
Discovery and Ranking of
Embedded Uniqueness Constraints

Ziheng Wei
School of Computer Science
The University of Auckland

Auckland, New Zealand
z.wei@auckland.ac.nz

Uwe Leck
Department of Mathematics
The University of Flensburg

Flensburg, Germany

uwe.leck@uni-
flensburg.de

Sebastian Link
School of Computer Science
The University of Auckland

Auckland, New Zealand
s.link@auckland.ac.nz

ABSTRACT
Data profiling is an enabler for efficient data management
and effective analytics. The discovery of data dependen-
cies is at the core of data profiling. We conduct the first
study on the discovery of embedded uniqueness constraints
(eUCs). These constraints represents unique column combi-
nations embedded in complete fragments of incomplete data.
We showcase their implementation as filtered indexes, and
their application in integrity management and query opti-
mization. We show that the decision variant of discovering a
minimal eUC is NP-complete and W[2]-complete. We char-
acterize the maximum possible solution size, and show which
families of eUCs attain that size. Despite the challenges,
experiments with real-world and synthetic benchmark data
show that our column(row)-efficient algorithms perform well
with a large number of columns(rows), and our hybrid al-
gorithm combines ideas from both. We show how to rank
eUCs to help identify relevant eUCs.

PVLDB Reference Format:
Ziheng Wei, Uwe Leck, Sebastian Link. Discovery and Ranking of
Embedded Uniqueness Constraints. PVLDB, 12(13): 2339-2352,
2019.
DOI: https://doi.org/10.14778/3358701.3358703

1. INTRODUCTION
SQL UNIQUE is the response of the industry standard

whenever entity integrity cannot be achieved by primary
keys due to missing data values. A table over a column
combination R satisfies the SQL UNIQUE constraint (UC)
on U ⊆ R whenever every pair of records with no miss-
ing values on all columns in U has non-matching values on
some column in U . For example, if U consists of v(oter id),
r(egister date), and d(ownload month), then the UC U is
violated by the data snippet in Table 1. Indeed, t1, t2 is a
pair of records with matching non-null values on all columns
in U . However, if E consists of all the columns in U plus
f(ull phone num), then the UC E is satisfied. In particular,

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 12, No. 13
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3358701.3358703

t1 and t2 carry the null marker symbol ⊥ in column f. The
record pairs t3, t4 and t5, t6 and t7, t8 show that E is a mini-
mal UC, as none of the proper subsets of E forms a UC that
holds on the data snippet. However, the UC E is unable to
express the fact that {v, d, r} is actually a key on the subset
of records that have no missing values on E.

The reason is that SQL UNIQUE uses the same combina-
tion of columns to stipulate both completeness and unique-
ness requirements. As a consequence, opportunities for bet-
ter data management remain out of reach. Indeed, it is more
natural to de-couple uniqueness from completeness require-
ments by stipulating that only records with no missing value
in every column in E are considered, and the projection of
every one of those records to a subset U ⊆ E is unique. We
call expressions of the form (E,U) embedded uniqueness con-
straints (eUCs). EUCs stipulate the uniqueness constraint
U on the subset of records with no missing values on all
the columns in E. SQL UNIQUE represents the special
case (E,E) of a general eUC (E,U), that is, where U = E.
In our example (and writing E − U instead of E), the eUC
({f}, {d, r, v}) holds on the snippet r of Table 1. In fact, the
records with no missing values in E are rE = r−{t1, t2}, and
no two different records of rE have matching values on all
the columns of U . Note that the eUC ({f}, {d, r, v}) holds
on the entire real-world benchmark data set ncvoter8m that
has over eight million records.

It is surprising that SQL has not brought forward a no-
tion of a uniqueness constraint that separates completeness
from uniqueness concerns. This shortcoming causes a com-
mon source of dirty data. This is illustrated by our example
where the UC on {f, d, r, v} would permit pairs of database
records with matching non-null values on d, r, and v, and
non-matching non-null values on f. This, however, is pre-
vented by the eUC ({f}, {d, r, v}). It is also surprising since
SQL queries naturally support such separation by using the
attributes of a meaningful key as join attributes (unique-
ness), and specifying attributes as IS NOT NULL in the WHERE
clause (completeness). We will demonstrate in Section 2 how
the new concept of eUCs overcomes serious limitations for
the use of SQL UNIQUE in the optimization of queries that
are based on the retrieval of unique records, mainly because
an index for UCs contains missing data. Such queries in-
clude the arguably most common type of join query whose
join attributes form key/foreign key relationships. Further-
more, eUCs (E,U) subsume both UCs and so-called unique
column combinations (UCCs) as special cases, where E = U
for both UCs and UCCs, and different null marker occur-

2339

Table 1: Snippet of the ncvoter8m data set
id voter id first name middle name last name address city full phone num register date download month
t1 3885008 brandon lee jones 2120 ramsgate st raleigh ⊥ 2003-10-15 2011-12
t2 3885008 brandon lee jones 1933 blackwolf run ln raleigh ⊥ 2003-10-15 2011-12
t3 1014519 emilie jackson gaddy 55 summey rd old fort 828 668 2036 1983-08-16 2011-10
t4 1014519 emilie jackson gaddy 55 summey rd old fort 828 668 2036 1983-08-16 2012-10
t5 3492969 michael martin mullen 608 plum nearly ln #1 wilmington 910 425 4200 2003-12-15 2011-12
t6 3492969 michael martin mullen 6837 wimbledon cir #201 fayetteville 910 425 4200 2001-03-21 2011-12
t7 2047052 blanche virginia heath 141 happy ln dobson 336 352 3682 1994-10-08 2011-10
t8 2047054 carie lynn pressnell 141 happy ln dobson 336 352 3682 1994-10-08 2011-10

rences are regarded as different values by UCs (⊥6=⊥, while
different null marker occurrences are regarded as the same
value by UCCs (⊥=⊥). Hence, all optimization techniques
applied to UCs and UCCs also apply to eUCs. Additional
showcases for the use of eUCs in enforcing data integrity, ref-
erential integrity, optimizing the evaluation of other popular
classes of queries, acquiring business rules and cleaning data
have already been examined [38, 39]. In essence, the use of
eUCs (E,U) results in a resource advantage whenever U is
a proper subset of E, since the columns in E − U are not
required to separate E-complete records. In our example,
the attributes v, r, and d suffice to identify uniquely every
record that is complete on those attributes and f. Hence,
both UCs and UCCs (E,E) utilize the columns in E−U re-
dundantly, in our example the column f. In summary, eUCs
(E,U) work like primary keys on U for all records with no
missing value on E.

The discovery of constraints such as UCs and UCCs helps
with effective data access, cleaning, integration, linking, and
processing [2]. In the same way, the discovery of eUCs fa-
cilitates these tasks more effectively when missing data is
present. This applies particularly to modern applications.
For example, missing values occur frequently in big data
considering that veracity is one of its dimension. Similarly,
the integration of data from heterogeneous sources in one
schema typically requires the introduction of missing values
on attributes that exist in some but not all sources.

Recent years have seen tremendous progress on the dis-
covery of unique constraints [3, 14, 34] despite its computa-
tional difficulty. For example, on a data set with 50 columns,
up to 126, 410, 606, 437, 752 minimal UCs may exist. Fig-
ure 1 illustrates the search space for a schema with three
columns, and the maximum solution space: the maximum
number of minimal UCs is attained by either the set of all
singleton subsets marked red, or by the set of all two at-
tribute subsets marked purple. Deciding if some UC with
at most n attributes holds on a given data set is not only
NP-complete, but even W[2]-complete in the size of the UC
[8]. Remarkably, algorithms exist that can find all minimal
UCs for reasonably large numbers of rows or columns [32].
The discovery of eUCs is computationally even more chal-
lenging. Figure 1 illustrates the search space for a schema
with three columns, and the unique set of minimal eUCs
that attains maximum cardinality (marked red). We show
for every schema with n attributes that the maximum num-
ber of minimal eUCs significantly exceeds that of minimal
UCs. The following table shows the difference up to n = 12.

n 2 3 4 5 6 7 8 9 10 11 12
UCs 2 3 6 10 20 35 70 126 252 462 924
eUCs 3 7 19 51 141 393 1107 3139 8953 25653 73789

For data sets with 50 columns there can be over 390 mil-
lion times more minimal eUCs than minimal UCs, namely

Figure 1: UC search/solution space over 3 columns

Figure 2: eUC search/solution space over 3 columns

up to 49, 419, 934, 162, 239, 477, 797, 703 minimal eUCs. Ev-
idently, this growth requires new ideas and data structures
for the discovery of eUCs.

This raises another challenge as it becomes even more
important to provide computational support for identifying
relevant eUCs from the large output of discovery algorithms.
Relevant eUCs may include those that are meaningful for
the underlying application domain, or those that result in
performance increases for some application. Ultimately, a
human is required to reasonably judge the relevance of eUCs,
but automated rankings of eUCs can make this task easier.

Given the conceptual and practical advantages of eUCs,
we will address their discovery from data. Our main con-
tributions are: (1) We illustrate showcases for the use of
eUCs in managing data integrity, improving schema qual-
ity, enabling schema design, and optimizing queries and up-
dates. (2) We distinguish the discovery of eUCs from pre-
vious work. For example, eUCs subsume UCs and UCCs
as idealized special cases. (3) We show that the decision
variant of the discovery problem for eUCs is NP- and W [2]-
complete in the input size. (4) We characterize the maxi-
mum number of minimal eUCs that an incomplete relation
over n columns can have, and show which families of eUCs
attain this number. (5) For handling the large search space,
we introduce a new data structure that can store and look up
eUCs efficiently, by effectively exploiting the separation be-

2340

tween completeness and uniqueness requirements for prun-
ing. (6) We establish the first column-efficient, row-efficient,
and hybrid algorithms for the discovery of eUCs. Each of
these is important and requires fundamentally new ideas
over previous work. Column(row)-efficient algorithms work
efficiently with large numbers of columns (rows), while the
hybrid algorithm performs best when the numbers of both
columns and rows are larger. (7) As special cases of eUCs,
we also discover UCs and UCCs. (8) We demonstrate which
algorithms perform well on which benchmark data sets, and
that eUCs are effective in uniquely identifying most entities.
(9) We introduce rankings for eUCs, and illustrate how they
help explore the output eUCs of discovery algorithms.
Organization. Section 2 presents showcases for the use of
eUCs. We discuss related work in Section 3. Basic defi-
nitions are given in Section 4. In Section 5, we settle the
computational complexity of discovering eUCs. Fundamen-
tal combinatorial results about eUCs are derived in Sec-
tion 6. In Section 7 we introduce an important data struc-
ture for our discovery algorithms. In Sections 8, 9, and 10,
we present column-efficient, row-efficient and hybrid algo-
rithms, respectively. We report our experimental results in
Section 11. We conclude in Section 12. More examples,
proofs, data sets, a prototype, and user guide are available1.

2. APPLICATION EXAMPLES
Previous work has already shown some of the benefits of

eUCs [38, 39]. We will further show how they can be en-
forced in RDBMSs, improve schema quality, drive schema
design, and advance query optimization.

2.1 Using trusted technology to enforce eUCs
EUCs can be implemented in trusted relational technol-

ogy. They can be enforced directly on a database table by
creating unique non-clustered indexes, or they can be used
in views to reorganize the physical representation of data by
creating unique clustered indexes. Such views are bound to
the original table, so eUCs will be utilized by query opti-
mizers. As a representative illustration, we create a schema
R with columns f , d, r, and v in SQL Server, and define the
following unique non-clustered index on R to enforce our
example eUC ({f}, {d, r, v}).

1:CREATE UNIQUE NONCLUSTERED INDEX EUC_fdrv_drv ON R (d, r, v)
2:WHERE f IS NOT NULL AND d IS NOT NULL AND r IS NOT NULL AND

v is NOT NULL

The physical representation of data is important as non-
unique columns can easily be retrieved after look-up or index
search. The physical representation can be organized with
eUCs by creating a unique clustered index on R as follows.

1:CREATE VIEW view_R WITH SCHEMABINDING AS
2:SELECT f, d, r, v
3:FROM R
4:WHERE f IS NOT NULL AND d IS NOT NULL AND r IS NOT NULL AND

v is NOT NULL
5:GO
6:CREATE UNIQUE CLUSTERED INDEX EUC_fdrv_drv ON view_R (d, r, v)

Lines 1-5 create a view from table R which addition-
ally stipulates the embedding of eUC ({f}, {d, r, v}). Af-
terwards, a unique index is created on the view. With these
implementations any updates that violate the eUC will raise

1http://bit.ly/2gzDEYu

Figure 3: Records in ncvoter8m violating UC {d, r, v}

an error in SQL Server. The eUC will also be used by a
query optimizer whenever the query only selects rows in the
scope of the eUC, that is, whenever the query only selects
{f, d, v, r}-complete rows in our example.

2.2 Schema quality and schema design
When analyzing the ncvoter8m data set we discovered

the minimal eUC ({f}, {d, r, v}). There are over 3 million
records that are complete on {f, d, r, v}, and that subset of
records satisfies the key {d, r, v}. Such a large data frag-
ment suggests that {d, r, v} should form a meaningful key.
Figure 3 shows 8 pairs of records that have either non-
matching values on attribute ethnic or street address. The
changes in street address may result from updates within
the same month the data is downloaded. Hence, the use
of download month as an attribute is too coarse. Instead,
download date should be used instead. Note that the eUC
({f, d, r, v}, {d, r, v}) implies the SQL UNIQUE {f, d, r, v},
but not vice versa. In fact, the SQL UNIQUE {f, d, r, v}
cannot express the eUC ({f}, {d, r, v}). As a consequence,
{f, d, r, v} cannot prevent violations of data integrity since
it permits duplicate values on the meaningful key {d, r, v}.

Recently [41], eUCs and embedded functional dependencies
(eFDs) were used to tailor relational schema design to data
completeness requirements. While eFDs cause redundant
data values on records that are E-complete, eUCs prohibit
them. For illustration purposes we list the number #com-
plete of data values that are complete, the number #red of
those that are redundant, and the percentage %red of re-
dundant data values in the data set.

data set #complete #red %red
china 4,313,980 2,131,677 49.41
diabetic 1,017,738 543,935 53.45

The point is that eUCs remove all redundant data values
during Boyce-Codd normalization or minimize them during
Third normal form synthesis. For details we refer to [41].
Since eUCs cannot be expressed as eFDs [41] no eFD dis-
covery algorithm can discover eUCs. Hence, our discovery
algorithms for eUCs are fundamental for data-driven schema
design approaches such as [31]. Schema design approaches
customized to specific interpretations of null markers [21,
20] should be applied to records that do not meet the com-
pleteness requirements of the underlying application.

2341

Table 2: Some performance measures in SQL Server
Read Amount of page reads caused by query
Time Query processing time in sec by CPU
Cost Cost of query plan estimated by optimizer

2.3 Query optimization
We illustrate advantages of eUCs over SQL UNIQUE by

an extension to our running example. For that purpose,
we decompose ncvoter8m into tables over the following two
schemata: ncvoter8m personal contains attributes voter id,
voter reg num, name prefix, first name, middle name, last -
name, name suffix, age, gender, race, ethnic, full phone num,
birth place, register date, download month, while ncvoter-

8m contact has attributes voter id, street address, city, zip -
code, state , full phone num, register date, download month.
In the following join query we restore the original records
in ncvoter8m that have no missing values on voter id, regis-
ter date, download month, and full phone num

SELECT * FROM ncvoter8_contact AS C

INNER JOIN ncvoter8_personal AS P

ON C.voter_id = P.voter_id AND

C.register_date = P.register_date AND

C.download_month = P.download_month

WHERE

C.full_phone_num IS NOT NULL AND

P.full_phone_num IS NOT NULL ;

To ease notation, we assume every attributes in the inner
join is set to IS NOT NULL in the WHERE clause. Our SQL
query makes natural use of the fact that U = {d, r, v} forms
a meaningful key on the records that are complete on E =
U ∪ {f}. In contrast, SQL UNIQUE offers neither effective
nor efficient support for the evaluation of such common join
queries that are based on key/foreign key relationships. In
fact, in using SQL UNIQUE we are restricted to use either
U or E. However, the SQL UNIQUE on U does not hold
and the SQL UNIQUE on E would force users to formulate
the above query as

SELECT * FROM ncvoter8_contact AS C

INNER JOIN ncvoter8_personal AS P

ON C.voter_id = P.voter_id AND

C.register_date = P.register_date AND

C.download_month = P.download_month AND

C.full_phone_num = P.full_phone_num ;

The latter query is unnatural as it uses full phone num as
a join attribute. Hence, support for evaluating the query is
ineffective. Even if users can deduce the SQL UNIQUE on
E, its use in query optimization is inefficient. This is illus-
trated next by executing the two queries with and without
index support. The data set ncvoter8m has 8, 060, 059 rows
and 19 columns. Measuring the pure runtime of a query is
not enough to explain its performance, especially when the
data is growing. Hence, our performance analysis will in-
spect both runtime cost and estimated cost of queries. We
obtain these measures using Microsoft SQL Sever Manage-
ment Studio, as in Table 2. The estimated costs may not be
accurate to approximate the runtime of queries in general.
However, our examples only aim at enhancing plain query
plans, that will scan an entire table, with a more efficient
search capability such as an index search. In this sense, the

Table 3: JOIN performance of example UC and eUC
Index Join by Read Time Cost
None eUC 247227 120s 474
None UC 247227 129s 493
UC UC 16640034 161s 2251
eUC eUC 111216 28s 103

estimated costs actually provide a good measure on how well
a query scales to larger tables.

Table 3 shows the performance of our four queries. The
join query performs best when the eUC is enforced. Indeed,
the inner join takes effective advantage of the eUC index
(by applying a merge join, for example). The query per-
forms worst if the UC is used. This is because the UC index
is ineffective since significant processing time is spent on
reading records with missing values. In general, the lack of
separation between completeness and uniqueness concerns
renders SQL UNIQUE useless for indexing purposes.

3. RELATED WORK
Surprisingly, no notion of uniqueness constraints has sep-

arated completeness from uniqueness requirements, until re-
cently when eUCs were introduced [42]. In general, eUCs are
more expressive than unique constraints from previous work.
Their applications have been highlighted in recent work [38,
39]. The current article is the first to investigate the discov-
ery problem for eUCs. Due to the separation principle, all
our algorithms employ new techniques, but naturally take
advantage of previous work on unique constraints and func-
tional dependencies (FDs). We discuss those ideas now. For
a recent survey on data profiling we refer to [1, 2].

We distinguish unique column combinations (UCCs) from
SQL UNIQUE. The only but important difference in their
semantics is that UCCs regard different null marker oc-
currences as matching values, while SQL UNIQUE regards
them as non-matching values. SQL UNIQUE is the special
case of eUCs (E,U) where E = U . We report results on
this case because of its importance. By handling ⊥ like any
domain value, we also report on UCCs.
Core novelties. Column-based (row-efficient) algorithms
for the discovery of minimal keys [14] examine an attribute
lattice bottom-up, top-down or in a hybrid manner. The
bottom-up approach checks key candidates when all sets on
the previous level are not satisfied. The top-down approach
considers key candidates when some superset is satisfied.
The hybrid approach combines bottom-up and top-down
for faster pruning. The authors show upper bounds, but
experiments consider only synthetic data. Larger column
numbers cause efficiency problems. Stripped partitions and
prefix blocks [17] improve the run-time efficiency of column-
based algorithms. For the row-efficient discovery of eUCs
(E,U) we employ similar ideas but tailor them to the dis-
covery of uniques U and embeddings E. Another new idea
is to prune the search space based on failure to meet the
completeness requirements of E.

A row-based (column-efficient) algorithm refines FD sets
by extracting counter-examples from data [13]. FD-trees
manage FDs efficiently. This early algorithm only dealt with
complete data. For the column-efficient discovery of eUCs
(E,U) we generalize the notion of maximal non-uniques
to maximal embedded non-uniques, and introduce rules for

2342

the induction of new candidates for eUC validation. Scal-
able UCC discovery [16] is achieved by employing additional
search strategies on the attribute lattice. A greedy strategy
looks for new candidates if the given UCC is not satisfied;
and a random-walk looks for supersets (subsets) and ran-
domly switches to new candidates when the current UCC
is satisfied (unsatisfied). Missing values do not conform to
SQL UNIQUE semantics. The algorithms scale poorly on
larger attribute numbers under SQL UNIQUE semantics.

Hybrid algorithms for UCC and FD discovery [32, 30,
40] switch between column- and row-based algorithms. The
column-based algorithm validates UCCs in an attribute lat-
tice bottom-up and switches when too many invalid UCCs
are found. The row-based algorithm finds counter-examples
heuristically and switches when too few counter-examples
are found. A major shortcoming is the redundant valida-
tion of candidates based on the inability to compute stripped
partitions dynamically. This is overcome by our hybrid eUC
discovery algorithm where stripped partitions are generated
dynamically during the traversal of candidate uniques, and
used for efficient validation during the traversal of candidate
embeddings. Specifically, the insight that completeness re-
quirements are easy to validate is used for the design of eUC-
trees. Similarly to previous hybrid algorithms our row-based
part helps our column-based part reduce the search space,
but does that for uniques and embeddings. Another new
technique is that the discovered eUCs during our column-
based part help our row-based part prune attributes of the
search space. These strategies enable us to handle the larger
search space that eUCs exhibit over UCs and UCCs.

Our combinatorial results are interesting from mathemat-
ical and practical points of view. They provide deep insight
into the search and maximum solution space, showing that a
potentially large number of eUCs must be discovered within
a large product space, in contrast to an attribute lattice for
UCs and UCCs. Our new data structure of an eUC tree was
designed to meet these challenges: In contrast to the an-
tecedent trees [13] that handle UC and UCC discovery, eUC
trees accommodate further nestings at the leaf level to rep-
resent the product space. The growth in space is dealt with
again by the separation of completeness and uniqueness re-
quirements. Previous work on UC and UCC discovery sim-
ply regarded different occurrences of ⊥ as matching (UCCs)
or non-matching (UCs), and thus missed the opportunity to
prune the search space when completeness requirements are
not met. This, however, is done by eUC trees.
Other work. GORDIAN discovers minimal keys [34] using
prefix trees, which efficiently extract non-keys known to vio-
late a key. The algorithm performs well on data with quite
large numbers of rows and columns. Experiments for real
world data are limited, and missing values not discussed.
The Histogram-Count-based Apriori algorithm (HCA) dis-
covers UCCs [3] by generating different cardinalities from
small to large. Validations of UCCs are done by counting
the frequencies of distinct values. Missing values are not
discussed and the real-world data only exhibits few UCCs.

Discovering conditional FDs [12] has received attention,
but completeness has not been considered as a condition for
conditional FDs. This suggests future work.

Possible and certain SQL keys [5, 19, 22] rely on the no
information interpretation of nulls, and are different from
eUCs. Key sets can distinguish different tuple pairs by dif-
ferent sets of attributes [15, 24, 26, 35]. Probabilistic and

possibilistic keys [6, 9, 18, 27, 33] are for data models that
use possible worlds with no missing values.

Approximate keys [23] permit duplicate values up to a
given threshold. They cannot express completeness require-
ments, and are therefore different from eUCs. For exam-
ple, {f,d,r,v} may be discovered as an approximate key on
ncvoter8m, but does not give us any hint whether the eUC
({f}, {d, r, v}) is satisfied. Vice versa, realizing that the eUC
(E,U) holds on the relation r, tells us that the key U holds
at least with the approximation ratio |rE |/|r|. In this sense,
eUCs tell us something about approximate keys, while ap-
proximate keys cannot tell us anything about eUCs. This
provides more motivation for studying eUCs.

Overall, our article is the first to investigate the discovery
problem for eUCs.

4. EMBEDDED UNIQUE CONSTRAINTS
We give the basic definitions and fix notation. A relation

schema is a finite, non-empty set of attributes (also called
column (names)), often denoted by R. With each attribute
A we associate a domain dom(A) of possible values that can
occur in column A. A tuple t over R, sometimes called row
or record, is a function that maps each A ∈ R to a value in
dom(A). Two records are equal if they have matching values
on all the attributes of the underlying schema, and distinct
otherwise. A relation r over R is a finite set of distinct tuples
over R. For a finite set X = {A1, A2, · · · , Am} of attributes,
we sometimes write X as A1A2 · · ·Am, and XY instead of
the union X∪Y of X and another attribute set Y . Attribute
sets are sometimes called column combinations. For X ⊆ R
and a tuple t over R, we write t(X) to denote the projection
of t onto X, that is, the value dom(A1)× · · · × dom(Am).

Following previous research, we use the special symbol
⊥ to denote a null marker. While ⊥ is a marker but not a
value, we abuse notation for convenience and assume that ⊥
is a distinct element of each domain. That is, ⊥ is different
from each domain value. We say a tuple t over R is X-total
whenever t(A) 6=⊥ for all A ∈ X. Furthermore, we use rX

to denote the set of all X-total tuples in a relation r, that
is, rX = {t ∈ r | t is X-total}, and call rX the scope of r
with respect to X. A relation is complete when it has no null
marker occurrence, that is, when the scope rR coincides with
r. Following [42] we will study the discovery and sampling
of embedded uniqueness constraints, defined as follows.

An embedded uniqueness constraint (embedded unique or
eUC) over a relation schema R is an expression of the form
(E,U) where U ⊆ E ⊆ R. We call E the extension, and U
the unique constraint of (E,U). A relation r over R satisfies
the eUC (E,U), or the eUC is said to hold on r, denoted by
r � (E,U), if and only if for all t, t′ ∈ rE , t(U) = t′(U)
implies t1 = t2. If r does not satisfy (E,U), then we also
say that r violates (E,U). Note that the case where E = U
or E−U = ∅ captures the semantics of the SQL unique con-
straint (UC). Since E = U , it is sometimes easier to write
just U instead of writing (U,U). Whenever we want to save
space, we also write (E−U,U) instead of (E,U). Identifying
column names in our introductory example by their first let-
ters, we write ({f}, {d, r, v}) instead of ({f, d, r, v}, {d, r, v}).

A unique column combination (UCC) over relation schema
R is a set U ⊆ R. The UCC U is satisfied by a relation r
over R whenever for every pair of distinct tuples in r (not
just the U -complete ones), there is some attribute in U on
which the two tuples have different values. Recall that UCCs

2343

regard different occurrences of ⊥ as matching values. In the
special case of complete relations, UCs, UCCs, and eUCs all
coincide with the well-known notion of a key.

UCs U (and UCCs, respectively) that hold on a relation
r are said to be minimal if there is no UC U ′ (UCC U ′,
respectively) that also holds on r and where U ′ is a proper
subset of U . We can restrict the discovery of uniqueness
constraints to those that are minimal, since any supersets
are also uniqueness constraints. This is true for UCs as well
as UCCs. This begs the question, which eUCs are mini-
mal. We say that (E′, U ′) is subsumed by (E,U), denoted
by (E′, U ′) v (E,U), if and only if both E′ ⊆ E and U ′ ⊆ U
hold. Further, (E′, U ′) is properly subsumed by (E,U), de-
noted by (E′, U ′) < (E,U), if and only if E′ is a proper
subset of E or U ′ is a proper subset of U . Now we can say
that an eUC (E,U) that holds on relation r is minimal if
and only if there is no eUC (E′, U ′) that holds on r and is
properly subsumed by (E,U). If an eUC is not minimal, we
sometimes say it is implied or redundant. Given a set Σ′ of
eUCs, the subset Σ of Σ′ is a minimal cover of Σ′ if it con-
sists of all those eUCs in Σ′ that do not properly subsume
any other eUCs in Σ. That is, Σ contains those elements of
Σ′ that are minimal with respect to subsumption.

Consider our introductory example. Some of the eUCs the
snippet of Table 1 satisfies are ({f}, {d, r, v}), (∅, {f, d, r, v}),
and ({f, fi}, {d, r, v}), of which only ({f}, {d, r, v}) is mini-
mal: neither (∅, {d, r, v}), nor ({f}, {d, r}), nor ({f}, {d, v}),
nor ({f}, {r, v}) are satisfied.

5. COMPUTATIONAL COMPLEXITY
In this section, we establish the computational complexity

for the decision variant of the discovery problem for eUCs.
Its decision variant, eUC, is defined as follows.

Problem: eUC
Input: relation r over schema R

positive integer k
Output: yes, if there is some U ⊆ E ⊆ R where

|E| ≤ k and r satisfies (E,U)
no, otherwise

As U ⊆ E the cardinality |E| of the extension E is an
appropriate definition for the size of an eUC (E,U). We
show that eUC is at least as hard as the decision variant
Key of the key discovery problem in complete relations,
defined as follows.

Problem: Key
Input: complete relation r over schema R

positive integer k
Output: yes, if there is some K ⊆ R where

|K| ≤ k and r satisfies K
no, otherwise

Indeed, complete relations satisfy the key K if and only
if they satisfy the eUC (K,K). It is known that Key is NP-
complete [7], and by reducing Key to eUC we can establish
NP-completeness for eUC, too. In recent research [8], Key
was shown to be W[2]-complete in the size of the key. As we
can show that Key and eUC are FPT-equivalent, the dis-
covery of eUCs is likely to be an intractable problem even
when the size of the eUCs is fixed. For the necessary defini-
tions and proofs please see http://bit.ly/2gzDEYu.

Theorem 1. Problem eUC is NP- and W[2]-complete.

Table 4: Relation with max solution space over A =
id, B = name, C = phone and its embedded lattice

id name phone
0 Adam 6756
0 ⊥ ⊥
⊥ Eve 7654
1 ⊥ 0023
⊥ ⊥ 6756
2 Dave ⊥
⊥ Adam ⊥

Remarkably, recent algorithms can quickly solve large in-
stances of Key [30, 34]. The next section shows that the
efficiency bar is raised even higher for eUCs.

6. MAXIMUM SOLUTION SPACE
It is useful to know how large the solution space of the dis-

covery problem can be. For most classes of constraints exact
numbers are unknown. For example, only upper bounds are
known for the maximum cardinality of a non-redundant fam-
ily of FDs over a schema with n attributes [11, 36]. However,
the maximum number of minimal keys over n attributes is(

n
bn/2c

)
[10, 37]. We will now establish a complete solution

for the class of eUCs. While the result is interesting in its
own right from a combinatorial perspective, it tells us pre-
cisely how large a solution space can be. The result shows
that the solution space for eUCs is much larger than that
for UCs. The result will also prove useful for experiments
on synthetic data, as we can create data sets that attain the
maximum number of minimal eUCs.

A family F of eUCs is non-redundant if and only if there
there are no two eUCs (E,U) and (E′, U ′) in F such that
E ⊆ E′ and U ⊆ U ′ hold. Our result will show that i) the
maximum size of a non-redundant family of eUCs over a
schema with n attributes is equal to the coefficient, denoted
by W (n), of xn in the expansion of (1 + x + x2)n, and ii)
the family that attains the maximum cardinality consist of
all those eUCs (E,U) where |E|+ |U | = n.

Table 4 exemplifies the case for n = 3 attributes. Here, the
maximum family of minimal eUCs has seven elements, con-
sisting of (ABC, ∅), (AB,A), (AB,B), (AC,A), (AC,C),
(BC,B), and (BC,C), as marked by red. In what follows,
2X denotes the power set of a set X.

Theorem 2. Let R be a finite set, and let F ⊆ 2R × 2R

such that for all (E,U) ∈ F : (i) U ⊆ E and (ii) there is no
(E′, U ′) ∈ F −{(E,U)} with (E′, U ′) v (E,U). Then |F| ≤
W (|R|), where for |R| ≥ 2 equality is attained if and only if
F =

{
(E,U) ∈ 2R × 2R : U ⊆ E and |E|+ |U | = |R|

}
.

Despite the likely intractability, even with a fixed input
size, and despite the large potential output, we will i) de-
velop various efficient algorithms for the discovery of all min-
imal eUCs, and ii) define measures allowing us to effectively
rank the many eUCs we discover.

7. EUC-TREES AS DATA STRUCTURES
Facing big search and solution spaces, it is necessary to

provide a data structure that i) can represent a minimal
cover of the set of eUCs found, and ii) can be used to decide
whether some eUC is redundant. For this purpose, we will

2344

Figure 4: Example of an eUC-tree

introduce the new data structure of eUC-trees, which we will
employ in all our discovery algorithms. Our data structure
generalizes the concept of antecedent trees from [13], which
we recall here.

Given relation schema R with a total order of attributes,
an antecedent tree over R is a tree such that: 1) Every node
of the tree, except the root node, is an attribute of R, and
2) The children of a node are larger attributes.

In an antecedent tree, attribute sets are represented as
paths, and different paths of the tree represent different at-
tribute sets. An antecedent tree can effectively store a mini-
mal cover of a set of keys. Antecedent trees cannot represent
eUCs, since the latter involve both extensions E and UCs
U . We therefore propose a new data structure, called eUC-
trees. By separating the completeness requirements E from
the uniqueness requirements U for eUCs (E,U) represented
in eUC-trees, we can effectively prune the larger search space
whenever one requirement is not met. We say that an eUC-
path represents an eUC (E,U) when E is the set of e-nodes
of the path, and U is the set of u-nodes of the path.

Definition 1 (eUC-tree). Let R be a relation schema
with a total order on its attributes. An eUC-tree is a tree
with nodes that are either the root, or labeled as e(xtension)-
nodes or u(nique)-nodes and satisfy the following properties:
1. Every node, except the root, is an attribute of R;
2. All children of the root are e-nodes;
3. E-nodes can have e-node or u-node children;
4. E-node children are larger than their e-node parent;
5. U-nodes only have u-node children;
6. U-node children are larger than their u-node parent;
7. For each path of the tree from the root to a leaf, the set
of u-nodes is a subset of the set of e-nodes of the path.
8. The set of eUCs, represented by the different paths from
the root to the leaves of the tree, is non-redundant.

Example 1 (eUC-tree). Figure 4 shows an example
of an eUC-tree. The tree contains a set of non-redundant
eUCs including (ABC,A), (ABC,BC) and (AC,C) over the
relation schema {A,B,C}.

Algorithm 1 decides whether a given eUC (E,U) is redun-
dant with respect to a given eUC-tree. For this we need
to search for some path in the eUC-tree that represents an
eUC (E′, U ′) v (E,U). EUC-trees provide effective pruning
mechanisms to support this search. The algorithm recur-
sively traverses a chain of e-nodes and then u-nodes, starting
at the root (line 23). A root node without children repre-
sents the eUC (∅, ∅), which is subsumed by every other eUC
(line 5). Whenever an e-node is visited, the next step is to
recursively traverse the u-node children, and then the e-node

children. The algorithm only starts traversing u-nodes if the
value of a u-node is not null (line 6). The search for a path
can be limited to those with e-nodes (u-nodes, respectively)
contained in E (in U , respectively), see lines 19 and 15.

Algorithm 1

1: INPUT: Root node root of an eUC-tree, an eUC (E,U) over
R

2: OUTPUT: true if (E,U) is redundant, false otherwise
3: function isRedundant(eNode, uNode)
4: if eNode has no children then
5: return true
6: if uNode 6= null then
7: if uNode has no u-children then
8: return true
9: children← the set of all u-children of uNode

10: for child ∈ children ∩ U do
11: if isRedundant(eNode, child) then
12: return true
13: else
14: children← the set of all u-children of eNode
15: for child ∈ children ∩ U do
16: if isRedundant(eNode, child) then
17: return true
18: children← the set of all e-children of eNode
19: for child ∈ children ∩ E do
20: if isRedundant(child, uNode) then
21: return true
22: return false
23: return isRedundant(root, null) . Invoke recursion here

We will employ Algorithm 1 for the column-efficient, row-
efficient, and also the hybrid discovery algorithm of eUCs,
in order to check for redundancies efficiently.

8. COLUMN-EFFICIENT DISCOVERY
We first present a column-efficient, sometimes called row-

based, algorithm for the discovery of eUCs.
The first step of the algorithm is to scan all pairs of dis-

tinct rows in the given relation. For each pair, we record
the set E of columns on which both rows are total as well
as the subset U ⊆ E of columns on which both tuples have
matching values. More formally, let r be a relation over R
and U ⊆ E ⊆ R. The pair (E,U) is called an embedded
non-unique (NU) of r if there are distinct t1, t2 ∈ rE such
that i) for all A ∈ R−E, t1(A) =⊥ or t2(A) =⊥, and ii) for
all A ∈ E, t1(A) = t2(A) if and only if A ∈ U . A NU (E,U)
of r is maximal if there is no NU (E′, U ′) of r such that
(E,U) < (E′, U ′) holds. The set of maximal NUs (MNUs)
of r is denoted by Σ−1. The importance of Σ−1 for the dis-
covery of eUCs is embodied in the following result. It says
informally that an eUC holds in a relation if and only if the
eUC is not subsumed by any MNU.

Theorem 3. Let r be a relation over R. An eUC (E,U)
is satisfied by r if and only if there is no (E′, U ′) ∈ Σ−1 such
that (E,U) v (E′, U ′).

Theorem 3 forms the basis for the following iterative al-
gorithm. Here, the minimal eUCs are represented by an
eUC-tree from Section 7. If there is no maximal embed-
ded non-unique, then every eUC holds and Algorithm 2 will
simply return the root node, representing the minimal cover
{(∅, ∅)}. Otherwise, we scan Σ−1 one by one element, and
refine the current set of minimal eUCs that hold on r accord-
ingly. Indeed, whenever a currently minimal eUC (E,U) is

2345

subsumed by the MNU (M,N) under inspection, then the
algorithm removes (E,U) in line 7 (recursively removing the
leaf of the path until the current node is a non-leaf of some
other path), and adds the following eUCs: for all A ∈ R−M ,
(EA,U) is added, and for all A ∈M−N , (EA,UA) is added,
unless they contain some other minimal eUC.

Algorithm 2 Column-efficient algorithm

1: INPUT: The set Σ−1 of r
2: OUTPUT: The eUC-tree TΣ representing a minimal cover

Σ of those eUCs that hold on r
3: TΣ ← root . Start with just a root node
4: for each (M,N) ∈ Σ−1 do
5: Ω← {(E,U) v (M,N) | (E,U) is an eUC-path in TΣ}
6: for (E,U) ∈ Ω do
7: Remove eUC-path (E,U) from TΣ

8: for A ∈ R−M do
9: if (EA,U) non-redundant or TΣ = ∅ then

10: if TΣ = ∅ then
11: TΣ ← root

12: Insert (EA,U) as a new eUC-path into TΣ

13: for A ∈M −N do
14: if (EA,UA) non-redundant or TΣ = ∅ then
15: if TΣ = ∅ then
16: TΣ ← root

17: Insert (EA,UA) as a new eUC-path into TΣ

18: Return TΣ . If Σ−1 = ∅, then TΣ represents {(∅, ∅)}

Algorithm 2 works correctly, please see2.

Theorem 4. Given the set of maximal embedded non-
uniques of a relation, Algorithm 2 computes a minimal cover
of the set of eUCs that are satisfied by the relation.

9. ROW-EFFICIENT DISCOVERY
A row-efficient algorithm, sometimes called column-based,

creates its search space from a given relation schema and
verifies eUCs by traversing from the most general ones un-
til all potentially valid eUCs in the search space have been
examined. Attribute lattices have been widely used for row-
efficient approaches to the discovery of data dependencies
[17, 30]. As shown in Figure 1, level i of an attribute lat-
tice contains all attribute sets of cardinality i. In particu-
lar, attribute sets of lower levels have smaller cardinalities
and represent more general uniques. By traversing an at-
tribute lattice from lower to higher levels, an algorithm can
discover minimal uniques and prune redundant uniques in
the search space. In the case of eUC discovery, the search
space becomes significantly larger. For our row-efficient
algorithm, we propose to use an attribute lattice, named
u(nique)-lattice, to model the search space of the uniques
associated with an eUC. While traversing a u-lattice, the
algorithm employs another lattice, called e(xtension)-lattice
for the discovery of all minimal extensions that apply to a
given unique. We call traversals in the u-lattice u-traversals,
and traversals in the e-lattice e-traversals.

Our algorithms for u- and e-traversals are based on char-
acterizations that help us validate whether a given eUC holds
on the given relation. In [17], the authors proposed to use
the stripped partitions of a relation to validate FDs. We will
now define the concept of stripped partitions for the purpose
of validating eUCs.

2http://bit.ly/2gzDEYu

Let r be a relation over R and U ⊆ R. The U-equivalence
class of tuple t ∈ r is the set [t]U = {s ∈ rU | t[U] = s[U]}.
The stripped partition of a relation r over U is πU (r) = {[t]U |
t ∈ rU , |[t]U | ≥ 2}. The main use of stripped partitions in
u-traversals is embodied in the following result. It provides
an effective characterization to validate an eUC.

Proposition 1 (eUC validation).
An eUC(E,U) over R is satisfied by a given relation r over
R if and only if for all S ∈ πU (r), |rE ∩ S| ≤ 1.

However, the following result also shows how stripped par-
titions can be used in e-traversals. In effect, we can find an
extension E for a given unique U such that the eUC (E,U)
holds on r if and only if each stripped partition for U con-
tains at most one total tuple. This helps us characterize
effectively when we do not need to spend effort on finding
an extension for a unique.

Proposition 2 (Existence of extensions).
Let U ⊆ R, and r a relation over R. Then there is some
E ⊆ R with U ⊆ E such that r satisfies (E,U) if and only
if for all S ∈ πK(r), |rR ∩ S| ≤ 1.

Next, we describe the u-traversal (row-efficient algorithm)
as Algorithm 3, and the e-traversal as Algorithm 4.

Algorithm 3 Unique-traversal (row-efficient algorithm)

1: INPUT: A relation r over relation schema R
2: OUTPUT: The eUC-tree TΣ representing a minimal cover

Σ of those eUCs that hold on r
3: TΣ ← ∅
4: R′ ← {A ∈ R | ∃t ∈ r such that t(A) =⊥}
5: extns← eTraversal(R′, π∅(r), ∅) . π∅(r) = {r}
6: if |extns| > 0 then
7: TΣ ← root

8: for E ∈ extns do
9: insert (E, ∅) as a new eUC-path into TΣ

10: currentLevel← {A ∈ R | (A,A) non-redundant in TΣ}
11: while |currentLevel| > 0 do
12: uGenNextLevel← ∅
13: for U ∈ currentLevel do
14: if rU = ∅ then
15: insert (U,U) as a new eUC-path into TΣ

16: continue . Goto line 13
17: uGenNextLevel← uGenNextLevel ∪ {U}
18: if |rR ∩ S| ≤ 1 for all S ∈ πU (r) then
19: R′ ← {A | ∃S ∈ πU (r), t ∈ S(t(A) =⊥)}
20: extns← eTraversal(R′, πU (r), U)
21: for E ∈ extns do
22: if (E,U) non-redundant or TΣ = ∅ then
23: if TΣ = ∅ then
24: TΣ ← root

25: insert (E,U) as a new eUC-path into TΣ

26: nextLevel← ∅
27: for all X,Y ∈ uGenNextLevel where |XY | = |X|+ 1 do
28: if (XY,XY) non-redundant or TΣ = ∅ then
29: nextLevel← nextLevel ∪ {XY }
30: currentLevel← nextLevel
31: return TΣ

Algorithm 3 firstly computes the minimal extensions for
an associated UC that is empty. Subsequently, a level-wise
traversal on the u-lattice starts from the singleton attribute
sets (those on Level 1). On each level, those UCs that are
certain to have extensions will invoke an e-traversal as given
by Algorithm 4. UCs for which no extensions exist, and UCs

2346

with larger extensions than themselves generate UCs for the
next level. In a u-traversal, all discovered eUCs are stored in
an eUC tree for fast redundancy checking. In e-traversal, in-
stead of traversing an attribute lattice over an entire relation
schema, only those attributes are used on which some tuple
in some stripped partition holds a null marker. Finally, both
Algorithm 3 and 4 (line 27 and 15, respectively), employ
prefix blocks to generate candidates for the next level. Prefix
blocks were introduced in [4] and have been widely used for
the discovery of data dependencies [28, 34, 3]. The blocks
sort attribute sets in lexicographical order, and only form
the union of two sets that have the same prefix on the first
k attributes. This ensures that all attribute sets on the next
level are generated exactly once. Otherwise, candidate at-
tribute sets on the next level need to be generated by adding
one attribute at a time to attributes sets of the current level,
which will result in too many redundant new candidates.

The computation of stripped partitions for uniques affects
the scalability of Algorithm 3 on relations with a large num-
ber of rows. This is because it is inefficient to recompute
stripped partitions for the entire relation from scratch for
each unique. As another novelty, we propose Algorithm 5,
which computes stripped partitions iteratively. The algo-
rithm verifies whether tuples in the same current partition
have matching total values on the new attribute. In essence,
each occurring total value on the new attribute represents
a new partition. Consequently, tuples of the input stripped
partition are directly mapped into new partitions according
to their values on the new attribute, see line 5.

In Algorithm 3, extensions and their uniques are enumer-
ated by cardinalities. If a unique with itself as an extension
cannot form a valid eUC, the eUCs formed by supersets of
the unique may be valid and non-redundant. Such eUCs
are augmented by one attribute, exhausting all possibilities.
While examining a unique, all its extensions are also enu-
merated by cardinalities so that only non-redundant ones
are discovered. Similarly, if an extension cannot form a valid
eUC with a given unique, it is augmented by one attribute
and validated on the next level. At the end, all minimal
eUCs of a given relation have been computed.

Theorem 5. Algorithm 3 computes a minimal cover of
the set of eUCs that are satisfied by the given relation.

10. HYBRID DISCOVERY
So far, our algorithms were targeted at relations with a

large number of either columns or rows. Each algorithm
suffers from defects that require new strategies to correct.
The column-efficient algorithm has to compare all distinct
rows, resulting in a quadratic growth of the running time
in the number of rows. Moreover, redundant intermediate
results are produced frequently. The row-efficient algorithm
operates on a huge search space, which grows exponentially
in the number of columns. Since stripped partitions are cre-
ated at each level of the attribute lattice, the algorithm also
duplicates a lot of information, which creates problems with
the available memory. As a solution, we are now proposing
a hybrid algorithm that utilizes good aspects of the column-
efficient algorithm to compensate defects of the row-efficient
algorithm, and vice versa. This amalgamation of ideas al-
lows us to efficiently mine data sets that have a large number
of both columns and rows.

Algorithm 4 Extension-traversal

1: INPUT: Subset R′ ⊆ R, stripped partition πU (r), UC U
2: OUTPUT: The set E of all minimal extensions E such that

(E,U) holds in r
3: E ← ∅
4: currentLevel← R′

5: while |currentLevel| > 0 do
6: invalidExtns← ∅
7: newValidExtns← ∅
8: for E ∈ currentLevel do
9: if |rE ∩ S| ≤ 1 for all S ∈ πU (r) then

10: E ← E ∪ {EU}
11: newValidExtns← newValidExtns ∪ {E}
12: continue . Goto line 8
13: invalidExtns← invalidExtens ∪ {E}
14: nextLevel← ∅
15: for all E,F ∈ invalidExtns where |EF | = |E|+ 1 do
16: if ¬∃E′ ∈ newValidExtns where E′ ⊆ EF then
17: nextLevel← nextLevel ∪ {EF}
18: currentLevel← nextLevel
19: return E

Reducing search space. The column-efficient algorithm
can help reduce the number of attribute sets that both u-
and e-traversals consider on each level. Recall that NUs can
be used to identify invalid eUCs and to derive new satisfi-
able eUCs. In a u- or e-traversal, an invalid attribute set
is expanded by each remaining attribute. For example, if
E is not an extension for U , then one checks if r satisfies
(EA,U) for all A ∈ R−E. However, if an extension and its
associated UC are subsumed by some NU (M,N), then one
only needs to check if r satisfies (EA,U) for all A ∈ R−M .
In fact, the row-efficient algorithm views invalid eUC as an
NU, and then derives new eUCs. The use of NUs can thus
reduce the search space in the row-efficient algorithm.

Algorithm 5

1: INPUT: Stripped partition π of r over U , A ∈ R− U
2: OUTPUT: The stripped partition π′ of r over UA
3: π′ ← ∅
4: for S ∈ π do . Create map M from r[A] to tuple sets
5: for t ∈ S do
6: if t(A) 6=⊥ then
7: M [t(A)]←M [t(A)] ∪ {t}
8: for each set S in M do
9: if |S| > 1 then

10: π′ ← π′ ∪ {S}
11: return π′

Reducing intermediate eUCs. The row-efficient algo-
rithm can help the column-efficient algorithm reduce the
number of eUCs generated at intermediate steps. By The-
orem 3, the column-efficient algorithm cannot decide if an
eUC is valid until the last MNU has been processed. When
an eUC, such as (E,U), is subsumed by an NU, an extension
of the eUC, such as (EA,U), is either redundant or not re-
garding some validated eUC. If it is redundant, then all eUCs
that subsume (EA,U) are redundant, too. Hence, timely
validation of eUCs reduces the number of intermediate eUCs
generated by the column-efficient algorithm. In fact, one
can validate eUCs of an eUC-tree in a level-wise manner, as
levels of UCs and their extensions are computed by travers-
ing the eUC-tree. For this type of pruning, we define M1 and
M2 as mappings that assign an attribute set to some eUCs.

2347

Table 5: Run time (in seconds) of the three algorithms to discover eUCs from incomplete data
Data set #R #C #⊥ #IR #IC #eUC #UC Alg. 2 Alg. 3 Hyb

horse 300 28 1605 294 21 5040 31 1.046 ML 1.167
bridges 108 13 77 38 9 3 3 0.003 0.0039 0.002

hepatitis 155 20 167 75 15 446 102 0.082 17.991 0.154
breast-cancer 691 11 16 16 1 2 1 0.083 0.187 0.009

echocardiogram 132 13 132 71 12 45 27 0.006 0.018 0.006
plista 996 63 23317 996 32 2337 49 3.369 ML 4.177
flight 1000 109 51938 1000 69 26652 33672 49.367 ML 106.633

ncvoter 1000 19 2863 1000 5 147 69 0.346 1.376 0.067
uniprot 1000 223 179129 1000 212 3320220 664 4106.66 ML 2742.15

pm2.5china 262920 18 418580 157895 12 615 470 TL ML 77.365
diabetic 101766 30 192849 100723 7 20130 3632 TL TL 1239.25

uniprot512k 512000 30 3759296 512000 19 9480 100 TL TL 529.478
pdbx poly seq scheme 17305799 13 2035242 683410 5 15 9 TL TL 512.492

ncvoter8m 8060059 19 22368378 8060056 10 343 96 TL TL 7966.79

M1, called extension hints (EH), is defined by A ∈M1[E,U]
iff (EA,U) is subsumed by some valid eUC, and M2, called
unique hints (UH), is defined by A ∈M2[E,U] iff (EA,UA)
is subsumed by some valid eUC.
Hybridization. Our hybrid algorithm has the row-efficient
algorithm as its core, but employs the column-efficient algo-
rithm to update the search space when convenient. This re-
sults in hybrid e-traversal and hybrid u-traversal algorithms.

The hybrid e-traversal validates the extensions of a given
UC level by level. Before a new level is used, hybrid e-
traversal decides whether new NUs should update its search
space. The decision is controlled by the ratio of the num-
ber of invalid extensions over the number of all extensions
on a level. Similar to Algorithm 4, invalid extensions gen-
erate candidate extensions on the next level. Hence, the
more invalid extensions are found on the current level, the
more candidate extensions need to be validated on the next
level. If the ratio exceeds a certain threshold, meaning that
too many candidates would need to be validated, the search
space is updated by a set of NUs sampled from stripped
partitions. Otherwise, the algorithm only uses NUs com-
posed by invalid extensions to update the search space. For
example, if E is not an extension for U , (E,U) is an NU.
Eventually, e-traversal returns updates of the eUC-tree, EHs
and UHs to the u-traversal algorithm.

Unlike the u-traversal algorithm in Algorithm 3, hybrid
u-traversal does not only discover the extensions of a UC
level by level, but also employs NUs returned by hybrid e-
traversal to update the eUC-tree at the end of each iteration.
Note that hybrid e-traversal will update the entire eUC-tree,
so it is no longer necessary for hybrid u-traversal to explicitly
compute UCs for the next level.

Theorem 6. Our hybrid discovery algorithm Hyb com-
putes a minimal cover of the set of eUCs that are satisfied
by the given relation.

11. EXPERIMENTS
We have conducted experiments on real world data sets to

illustrate the performance and practicality of our algorithms.
Theses data sets have emerged as benchmark data sets for
testing the performance of discovery algorithms for classes
such as functional dependencies[29, 30]. We implemented
the proposed algorithms in Visual C++, and carried out
our experiments on an Intel Xeon W-2123, 3.6 GHz, 256

Table 6: Discovery time (s) on complete data
Data set #R #C #UC Alg. 2 Alg. 3 Hyb
abalone 4177 9 29 2.8 0.18 0.09
adult 32537 15 2 205.99 ML 0.64
chess 28056 7 1 116.27 1.25 0.21
iris 147 5 1 0.004 0.001 0.001

letter 18668 17 1 78.99 ML 0.55
nursery 12960 9 1 34.65 2.19 0.15
balance 625 5 1 0.06 0.005 0.004

fd-reduced 250000 30 3564 TL 110 313

Table 7: Discovery time (s) on incomplete data
Data set #UCC Alg. 2 Alg. 3 Hyb

horse 253 0.283 ML 0.128
bridges 5 0.003 0.047 0.003

hepatitis 348 0.06 19.318 0.161
breast-cancer 2 0.162 0.189 0.009

echocardiogram 72 0.008 0.026 0.011
plista 1 0.851 ML 0.308
flight 26652 7.8 ML 25.632

ncvoter 69 0.395 3.364 0.051
uniprot ? ML ML ML

pm2.5china 2 TM ML 12.997
diabetic 52 TL TL 22.3

uniprot512k 10 TL TL 25.719
pdbx poly seq scheme 5 TL TL 475.54

ncvoter8m 96 TL TL 950.93

GB, Windows 10 PC. Repeatability: A prototype system
and our data sets have been made available3.

Next, we present our findings. For the experiments we
set a time limit (TL) of 3 hours and a memory limit (ML)
of 64 GB. The benchmarks include complete and incom-
plete data sets. For each data set, we report the number of
rows (#R), columns (#C), missing values (#⊥), incomplete
rows (#IR), incomplete columns (#IC), unique constraints
(#UC), eUCs (#eUC), and the running time of each algo-
rithm for the discovery of the eUCs. Since UCs just represent
the special case of eUCs where the extension and associated
UC coincide, we have simply indicated their total number.
Over complete data sets, all three notions of UCCs, UCs,
and eUCs coincide. We point out that our algorithms are
designed for the discovery of eUCs from incomplete data,
which covers a much larger search space than the discovery
problem of UCCs or UCs.

3http://bit.ly/2gzDEYu

2348

Figure 5: Row scalability on uniprot [left] and col-
umn scalability on pm2.china [right]

Figure 6: Row scalability on uniprot [left] and col-
umn scalability on ncvoter [right]

11.1 Benchmarks
Tables 5 and 6 show our results on the incomplete and

complete data sets, respectively. Since most of the incom-
plete data sets only have a small number of rows, the column-
efficient algorithm (Alg. 2) performs better on some of them,
but has rarely a huge advantage over the hybrid algorithm
(Hyb). Note that neither Alg. 2 nor Alg. 3 can process the
data set pm2.5china [25] within the given time and mem-
ory limits. On the complete data sets, the hybrid algorithm
usually wins. However, the row-efficient algorithm achieves
typically a better running time on data sets with a large
number of rows. In conclusion, the hybrid algorithm per-
forms well overall but the column- and row-efficient algo-
rithms usually perform better on data sets with an extreme
number of columns or rows. This confirms what is expected
from the algorithmic design.

We can also discover UCCs by not choosing a symbol that
is interpreted as ⊥. Their total numbers (#UCC) and corre-
sponding running times of our algorithms for their discovery
from the incomplete data sets are shown in Table 7.

11.2 Scalability
To further analyze the row efficiency and column efficiency

of our proposed algorithms, we analyze the discovery on pro-
jections on the data set uniprot with an increasing number
of columns, and on subsets of the data set pm2.5china 14c
with an increasing number of rows. Figure 5 shows how
the run time of our algorithms scales when the number of
rows or columns increase, respectively. Although the row-
or column-efficient algorithm perform slightly better when
the number of columns or rows is small, the hybrid al-
gorithm eventually outperforms the other two algorithms
when the number of columns or rows grows larger. Again,
this meets the design expectations of all algorithms: Row-
/column-efficient algorithms win when there are few enough
columns/rows, respectively, while the hybrid algorithm wins
when column and row numbers are large enough.

Additionally, Figure 6 demonstrates memory usages of the
hybrid algorithm while discovering eUCs from data sets with
different number of rows and columns. The uniprot data sets
only contain 1000 rows. The memory consumption of the

Figure 7: Coverage of incomplete data sets

Figure 8: Relative scope of individual eUCs

hybrid algorithm slows down after most of the eUCs have
been discovered. For the ncvoter data sets, the memory
consumption of the hybrid algorithm increases faster than
the number of eUCs. However, the memory consumption is
almost linear to the number of rows in a data set and the
increasing rate is around 0.003 MB/row.

11.3 Coverage
The main target of eUCs is the resource-conscious identi-

fication of entities in incomplete data. The more rows in the
scope of an eUC, the more rows can be identified uniquely.
Different eUCs can be used to distinguish different rows.
Hence, we say a row in a data set r is covered if the row be-
longs to the scope of some eUC. The eUC coverage of a data
set is the ratio of rows that are covered. Figure 7 shows the
eUC coverage of all incomplete data sets. We distinguish be-
tween UCs and pure eUCs (where E−U is non-empty). For
a fixed U , UCs are of the form (∅, U) and have the minimum
extension E among all eUCs (E,U). Hence, their scope rU

has maximum cardinality. However, the point is to discover
for a given E which subsets U are sufficient for the iden-
tification of rows in rE . Indeed, the high number of eUCs
with a high coverage of pure eUCs is remarkable: There are
many different ways by which many rows can already be
distinguished by a proper subset of the extension in eUCs.
This is precisely the reason for studying eUCs.

11.4 Ranking
In view of the large potential output of our discovery al-

gorithms, we want to provide computational support for hu-
mans to judge the relevance of discovered constraints for a
given application. Here, we propose the relative scope and
the key length of eUCs as natural measures. The relative

2349

Figure 9: Rank eUCs by relative scope, then length

Figure 10: Rank eUCs by length, then relative scope

scope is defined as the cardinality of the eUC’s scope rela-
tive to the number of rows in the given data set. The relative
scopes are shown in Figure 8. Evidently, there are several
eUCs in each data set which can uniquely identify most of
the rows, except for horse. Indeed, the relative scope nat-
urally ranks eUCs higher when their scope is larger, since
more records can be identified uniquely. The key length of
an eUC (E,U) is defined as the number |U | of attributes in
U . Different definitions may benefit different applications,
but our definition is driven by the interest in fewer join at-
tributes as they largely determine query performance. How-
ever, eUCs of larger key length may also be interesting, for
example when the relative scope of eUCs with smaller key
length is perceived as insufficient. The latter motivates the
combination of our two measures: we can rank by relative
scope first and then by length, or vice versa. The two com-
binations are illustrated in Figure 9 and Figure 10 for two
of our larger benchmark data sets, respectively.

Note that the x-axis has been fixed here for our presenta-
tion, but in actual applications each of the measures is fully
flexible to allow customization for the exploration needs of
the humans who examine the eUCs. For instance, if too
many eUCs fall within the same interval of some measure,
then we can break up the interval into smaller fragments.

Table 8: eUCs selected by length and relative scope
E U relative scope

v, ethnic, street address, r, d 100.00%
v, ethnic, zip code, r, d 99.99%

v, first name, street address, r, d 99.99%
v, first name, zip code, r, d 99.98%
v, middle name, ethnic, r, d 93.23%

f v, r, d 39.75%
f v, ethnic, street address, d 39.75%
f v, last name, street address, d 39.75%

Table 9: JOIN improvement for eUC over UC
Read in % Time in % Cost in %

Min Avg Max Min Avg Max Min Avg Max
15.5 87.7 99.9 1.6 75.0 95.3 84.1 95.5 99.8

For example, Table 8 shows the top 8 eUCs of the ncvoter8m
data set that contain the attribute v(oter id), ranked by
their relative scopes and key lengths. The first eUCs show
that there exist voters who change their ethnicity, address,
first name, middle name, zip code or register date after their
information have been downloaded again. Due to the sixth
eUC, for voters who have supplied their phone numbers, the
information about their ethnicity, address and last name
only changes at the time they re-register.

11.5 Query and Update Performance
Table 9 shows the minimum, average, and maximum per-

formance improvements when comparing join queries based
on the eUCs (E,U) to join queries based on the correspond-
ing UCs E. Here, performance refers to reads, times, and
costs as per Table 2. For each of the 247 discovered pure eUC
we discovered on ncvoter8m, we project ncvoter8m into two
tables: both share all attributes in E but split attributes in
R−E evenly. The first query joins the two tables with inner
join attributes from U , and attributes in E are declared as
IS NOT NULL in the WHERE clause. The second query is the
same except for using inner join attributes from E. The first
query uses a clustered index for the eUC, while the second
query applies a standard index for the UC. The improve-
ments are significant.

For updates we compared transaction times for each dis-
covered pure eUC (E,U) from ncvoter8m and its corre-
sponding UC E. Both insert all records from ncvoter8m into
an empty table. The first table enforces the eUC (E,U) with
a non-clustered index, while the second table enforces the
corresponding UC E with a standard index. The minimum
performance improvement was -4.5%, the average 21.8%,
and the maximum 41.4%. Again, this quantifies the resource
advantage we gain by using eUCs.

12. CONCLUSION AND FUTURE WORK
Embedded uniqueness constraints identify E-complete re-

cords by a minimal subset U ⊆ E of columns. They can be
implemented by filtered indexes, and offer advantages over
their special case SQL UNIQUE in integrity management
and query optimization. Hence, their discovery in data sets
is important, but the solution size is large and the problem
likely to be intractable even when the input size is fixed.
Despite these challenges, we established the first column-
efficient, row-efficient, and hybrid algorithms for the dis-
covery of all eUCs that hold on a given relation. Our hy-
brid algorithm is particularly suited for data sets with large
numbers of columns and rows. For data sets with a large
number of either columns or rows, the hybrid algorithm is
outperformed by the column(row)-efficient algorithm. Our
experiments confirm that discovered eUCs can be ranked ef-
fectively according to their length or relative scope. This
provides guidance in determining which eUCs facilitate tar-
geted and fast access to data for applications. In the future,
we will investigate different hybrid and scalable approaches
to the discovery of eUCs. Other classes of embedded data
dependencies are appealing, foremost embedded FDs [41].

2350

13. REFERENCES
[1] Z. Abedjan, L. Golab, and F. Naumann. Profiling

relational data: a survey. VLDB J., 24(4):557–581,
2015.

[2] Z. Abedjan, L. Golab, F. Naumann, and
T. Papenbrock. Data Profiling. Synthesis Lectures on
Data Management. Morgan & Claypool Publishers,
2018.

[3] Z. Abedjan and F. Naumann. Advancing the discovery
of unique column combinations. In CIKM, pages
1565–1570. ACM, 2011.

[4] R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and
A. I. Verkamo. Fast discovery of association rules. In
Advances in Knowledge Discovery and Data Mining,
pages 307–328. AAAI/MIT Press, 1996.

[5] M. Alattar and A. Sali. Keys in relational databases
with nulls and bounded domains. In ADBIS, pages
33–50, 2019.

[6] N. Balamuralikrishna, Y. Jiang, H. Köhler, U. Leck,
S. Link, and H. Prade. Possibilistic keys. Fuzzy Sets
and Systems,
https://doi.org/10.1016/j.fss.2019.01.008, 2019.

[7] C. Beeri, M. Dowd, R. Fagin, and R. Statman. On the
structure of Armstrong relations for functional
dependencies. J. ACM, 31(1):30–46, 1984.

[8] T. Bläsius, T. Friedrich, and M. Schirneck. The
parameterized complexity of dependency detection in
relational databases. In LIPIcs-Leibniz International
Proceedings in Informatics, volume 63. Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017.

[9] P. Brown and S. Link. Probabilistic keys. IEEE Trans.
Knowl. Data Eng., 29(3):670–682, 2017.

[10] J. Demetrovics. On the number of candidate keys. Inf.
Process. Lett., 7(6):266–269, 1978.

[11] J. Demetrovics and G. O. H. Katona. A survey of
some combinatorial results concerning functional
dependencies in database relations. Ann. Math. Artif.
Intell., 7(1-4):63–82, 1993.

[12] W. Fan, F. Geerts, J. Li, and M. Xiong. Discovering
conditional functional dependencies. IEEE Trans.
Knowl. Data Eng., 23(5):683–698, 2011.

[13] P. A. Flach and I. Savnik. Database dependency
discovery: a machine learning approach. AI
communications, 12(3):139–160, 1999.

[14] C. Giannella and C. Wyss. Finding minimal keys in a
relation instance. citeseerx.ist.psu.edu/viewdoc/
summary?doi=10.1.1.41.7086, 1999.

[15] M. Hannula and S. Link. Automated reasoning about
key sets. In IJCAR, pages 47–63, 2018.

[16] A. Heise, J. Quiané-Ruiz, Z. Abedjan, A. Jentzsch,
and F. Naumann. Scalable discovery of unique column
combinations. PVLDB, 7(4):301–312, 2013.

[17] Y. Huhtala, J. Kärkkäinen, P. Porkka, and
H. Toivonen. TANE: an efficient algorithm for
discovering functional and approximate dependencies.
Comput. J, 42(2):100–111, 1999.

[18] H. Köhler, U. Leck, S. Link, and H. Prade. Logical
foundations of possibilistic keys. In JELIA, pages
181–195, 2014.

[19] H. Köhler, U. Leck, S. Link, and X. Zhou. Possible and
certain keys for SQL. VLDB J., 25(4):571–596, 2016.

[20] H. Köhler and S. Link. SQL schema design:
Foundations, normal forms, and normalization. In
SIGMOD, pages 267–279, 2016.

[21] H. Köhler and S. Link. SQL schema design:
Foundations, normal forms, and normalization. Inf.
Syst., 76:88–113, 2018.

[22] H. Köhler, S. Link, and X. Zhou. Possible and certain
SQL keys. PVLDB, 8(11):1118–1129, 2015.

[23] S. Kruse and F. Naumann. Efficient discovery of
approximate dependencies. PVLDB, 11(7):759–772,
2018.

[24] M. Levene and G. Loizou. A generalisation of entity
and referential integrity in relational databases. ITA,
35(2):113–127, 2001.

[25] X. Liang, S. Li, S. Zhang, H. Huang, and S. X. Chen.
Pm2. 5 data reliability, consistency, and air quality
assessment in five chinese cities. Journal of
Geophysical Research: Atmospheres, 121(17), 2016.

[26] S. Link. Old keys that open new doors. In FoIKS,
pages 3–13, 2018.

[27] S. Link and H. Prade. Relational database schema
design for uncertain data. Inf. Syst., 84:88–110, 2019.

[28] H. Mannila, H. Toivonen, and A. Inkeri Verkamo.
Discovery of frequent episodes in event sequences.
Data Min. Knowl. Discov., 1(3):259–289, 1997.

[29] T. Papenbrock, J. Ehrlich, J. Marten, T. Neubert,
J.-P. Rudolph, M. Schönberg, J. Zwiener, and
F. Naumann. Functional dependency discovery: An
experimental evaluation of seven algorithms. PVLDB,
8(10):1082–1093, 2015.

[30] T. Papenbrock and F. Naumann. A hybrid approach
to functional dependency discovery. In SIGMOD,
pages 821–833, 2016.

[31] T. Papenbrock and F. Naumann. Data-driven schema
normalization. In EDBT, pages 342–353, 2017.

[32] T. Papenbrock and F. Naumann. A hybrid approach
for efficient unique column combination discovery. In
BTW, pages 195–204, 2017.

[33] T. Roblot, M. Hannula, and S. Link. Probabilistic
cardinality constraints. VLDB J., 27(6):771–795, 2018.

[34] Y. Sismanis, P. Brown, P. J. Haas, and B. Reinwald.
GORDIAN: efficient and scalable discovery of
composite keys. In VLDB, pages 691–702, 2006.

[35] B. Thalheim. On semantic issues connected with keys
in relational databases permitting null values. J.
Inform. Proc. and Cyber., 25(1/2):11–20, 1989.

[36] B. Thalheim. Dependencies in relational databases.
Teubner, 1991.

[37] B. Thalheim. The number of keys in relational and
nested relational databases. Discrete Applied
Mathematics, 40(2):265–282, 1992.

[38] Z. Wei, U. Leck, and S. Link. Entity integrity,
referential integrity, and query optimization with
embedded uniqueness constraints. In ICDE, pages
1694–1697, 2019.

[39] Z. Wei and S. Link. DataProf: Semantic profiling for
iterative data cleansing and business rule acquisition.
In SIGMOD, pages 1793–1796, 2018.

[40] Z. Wei and S. Link. Discovery and ranking of
functional dependencies. In ICDE, pages 1526–1537,
2019.

2351

[41] Z. Wei and S. Link. Embedded functional
dependencies and data-completeness tailored database
design. PVLDB, 12(11):1458–1470, 2019.

[42] Z. Wei, S. Link, and J. Liu. Contextual keys. In ER,
pages 266–279, 2017.

2352

