference ranking. However, this

stable ranking is very far from the default, placing more emphasis

on measured citations with α = 0.608. If this is unsatisfactory,

CSRankings can propose another ranking closer to the reference

ranking, but with better stability (see § 2.2.2). Interestingly, Cor-

nell also appears at the top-10 in the most stable ranking that is

within 0.998 cosine similarity from the original scoring function.

Our contributions include the following:

• We formalize a novel notion of the stability of a ranking, for

rankings that result from a linear weighting of item attribute val-

ues. Stability captures the tolerance to changes in the weights.

• We propose algorithms that enable the efficient testing of ranking

stability as well as the enumeration of the most-stable rankings,

optionally constrained by a set of acceptable scoring functions.

We propose both exact algorithms and approximation algorithms

that are based on novel sampling methods.

• Our empirical evaluation demonstrates the efficiency of our tech-

niques on real and synthetic datasets, and investigates the stabil-

ity of real published rankings of computer science departments,

soccer teams, and diamond retailers. We show that existing rank-

ings in these domains are often unstable and that favoring stabil-

ity can sometimes have a significant impact on the rank of some

items. For instance, our findings cast doubt on the validity of

the FIFA rankings which are used in making important decisions

such as seeding the World Cup final draws.

2. PROBLEM SETUP

2.1 Preliminaries

2.1.1 Data model and rankings

We consider a fixed database D consisting of n items, each with

d scalar scoring attributes. In addition to the scoring attributes, the

dataset may contain non-scoring attributes that are used for filter-

ing, but they are not our concern here. Thus we represent an item

t ∈ D as a d-length vector of scoring attributes, 〈t[1], t[2], . . . , t[d]〉.
Without loss of generality, we assume that the scoring attributes

have been appropriately transformed: normalized to non-negative

values between 0 and 1, standardized to have equivalent variance,

and adjusted so that larger values are preferred. Note that this nor-

malization is not strictly required for the techniques we propose

in the paper but they make the comparison between attribute value

weights fair and our stability measure more meaningful.

We consider rankings of items that are induced by first applying

a linear weight function to each item, then sorting the items by the

resulting score to form a ranking.

DEFINITION 1 (SCORING FUNCTION). A scoring function f~w :
Rd → R, with weight vector ~w = 〈w1, w2, . . . , wd〉, assigns the

score f~w(t) = Σd
j=1wjt[j] to any item t ∈ D.

Without loss of generality, we assume that wj ∈ ~w ≥ 0. This as-

sumption is straightforward to relax with some additional notation

and bookkeeping. When ~w is clear, we denote f~w(t) by f(t).
We use U to refer to the set of all possible scoring functions.

Given a score for each item, the ranking of items induced by f
is the permutation of items in D defined by sorting them by their

scores under f , in descending order, and breaking ties consistently

by an item identifier. We use the notation ∇f (D) to denote the

ranking of items in D based on f .

EXAMPLE 2. The human resources (HR) department of a com-

pany wants to prioritize hiring candidates based on two criteria:

an aptitude measure x1 (e.g. a score on a qualifying exam) and an

experience measure x2 (e.g. the number of years of relevant experi-

ence). Figure 1a shows the candidates as well as their (normalized)

238



D f
id x1 x2 x1 + x2

t1 0.63 0.71 1.34

t2 0.83 0.65 1.48

t3 0.58 0.78 1.36

t4 0.7 0.68 1.38

t5 0.53 0.82 1.35

(a) A sample database, D, of items
with scoring attributes x1 and x2;
and the result of scoring function
f = x1 + x2.

0.5 0.6 0.7 0.8 0.9 1
0.5

0.6

0.7

0.8

0.9

f =
 x 1

 +
 x 2

t
1

t
2

t
3

t
4

t
5

X
2

X
1

/4

(b) The original space: each item is a point. A
scoring function is a ray (f = x1 + x2 is shown)
which induces a ranking of the items by their pro-
jection.

0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5

0.1

0.3

0.5

0.7

0.9

1.1

1.3

1.5

d(t
1 )

d(t
2 )

d(t
3 )

d(t
4 )

d(t
5 )

R
1

R2 R 3

R 4

R
5

R 6
R 7

R
8

R 9

R 10

R
11

X
1

X
2

f=
x 1

+x 2

d(t
1 )

d(t
2 )

d(t
3 )

d(t
4 )

d(t
5 )

R
1

R2 R 3

R 4

R
5

R 6
R 7

R
8

R 9

R 10

R
11

X
1

X
2

f=
x 1

+x 2

(c) The dual space: items are the hyperplanes (lines
here). Each scoring function is a ray; within a region
bounded by the intersections of the item hyperplanes,
all scoring functions induce the same ranking.

Figure 1: A sample database and its geometric interpretation in the original space and dual space.

values for x1 and x2. The score for each candidate is also shown,

for weight vector ~w = 〈1, 1〉, computed as f(t) = x1 + x2.

Although we restrict our attention to linear scoring functions,

our techniques can be used with more general scoring functions by

applying non-linear transformations to D as a preprocessing step.

Consider Example 2, and let the scoring function be f(t) = x1 +
x2 + 0.5x2

1. The quadratic term x2
1 can be added as x3 = x2

1.

2.1.2 Geometry of ranked items

Our algorithms are based on a geometric interpretation of scored

items and induced rankings. We now present two geometric views

of the database, to which we respectively refer as (i) the original

space, where every item corresponds to a point, and (ii) the dual

space, where every item corresponds to a hyperplane.

The original space. The original space consists of Rd with each

item in D represented as a point, and a linear scoring function f~w

viewed as a ray starting from the origin and passing through the

point ~w = (w1, w2, ..., wd). The ranking ∇f~w
(D) corresponds to

the ordering of their projections onto this ray.

Continuing our example, Figure 1b shows the items of our sam-

ple database in the original space, as points in R2. The function

f = x1 + x2 is shown as a ray passing through 〈1, 1〉. The pro-

jection of the points onto the vector of f specifies the ranking: the

further a point is from the origin, the higher its rank. The reason

is that, for every score f(t),
∑

wjxj = f(t) is the perpendicular

hyperplane to the ray of f that passes through the point t. Hence,

looking at Figure 1b, the candidates in Example 2 are ranked as

〈t2, t4, t3, t5, t1〉 based on f . One can also easily imagine the rank-

ing of items that would result from an extreme scoring function that

ranks only by attribute x1 (i.e. f = x1) by considering the projec-

tions onto the x1-axis (or respectively for the x2-axis).

Viewing the items from D in the original space provides clarity

about the range of rankings that can be induced by the scoring func-

tions: all scoring functions are defined by rays in the first quadrant

of Rd that is determined by the weight vector. It is sometimes con-

venient to use polar coordinates to represent a scoring function: a

ray in Rd starting from the origin (corresponding to function f~w)

can be identified by (d− 1) angles 〈θ1, θ2, · · · , θd−1〉, each in the

range [0, π/2]. Thus, given a function f~w, its angle vector can be

computed using the polar coordinates of w. For example, func-

tion f with weights 〈1, 1〉 in Figure 1b is identified by a single an-

gle 〈π/4〉. There is a one-to-one mapping between these rays and

the points on the surface of the origin-centered unit d-sphere (the

unit hypersphere in Rd), or to the surface of any origin-centered

d-sphere. Thus, the first quadrant of the unit d-sphere represents

the universe of functions U .

The dual space. We are particularly interested in reasoning

about the transition points of the weight vector, where we move

from one ranking to a different ranking. The dual space [7] con-

sists of Rd, but we represent an item t by a hyperplane d(t) given

by the following equation of d variables x1 . . . xd:

d(t) : t[1]× x1 + · · ·+ t[d]× xd = 1 (1)

Continuing our example, Figure 1c shows the items in the dual

space. In R2, every item t is a 2-dimensional hyperplane (i.e. sim-

ply a line) given by d(t) : t[1]x1 + t[2]x2 = 1. In the dual

space, functions are represented by the same ray as in the origi-

nal space, passing through the point ~w. Consider the intersection

of a dual hyperplane d(t) with this ray. This intersection is in

the form of a × ~w, because every point on the ray of f is a lin-

ear scaling of ~w. Since this point is also on the hyperplane d(t),
t[1]×a×w1+ · · ·+ t[d]×a×wd = 1. Hence,

∑

t[j]wj = 1/a.

This means that the dual hyperplane of any item with the score

f(t) = 1/a intersects the ray of f at point a × ~w. Following this,

the ordering of the items based on a function f is determined by the

ordering of the intersection of the hyperplanes with the vector of f .

The closer an intersection is to the origin, the higher its rank. For

example, in Figure 1c, the intersection of the line t2 with the ray of

f = x1 + x2 is closest to the origin, and so t2 has the highest rank

for f . We will show in the next section that the intersections of hy-

perplanes in the dual space define regions, within which rankings

do not change under small changes of the weight vector.

2.2 Stability of a ranking
We now present our definition of stability and identify the key

algorithmic problems for consumers and producers of rankings.

2.2.1 Definition of stability

Every scoring function in the universe U induces a single ranking

of the items. But each ranking is generated by many functions. For

database D, let RD be the set of rankings over the items in D that

are generated by at least one scoring function f ∈ U , that is, by at

least one choice of weight vector. For a ranking r ∈ RD , we define

its region, RD(r), as the set of functions that generate r:

RD(r) = {f | ∇f (D) = r} (2)

Figure 1c shows the boundaries (as dotted lines) of the regions for

our sample database, one for each of the 11 feasible rankings.

We use the region associated with a ranking to define the rank-

ing’s stability. The intuition is that a ranking is stable if it can be

239



induced by a large set of functions. If the region of a ranking

is large, then small changes in the weight vector are not likely to

cross the boundary of a region and therefore the ranked order will

not change. For every region R, we define its volume, vol(R), to

measure the bulk of the region. Specifically, we use the one-to-one

mapping between the surface of the unit d-sphere and U for this

purpose. The volume of a region is the area of the space carved out

in the unit d-sphere by the set of functions in the region.

DEFINITION 2 (STABILITY OF r AT D). Given a ranking r ∈
RD , the stability of r is the proportion of ranking functions in U
that generate r. That is, stability is the ratio of the volume of the

ranking region of r to the volume of U . Formally:

SD(r) =
vol(RD(r))

vol(U) (3)

We emphasize that stability is a property of a ranking (not of a

scoring function) and it holds for a particular database, as indicated

by the notation SD(r). For ease of notation, we denote SD(r) and

RD(r) with S(r) and R(r), respectively, in the rest of this paper.

In the following, we define the scope for studying the stability of

rankings, and we develop three alternative problems that build on

the notion of stability in Definition 2 and correspond to the views of

two different stakeholders: consumers and producers of rankings.

2.2.2 Acceptable scoring functions

When generating a ranking, the producer will often need to con-

sider trade-offs between the choice of an acceptable scoring func-

tion and the stability of the generated ranking. Stable rankings are

preferable because they are robust to small changes in scoring func-

tion weights. Furthermore, to the extent that consumers trust more

stable rankings, producers are interested in earning this trust. Still,

stability is not the only concern for the producer. We return to our

running example to motivate this point.

EXAMPLE 3. In producing a ranking of employees, an HR of-

ficer believes that aptitude (x1) should be twice as important as

experience (x2), but this is only a rough guideline. Any weight with

a ratio within 20% of 2 is acceptable. By testing different weights

within this acceptable range, the officer observes different rankings

of candidates and selects one that maximizes stability.

We allow producers to constrain the scoring function by specify-

ing an acceptable region, denoted U∗ ⊆ U , in one of two ways:

• A vector and angle distance1: the acceptable region is identified

by a hypercone around the central ray defined by the weight vec-

tor. For example, a user may equally prefer any function that has

at most π/10◦ angle distance (at least 95.1% cosine similarity)

with the function f with weight vector 〈1, 1〉.
• A set of constraints: the acceptable region is a convex region

identified by a set of inequalities. For example, if the user is

interested in the functions that weigh x2 no greater than x1, then

the acceptable region is constrained by w2 ≤ w1.

We incorporate the notion of an acceptable region into the defini-

tion of stability in a natural way. Let R∗ be the set of rankings that

are generated by at least one function f ∈ U∗. The ranking region

in U∗ of a ranking r ∈ R
∗ is: R∗(r) = {f ∈ U∗ | ∇f (D) = r}.

Accordingly, we modify the definition of stability of a ranking

r ∈ R
∗ to be: S(r) = vol(R∗(r))/vol(U∗).

1
Note that this can be expressed by cosine similarity.

2.2.3 Consumer’s stability problem

The basic problem for the consumer is stability verification, where

the consumer seeks to validate the stability of a given ranking. A

ranking with higher stability will be more robust and is less likely

to be the result of an engineered scoring function.

PROBLEM 1 (STABILITY VERIFICATION). For dataset D with

n items over d scoring attributes, and ranking r ∈ R of the items

in D, compute the ranking region RD(r) and its stability SD(r).

2.2.4 Producer’s stability problems

With all of the above machinery in place, we can return to help-

ing the producer of a ranking choose one that is stable. To this end,

we develop two related methods for a producer to explore stable

rankings. We state these problems with respect to an acceptable re-

gion U∗ and set U∗ = U when all scoring functions are acceptable.

First, the producer may wish to enumerate rankings, prioritizing

those that are more stable. Below we consider an enumeration of

rankings in order of stability, with stopping criteria based either

on a stability threshold or on a bound on the number of desired

rankings.

PROBLEM 2 (BATCH STABLE-REGION ENUMERATION). For

a dataset D with n items over d scoring attributes, a region of in-

terest U∗ (specified either by a set of constraints or by a vector-

angle), and a stability threshold s (resp. a value h), find all rank-

ings r ∈ R
∗ such that S(r) ≥ s (resp. the top-h stable rankings).

In many scenarios, rather than enumerating rankings, the pro-

ducer may wish to incrementally generate stable regions, in the or-

der of their stability, using the GET-NEXT primitive. So, the h-th

call to GET-NEXT will return the h-th most stable ranking in U∗.

PROBLEM 3 (ITERATIVE STABLE-REGION ENUMERATION).

For a dataset D with n items over d scoring attributes, a region of

interest U∗, specified either by a set of constraints or by a vector-

angle, and the top-(h − 1) stable rankings in U∗, discovered in

the previous iterations of the problem, find the h-th stable ranking

r ∈ R. That is, find:

argmax
r∈ R\top−(h−1)

(

S(r)
)

(4)

Of course, the two enumeration problems are closely related. In

fact, an algorithm for iterative ranking enumeration can be used

directly for batch ranking enumeration, if it’s called multiple times.

In our algorithmic contributions we focus on efficiently evaluating

an operator we call GET-NEXT, which can be used to solve both

enumeration problems.

In the above, for convenience, we relate the stability enumera-

tion to the producers and stability verification to the consumers of

rankings. However, a producer can use verification for testing the

stability of a ranking, while a consumer can use enumeration for

identifying stable rankings.

2.2.5 Stability of the top-k items

So far we focused on complete rankings of n items in D. How-

ever, when n is large, one may be interested in only the highest-

ranked k items, for k << n. This motivates us to reformulate the

problems above, focusing on the top-k portion of the ranked list.

We consider two notions of stability of the top-k items. With the

first, weight vectors ~w and ~w′ are said to generate the same result

if they produce the same set of top-k items, while with the second,

~w and ~w′ must both select the same set of top-k items and return

240



them in the same order. We present sampling-based randomized

algorithms that support top-k partial rankings in § 4.3.

We will discuss the relationship between our approach and the

rich body of work on top-k processing and skyline queries in Sec-

tion 7. Here we note that the set of most-stable top-k items is in

general different from the skyline [8], or any of its subsets [9–12].

The key difference is that the stable top-k items are not necessar-

ily a subset of the skyline. Yet, these items are of high quality and

so are potentially of interest to the user. Consider the toy example

D = {t1(1, 0), t2(.99, .99), t3(.98, .98), t4(.97, .97), t5(0, 1)}.

The skyline of this dataset is {t1, t2, t5}, while the most stable top-

3 items are {t2, t3, t4}. Of these, only t2 is part of the skyline.

3. TWO DIMENSIONAL (2D) RANKING
To develop our intuition, we start with the case of d = 2 scoring

attributes. Using the geometric interpretation of items provided in

§ 2.1 while considering the dual representation of the items, we

propose exact algorithms for stability verification and enumeration.

Consider a pair of items ti and tj presented in the dual space in

R2. Recall that in 2D, every item t is transformed to the line:

d(t) : t[1]× x1 + t[2]× x2 = 1 (5)

Also, recall that every function f with the weight vector w is rep-

resented with the origin-starting ray passing through the point w,

and consider points ti and tj . f ranks ti higher than tj if the inter-

section of d(ti) with f is closer to the origin than the intersection

of d(tj) with f .

Consider f whose origin-starting ray passes through the inter-

section of d(ti) and d(tj). Since both lines intersect with the ray of

f at the same point, f assigns an equal score to ti and tj . We refer

to this function (and its ray) as the ordering exchange (first defined

in [13]) between ti and tj , and denote it ×ti,tj . The ordering be-

tween ti and tj changes on two sides of ×ti,tj : ti is ranked higher

than tj one side of the ray, and tj is ranked higher than ti on the

other side. For example, consider t1 and t4 in Example 2, shown

in Figure 1c in the dual space: the closest line to the origin on the

x1 axis represents d(t2), and the next closest line is d(t4). The

left-most intersection in the figure is between d(t1) and d(t4). The

top-left dashed line that starts from the origin and passes through

this intersection shows ×t1,t4 : t1 is preferred over t4 on the left of

×t1,t4 , and t4 is preferred over t1 on the right.

An item t dominates [8, 14, 15] an item t′, if ∄xi s.t. t′[i] > t[i]
and ∃xi s.t. t[i] > t′[j]. If t dominates t′, then these items do not

exchange order. Consider two items t and t′ that do not dominate

each other. Equation 5 can be used for finding the intersection be-

tween the lines d(t) and d(t′). Considering the polar coordinates

of the intersection, ×t,t′ is specified by the angle θt,t′ (between the

ordering exchange and the x-axis) as follows:

θt,t′ = arctan
t′[1]− t[1]

t[2]− t′[2]
(6)

The ordering exchanges between pairs of items of a database

partition the space of scoring functions into a set of regions. Each

region is identified by the two ordering exchanges that form its bor-

ders. Since there are no ordering exchanges within a region, all

scoring functions inside a region induce the same ranking of the

items. Thus, the number of regions is equal to |R|, as R is the

collection of rankings defined by these regions. For instance, Fig-

ure 1c shows regions R1 through R11 that define the set of possible

rankings of Example 2 for U .

3.1 Stability Verification
The ordering exchanges are the key to figuring out the stability of

a ranking. Consider a ranking r. For a value of 1 ≤ i < n, let t and

t′ be the i-th and (i+ 1)-th items in r. Following Equation 6, θt,t′
specifies the ordering exchange between t and t′. If t[1] < t′[1]
(resp. t[1] > t′[1]), all functions with angles θ < θt,t′ (resp.

θ > θt,t′ ) rank t higher than t′. The reason is that if t[1] > t′[1],
t[2] should be smaller than t′[2], otherwise t dominates t′. Hence
t[1]
t[2]

> t′[1]
t′[2]

, i.e. the dual line d(t) has a larger slope than d(t′), and

intersects the rays in range [0, θt,t′) closer to the origin.

We use this idea for computing the stability (and the region) of a

given ranking r. The stability verification algorithm uses the angle

range (θ1, θ2) for specifying the region of r. For each value of i in

range [1, n), the algorithm considers the items t and t′ to be the i-th
and (i+1)-th items in r, respectively. If t′ dominates t, the ranking

is not valid. Otherwise, if t does not dominate t′, the algorithm

computes the ordering exchange ×t,t′ and, based on the values of

t[1] and t′[1], decides to use it for setting the upper bound or the

lower bound of the ranking region. After traversing the ranked list

r, the algorithm returns θ2−θ1
π/2

as the stability value and (θ1, θ2) as

the region of r. Since the algorithm scans the ranked list only once,

stability verification in 2D is in O(n). The algorithm’s pseudocode

is provided in the technical report [16].

3.2 Stability Enumeration
In 2D, U∗ is identified by two angles demarcating the edges of

the pie-slice. For example, let U∗
1 be defined by the set of con-

straints {w1 ≤ w2, 2w1 ≥ w2}. This defines the set of functions

above the line w1 = w2 and below the line 2w1 = w2, limiting the

region of interest to the angles in the range [π/4◦, π/3◦]. Simi-

larly, region U∗
2 defined around f = x1+x2 with the maximum an-

gle π/10◦ corresponds to the angles in the range [3π/20◦, 7π/20◦].
In what follows, we use [ U∗[1], U∗[2] ] to denote the borders of

U∗. Based on Definition 2, the stability of a ranking r ∈ R in 2D

is the span of its region – the distance between its two borders.

We propose the algorithm RAYSWEEPING (Algorithm 1) that

starts from the angle U∗[1] and, while sweeping a ray toward U∗[2],
uses the dual representation of the items for computing the ordering

exchanges and finding the ranking regions. The algorithm stores

the regions, along with the stability of their rankings, in a heap data

structure that is later used by the GET-NEXT2D primitive.

Algorithm 1 starts by ordering the items based on U∗[1]. It uses

the fact that at any moment, an adjacent pair in the ordered list

of items exchange ordering, and, therefore, computes the order-

ing exchanges between the adjacent items in the ordered list. The

intersections that fall into the region of interest are added to the

sweeper’s min-heap. Until there are intersections over which to

sweep, the algorithm pops the intersection with the smallest angle,

marks the region between it and the previous intersection in the out-

put max-heap, and updates the ordered list accordingly. Upon up-

dating the ordered list, the algorithm adds the intersections between

the new adjacent items to the sweeper. Since the total number of

intersections between the items is bounded by O(n2), and the heap

operation is in O(log n), RAYSWEEPING is in O(n2 log n).
After finding the ranking regions and theirs spans, every call

to GET-NEXT2D pops the most stable region from the heap and

chooses a scoring function f inside the region. The algorithm re-

turns the ranking ∇f (D), along with the width of the region (its

stability), to the user. Due to the space limitations, the pseudo

code of GET-NEXT2D is provided in the technical report [16].

Since there are no more than O(n2) regions in the heap, GET-

NEXT2D needs O(log n) to find the (h+1)-th stable region. Then,

241



Algorithm 1 RAYSWEEPING

Input: Two dimensional dataset D with n items and the region of

interest in the form of an angle range [ U∗[1], U∗[2] ]
Output: A heap of ranking regions and their stability

1: sweeper = new min-heap([U∗[2]]);
2: ~w = (cosU∗[1], sinU∗[1])
3: L = ∇f (D)
4: for i = 1 to n− 1 do

5: θ = arctan(Li+1[1]− Li[1])/(Li[2]− Li+1[2])
6: if U∗[1] < θ < U∗[2] then sweeper.push((θ, Li, Li+1))
7: end for

8: h = new max-heap(); θp = U∗[1]
9: while sweeper is not empty do

10: (θ, t,t′) = sweeper.pop()

11: i, j = index of t, t′ in L

12: h.push
(

θ−θp
U∗[2]−U∗[1]

, (θp, θ)
)

13: swap Li and Lj and add the ordering exchanges between

the new adjacent items to the sweeper

14: θp = θ
15: end while

16: return h

it takes O(n log n) to compute the ranking for the region. As a

result, the first call to GET-NEXT2D that creates the heap of re-

gions takes O(n2 log n), while subsequent calls take O(n log n).
Note that subsequent GET-NEXT2D calls can be done in the order

of O(log n), with memory cost of O(n3), by storing the ordered

list L for every region in RAYSWEEPING algorithm.

4. MULTI DIMENSIONAL (MD) RANKING
Building upon the intuitions developed from the 2D case, we

now turn to the general setting where d > 2. Again, we consider

the items in dual space and use the ordering exchanges for specify-

ing the borders of the ranking regions. Recall from Equation 1 that

an item t is presented as the hyperplane d(t) :
∑d

i=1 t[i].xi = 1.

For a pair of items ti and tj the ordering exchange h = ×ti,tj is a

hyperplane that contains the functions that assign the same score to

both items. Therefore:
×ti,tj =

d
∑

k=1

(ti[k]− tj [k])xk = 0 (7)

Every hyperplane h = ×ti,tj partitions the function space U in

two “half-spaces” [7]:

• h− :
∑d

k=1(ti[k] − tj [k])xk < 0: for the functions in h−, tj
outranks ti.

• h+ :
∑d

k=1(ti[k] − tj [k])xk > 0: for the functions in h+, ti
outranks tj .

Similar to § 3, we first show how ordering exchanges can be used

for verifying the stability of a ranking and then focus on designing

the GET-NEXT operator.

4.1 Stability Verification
Identifying the half-spaces defined by the ordering exchanges

between adjacent items in a ranking r is the key to figuring out its

stability. For each value of i in range [1, n), let t and t′ be the

i-th and (i + 1)-th items in r. Using Equation 7, every function

in the positive half-space h+ :
∑d

k=1(t[k] − t′[k])xk > 0 ranks

t higher than t′. The intersection of these half-spaces specifies an

open-ended d-dimensional cone (referred to as d-cone) whose base

is a (d− 1) dimensional convex polyhedron. Every function in this

cone generates the ranking r, while no function outside it generates

r. In other words, this d-cone is the ranking region of r. The al-

gorithm for verifying stability finds the region of a ranking r as the

set of positive half-spaces defined by the ordering exchanges of the

adjacent items in r.

Based on Definition 2, the volume ratio of the region of r to the

one of U (or, more generally, to U∗) is its stability. However, since r

is a polyhedron, computing its volume is #P-hard [17]. Therefore,

we use numeric methods and sampling for estimating this quan-

tity. Throughout this section, we assume the existence of a stability

oracle S(R,U∗) that, given a convex region R in the form of an

intersection of half-spaces and a region of interest U∗, returns the

stability of R in U∗. Due to the space limitations, We will describe

in the technical report [16] how to construct such an oracle. Stabil-

ity verification in MD is in O(n+XS) where XS is the complexity

of constructing the stability oracle.

4.2 Stability Enumeration
Similarly to verifying the stability of a ranking, ordering ex-

changes can be used for finding possible rankings in a region of

interest U∗. The set of ordering exchanges intersecting U∗ define

a dissection of U∗ into connected convex d-cones, each showing a

ranking region as the intersection of ordering exchange half-spaces

and U∗. This dissection is named the arrangement of ordering ex-

change hyperplanes [7]. For example, the ordering exchanges in

R3 are the planes passing through the origin. Each plane dissects

the space in two half-spaces. The intersection of the half-spaces

forms an arrangement in the form of open-ended convex cones.

THEOREM 1. Every ranking r ∈ R
∗ is provided by the func-

tions in exactly one convex region in the arrangement of ordering

exchange hyperplanes in U∗.

Proof sketch: The proof follows the non-existence of ordering ex-

changes inside a region and the existence of at least one ordering

exchange between two regions. Additional details are provided in

the technical report [16].

Theorem 1 shows the one-to-one mapping between the rankings

r ∈ R
∗ and the regions of the arrangement. Following Theorem 1,

the baseline for finding the stable regions in U∗ is to first construct

the arrangement and then, similarly to § 3, create a heap of re-

gions and their stabilities. Then, each GET-NEXT operation is as

simple as removing the most stable ranking from the heap. The

construction of arrangements is extensively studied in the litera-

ture [7, 13, 18–21]. The problem with this baseline is that it first

needs to construct the complete arrangement of ordering exchange

hyperplanes, and to compute the stability of each. The number of

ordering exchanges intersecting U∗ is bounded by O(n2). There-

fore the arrangement can contain as many as O(n2d) regions [7].

Yet, the baseline needs to compute the stability of each ranking as-

sociated with every region. Considering that our objective is to find

stable rankings, rather than to discover all possible rankings, and

that the user will likely be satisfied after observing a few rankings,

this construction if wasteful. Instead, since the objective is to find

the next stable ranking (not to discover all rankings), we propose

an algorithm that targets the construction of only the next stable

ranking and delays the construction of other rankings.

Arrangement construction is an iterative process that starts by

partitioning the space into two half-spaces by adding the first hy-

perplane H[1] (it partitions the space into H[1]− and H[1]+). The

algorithm then iteratively adds the other hyperplanes; to add H[i],
it first identifies the set of regions in the arrangement of H[1] to

H[i− 1] that H[i] intersects with, and then splits each such region

into two regions (one including H[i]− and one H[i]+).

242



The GET-NEXTmd algorithm, however, only breaks down the

largest region at every iteration, delaying the construction of the

arrangement in all other regions. The algorithm uses the “region”

data structure to record each region in the arrangement of ordering

exchanges. This data structure contains the following fields: (a)

C: the set of half-spaces defining the region; (b) S: the stability of

the region, and (c) pending: the index of the next hyperplane to

be added to the region. In addition, every region contains two ex-

tra fields sb and se that are used for determining the intersection

of next hyperplanes with it. Due to the space limitations, we pro-

vide further details about these, as well as the pseudo code of the

algorithm GET-NEXTmd in the technical report [16].

While constructing the arrangement of hyperplanes, the algo-

rithm keeps track of the stability of the regions, as it adds hyper-

planes to the largest one. It uses a max-heap for this purpose. For

the first GET-NEXT operation, the algorithm finds the set of ordering

exchanges H that intersect with U∗. It also creates the root region

that contains all functions in U∗ and adds it to the heap. While the

heap is not empty, the algorithm pops the most stable region r from

it. It then iterates over the pending hyperplanes that can be added

to r, attempting to find one that intersects with that region. Testing

whether a hyperplane intersects with a region is done by solving

a linear program. Specifically, we solve a quadratic program that

looks for a function in U∗ that satisfies both the inequality con-

straints defined by the half-spaces of the region, and the equality

constraints defined by the hyperplane. (Alternatively, sampling can

be used for this purpose. We provide further details about this in

the technical report [16].)

If no more hyperplanes can be added to region r, the algorithm

returns r as the next stable region. Otherwise, if a hyperplane is

found that intersects with r, then the algorithm uses it to break r
into two regions, and adds them to the heap.

Still, in the worst case (where all regions are equally stable) the

algorithm may need to construct the arrangement before returning

even the first stable region. Therefore, the worst case cost of the

algorithm is still O(n2d).
Throughout this section, we assumed the existence of an oracle

that, given a region in the form of a set of half-spaces, returns its

stability. In next section, we discuss unbiased sampling from the

function space that plays a key role in the design of the oracle. Such

sampling will also enable the design of the randomized algorithm

in § 4.3 that does not depend on the arrangement construction (and

therefore, does not suffer its high complexity).

4.3 Randomized Get-Next
In a setting with many items, users are usually not interested in

the complete ranking between all of the items. The top-k items

model [22, 23] is a natural fit for such settings, and therefore, is

used as the de-facto data retrieval model in the web [24,25]. In this

model, the user is interested in the head (the top-k) of the ranked

list, rather than the complete ordering. In the following, we propose

a randomized algorithm that, in addition to being scalable for large

settings, is applicable for enumerating the top-k items.

While every ranking is generated by continuous ranges of func-

tions, every function f generates only one ranking of items. More-

over, the larger the volume of a ranking region (i.e. the more stable

it is), the higher the chance of choosing a random function from

it. Therefore, uniform sampling of the function space allows sam-

pling of rankings based on their stability distribution. We delay

the details of a sampler that generates functions uniformly at ran-

dom from a region of interest U∗ to § 5. Assuming the existence

of such sampler, in this section, we use the Monte-Carlo methods

for Bernoulli random variables [26–30] and design the randomized

GET-NEXTr operator. This operator works both for finding the sta-

ble rankings in a region of interest, as well as the top-k results. In

the following, we use ranking for the explanations but all the algo-

rithms and explanations are also valid for top-k.

Monte-Carlo methods work based on repeated sampling and the

central limit theorem in order to solve deterministic problems. We

consider using these algorithms for numeric integration. Based on

the law of large numbers [31], the mean of independent random

variables can be used for approximating the integrals. That is pos-

sible, as the expected number of occurrences of each observation

is proportional to its probability. At a high-level, the Monte-Carlo

methods work as follows: first they generate a sufficiently large set

of inputs based on a probability distribution over a domain; then

they use these inputs to do estimation and aggregate the results.

We use sampling both for discovering the rankings as well as for

estimating their stability. We design the GET-NEXTr operator to

allow the user to either (i) specify the sampling budget, or (ii) the

confidence interval. Each of these two approaches has their pros

and cons. The running time in (i) is fixed but the error is variable.

In (ii), on the other hand, the operator guarantees the output quality

while the running time is not deterministic. In the following, we

explain the details for (i). Due to space limitations, we show how

this can be adopted for (ii) in the technical report [16].

The sampler explained in § 5.2 draws functions uniformly at ran-

dom from the function space. Each function is associated with a

ranking. The uniform samples on the function space provide rank-

ing samples based on their stabilities (the portion of functions in

U∗ generating them). For each ranking r ∈ R, consider the distri-

bution of drawing a function that generate it. The probability mass

function of this distribution is:

p(Θ;S(r)) =

{

S(r) ∇f(Θ)(D) = r

1− S(r) ∇f(Θ)(D) 6= r
(8)

Let the random Bernoulli variable xr be 1 if ∇f(Θ)(D) = r

and 0 otherwise. Recall that the mean and standard deviation of

a Bernoulli distribution with the success probability of S(r) are

µr = S(r) and σr = S(r)(1 − S(r)). Let mr be the average of a

set of N samples of the random variable xr. Then, E[mr] = S(r)
and the standard deviation of samples are sr = mr(1−mr). Based

on the central limit theorem, we also know that the distribution of

the sample average is N
(

µr,
σr√
N

)

– the Normal distribution with

the mean µr and standard deviation σr√
N

. For a large value of N ,

we can estimate σr by sr.
For a confidence level α, the confidence error e identifies the

range [mr − e,mr + e] such that:

p(mr − e ≤ µr ≤ mr + e) = 1− α (9)

Using the Z-table:

e = Z(1− α

2
)
sr√
N

= Z(1− α

2
)

√

mr(1−mr)

N
(10)

Using this argument, we use a set of N samples of the function

space for the design of GET-NEXTr with a fixed budget. Every time

GET-NEXTr is called, we collect a set of N samples and use them

for finding the next stable ranking and estimating its stability. In or-

der to provide a more accurate estimation, in addition to the N new

samples, it uses the aggregates of its previous runs. Algorithm 2

shows the pseudocode of GET-NEXTr with a fixed budget.

Algorithm 2 uses a hash data structure that contains the aggre-

gates of the rankings it has observed so far. Upon calling the algo-

rithm, it first draws N sample functions from the region of interest

U∗. For each sample function, the algorithm finds the correspond-

ing ranking and checks if it has previously been discovered. If not,

243



Algorithm 2 GET-NEXTr

Input: D, U∗, previous stable rankings Rh−1, hash of previous

aggregates cnts, total number of previous samples N ′, confidence

level α, and sampling budget N
Output: Next stable ranking and its stability measures

1: for k = 1 to N do

2: w = SampleU∗(U∗)
3: r = ∇f (D)
4: if r is in cnts.keys then cnts[r]+=1 else cnts[r] = 1
5: end for

6: if cnts.keys\Rh−1 = ∅ then return null

7: rh = argmax
r∈ cnts.keys\Rh−1

(

cnts[r]
)

8: S(rh) =
cnts[rh]
N+N′ ; e = Z(1− α

2
)
√

S(rh)(1−S(rh))
N+N′

9: return rh, S(rh), e

it adds the ranking to the hash and sets its count as 1; otherwise,

it increments the count of the ranking. If the number of discov-

ered rankings is at most h, the algorithm fails to find a new ranking

and returns null. The algorithm then chooses the ranking that does

not belong to top-h and has the maximum count. It computes the

stability and confidence error of the ranking and returns it.

Considering a budget of N samples while finding the ranking for

each sample, the running time of GET-NEXTr is O(N × n log n).

4.3.1 Stable top-k items

When n is large, instead of the complete ranking, the user may

be interested in the top-k items. The top-k items may either be

treated as a set or a ranked list. A company that considers its top-

k candidates for the on-site interview is an example of the top-k
set model, whereas for a student that wants to apply for the top

colleges, the ranking between the top-k colleges is important.

Unfortunately the MD algorithm GET-NEXTmd is not applica-

ble here, as different ranking regions may share the same top-k
items. Therefore, the algorithm cannot focus only on a single re-

gion, while delaying the others. Fortunately, the randomized al-

gorithm GET-NEXTr can be used for partial rankings. Instead of

maintaining the counts of complete rankings, it counts the occur-

rences of partial rankings. In § 6, we will show that GET-NEXTr is

both effective and efficient for top-k items.

5. UNBIASED FUNCTION SAMPLING
A uniform sampler from the function space is a key component

for devising Monte-Carlo methods, both for estimating the stability

of rankings and for designing randomized algorithms for the prob-

lem. In the following, we first discuss sampling from the complete

function space and then propose an efficient sampler for U∗.

5.1 Sampling from the function space
In this subsection we discuss how to generate unbiased samples

from the complete function space. Since every function is repre-

sented as a vector of d − 1 angles, each in range [0◦, π/2◦], one

way of generating random functions is by generating angle vec-

tors uniformly at random. This, however, does not provide uniform

random functions sampled from the function space, except for 2D.

As mentioned in § 2.1, the set of points in the first quadrant of

the unit d-sphere represent the function space U . This is because

of the one-to-one mapping between the points on the surface of the

unit d-sphere and the unit origin-starting rays, each representing a

function f . Hence, the problem of choosing functions uniformly

at random from U is equivalent to choosing random points from

the surface of a d-sphere. As also suggested in [32], we adopt a

method for uniform sampling of the points on the surface of the

unit d-sphere [33,34]. Rather than sampling the angles, this method

samples the weights using the normal distribution, and normalizes

them. This method works because the normal distribution func-

tion has a constant probability on the surfaces of d-spheres with

common centers [34, 35]. Therefore, in order to generate a ran-

dom function in U , we set each weight as wi = |N (0, 1)|, where

N (0, 1) draws a sample from the standard normal distribution.

5.2 Sampling from the region of interest
Drawing unbiased samples from a region of interest U∗ is critical

for finding stable regions. Given an unbiased sampler for the func-

tion space U , an acceptance-rejection method [36] can be used for

drawing samples from U∗. The idea is simple: (i) draw a sample

from the function space; (ii) test if the drawn sample is in the region

of interest and, if so, accept it; otherwise reject the sample and try

again. Testing if the drawn sample is in the region of interest can

be done by: (a) computing its angle distance from the reference ρ
and comparing it with the reference angle θ, if U∗ is specified by a

ray and angle, or by (b) checking if the sampled point satisfies the

constraint, if U∗ is specified by a set of constraints.

The efficiency of this method, however, depends on the accep-

tance probability p, defined by the volume ratio of U∗ to U . The

expected number of trials for drawing a sample for such probability

is 1/p. Hence, it is efficient if the volume of U∗ is not small.

Therefore, in the following, we alternatively propose an inverse

CDF (cumulative distribution function) method [37] for generating

random uniform functions from a region of interest. This method is

preferred over the acceptance-rejection method when U∗ is small.

It generates functions with the maximum angular distance of θ from

the reference ray ρ. For a region of interest specified by a set of con-

straints, the bounding sphere [38] for the base of its d-cone identi-

fies the ray and angle distance that include U∗. For such regions of

interest, the inverse CDF method enables an acceptance-rejection

method with higher acceptance rate, leading to better performance.

Consider U∗ as the set of functions with the maximum angle θ
around the ray of some function f . We model U∗ by the surface

unit d-spherical cap with angle θ around the d-th axis in Rd (Fig-

ure 2a). This is similar to the mapping of U to the surface of the

unit hyperspherical, and is due to the one-to-one mapping between

the rays in U∗ and the points on the surface unit hyperspherical

cap. We use a transformation that maps the ray of f to the d-D

axis. After drawing a function we transform it around the ray of f .

For an angle θ, the d-dimension orthogonal plane xd = cos θ
partitions the cap from the rest of the d-sphere. Hence, the intersec-

tion of the set of the (d-th axis orthogonal) planes cos θ ≤ xd ≤ 1
with the d-sphere define the cap.

The intersection of each such plane with the d-sphere is a (d−1)-
sphere. For example, in Figure 2a the intersection of a plane that is

orthogonal to the z-axis with the unit sphere is a circle (2-sphere).

An unbiased sampler should sample points from the surface of such

(d − 1)-spheres proportionally to their areas. In the following, we

show how this can be done.

The surface area of a δ-sphere with the radius r is [39]:

Aδ(r) =
2πδ/2

Γ(δ/2)
rδ−1

(11)

Γ, in the above equation, is the gamma function.

Using this equation, the area of the unit d-spherical cap can be

stated as the integral over the surface areas of the (d− 1)-spheres,

defined by the intersection of the planes cos θ ≤ xd ≤ 1 with the

244



(a) (b)

Figure 2: Sampling from U∗. a) U∗ as a unit d-spherical cap

around d-th axis. b) Samples generated using (blue – scattered over

the space): § 5.1, (green – right cluster): Algorithm 3 and numeric

inverse CDF, (red – left cluster): Algorithm 3 and Equation 14.

d-sphere, as follows [39]:

Acap
d (1) =

∫ θ

0

Ad−1 sinφdφ =
2πd/2

Γ(d/2)

∫ θ

0

sind−2(φ)dφ (12)

Therefore, considering the random angle 0 ≤ x ≤ θ, the cumu-

lative density function (cdf) for x is given by:

F (x) =

∫ x

0
sind−2(φ)dφ

∫ θ

0
sind−2(φ)dφ

(13)

For a specific value of d, one can solve Equation 13, find the

inverse of F and use it for sampling. For instance, for d = 3:

F (x) =
1− cosx

1− cos θ
⇒ F−1(x) = arccos

(

1− (1− cos θ)x
)

(14)

For a general d, we use numerical methods for finding the inverse

CDF. Details can be found in the technical report [16].

Algorithm 3 shows the pseudocode of the inverse CDF sampler.

For example, consider the example in R3, where the objective is

to generate random numbers around the ray (π/6, π/4) with an-

gle θ = π/20. The algorithm starts by drawing a random uniform

number in range [0, 1]. Let such a random number be 0.13. It takes

the list L (computed using the function RiemannSums) as the input

and draws a random function from U∗. To do so, it first draws a ran-

dom uniform number y in the range [0,1]. Next, it applies a binary

search on the list of partial integrals to find the range to which y be-

longs. Considering a fine granularity of the partitions, we assume

that the areas of all (d− 1)-spheres inside each partition are equal.

The algorithm, therefore, returns a random angle (drawn uniformly

at random) from the selected partition. Obviously, instead, the al-

gorithm can use the equation of the inverse function. Continuing

with our example, while using Equation 14, the corresponding y
value for 0.13 is π/55.5.

Algorithm 3 Sample U∗

Input: The ray ρ, angle θ

1: y = U [0, 1] // draw a uniform sample in range [0,1]

2: x = F−1(y)
3: for i = 1 to d− 1 do ŵi = N (0, 1)
4: 〈θ1, · · · , θd−2〉 = the angles in polar representation of ŵ
5: w = toCartesian(1, 〈θ1, · · · , θd−2, x〉)
6: return Rotate(w, ρ)

Recall that the angle x specifies the intersection of a plane with

the d-spherical cap, which is a (d− 1)-sphere. Hence, after finding

the angle x, we need to sample from the surface of a (d−1)-sphere,

uniformly at random. For our example in R3, the intersection is a

circle (2-sphere) and, therefore, we need to sample from the sur-

face of the circle. Also, recall from § 5.1 that the normalized set

of d− 1 random numbers drawn from the normal distribution pro-

vide a random sample point on the surface of (d − 1)-sphere. The

algorithm SampleU∗ uses this for generating such a random point.

It uses the angle combination of the drawn random point from the

surface of a (d − 1)-sphere and combines them with the angle x
(with the d-th axis). In our example in R3, let the sampled point

on the circle have the angle 0.8π. Hence, the angle combination

is 〈0.8π, π/55.5〉. After this step, the point specified by the po-

lar coordinates (1, 〈θ1, · · · , θd−2, x〉) is the random uniform point

from the surface of d-spherical cap around the d-th axis. As the

final step, the algorithm needs to rotate the coordinate system such

that the center of the cap (currently on d-th axis) falls on the ray ρ.

We rely on the existence of the function Rotate for this, presented

in the technical report [16]. Figure 2b shows three cases of 200

samples in R3 drawn from (blue – scattered over the space) U us-

ing § 5.1 and (green and red – right and left clusters) U∗ around the

rays (π/3, π/3) and (π/6, π/4) with angle θ = π/20.

6. EXPERIMENTS
Here we validate our stability measure and evaluate the effi-

ciency of our algorithms on three real datasets used for ranking.

In particular, we study the stability of two of our datasets in § 6.2,

showing that the proposed reference rankings are not stable. In

§ 6.3, we study the running times of our algorithms, including sta-

bility verification, the GET-NEXT problems in 2D and MD, as well

as the randomized algorithm and top-k items.

6.1 Experimental setup

Hardware and platform. The experiments were conducted using

a 3.8 GHz Intel Xeon processor, 64 GB memory, running Linux.

The algorithms were implemented using Python 2.7.

Datasets We use four real datasets CSMetrics (d = 2), FIFA (d =
4), Blue Nile (d = 5), and Department of Transportation (d = 3),

as well as a set of three synthetic datasets described below.

CSMetrics [6]: CSMetrics ranks computer science research in-

stitutions based on publication metrics. For each institution, a com-

bination of measured (M ) citations and an attribute intended to

capture future citations, called predicted (P ), is used for rank-

ing, according the score function: (M)α(P )1−α, for parameter α.

This score function is not linear, but under a transformation of the

data in which x1 = log(M) and x2 = log(P ) we can write an

equivalent score function linearly as: αx1 + (1 − α)x2. The CS-

Metrics website uses α = .3 as the default value, but allows other

values to be selected. We use α = .3 and restrict our attention to

the top-100 institutions according to this ranking.

FIFA Rankings [40]: The FIFA World Ranking of men’s na-

tional football teams is based on measures of recent performance.

Specifically, the score of a team t depends on team performance

values for A1 (current year), A2 (past year), A3 (two years ago),

and A4 (three years ago). The given score function, from which the

reference ranking is derived, is: t[1] + 0.5t[2] + 0.3t[3] + 0.2t[4].
FIFA relies on these rankings for modeling the progress and abili-

ties of the national-A soccer teams [41] and to seed important com-

petitions in different tournaments, including the 2018 FIFA World

Cup. We consider the top 100 teams in our experiments.

Blue Nile [42]: Blue Nile is the largest online diamond retailer

in the world. We collected its catalog that contained 116,300 di-

amonds at the time of our experiments. We consider the scalar

attributes Price, Carat, Depth, LengthWidthRatio, and

245



50 100 150 200 250 300

Distribution of rankings by stability

0

0.005

0.01

0.015

0.02

S
ta

b
il

it
y

most stable ranking

reference ranking

Figure 3: CSMetrics: overall distribution of

rankings by stability.

5 10 15 20

Distribution of rankings by stability

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

S
ta

b
il

it
y

reference ranking

Figure 4: CSMetrics: stability around refer-

ence vector 〈0.3, 0.7〉 with 0.998 cosine sim.

20 40 60 80 100

Distribution of rankings by stability

0

0.002

0.004

0.006

0.008

0.01

0.012

S
ta

b
il

it
y

most stable ranking

Figure 5: FIFA: stability around reference vec-

tor 〈1, 0.5, 0.3, 0.2〉 with 0.999 cosine sim.

Table for ranking. For all attributes, except Price, higher val-

ues are preferred. We normalize each value v of a higher-preferred

attribute A as (v − min(A))/(max(A) − min(A)); for a lower-

preferred attribute A, we use (max(A)−v)/(max(A)−min(A)).
Department of Transportation (DoT) [43]: The flight on-time

dataset is published by the US Department of Transportation. We

collected a set of 1,322,023 records, for the flights conducted by

the 14 US carriers in the last three months of 2017. We consider

the attributes air-time, taxi-in and taxi-out for ranking.

Synthetic Data: In order to study the effect of the correlation be-

tween the attributes, using the code provided by [8], we generated

three synthetic datasets (independent, correlated, anti-correlated),

containing 10,000 items and three scoring attributes in range [0, 1].

6.2 Stability investigation of real datasets
For the two datasets which provide a reference ranking (CSMet-

rics and FIFA) we assess these rankings below.

CSMetrics: Two attributes are used for ranking here (i.e. d = 2).

We can therefore use the GET-NEXT operator repeatedly to enumer-

ate all feasible rankings and their stability values. While an upper

bound on the number of rankings for n = 100 and d = 2 is around

5, 000, the actual number of feasible rankings for this dataset is

336. Figure 3 shows the distribution of rank stability across all

rankings, showing a few rankings with high stability, after which

stability rapidly drops. The reference ranking is highlighted in Fig-

ure 3; using SV2D , we calculated the stability of the reference rank-

ing to be 0.0032. Notably, the reference ranking did not appear in

the top-100 stable rankings (it is the 108th most stable ranking).

Maximizing stability would cause a number of changes com-

pared with the reference ranking. For example, Cornell Univer-

sity is not in the top-10 universities in the reference ranking, but

replaces the University of Toronto in the top-10 in the most stable

ranking. One of the bigger changes in rank position is Northeastern

University which improves from 40 in the reference ranking to 35
in the most stable ranking.

We also study stability for an acceptable region close to the ref-

erence ranking. We choose 0.998 cosine similarity (θ = π/50)

around the weight vector of the reference score function. There are

22 feasible rankings in this acceptable region; their stability distri-

bution is shown in Figure 4. Even in this narrow region of interest,

the reference ranking is far below the maximum stability.

FIFA Rankings: Next, we evaluate the higher-dimensional FIFA

rankings that are used for important decisions such as seeding dif-

ferent tournaments, including the 2018 FIFA World Cup. We focus

on an acceptable region defined by 0.999 cosine similarity (θ =
π/100) around the reference weights used by FIFA, i.e. w =
〈1, 0.5, 0.3, 0.2〉. Using the MD algorithm GET-NEXTmd, we con-

ducted 100 operations to get the distribution of the top-100 stable

rankings around the reference weight vector. We considered 10,000

samples drawn using Algorithm 3 for estimations. Figure 5 shows

the distribution of stable rankings. First, since d = 4, there are

many feasible rankings, even in such a narrow region of interest,

with a significant drop in stability after the most stable rankings, as

was the case for CSMetrics.

Perhaps the most interesting observation is that the reference

ranking did not appear in the top-100 stable rankings (as a result it

is not highlighted in Figure 5). While FIFA advertises this ranking

as “a reliable measure for comparing the national A-teams” [41],

our finding questions FIFA’s trust in such an unstable ranking for

making important decisions such as seeding the world cup. To

highlight an example, while Tunisia holds a higher rank than Mex-

ico in the reference ranking, Mexico is ranked higher in the most

stable ranking. This supports the many critics that have questioned

the validity of FIFA rankings in the recent past. Examples of con-

troversial rankings include Brazil at 22 in 2014, the U.S. at 4 in

2006, and Belgium at 1 in 2015.

6.3 Algorithm performance
To evaluate the efficiency of our algorithms, we use the Blue Nile

dataset, which consists of 116, 300 items over 5 ranking attributes.

To vary the number of items, we take random samples; to vary

the number of dimensions to d = k < 5 we project the first k
attributes. We equally weight the attributes as the default function.

2D: First we study the impact of n, the database size, on the effi-

ciency of SV2D to compute the stability of the default ranking (i.e.

w = 〈1, 1〉. We vary n from 100 to 100, 000, measuring both time

and the stability of the default ranking (Figure 6). As stated in § 3

computing the stability of a ranking in 2D is in O(n). We find that

the running time increased linearly and was only 0.12 seconds for

the largest data set. We observe that the stability quickly drops from

the order of 10−2 for n = 100 to less than 10−6 for n = 100K.

This is because the number of ordering exchanges increase by n,

leading to many small regions and low stability measures.

Next, we study the performance of GET-NEXT2D under differ-

ent database sizes. The first GET-NEXT call needs to perform ray

sweeping to construct the heap of ranking regions, while subse-

quent calls just remove the next most stable ranking from the heap.

Therefore, in Figure 7, we separate the first call from subsequent

calls. As expected, as the number of items increases, the num-

ber of ordering exchanges increases and therefore, the efficiency of

the operator drops. Also, subsequent GET-NEXT calls are signifi-

cantly faster than the first. Still, even for the largest setting (i.e.,

n = 100K), the first call to the operator took less than 10 seconds.

246



10
1

10
2

10
3

10
4

10
5

number of items (n) -- logscale

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

ti
m

e
 (

s
e
c
) 

--
 l
o

g
s
c
a
le

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

s
ta

b
il

it
y

 -
- 

lo
g

s
c

a
le

Figure 6: 2D: Stability verifica-

tion, Impact of dataset size (n)

10
1

10
2

10
3

10
4

10
5

number of items (n) -- logscale

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

ti
m

e
 (

s
e
c
) 

--
 l
o

g
s
c
a
le

First GETNEXT call

Subsequent GETNEXT calls

Figure 7: 2D: GET-NEXT, Im-

pact of dataset size (n)

10
1

10
2

10
3

10
4

10
5

number of items (n) -- logscale

10
0

10
1

10
2

ti
m

e
 (

s
e
c
) 

--
 l
o

g
s
c
a
le

0

0.5

1

1.5

s
ta

b
il

it
y

10
-3

Figure 8: MD: Stability verifica-

tion, Impact of dataset size

0 2 4 6 8 10

top-h stable rankings

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

ti
m

e
 (

s
e
c
) 

--
 l
o

g
s
c
a
le

n=10,000

n=1,000

n=100

n=10

Figure 9: MD: stable rankings,

Impact of dataset size (n)

0 2 4 6 8 10

top-h stable rankings

10
-2

10
-1

10
0

10
1

10
2

10
3

ti
m

e
 (

s
e
c
) 

--
 l
o

g
s
c
a
le

d=5

d=4

d=3

Figure 10: MD: stable rankings,

impact of number of attributes

(d).

0 2 4 6 8 10

top-h stable rankings

10
-1

10
0

10
1

10
2

10
3

ti
m

e
 (

s
e
c
) 

--
 l
o

g
s
c
a
le

= /100

= /50

= /10

Figure 11: MD: stable rankings,

impact of width of region of in-

terest (θ).

10
3

10
4

10
5

number of items (n)

10
0

10
1

10
2

10
3

ti
m

e
 (

s
e

c
) 

--
 l

o
g

s
c

a
le

0

0.02

0.04

0.06

0.08

0.1

S
ta

b
il
it

y
 o

f 
to

p
 r

a
n

k
in

g

e=0.00019

e=0.00018

e=0.00015

Figure 12: GET-NEXTr: stable

top-k items, impact of dataset

size (n).

0 2 4 6 8 10

top-h stable partial rankings

10
-2

10
-1

10
0

S
ta

b
il
it

y
 -

- 
lo

g
s
c
a
le

n=100,000; set

n=10,000; set

n=1,000; set

n=100,000; ranked

n=10,000; ranked

n=1,000; ranked

Figure 13: GET-NEXTr: stable

top-k items, impact of dataset

size (n) on stability.

MD: Next we study the performance of the stability verification

algorithm, SV, and the MD algorithm, GET-NEXTmd, for producing

the stable rankings. We vary the number of items (n), number of

attributes (d), and width of the region of interest (θ).

First we evaluate stability verification (Figure 8). Choosing the

default weight vector w = 〈1, 1, 1〉, while setting d = 3, we ini-

tiate the stability oracle with a set of 1M samples drawn from the

entire function space U and vary the number of items from 100
to 10K. The stability verification algorithm in MD needs to iterate

over the sample points, counting those falling inside the ranking

region, described as a set of O(n) constraints. This took less than

a minute for n = 10K. On the other hand, the stability of the de-

fault ranking immediately drops to near zero, even for 100 items.

Compared to 2D, this is due to the increase in the complexity of the

function space.

Next, we evaluate the performance of the GET-NEXTmd operator

under varying n, d, and θ (the width of U∗). The default values are

n = 100, d = 3 and θ = π/100. We use a set of 100K samples

from the region of interest for the measurements. Figures 9, 10,

and 11 show the performance of the GET-NEXTmd algorithm for

the top 10 stable rankings for varying (i) number of items from

n = 10 to n = 10K, (ii) number of attributes from d = 3 to d = 5,

and (iii) width of the region from θ = π/10 to π/100, respectively.

Overall, the running time decreases for subsequent calls. This is

because the algorithm initially builds part of the arrangement be-

fore it finds the most stable ranking. As shown in Figure 9, every

GET-NEXT call took up to several thousand seconds for the large

setting of 10K items. That is because of the complexity of the

arrangement of O(n2) ordering exchanges which makes even the

focus on the most stable region inefficient. In such complex sit-

uations, all the regions are very small and unstable, as too many

ordering exchanges pass through a narrow region. Nevertheless, in

a large setting, it is more reasonable to consider the top-k items

rather than the complete list. Our proposal for such settings is the

randomized operator.

The next observation is that the running times are similar for

different values of d and θ. While the complexity of the space

changes for the O(n2) ordering exchanges, the search is still done

using a fixed set of samples and, using the Partition algorithm, only

the subset of points falling into a region are used for constructing

the arrangement in it. As a result, the lines in Figures 10 and 11

show similar behaviors for different settings.

Randomized algorithm: As the complexity of arrangement in-

creases, GET-NEXTmd becomes less efficient. On the other hand,

when the number of items is large, users may be more interested

in top-k items: that is they may focus on the top of the ranked list.

In § 4.3, we proposed a Monte-Carlo-based randomized algorithm

to handle these cases. As the last set of experiments, we evalu-

ate the performance of the randomized algorithm under different

settings. We look at two models of top-k items, (i) ranked top-k
items and (ii) top-k sets. In (i) the user is interested in the order-

ings among the top-k items, whereas in (ii) the user’s interest is in

the top-k sets in the ranking lists. We consider a budget of 5, 000
samples (from the region of interest) for the first GET-NEXTr call

and 1, 000 for subsequent calls. The default values are number of

items n = 10, 000, number of attributes d = 3, the width of the

region of interest θ = π/50, and k = 10.

Figures 12 and 15 show the running time of the first GET-NEXTr

call and the stability of the most stable ranking for varying the num-

ber of items from 1K to 100K, and the number of attributes from

3 to 5, while considering the ranked top-k items (the running times

are similar for top-k sets). The plots verify the scalability of the

randomized algorithm for large settings, as it took a few minutes

for 100K items while the running times for d = 3, 4, and 5 are

similar. Looking at right y-axis in Figure 12, despite the increase

in the number of items from 1K to 100K, the stability of the most

stable ranked top-k did not noticeably decrease. This confirms the

feasibility of considering the top-k items for the large settings.

Also, to evaluate the scalablity of our proposal for a very large

setting, we use the DoT dataset and set the budget to 5K samples

for the first GET-NEXTr call and 1K for subsequent calls. Similar

to the previous experiment, we set d to 3, the width of the region

of interest to θ = π/50, and consider top-k sets for k = 10, while

varying the number of items up to one million. Figure 14 shows

the performance of the algorithm for each setting. As expected

the run-time linearly increases with the number of items, while it

takes on the order of an hour for the largest setting. Note that the

number of samples plays an important role in the performance of

the algorithm: the higher the sampling budget, the more accurate

247



10
3

10
4

10
5

10
6

number of items (n)

10
1

10
2

10
3

10
4

ti
m

e
 (

s
e
c
)

First call

Consequent calls

Figure 14: DoT, GET-NEXTr:

stable top-k items, Impact of

dataset size (n)

3 4 5

number of attributes (d)

0

20

40

60

80

100

ti
m

e
 (

s
e

c
)

0

0.02

0.04

0.06

0.08

0.1

S
ta

b
il
it

y
 o

f 
to

p
 r

a
n

k
in

g

e=0.00018
e=0.00019

e=0.000038

Figure 15: GET-NEXTr: stable

top-k items, Impact of number

of attributes (d)

0 2 4 6 8 10

top-h stable partial rankings

10
-2

10
-1

10
0

S
ta

b
il
it

y
 -

- 
lo

g
s
c
a
le

d=3; set

d=4; set

d=5; set

d=3; ranked

d=4; ranked

d=5; ranked

Figure 16: GET-NEXTr: stable

top-k items, Impact of number

of attributes (d)

1 2 3 4 5 6 7 8 9 10

top-h stable partial rankings

0

0.05

0.1

0.15

0.2

0.25

0.3

S
ta

b
il
it

y
 -

- 
lo

g
s
c
a
le

Anti-correlated

Independent

Correlated

Figure 17: Synthetic data, GET-

NEXTr: stable top-k items, Im-

pact of correlation

the results, and the run-time is also higher. This can be confirmed

by comparing the lines for the first call (5000 samples) versus the

consequent calls (1000 samples) of the primitive.

Figures 13 and 16 show the stability of the top-10 stable rankings

for both ranked top-k items and the top-k sets. In both figures, the

top-k sets are more stable than the top-k rankings. The reason is

that the top-k sets do not consider the ordering between the items,

and thus the variety of possible outcomes is reduced compared to

top-k rankings. An observation in Figure 13 is the similarity of the

stability distributions for different numbers of items, which, again,

confirms the feasibility of considering the top-k items for large set-

tings. In Figure 16, as expected, the number of attributes have a

negative correlation with the stability of the top-k items.

The effect of attribute correlation Finally, we study the effect of

attribute correlation on the stability of the rankings. To do so, we

use the synthetic datasets (independent, correlated, anti-correlated),

each containing 10K items and d = 3 attributes. Using a budget

of 5000 samples for evaluation, we set the width of the region of

interest to θ = π/50, and k to 10. Figure 17 shows the stability of

the most stable top-k sets. We find that strong attribute correlation

leads to a greater skew in the distribution of stable regions: the most

stable regions have higher stability. This is illustrated in Figure 17

where we see that the correlated dataset results in the greatest max-

imum stability but also has the steepest slope as we descend from

the most-stable to the 10th-most-stable top-k set. Accordingly, the

independent dataset has a slightly lower stability most-stable re-

gion with a reduced slope, and the anti-correlated dataset displays

the least skew in the stabilities. This is expected since, in a dataset

with highly correlated attributes, we are more likely to find items in

dominance relationships with one another (i.e. the attributes of item

X are greater than those of Y in all, or nearly all, dimensions). In

that case, those items are almost always ranked in one way, reduc-

ing the number of feasible rankings, and resulting in a large number

of relatively unstable rankings and a few highly stable rankings.

7. RELATED WORK
Given a dataset with multiple attributes, ordering the items and

choosing a subset to support decision making is challenging. This

has motivated a rich body of work on ranking [24, 44–47], top-

k [22, 23], and skyline queries [8, 10, 48, 49]. Broadly speaking,

ranking and top-k are employed when a user’s preference in the

form of a scoring function is available, while skyline queries are

used when only the scoring attributes are known, but the scoring

function is left unspecified. To the best of our knowledge, no ex-

isting work considers a range of acceptable scoring functions, and

discovers stable rankings within that range. In our work, the region

of interest can be as narrow as a single scoring function, or as wide

as the entire space of scoring functions.

The work on ranking and top-k includes managing datasets with

uncertainty and noise with respect to item existence or their at-

tribute values [50–52], and using human computation to fill in miss-

ing information [15]. While the work on probabilistic rankings

considers uncertainty in the data, in our work we focus on un-

certainty in the scoring function that reflects a user’s preferences.

There has been extensive effort on efficient processing of top-k
queries [22]: threshold-based algorithms [23] consider parsing pre-

sorted lists along each attribute, view-based approaches [53, 54]

utilize presorted lists that are built on various angles of the function

space, and indexing-based methods [55] create layers of extreme

points for efficient processing of queries. Ranking has also been

considered in spatial databases [56].

In the absence of a scoring function, the effort is on finding

the set of potentially high-scoring representatives such as the sky-

line [8,14,57], also known as the pareto-optimal set [15] — the set

of non-dominated items. Since the number of skyline points can be

large [48], works such as [9–12, 32, 48] look for smaller represen-

tative subsets. For example, [9] finds a subset of k skyline points

that dominate the maximum number of points, while [12] picks the

top-k combinatorial skyline based on an importance ordering of the

attributes. Also, extensive recent work [10,11] aims to find a small

subset of the skyline that minimizes some notion of regret. A key

difference between the stable top-k set and these proposals is that

a top-k set is not necessarily a subset of the skyline.

In this paper, we used notions such as half-space, duality, and ar-

rangement from combinatorial geometry that are explained in detail

in [7, 58]. Arrangement of hyperplanes, its complexity, construc-

tion, and applications are studied in [7, 18–21]. Geometric aspects

of top-k queries are presented in a recent tutorial [59].

8. FINAL REMARKS
In this paper, we studied the problem of obtaining stable rankings

for databases with multiple attributes when the rankings are pro-

duced through a goodness score for each item as a weighted sum of

its attribute values. A stable ranking is more meaningful than one

susceptible to small changes in scoring weights, and hence engen-

ders greater trust. We developed a framework that gives consumers

the facility to assess the stability of a ranking and enables producers

to discover stable rankings. We devised an unbiased function sam-

pler that enables Monte-Carlo methods. We designed a randomized

algorithm for the problem that works both for the complete ranking

of items, as well as the top-k partial rankings. The experiments on

three real datasets demonstrated the validity of our proposal. Our

current definition of stability considers two rankings to be different

if they differ in one pair of items. An alternative is to allow minor

changes in the ranking. Similarly, we note that a weight vector is a

single point in a stable region. It would be nice, for some applica-

tions, to characterize the boundaries of the stable region. We will

consider these in future work.

248



9. REFERENCES

[1] M. Gladwell. The order of things: What college rankings

really tell us. The New Yorker Magazine, Feb 14, 2011.

[2] N. A. Bowman and M. N. Bastedo. Anchoring effects in

world university rankings: exploring biases in reputation

scores. Higher Education, 61(4):431–444, 2011.

[3] J. Monks and R. G. Ehrenberg. The impact of us news and

world report college rankings on admission outcomes and

pricing decisions at selective private institutions. Technical

report, National Bureau of Economic Research, 1999.

[4] A. Langville and C. Meyer. Who’s #1? The Science of Rating

and Ranking. Princeton University Press, 2012.

[5] K. Yang, J. Stoyanovich, A. Asudeh, B. Howe, H. Jagadish,

and G. Miklau. A nutritional label for rankings. In SIGMOD,

pages 1773–1776. ACM, 2018.

[6] CSMetrics. www.csmetrics.org/. [Online; accessed

April 2018].

[7] H. Edelsbrunner. Algorithms in combinatorial geometry,

volume 10. Springer Science & Business Media, 2012.

[8] S. Borzsony, D. Kossmann, and K. Stocker. The skyline

operator. In ICDE, pages 421–430. IEEE, 2001.

[9] X. Lin, Y. Yuan, Q. Zhang, and Y. Zhang. Selecting stars:

The k most representative skyline operator. In Data

Engineering, 2007. ICDE 2007. IEEE 23rd International

Conference on, pages 86–95. IEEE, 2007.

[10] D. Nanongkai, A. D. Sarma, A. Lall, R. J. Lipton, and J. Xu.

Regret-minimizing representative databases. PVLDB,

3(1-2):1114–1124, 2010.

[11] S. Chester, A. Thomo, S. Venkatesh, and S. Whitesides.

Computing k-regret minimizing sets. PVLDB, 7(5):389–400,

2014.

[12] I.-F. Su, Y.-C. Chung, and C. Lee. Top-k combinatorial

skyline queries. In International Conference on Database

Systems for Advanced Applications, pages 79–93. Springer,

2010.

[13] A. Asudeh, H. Jagadish, J. Stoyanovich, and G. Das.

Designing fair ranking schemes. In SIGMOD. ACM, 2019.

[14] A. Asudeh, S. Thirumuruganathan, N. Zhang, and G. Das.

Discovering the skyline of web databases. PVLDB,

9(7):600–611, 2016.

[15] A. Asudeh, G. Zhang, N. Hassan, C. Li, and G. V. Zaruba.

Crowdsourcing pareto-optimal object finding by pairwise

comparisons. In CIKM, pages 753–762. ACM, 2015.

[16] A. Asudeh, H. Jagadish, G. Miklau, and J. Stoyanovich. On

obtaining stable rankings. CoRR, abs/1804.10990, 2018.

[17] M. E. Dyer and A. M. Frieze. On the complexity of

computing the volume of a polyhedron. SIAM Journal on

Computing, 17(5):967–974, 1988.

[18] P. Orlik and H. Terao. Arrangements of hyperplanes, volume

300. Springer, 2013.

[19] B. Grünbaum. Arrangements of hyperplanes. In Convex

Polytopes. Springer, 2003.

[20] V. V. Schechtman and A. N. Varchenko. Arrangements of

hyperplanes and lie algebra homology. Inventiones

mathematicae, 106(1), 1991.

[21] P. K. Agarwal and M. Sharir. Arrangements and their

applications. Handbook of computational geometry, 2000.

[22] I. F. Ilyas, G. Beskales, and M. A. Soliman. A survey of

top-k query processing techniques in relational database

systems. CSUR, 40(4), 2008.

[23] R. Fagin, A. Lotem, and M. Naor. Optimal aggregation

algorithms for middleware. Journal of Computer and System

Sciences, 66(4), 2003.

[24] A. Asudeh, N. Zhang, and G. Das. Query reranking as a

service. PVLDB, 9(11):888–899, 2016.

[25] Y. D. Gunasekaran, A. Asudeh, S. Hasani, N. Zhang,

A. Jaoua, and G. Das. QR2: A third-party query reranking

service over web databases. In ICDE, pages 1653–1656.

IEEE, 2018.

[26] H. Blaker. Confidence curves and improved exact confidence

intervals for discrete distributions. Canadian Journal of

Statistics, 28(4):783–798, 2000.

[27] F. J. Hickernell, L. Jiang, Y. Liu, and A. B. Owen.

Guaranteed conservative fixed width confidence intervals via

monte carlo sampling. In Monte Carlo and Quasi-Monte

Carlo Methods 2012, pages 105–128. Springer, 2013.

[28] W. Hoeffding. Probability inequalities for sums of bounded

random variables. Journal of the American statistical

association, 58(301):13–30, 1963.

[29] H. Chernoff. A measure of asymptotic efficiency for tests of

a hypothesis based on the sum of observations. The Annals of

Mathematical Statistics, pages 493–507, 1952.

[30] C. P. Robert. Monte carlo methods. Wiley Online Library,

2004.

[31] R. Durrett. Probability: theory and examples. Cambridge

university press, 2010.

[32] A. Asudeh, A. Nazi, N. Zhang, G. Das, and H. Jagadish.

RRR: Rank-regret representative. In SIGMOD. ACM, 2019.

[33] M. E. Muller. A note on a method for generating points

uniformly on n-dimensional spheres. Communications of the

ACM, 2(4), 1959.

[34] G. Marsaglia et al. Choosing a point from the surface of a

sphere. The Annals of Mathematical Statistics, 43(2), 1972.

[35] H. Cramér. Mathematical methods of statistics (PMS-9),

volume 9. Princeton university press, 2016.

[36] S. Lucidl and M. Piccioni. Random tunneling by means of

acceptance-rejection sampling for global optimization.

Journal of optimization theory and applications,

62(2):255–277, 1989.

[37] L. Devroye. Sample-based non-uniform random variate

generation. In Proceedings of the 18th conference on Winter

simulation, pages 260–265. ACM, 1986.

[38] K. Fischer, B. Gärtner, and M. Kutz. Fast

smallest-enclosing-ball computation in high dimensions. In

European Symposium on Algorithms, pages 630–641.

Springer, 2003.

[39] S. Li. Concise formulas for the area and volume of a

hyperspherical cap. Asian Journal of Mathematics and

Statistics, 4(1):66–70, 2011.

[40] T. F. I. de Football Association (FIFA). Fifa rankings.

www.fifa.com/fifa-world-ranking/

ranking-table/men/index.html. [Online; accessed

April 2018].

[41] FIFA. Fifa/coca-cola world ranking procedure.

http://www.fifa.com/fifa-world-ranking/

procedure/men.html, 28 March 2008.

[42] BlueNile. www.bluenile.com/diamond-search?

[Online; accessed Feb. 2018].

[43] US Department of Transportation’s dataset. http:

//www.transtats.bts.gov/DL_SelectFields.

asp?Table_ID=236&DB_Short_Name=On-Time.

249



[44] F. Geerts, H. Mannila, and E. Terzi. Relational link-based

ranking. In Proceedings of the Thirtieth international

conference on Very large data bases-Volume 30, pages

552–563. VLDB Endowment, 2004.

[45] S. Chaudhuri and G. Das. Keyword querying and ranking in

databases. PVLDB, 2(2):1658–1659, 2009.

[46] R. Agrawal, R. Rantzau, and E. Terzi. Context-sensitive

ranking. In SIGMOD, pages 383–394. ACM, 2006.

[47] P. K. Agarwal, L. Arge, J. Erickson, P. G. Franciosa, and J. S.

Vitter. Efficient searching with linear constraints. JCSS,

61(2), 2000.

[48] A. Asudeh, A. Nazi, N. Zhang, and G. Das. Efficient

computation of regret-ratio minimizing set: A compact

maxima representative. In SIGMOD, pages 821–834. ACM,

2017.

[49] J. Stoyanovich, W. Mee, and K. A. Ross. Semantic ranking

and result visualization for life sciences publications. In

ICDE, pages 860–871, 2010.

[50] S. Chaudhuri, G. Das, V. Hristidis, and G. Weikum.

Probabilistic ranking of database query results. In

Proceedings of the Thirtieth international conference on Very

large data bases-Volume 30, pages 888–899. VLDB

Endowment, 2004.

[51] J. Li, B. Saha, and A. Deshpande. A unified approach to

ranking in probabilistic databases. PVLDB, 2(1):502–513,

2009.

[52] J. Li and A. Deshpande. Ranking continuous probabilistic

datasets. PVLDB, 3(1-2):638–649, 2010.

[53] V. Hristidis and Y. Papakonstantinou. Algorithms and

applications for answering ranked queries using ranked

views. The VLDB Journal, 13(1):49–70, 2004.

[54] G. Das, D. Gunopulos, N. Koudas, and D. Tsirogiannis.

Answering top-k queries using views. In Proceedings of the

32nd international conference on Very large data bases,

pages 451–462. VLDB Endowment, 2006.

[55] Y.-C. Chang, L. Bergman, V. Castelli, C.-S. Li, M.-L. Lo,

and J. R. Smith. The onion technique: indexing for linear

optimization queries. In SIGMOD, 2000.

[56] G. R. Hjaltason and H. Samet. Ranking in spatial databases.

In SSTD. Springer, 1995.

[57] M. F. Rahman, A. Asudeh, N. Koudas, and G. Das. Efficient

computation of subspace skyline over categorical domains.

In CIKM, pages 407–416. ACM, 2017.

[58] M. De Berg, O. Cheong, M. Van Kreveld, and M. Overmars.

Computational Geometry: Introduction. Springer, 2008.

[59] K. Mouratidis. Geometric approaches for top-k queries.

PVLDB, 10(12):1985–1987, 2017.

250


