
Enabling Data Science for the Majority

Aditya Parameswaran
University of California, Berkeley

adityagp@berkeley.edu

ABSTRACT
Despite great strides in the generation, collection, and processing of
data at scale, data science is still extremely inconvenient for the vast
majority of the population. The driving goal of our research, over
the past half decade, has been to make it easy for individuals and
teams—regardless of programming or analysis expertise—manage,
analyze, make sense of, and draw insights from large datasets. In
this article, we reflect on a comprehensive suite of tools that we’ve
been building to empower everyone to perform data science more
efficiently and effortlessly, including DATASPREAD, a scalable sp-
readsheet tool that combines the benefits of spreadsheets and data-
bases, and ZENVISAGE, a visual exploration tool that accelerates
the discovery of trends or patterns. Our tools have been developed
in collaboration with experts in various disciplines, including neu-
roscience, battery science, genomics, astrophysics, and ad analyt-
ics. We will discuss some of the key technical challenges under-
lying the development of these tools, and how we addressed them,
drawing from ideas in multiple disciplines. In the process, we will
outline a research agenda for tool development to empower every-
one to tap into the hidden potential in their datasets at scale.

PVLDB Reference Format:
Aditya Parameswaran. Enabling Data Science for the Majority. PVLDB,
12(12): 2309 - 2322, 2019.
DOI: https://doi.org/10.14778/3352063.3352148

1. INTRODUCTION
Based on popular media, one may be tempted to think that data

science—the science of extracting value from data—has been in-
credibly successful. In many ways, it has: it has led to some of
the most exciting emergent technologies of our time, ranging from
fraud detection and virtual assistants, to computer-assisted diagno-
sis and driverless cars. Unfortunately, the ground reality is not so
rosy; data science has had a disproportionate impact. On the one
hand, we have a small number of internet companies—we refer to
these as “the 1%” of data science—who have been able to success-
fully leverage data science, with the help of skilled programmers
(aka data scientists) and hardware resources. On the other hand,
we have the majority: the 99% of organizations who haven’t had

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 12, No. 12
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3352063.3352148

much success—spanning manufacturing, finance, journalism, gov-
ernment, natural resources, basic and social sciences, and medicine.

Unfortunately, academic research and popular media have both
been somewhat myopically focused on the 1%, while ignoring the
needs of the 99%, precipitating a crisis. Many industry experts have
written about the fact that many organizations have too much data
but aren’t able to make sense of it. A Forrester report in 2016 says
“organizations are drowning in data and starving for insight” [3].
Hal Varian, Google’s chief economist, says “an organization with
data but no one to analyze it cannot take advantage of it” [68]. A
McKinsey report argues that the number of data-savvy undergrad-
uate majors needs to quadruple soon, from 10% to 40%, to keep up
with demand [26]—nearly accounting for half of all majors. What
we’re experiencing is therefore a data science divide. What prob-
lems do the 99% face? Let’s consider a typical example.

EXAMPLE 1. Consider a journalist who is trying write an ar-
ticle on how weather in the USA has impacted flight delays. She
wants to investigate whether climate change has caused flight de-
lays to get worse. She goes to the US Bureau of Transportation
website [1] and downloads the dataset of all flights in the US since
1987. There are about 500M records in this dataset (Figure 1a).

Now, in order to analyze it, she tries loading this dataset in Mi-
crosoft Excel; she gets a dialog that her file is not loaded com-
pletely (Figure 1b). She tries the same operation in Google Sheets
and she gets a dialog that the file is too large (Figure 1c). So she
can persist with whatever she’s managed to load within Microsoft
Excel, or a sample within Google Sheets, but it’s not the entire
dataset—so any analysis she performs may not be accurate. So,
unfortunately, one can’t even open and explore large datasets in
tools that the 99% use.

Next, with whatever she’s managed to load within Microsoft Ex-
cel, say our journalist wants to see which cities have had increasing
weather delays over time. One way to do this is to plot the weather
delay by year for each city, and manually inspect it to see if the
“shape” of that line chart is roughly increasing. However, there
are over 300 cities in this dataset. If we estimate that it takes her 1
minute per city to select, generate, and examine this plot, it would
take her close to 5 hours overall. One option is to use a visualiza-
tion tool like Tableau [65] to generate small multiples [66] of all
of the visualizations at once—but she would still need to manually
inspect hundreds of visualizations, which would take her minutes to
do. If it takes her this long to answer one question on one dataset,
it’s going to severely limit the number of questions she can ask.

Overall, at every stage of analysis, from loading the data, to
more sophisticated analysis and visualization, we have issues.

The Origin of the Issues. Why did our journalist have so many
issues? There are two different, but interlinked explanations.

2309

(a)

(b)

(c)

Figure 1: Journalist wanting to study the impact of weather on flight delays (a) downloads the dataset from the Bureau of Trans-
portation website; (b) tries loading in Excel, receiving an error; (c) and receives a similar error from Google Sheets.

One explanation comes from the tools. In brief, there are no
tools that the journalist could meaningfully use. She could use
standard programming languages like Java, Python, or R, but she
would need to know how to code, and how to manage the scale of
data. Or, she could use relational databases, but she would need to
know SQL, and it would be hard for her to translate needs like “find
me cities where the weather delay is roughly increasing” to SQL
queries. And as we saw earlier, interactive analysis and BI tools like
Microsoft Excel, PowerBI (http://powerbi.microsoft.com), or
Tableau don’t scale too well, and make it hard to interrogate data,
since the onus is on the journalist to perform manual inspection
rather than be able to ask sophisticated queries.

The second explanation arises from the human in-the-loop. As
dataset sizes have grown drastically, what has not grown at a com-
parable rate is the human time available for analysis, the human
cognitive load capacities, and the programming skills to extract
value from data. For example, the number of programmers in the
US was projected to only increase 25% in a 5 year period end-
ing in 2018 [4], while the amount of data has scaled exponentially.
Unfortunately, these human-in-the-loop bottlenecks are not being
addressed in present tools.
Human-In-The-Loop Data Analytics Tools. In either case, the
solution is a new breed of data analytics tools that incorporates hu-
mans as a first-class citizen in data analysis, along with data. We,
along with others in the community (see hilda.io), have been call-
ing these types of tools human-in-the-loop data analysis tools, or
HILDA tools. These tools reduce human effort and time spent,
minimize complexity, and reduce the need for programming and
analysis skills. As one would expect, developing such tools is chal-
lenging. The first reason is that one needs to leverage ideas and
techniques from multiple disciplines: we need human-computer in-
teraction (HCI), since we need to take the human perspective into
account; we need data mining, since we need to go beyond SQL to
more human-centric needs; and databases, because scalability and
interactivity is still paramount. The second reason is that to develop
HILDA tools, we need to revisit all layers of the system stack,
from interfaces all the way to storage and indexing. Since the end-
user requirements have changed, the interfaces must be changed,
and these changes translate to changes down the stack, as we will
demonstrate in the rest of this article. The third and final reason is
that since we need to minimize human effort, complexity, and the
need for programming skills, the onus is instead on the tools to do
the heavy lifting. What was once manual will need to be performed
automatically by the tool.
Our Research Mission and Progress. Since 2013, our research
mission has been to bridge the data science divide with the goal of

enabling everyone to extract insights from large datasets, minimiz-
ing code, effort, complexity and time. And we’ve been doing so
by building HILDA tools that make simplify, accelerate, scale-up,
and manage data science activities.

Returning back to our journalist example, we’ve actually built
HILDA tools that address the two steps that she needed to per-
form. DATASPREAD is a scalable spreadsheet where she can load
and explore her entire flight dataset—with 100s of millions of rows,
interactively (Figure 2 left). ZENVISAGE is a scalable visual data
exploration tool where she can sketch a pattern on a canvas, and
instantly receive cities with increasing weather delays (Figure 2
right). We will describe these tools in Sections 2 and 3 respectively.

These two HILDA tools fit into a broader Maslow’s Hierarchy
for HILDA that we’ve been developing over the past five years
(Figure 3). Abraham Maslow, a psychologist, hypothesized that
human needs can be organized in the form of a hierarchy, with the
more basic needs, such as food, water, and shelter, at the bottom,
and the more advanced needs, such as fulfilling one’s true potential,
at the top [5]. Our Maslow’s hierarchy for HILDA is analogous
to Maslow’s original hierarchy of needs, but is instead organized
along the increasing sophistication of data analytics needs. At the
bottom, we have CATAMARAN, a automatic data extraction tool
that makes it possible to touch your data by extracting structure
from messy semi-structured log files [23]; then, we have DATA-
SPREAD, a scalable spreadsheet tool that allows you to browse and
explore one’s data, and make modifications [15]; then, we have
ZENVISAGE, a visual data exploration tool to view and play with
one’s data, and see interesting insights [61]; then, we have HELIX,
a human-in-the-loop machine learning tool that allows novices to
iterate on machine learning models easily to gain a deeper under-
standing [77]; and finally, ORPHEUSDB, a data versioning tool that
manages the data science process and facilitates collaboration [28].

These tools are largely field-independent and have been success-
fully applied in multiple fields. We’ve worked with neuroscientists,
geneticists, battery scientists, ad analysts, among others, in ensur-
ing that it meets their needs and use-cases.

In the rest of this article, we will describe our HILDA tools, the
issues they were meant to address, the technical challenges in solv-
ing the issues, as well as an overview of solution strategies. Since
this article is meant to be a retrospective on a body of work, it will
necessarily be biased and incomplete; we will provide pointers to
the original papers for a thorough treatment of related work. In-
stead, the related work discussed in this article will be work that
has directly impacted our thinking. Furthermore, due to space lim-
itations, we won’t be able to cover all of the tools that we’ve devel-
oped. We will focus on two tools, DATASPREAD and ZENVISAGE.

2310

http://powerbi.microsoft.com
hilda.io

A Teaser…

Goal: Understand the impact
of weather on flight delays

7

Step 1: Try loading
into a spreadsheet

7

A Teaser…

Goal: Understand the impact
of weather on flight delays

8

Step 1: Try loading
into a spreadsheet

8

Step 2: Find cities
with increasing
weather delays

Figure 2: Instead, the journalist can use DATASPREAD to explore her dataset, with over 150M rows (left), and can sketch an increasing
pattern on ZENVISAGE to find matches below for cities with increasing weather delays (right).

So
ph

ist
ic

at
io

n
of

 a
na

ly
sis

 n
ee

ds

Touch

Browse

Play

Understand

Collab.

Figure 3: A Maslow’s Hierarchy for HILDA.

2. ENABLING DATA MANIPULATION
If one has a goal of enabling data science for the majority, one

must start with spreadsheets. Spreadsheets are arguably the most
popular tool for managing and analyzing data on the planet, vastly
outstripping most relational databases. Recent estimates from Mi-
crosoft posit around 750M users of Microsoft Excel, around 10%
of the world’s population [46]. In contrast, the number of program-
mers is less than 20M [4].

2.1 Spreadsheet Issues and our Vision
To better understand the ways spreadsheets are used in prac-

tice, and the issues that people have when using spreadsheets, we
turned to a time-tested approach from HCI: user surveys [48, 73].
In our CHI’2018 paper [43], we analyzed a number of posts on the
Excel forum on Reddit—a popular Q&A and discussion website
(reddit.com). We found that spreadsheets are used by individuals
in literally every sector, ranging from professional ones, like stock
tracking, finance, inventory tracking, real estate and manufactur-
ing, scientific data tracking, accounting, and patient data recording,
as well as personal ones, like quantified self, fantasy football and
other sports tracking, as well as personal finance management.

2.1.1 Spreadsheet Popularity
Why are spreadsheets so popular? Work from the HCI commu-

nity has identified several reasons for why this may be the case.
Shneiderman attributed the popularity of spreadsheets to its direct
manipulation capabilities [60]. Nardi and Miller performed an eth-
nographic study of spreadsheet usage, and determined that the use-
fulness of spreadsheets stemmed from an intuitive “table-oriented

layout”, as well as “computation without having to write code” that
sits alongside the data [51]. A subsequent paper by the same au-
thors claimed that within organizations, spreadsheets are exceed-
ingly useful as a means to share knowledge and facilitate collabo-
rative work [50]. As the saying goes, in most business applications,
the “export to excel” button is the third-most commonly used but-
ton from the menu bar, after open and cancel [11].

2.1.2 Spreadsheet Issues
At the same time, spreadsheets are not scalable or interactive.

Spreadsheets impose limits on scalability: as we saw in our jour-
nalist example, one cannot even open a spreadsheet with more than
1 million rows in Excel or Google Sheets. Moreover, spreadsheets
are not interactive; most computation takes far too long to com-
plete. As an example, in Figure 4, we plot the time it takes to do
a VLOOKUP from one array to another on Microsoft Excel—a
standard operation in spreadsheets [7], essentially a join of two ar-
rays. On the x axis, we plot the size of the arrays, e.g., for size
20,000, there are 20,000 VLOOKUP formulae, each into an ar-
ray of size 20,000. (So, this would be a foreign-key join of two
tables with 20,000 rows each.) Even at the 40,000 mark, the time
taken is 1/3rd of a minute, well above what it would take to do
similar join in a relational database, which would take less than a
second (indicated by the blue arrow). This is despite the fact that
the spreadsheet data is entirely stored within main memory. It was
shocking to us that spreadsheets, despite decades of development,
suffer from such poor performance.

14

0
2
4
6
8

10
12
14
16
18
20

5 10 15 20 25 30 35 40

Ti
m
e
(S
ec

on
ds

)

Size (1000s of Cells)

Figure 4: VLOOKUP scales to minutes on 100s of thousands
of rows, while a regular join on disk-resident data would take
less than a second (indicated by the blue arrow).

2311

reddit.com

There were several instances of scalability and interactivity is-
sues that we discovered in our Reddit survey [43]. We’ve para-
phrased some examples below.

Like our journalist, several users had issues with organization
where they wanted to operate on larger datasets and had trouble
importing it into spreadsheets, or expressed concerns with the size
of their spreadsheet and wanted to shrink it down:
• “I am trying to import a file with 2 million rows, but the entire

file is not imported. Is there a way to get the entire data in?”
• “I inherited a slow spreadsheet of about 50MB in my new job,

and I can tell it’s going to crash. How do I shrink it down?”
Several users had issues in spreadsheet manipulation, when adding
or deleting rows and columns:
• “When my large spreadsheet started acting up, I tried to delete

a few rows, and got an error message ‘Excel cannot complete
this task with available resources.’”

• “Can someone help me understand how a 150MB Excel file can
take forever to delete rows/columns, even with 4GB RAM?”

A number of users had trouble with spreadsheet computation:
• “I use a spreadsheet to track my entire life. I cull data every

year to keep it manageable. Excel is locking up during basic
calculations.”

• “I am not a power user: I use formulae on a 500k row, 20 col.
spreadsheet. Why does the beach ball1 come up so often?”

Overall, as described, spreadsheet users had issues with organizing
data, manipulating data, and doing computation atop data.

So what answers did other users on the Reddit forum have for
these concerns? The vast majority recommended using a database
(45%)—one that should bring our community great joy! Others
recommended turning off recalculations (15%); or storing in a com-
pressed format (15%), among other solutions [43]. Nearly ev-
ery solution apart from that of using databases was a temporary
workaround, as opposed to a permanent solution.

2.1.3 DATASPREAD
While we can rejoice given that databases were suggested as an

alternative to spreadsheets, they are not easy to use or flexible. In-
deed, as the author himself can attest, while teaching a large under-
graduate databases class, we use spreadsheets for managing grades,
despite professing our undying love for databases. Moreover, our
PhD students often use spreadsheets to manage experimental data,
when coincidentally developing and experimenting on databases.

So, our guiding question was: can we build a tool that combines
the ease of use and flexibility of spreadsheets, with the scalabil-
ity and interactivity of databases? This was the goal of our tool,
DATASPREAD. We wanted DATASPREAD to have a spreadsheet-
like frontend and a relational database backend [12,15]. This solves
dual problems of providing a scalable and interactive backend for
spreadsheets, and an intuitive and flexible frontend for databases.

Unfortunately, building DATASPREAD is extremely challenging,
given the fundamental differences between spreadsheets and data-
bases—see Figure 5. As an example, databases opt for a rigid,
unordered structure, while spreadsheets support an ad-hoc, flexible
structure, with order as a first-class citizen.

In the next three sections, we will describe how we addressed
these challenges in supporting scalable spreadsheet organization,
manipulation, and computation.

2.2 Spreadsheet Organization
1Beach balls are spinning wheel icons that appear when MacOS
computers hang.

17

Aspect Databases Spreadsheets

I. Organization structure rigid flexible

presentation unordered,
uniform

ordered,
ad-hoc

II. Manipulation modality relation at a time cells, using position

granularity predicate-based direct edits + add/delete
row/columns

III. Computation modality external in-situ, with data

granularity queries on relations formulae on cells

Figure 5: Comparison between Spreadsheets and Databases.

The first and most fundamental question is: how do we orga-
nize or represent large volumes of spreadsheet data in a backend
database? This is hugely important since it impacts the scalability
as well as interactivity of the spreadsheet, as we will show.

Spreadsheets vary a lot in terms of structure, from very dense
(Figure 6 left) to very sparse (Figure 6 right). If we had a dense
spreadsheet, it is straightforward to represent it in a relational data-
base, as a table with attributes: [row #, column A, column B, . . .].
However, this representation is wasteful for a sparse spreadsheet
since our table will be filled in largely with null values and pos-
sibly unnecessary columns. If we had a sparse spreadsheet, it is
straightforward to represent all of the filled-in cells in a relational
database as triples with attributes [row #, column #, value]—this is
essentially a key-value type representation with the row # and col-
umn # capturing the positional key. However, this representation is
wasteful for a dense spreadsheet, since we will need to add a new
tuple for each filled-in cell (with its associated overhead), and store
the row and column number for each cell.

In practice, even within a single spreadsheet, the density can vary
widely. Nardi and Miller reported that “spreadsheets are visually
modularized to show their sub-parts: users segment using criteria
such as years, months, regions, companies, and departments” [51].
So there are often many tabular regions within a spreadsheet, em-
bedded along with formulae.

Our approach, therefore, is to opt for a hybrid representation,
where we combine the benefits of tables and triples (i.e., the dense
and sparse approaches outlined above). We carve out dense ar-
eas and store each one as a separate table, while the remaining
sparse areas are represented in a single triples table. Thus, the hy-
brid representation relies on a decomposition or partitioning of the
spreadsheet into regions. Figure 7 displays one such decomposi-
tion, where the spreadsheet is decomposed into red and blue areas;
each red area is stored as a separate table, while the blue areas
are stored together in a single triples table. Unfortunately, we de-
termined that identifying this optimal decomposition is NP-HARD
via a reduction from the minimum edge-length partitioning of rec-
tilinear polygons [13]. So, instead, we opt for a restricted space
of decompositions called recursive decompositions that are formed
by recursively decomposing areas of the spreadsheet (an analogy
is to use scissors to cut a sheet of paper with vertical or horizon-
tal cuts that cut the remaining region entirely). It turns out that
identifying the best recursive decomposition is in PTIME via dy-
namic programming [13]. While this is promising, the complexity
is still O(n5). We employ two tricks to bring the effective com-
plexity down. First, we collapse down rows and columns that have
the same signature of filled cells to give a smaller representation
that uses weighted row/columns, reducing the effective n for the
algorithm. Second, we can apply greedy decomposition instead of
dynamic programming. Both these tricks give us a solution that is
close to the overall optimal decomposition [13]. Our results show
that the recursive-decomposition-based hybrid representation gives
us a 2-3× reduction in storage or time to perform formula compu-
tation relative to a single table or triples-only representation [13].

Moreover, we get another benefit for free: representing the data
in a backend database allows us to scroll to arbitrary locations on

2312

(a) (b)

Figure 6: Spreadsheets can vary widely in density from very dense (right) to very sparse (left).

25

Figure 7: A hybrid decomposition example: the regions in red
can be represented as tables, while the regions in blue can be
represented as triples.

arbitrarily large datasets instantaneously (Figure 2 left). There are
two aspects that make this feasible. First, paging of data from
disk allows us to retrieve pages (rows) from a specific location on-
demand within the spreadsheet. Disk speeds have progressed to
the point where one can do a random access to a specific location
within interactive time-scales. Second, a positional index structure
allows us to identify the page(s) on disk that correspond to a spe-
cific row. We describe this index structure next.

2.3 Spreadsheet Manipulation
The next question that we need to tackle is how do we support ef-

ficient positional data manipulation? Spreadsheets operate on data
that is ordered, and adding (deleting) rows (columns) at a specific
location is a fundamental operation that happens often on spread-
sheets. Furthermore, formulae refer to data by position, so it is
crucial to ensure that formula accesses based on position stay inter-
active, even at scale and while edits are made to data or formulae.

A B C

1 Ali

2 Beth

… … … …

100000 Zia

A B C

1 Ali

2 Amit

2 3 Beth

… … … …

100000 100001 Zia

traditional approach

A B C

100 Ali

200 Beth

… … … …

10000000 Zia

A B C

100 Ali

101 Amit

200 Beth

… … … …

10000000 Zia

monotonic approach

Figure 8: Two standard approaches for recording position.

Unfortunately, the traditional approach to recording position is
problematic. Say we simply record the position as a separate at-
tribute in the table approach from the previous section. (Similar
considerations apply even for the triples or hybrid representation.)
Adding a row early, e.g., adding Amit between Ali and Beth in Fig-
ure 8 top, can cause all subsequent row numbers to be incremented,
thus turning an O(1) operation to an O(n) one, where nearly every
single row of the table is edited. We call this a cascading update.
This cascading update is the reason we had spreadsheet users com-
plaining about issues such as “why does it take forever to delete
rows?” (Section 2.1.2). On the other hand, locating the kth record
is easy via a traditional index (such as a B+tree) on the row number.

Another approach is what we refer to as the monotonic approach.
We don’t store the row numbers directly, but instead store mono-
tonically increasing proxies. For example, instead of storing 1, 2,
. . ., we store 100, 200, . . ., where there is a one-to-one mapping
between the proxies and the original row numbers based on or-
dering, as shown in Figure 8 bottom. Here, we can easily add a
new row between row 1 and row 2—in fact, we can effectively
add up to 99 rows—with no cascading updates. However, locating
the kth record is not so easy with this approach, requiring a sort
of the monotonically increasing proxies, effectively an O(n logn)
operation—this is because the mapping between row numbers and
the proxies are lost. (Note that a traditional B+tree will not work
in this case, since it will locate data by the value of the proxy as
opposed to the actual row number, the latter of which is needed.)

A B C

100 Ali

101 Amit

200 Beth

… … … …

10000000 Zia

3 4 6

1 1 1 1 1 1 1

5

2

Figure 9: The counted approach.

2313

So, in DATASPREAD, we adopt a hybrid approach [13]. We
represent data as in the monotonic approach, with monotonically
increasing proxies, but to also efficiently locate data by position,
we employ a so-called counted B+Tree—a classical index struc-
ture that has never been used (to our knowledge) in a systems con-
text [2]. This index structure stores the number of records for each
sub-tree. In the example displayed, to retrieve the 5th record, we
would walk down the second path (since 3 < 5 ≤ (3+4)), follow-
ing which we would walk down the second path (since 1 < 2 ≤
(1+1)), and thereby locate the desired record. This approach offers
a lookup by location in O(logn), with additions and deletions also
in O(logn), all by traversing the tree and updating the counts along
the path. As expected, the hybrid approach does extremely well in
practice, matching the performance of the monotonic approach for
updates, and the performance of the traditional approach for locat-
ing data by position [13].

2.4 Spreadsheet Computation
The third question we tackled for DATASPREAD was how do we

support efficient in-situ formula computation? Formulae are ex-
tensively embedded within spreadsheets; as we described in Sec-
tion 2.1.1, one of the chief reasons why spreadsheets are so popular
is the fact that they support computation that sits alongside data.

Unfortunately, complex and/or large spreadsheets often become
very sluggish, sometimes hanging for minutes when a change is
made. This is because traditional spreadsheets opt for a synchronous
computation model, wherein consistency is emphasized. That is,
as soon as a change is made, all of the dependent cells are com-
puted, and then and only then is control returned to the user. Thus,
the spreadsheet opts to always show a consistent view to the user.
However, the spreadsheet remains entirely inaccessible when the
computation is being performed. If we consider the cells that are
unavailable or inaccessible to the user over time as in Figure 10,
then, with the synchronous model (red curve), as soon as a change
is made, the entire sheet is unavailable until the computation is
complete; in the figure, all 10,000 spreadsheet cells are unavail-
able, until the computation is complete at the 5 second mark.

Recognizing the loss of interactivity, spreadsheets also offer an
alternative—a manual computation mode, wherein no formulae are
computed until the user clicks the “compute now” button. Here, the
spreadsheet opts for interactivity, at the cost of consistency. (How-
ever, when the user clicks the “compute now” button, the spread-
sheet is once again inaccessible during computation.) Thus, the two
options provided by present-day spreadsheets either opt for inter-
activity at the cost of consistency, or vice versa.

Instead, we opt for an asynchronous computation model, aim-
ing to allow for interactivity as well as consistency. When changes
are made to the spreadsheet, instead of the spreadsheet hanging
entirely, we instead blur out the cells that are dependent on the
change, replacing them with a progress bar, and computing them
asynchronously in the background. The rest of the cells that are
not dependent on the change are returned to the user, allowing the
user to continue to explore the spreadsheet. We show an example
in Figure 11, where formulae for average departure and arrival de-
lays are being computed for the journalist in Example 1—displayed
as progress bars, while the journalist can continue to explore the
rest of the spreadsheet. Thus there is no perceived interactivity
loss, except for the cells that are anyway dependent on the change
and therefore have to be recomputed. If we consider Figure 10,
the asynchronous computation model (blue curve) has two phases,
one, wherein the cells that are dependent on the computation are
identified and marked as such, following which control is returned
to the user (labeled as 1), and two, wherein computation is sched-

1

2

Async
Returns

Control to
User

User
Changes

a Cell

Computation
Complete

Figure 10: Chart of unavailability over time for synchronous
and asynchronous schemes. For synchronous, the entire
spreadsheet stays unavailable until computation is complete.
For asynchronous, control of most of the sheet, except the cells
dependent on the change, is returned to the user, with compu-
tation happening in the background.

uled for the cells that are to be recomputed (labeled as 2). If we
measure the benefit of the asynchronous computation model rela-
tive to the synchronous one—we can do so by computing the area
under the curve of unavailable cells over time, a metric we term
unavailability—then the asynchronous computation model has a
much lower unavailability. To reduce the total unavailability, we
must try to limit the area under the curve of unavailable cells for
each of the two phases. Unfortunately, doing so for either phase is
challenging, as we will describe next.

Figure 11: Asynchronous Computation Example.
Consider the first phase, of identifying dependent cells, replac-

ing them with a progress bar, and returning control to the user.
Here, identifying dependents, implemented naively, could involve
traversing the graph of dependencies, which could be O(n) in the
worst case, negating the benefits of asynchronous computation. One
approach that doesn’t have the same limitation is to precompute the
dependents of each cell, and store that instead for easy access. Un-
fortunately, even the number of dependents of a cell can be O(n).
What we opt to do in DATASPREAD is to instead compress the de-
pendents of a cell using ideas similar to Section 2.2. That is, we try
to represent all the dependents of a cell using rectangular regions,
described only by the coordinates of the top left and bottom right
corners. This can lead to a much more compact representation of a
collection of cells as rectangles. At the same time, there could be
false positives (cells that are deemed to be dependent but actually
are not)—this is fine because false positives only lead to redundant
computation, and do not impact correctness. We cannot have false
negatives, however, as that would lead to loss of consistency. Iden-
tifying the optimal grouping of cells into rectangles is NP-HARD;
however, greedy grouping strategies work quite well [14].

2314

The second phase involves computing dependent cells. There are
many orders in which these dependent cells can be computed, pri-
oritizing for what is easiest to compute, what other dependent cells
are dependent on, or what is currently in the user window, among
other objectives. Unfortunately, finding the best computation order
is NP-HARD, and even examining all of the cells to find a “good”
computation order can negate the benefits of asynchronous compu-
tation [14]. Instead, we opt for an simple “on-the-fly” scheduling
approach where we pick a few cells at a time, and compute the low-
est cost one among them, which does surprisingly well in practice.

Overall, these two approaches, when combined, lead to a sub-
stantial reduction in unavailability, leading to a much more seam-
less and interactive experience for the user, while not sacrificing
consistency.

2.5 Next Steps and Selected Related Work
While we’ve made substantial progress in making it easy to or-

ganize, manipulate, and perform computation within large spread-
sheets that go beyond main-memory limitations, we’re still far from
our original goal of combining spreadsheets and databases to pro-
vide intuitive and flexible exploration, while not sacrificing interac-
tivity and scalability. There are several directions we are exploring
currently, including:
Spreadsheet Querying. To have DATASPREAD function as a front-
end for databases, we need to be able to support more expressive
queries from the frontend. DATASPREAD can now support rela-
tional algebra and SQL queries in conjunction with formulae, all
within the frontend [15]. We can also import tables from the back-
end database and display it on the sheet [12], with the table and the
spreadsheet view kept in sync. This required addressing challenges
in ensuring that the relational query results do not spill-over and
overwrite other data on the spreadsheet, among others.
Spreadsheet Navigation. When dealing with a very large spread-
sheet, say, one with a billion rows, even scrolling to get to a desired
location can be rather cumbersome. In fact, getting a high-level
view of the spreadsheet, so that one can determine where to scroll
is itself challenging. We’ve been developing NOAH, a hierarchical
spreadsheet exploration interface that allows one to “zoom-in” and
“zoom-out” of the spreadsheet with a few mouse clicks [55].
Spreadsheet Versioning. One of the most problematic aspects
about spreadsheets is the preponderance of errors; this fact has been
extensively written about and documented [52]. We’re develop-
ing techniques to make it easy to maintain spreadsheet history and
be able to identify the source of spreadsheet errors, leveraging our
work on ORPHEUSDB [28].

During our development of DATASPREAD so far, we were inspired
by work by Liu and Jagadish on developing a spreadsheet alge-
bra [41], as well as work from the same group on database us-
ability [18, 30]. ABC, a project from the 90’s from UC Berke-
ley [56, 57, 58], was a huge influence in DATASPREAD develop-
ment, and shared a similar vision. Many others have been explor-
ing ways to increase the expressiveness of spreadsheets [11, 67],
and making it easier to express queries [8, 29, 49]—a space that
is closely related to DATASPREAD. We’ve also been excited to
see progress from industry on similar projects, including Airtable
(airtable.com) and Hillview [17].

3. ENABLING DATA VISUALIZATION
Once we have the ability to examine a dataset in a tool like

DATASPREAD or Microsoft Excel, often the next step is visual data
exploration. While spreadsheet tools certainly support visualiza-
tion, visual analytics tools like Tableau [65] treat visualization as

more of a first-class citizen. During visual data exploration using
a tool like Tableau or Excel, the user often starts with some de-
sired pattern or hypothesis. Like for our journalist, she wanted to
find cities with increasing weather delays over time. And the cur-
rent approach in such a tool is to generate a specific visualization,
for some city, see if it matches the desired pattern of increasing-
ness, and if it doesn’t, then repeat until she finds those where the
weather delays are increasing. Manual generation and examination
of a collection of visualizations to test for patterns, hypotheses, or
insights in this manner is extremely laborious and time-consuming.
There are two reasons for this: first, that there are too many visual-
izations to examine—e.g., in our weather example, there were over
300 visualizations, and second, that on very large datasets, even the
generation of a single visualization can take a very long time.

3.1 Visualization Issues and Our Vision
Pattern search of the form described previously appears in vir-

tually every discipline. Here are three groups of researchers with
similar issues that we have been working closely with:
Genomics researchers at the KnowEnG genomics center at UIUC
and Mayo Clinic [64] often need to find gene properties that ex-
plain the results of gene expression experiments, visualized as a
two-dimensional scatterplot. Some of the genes are positively ex-
pressed, while the others are negatively expressed. The goal is
to find scatterplots (where the X and Y axes are gene properties)
where the positive genes are well-separated from the negative ones.
To do this, they try a range of properties as X and Y axes, until they
find ones where the separation holds.
Astronomers at the Dark Energy Survey [21] want to find astro-
nomical objects with specific shapes for their light curves (a line
chart of light intensity over time). One such shape that they are
particularly interested in are astronomical objects that have a sharp
dip and then slow rise in their light curve. This is indicative of
a star with a planet surrounding it, reminiscent of the sun-earth
relationship—and may be valuable for future human colonization
once we have thoroughly decimated our planet. At present, the as-
tronomers spend a vast amount of time going through light curves
of 1000s of astronomical objects manually until they find those that
match the specification.
Battery Scientists at Carnegie Mellon University aiming to de-
velop lightweight batteries for electric vehicles and aircraft [71] can
now easily generate vast sums of simulation data on solvent physi-
cal properties capturing aspects such as potential, energy, heat, and
stability. Often they are looking for solvent classes that have spe-
cific relationships between two physical variables—but their cur-
rent approach is to ignore the data entirely (“let’s not bother; it is
too painful to explore!”) and perform trial-and-error-based physi-
cal testing. This results in wasted costs and resources, all because
the data is too cumbersome to explore.

In all three cases, there is a need to find specific visual patterns to
test hypotheses and derive insights, but it is too cumbersome and
time-consuming to do so. They could write code to do this, and
some of them do (e.g., the astronomers do write code in Python for
data preprocessing), but it is no less cumbersome for them.

So the question that we sought to answer was: instead of comb-
ing through these visualizations manually, can we develop systems
and techniques that accept as input desired visual patterns, and can
accelerate the search for these patterns? This is the goal of our vi-
sual data exploration system, ZENVISAGE. Our first step towards
that goal was to simply accelerate the generation of a specific vi-
sualization (Section 3.2), followed by searching across a collection
of visualizations (Section 3.3).

2315

airtable.com

3.2 Visualization Generation
The first question we addressed is how do we accelerate the gen-

eration of a single visualization? Fortunately, most visualizations
can be expressed as a SQL query of the following form:

SELECT X1, X2, . . . , F1(Y1), F2(Y2), . . .
FROM R WHERE <PRED>
GROUP BY X1, X2, . . .

For example, the line chart of weather delays by time would have a
single X1 corresponding to month, and a single F(Y1) correspond-
ing to average(weather_delay). Multiple Xs or Ys correspond to
multiple dimensions being displayed on the same visualization: for
example, a heatmap may have X1 and X2 corresponding to the
vertical and horizontal axes, while F1(Y1) will correspond to the
intensity, possibly depicted using color hues. We focus on a single
relation for simplicity; most visual analytics tools assume a denor-
malized setup as well.

Now that we’ve mapped a visualization to a SQL query, we can
apply standard tricks to speed up SQL query execution. For exam-
ple, we can leverage materialization, but the space of visualizations
that can be generated over the course of ad-hoc data exploration is
far too large for materialization to be applicable—when one con-
siders arbitrary combinations of predicates to select the data that
is then visualized. This is the same “curse of dimensionality” that
pops up when trying to materialize data cubes beyond a small num-
ber of dimensions [39].

Another approach is to leverage approximation—generate the
visualization such that it “looks” like the visualization computed
on the entire dataset, while in fact it is computed on a sample. If
the approximate visualization “looks” like the actual visualization,
then users can make decisions using the approximate one without
waiting for the visualization on the entire dataset to be generated.
Usually, these decisions rely on the “big picture”, and inaccurate
values are often not a barrier to decision-making.

This problem is similar to canonical approximate query process-
ing (AQP) [24], except that there are two key differences. First, the
objectives are often not the same: for example, in AQP, the error on
each aggregate is the chief measure of interest, while here, even if
we get individual aggregates wrong, it can still lead to a useful vi-
sualization. In particular, if users are interested in the overall trend,
even if individual aggregates are wrong, when compared with other
aggregates, if it still leads to a similar looking visualization (in that
the bars or trend is similar, or the color hue is similar), this would
be adequate to draw correct conclusions. Thus, there are perceptual
aspects that can inform our approximation schemes. Second, since
visual data exploration is an ad-hoc process, it is impossible to ex-
pect a workload that we can use to generate precomputed samples
up front, unlike traditional sampling engines [9, 10].

We have addressed this problem from two different perspectives.
These two perspectives take advantage of an online sampling (as
opposed to offline, like traditional AQP) engine that we developed,
called NEEDLETAIL; NEEDLETAIL uses compressed bitmaps to
select tuples to read on-the-fly that satisfy arbitrary combinations
of predicates appearing during ad-hoc visual data exploration [34].

3.2.1 Accelerating Comparisons
When making decisions and drawing insights, users care more

about the “big picture”—the trends and comparisons—as opposed
to actual values. For example, consider generating a bar chart of
average delay by airline on flight dataset, like our journalist—see
Figure 12 left. The fact that the average delay of UA is greater
than that of SW is usually more important than getting the exact
average delay of UA. So, the question is: how can we use online

sampling techniques to guarantee the correct pairwise ordering of
bars within a bar chart? Ordering the bars correctly allows users
to draw correct comparisons across them.

Figure 12: Bar chart visualization of the average delay by air-
line on the entire dataset (left); with confidence intervals after
some samples have been taken (right).

Say we had already taken some samples leading to the bars (with
confidence intervals) as shown in Figure 12 right. Should we sam-
ple more from UA (which has a larger confidence interval, but this
interval overlaps less with others), or from AA (which has a smaller
confidence interval, but this interval overlaps more with others)?

Turns out the best approach is to, at each round, continue taking
samples from all groups or bars (i.e., airlines) that are still active;
an active group is one whose confidence interval still overlaps with
others. In Figure 12 right, all but UA and US’s confidence inter-
vals are still active. This simple sampling algorithm is guaranteed
to be optimal in that it takes no more samples than is necessary
in the worst case [33]. A further improvement to this algorithm
only refines confidence intervals to the point where they are visu-
ally perceptible—beyond which users cannot tell the difference on
the screen. The algorithm is also several orders of magnitude faster
on real-world datasets compared to other algorithms that provide
comparable output guarantees [33].

3.2.2 Accelerating Termination
The previous approach provides a promising approach for seeing

the visualization early by changing the output guarantee. However,
when the dataset is very large, users often want to see the visual-
ization as it is being generated, as opposed to waiting for a long
time. So the question is how can we use online sampling to fa-
cilitate the generation of visualizations that incrementally improve
over time? One approach is adopt online aggregation [25] and dis-
play the visualization as samples are drawn, as in Figure 13—as
samples are drawn over time (from left to right), the trend line (top)
or heatmap (bottom) varies rapidly and then eventually stabilizes.
Unfortunately, at intermediate steps, it is hard to draw conclusions
with confidence.

Figure 13: Online aggregation approach: The visualization
varies rapidly and then eventually stabilizes.

Instead, we target the generation of visualizations incrementally,
adding in the most important features within the visualization be-
fore the less important ones [54]. For example, for a trend line
(Figure 14 top), we would first approximate it with a flat line, then
split that into two, and so on and so forth—at the kth iteration, we
would show the user the best k-segment approximation of the trend
line. Similarly, for a heatmap, we would repeatedly divide a rectan-
gle within the heatmap into four quadrants based on which division

2316

Figure 14: Incremental approach: One refinement is shown to
the user at each round, prioritizing the important features of
the visualization over others

would be most informative. For example, at time t7 in Figure 14
bottom, we can already tell that the areas with high intensity are at
the top right and bottom left corners, as well as the middle areas2.

Given the new interface, one natural question is whether users
are able to interpret and make use of these approximations. Via
user studies, we found that our incremental approach led to double
the decision-making accuracy of a standard online-aggregation-like
scheme that displays all of the features of the visualization as they
are being generated (as in Figure 13) [54]. This was surprising to
us, since the incremental approach knowingly obscures the freshest
estimates of each aggregate, in favor of returning refinements that
are guaranteed to be the best possible one at that point. We also
showed that the incremental approach is able to generate visual-
izations that preserve all of the important features often 50× faster
than other approaches [54].

3.3 Visualization Search
Freshly armed with techniques to accelerate the generation of

visualizations, we now return to the original question of how do
we accelerate the search of visual patterns across a collection? In
developing ZENVISAGE, our solution for this question, there were
three aspects we had to cover. First, expressiveness: does the tool
generalize to the spectrum of use-cases and expertise? Second, us-
ability: is the the tool usable and useful? Third, scalability: does it
scale to large datasets? We start by discussing expressiveness.

3.3.1 Expressiveness
Our starting point for ZENVISAGE was a sketching interface

to search for patterns. Our interface looks like Figure 15, and
was developed via an elaborate process of user-centered design
with the participation of stakeholders that will be described in Sec-
tion 3.3.2 [37]. We display ZENVISAGE operating on a real-estate
dataset. We’ve selected the attributed soldpricepersqft as the Y
axis, the month as the X axis, and the category (or Z axis) as city:
that is, we’re exploring a collection of visualizations of soldpri-
cepersqft by month, one for each city. Immediately, the system
provides representative patterns (k) and outliers (l) on the panel on
the right. In particular, Port Orchard’s pattern of rapidly increasing
and decreasing, followed by a slow rise is a common pattern, with
62 other cities sharing the same pattern, while Kendall is an ex-
ample of an outlier that contains a spike. Then, the central canvas
panel allows users to draw a desired pattern (a) with results show-
ing up below (j)—the best matches for the sketched pattern are Egg
Harbor Township and Brick. Users can also drag-and-drop a visu-
alization onto the canvas from the results panel (j) or the represen-
tative or outlier panels (k, l) to seed the sketched pattern. Finally,
the user can input a pattern via data (i) or provide an input equation
(b) to seed the search. The user can also adjust the match crite-
ria, including the similarity function (f), the smoothing prior to the
match (c), the subset of the x axis to be considered for the match
2This has the added benefit of looking like many of Mondrian’s
paintings [6].

(d), whether the x axis location is important at all (e), or a filter to
select the subset of data for all of the visualizations (g). The user
can also define their own categories to compose visualizations (h).

Overall, this interface satisfies simple pattern search needs via
sketching and drag-and drop, and provides context via representa-
tive and outlier patterns. However, there are many needs that go
beyond one step. For example, one may want to search for mul-
tiple patterns simultaneously, e.g., find cities where both foreclo-
sures and sales prices are increasing. Or, one may want to pivot
and look at the data from a different perspective, e.g., for cities
where the foreclosures are similar to Berkeley, we may want to
find typical trends for sales prices. For these more complex needs,
we introduce a second mode, called ZQL, short for ZENVISAGE
Query Language.

ZQL is targeted to be a visualization exploration language, for
exploring collections of visualizations at a time. We designed ZQL
to be to visualizations what SQL is to data. ZQL operates on vi-
sualization collections and returns visualization collections. ZQL’s
design draws on data manipulation languages like Query By Exam-
ple [79] and visualization specification languages like VizQL [65]
and Grammar of Graphics [72]. ZQL conceptually captures two
types of operations: composition and processing. The composi-
tion operation enables us to compose a collection of visualizations,
while the processing operation allows us to operate on a collection
of visualizations, by filtering, comparing, or sorting these visual-
izations. In our representation in subsequent examples, we use a
circle to depict a single visualization and a square to depict a pro-
cess operation. (In actuality, our query language is textual [61], but
we use a pictorial representation here for ease of understanding.)

One of the simplest ZQL queries, with only a single composition
and no processing, looks like Figure 17 right. Here, the X axis is ?,
the Y axis is average soldprice, and Z axis is Beijing city—meaning
that there is one visualization for each possible X axis attribute for
the subset of data corresponding to Beijing city. A slightly more
complex ZQL query is shown in Figure 17 left. Here, the X axis
is year, the Y axis is ?, and Z axis is city.?. This collection con-
tains one visualization for each combination of Y axis attribute and
city value. For example, if there are m different attributes that can
be displayed on the Y axis, and n different aggregates that can be
applied to each of them, and p different values for city, there are
m× n× p visualizations in that collection.

The process operation also makes use of various in-built func-
tions such as checking for similarity (i.e., compare two visualiza-
tions for similarity), increasingness (i.e., check if a visualization
has an increasing shape), and representativeness (i.e., identify rep-
resentative visualizations in a collection), among others. Users can
also add their own domain-specific processing functions as well.

We illustrate the capabilities of ZQL via two examples. Say we
want to find the states where the soldprice trend is most similar
to the soldpricepersqft (i.e., sold price per square foot) trend; this
query is shown in Figure 17 top. The way to do this is to com-
pose two collections of visualizations. One with X1 = year, Y1
= avg(soldprice), and Z1 = state.?; thus there is one visualization
for each possible state. Then, there is another collection of visu-
alizations with X2 = year, Y2 = avg(soldprice), and we reuse the
same Z1 variable—indicating that this collection of visualizations
is coupled with the first one when we iterate on the Z1 variable.
Subsequently, we compare pair of visualizations via a processing
operation in the center of Figure 17 top, while iterating on the Z1
variable. The Z1 values where the two visualizations are deemed to
be similar are assigned to Z2, via the ArgSimilar operation, akin
to ArgMax. As a final step, the average(soldprice) visualizations
for the states corresponding to Z2 are visualized via composition.

2317

y=x^2

 x y
15.5 3.4
17.3 5.5
18.2 6.7
 … …

b

k

a

i

lj

g

c

d

e
f

Ranges Count
0 < turnover <= 5 
15k < soldprice <= 500k 5194

5 < turnover <= 35.5  
15k < soldprice <= 500k 7375

5 < turnover <= 35.5  
500k < soldprice <= 538k 560

0 < turnover <= 5 
500k < soldprice <= 538k 669

Created Classes h

Figure 15: ZENVISAGE frontend; explanations for a–l provided in the text.

X = year
Y = *
Z = city.*

X = *
Y = avg(soldprice)
Z = city.beijing

Figure 16: Basic ZQL queries containing composition only.
X1 = year
Y1 = avg(soldprice)
Z1 = state.*

X2 = year
Y2 = avg(soldpricepersqft)
Z1

Z2 = ArgSimilar_Z1(,)

X3 = year
Y3 = avg(soldprice)
Z2

3131

X1 = *
Y1 = *
Z1 = state.’CA’

X1
Y1
Z2 = state.’NY’

X2,Y2 = ArgDissimilar_(X1,Y1)(,)

X2
Y2
Z2 = state.{‘CA’, ‘NY’}

Figure 17: ZQL query examples: find states where the average
soldprice and soldpricepersqft trends are similar (top); find vi-
sualizations where the states of California and New York are
most dissimilar (bottom).

As another example, we can find the visualizations for which the
states of California (CA) and New York (NY) are most different.
Here, as previously, we compose two collections of visualizations.
For the first collection, the X1 and Y1 are set to ? indicating that
they can take on any value (i.e., any attribute). The Z1 value is
set to be state.CA, indicating that we are focusing on the subset
of data corresponding to California. For the second collection, we
reuse the X1 and Y1 from the first collection, indicating that this
collection is coupled with the first one on X1 and Y1, while Z2 is
set to be state.NY. Then, we use a process operation to compare
pairs of visualizations while iterating over the X1, Y1 variables.
The X1, Y1 attributes for which the visualizations are deemed to

be different are assigned to X2, Y2. As a final composition step,
we output the corresponding visualizations.

ZQL can be used to issue queries that effectively achieve a range
of other goals, including drill-downs (e.g., are there NY cities with
an opposite soldprice trend to the overall NY state trend), excep-
tions (e.g., are there cities with an increasing soldprice trend and
an increasing foreclosure rate trend), correlations (e.g., are there
attributes that have a similar trend to soldprice for NY cities), and
pivots (e.g., for cities similar to NYC for soldprice, what are typ-
ical trends for foreclosure rates) [61, 62]. We can also show that
ZQL is expressive—it builds on a visual exploration algebra that
we develop and has nice theoretical properties [61].

3.3.2 Usability
Now, does the added expressiveness provided by ZENVISAGE,

lead to greater usability? To achieve real-world usage beyond a
perfunctory nod towards usability, we’ve been working with astron-
omy, genetics, and material science researchers for over a year now
to refine ZENVISAGE via a process of user-centered design that
involved participatory design elements [37]. Figure 18 displays a
chart of features we’ve added to ZENVISAGE. We’ve focused on
our interactive interface and sketch-based querying mode as a start-
ing point; future studies will target ZQL as well.

Figure 18: Timeline of features being added to ZENVISAGE.
Our collaborating researchers have used the version of ZEN-

VISAGE that was developed for various findings, including the fact
that a dip in a light curve was caused by malfunctioning equip-
ment (for astronomy), a relationship between two specific physical
properties of electrolytes was independent of a third one (for bat-
tery science), and a reproduction of characteristic gene expression
profiles from a recent paper (for genetics).

In our evaluation of how researchers use ZENVISAGE, we dis-
covered various things. First, we discovered that scientists prefer
to start from an existing visualization in the canvas, as opposed to
drawing one from scratch. For example, a common pattern was to
drag-and-drop an existing visualization from the representative or
outlier panel, and then modify it (e.g., by smoothing it). Starting

2318

from an existing visualization was four times as common as start-
ing from scratch [37]. We also discovered that different domains
had typical, but different sensemaking workflows. Borrowing from
the terminology of Pirolli and Card [53], astronomers used a lot
of “top-down” theory-driven exploration where they asked ques-
tions based on what they knew, such as by dragging and dropping
a known pattern. Genomics researchers used a lot of “bottom up”
data-driven exploration, where they inferred patterns based on what
they observed, such as using the representative pattern and sketch
capabilities. Battery scientists, on the other hand, focused on un-
derstanding and manipulating the space of attributes or visualiza-
tions as opposed to top-down or bottom-up exploration.

3.3.3 Scalability
Finally, how do we effectively and efficiently execute queries

issued to ZENVISAGE, either via the interactive interface (which
can in-turn be rewritten as a ZQL query), or via ZQL?

Consider a backend database where the data resides. Then, a
simple mechanism to execute a ZQL query such as those in Fig-
ure 17 is to translate each visualization that is composed into a
SQL query, as described in Section 3.2. We do so for each visual-
ization in the collection, and once the visualizations are composed,
we can apply processing on them, followed by further composition,
as needed. Unfortunately, even just composing a single collection
of visualizations can be problematic. If we have a collection com-
posed of, say, 100 visualizations, we will end up issuing 100 in-
dependent SQL queries to the backend database, resulting in 100
scans of the underlying relation (assuming a denormalized table on
which the query is being issued)—taking forever to get a response.
The generation techniques described in Section 3.2 will come in
handy to accelerate the generation of a single visualization, but
they do not make the problem disappear. Next, we will develop
other techniques that help accelerate the execution of ZQL queries
of the above form.

One simple technique to accelerate the execution of ZQL queries
is to share accesses to the database, by combining multiple visual-
izations into a single SQL query. We explored two variants for
this. The first variant combines queries for various Z values into an
additional group-by clause. That is, we turn SELECT X, F(Y)
WHERE Z=z GROUP BY X for various z into a SELECT X,
F(Y), Z GRP. BY X, Z ORDER BY Z. This simple optimiza-
tion often leads to a 100× speedup. The second variant is to com-
bine one or more group-bys into a single one. This optimization
is more problematic since the number of groups grows multiplica-
tively in the number of distinct values per attribute [70]. Finding
the best way to pack group-bys into as small a number of queries is
actually NP-HARD, but heuristics based on first-fit algorithms for
bin-packing do quite well [70].

Another technique is to extend the generation-based online sam-
pling techniques from Section 3.2 to select from a collection of vi-
sualizations. Say we are searching for visualizations that are similar
to a target sketch. By focusing on visualizations that are deemed
to be closer to the target and therefore likely to be ranked highly
in our search results, and pruning away visualizations that are not
close by, we can terminate more quickly with up to 35× speedup
over approaches that don’t employ sampling, with near-perfect ac-
curacies [44].

Other techniques rely on parallelism, i.e., parallel issuance of
SQL queries, allowing the database to rely on multiple cores for
execution while sharing the buffer pool, speculative execution, i.e.,
eagerly processing compositions that appear downstream in the ZQL
query by combining that with compositions that appear early on,
and cache consciousness, i.e., grouping portions of data that are

iterated on multiple times into chunks that fit within the cache fol-
lowed by reordering of accesses to exploit cache locality, reducing
unnecessary data transfer between memory and cache [61, 70].

3.4 Next Steps and Selected Related Work
Despite all of our progress in efficiently and effortlessly generat-

ing and searching across visualizations using ZENVISAGE, the un-
derlying challenges in visual data exploration are far from solved.
The holy grail here is to be able to instantly identify visual insights
from large datasets with little effort. We’re starting to extend our
preliminary work towards this holy grail in many ways:
More Natural Modalities. In many situations, users do not have
a very specific sketch in mind, but instead have a more vague pat-
tern (e.g., two peaks, followed by a plateau). We’re developing
natural language search capabilities to facilitate the search for such
patterns [63]. Challenges include parsing the search query, and
identifying matches while tolerating substantial amounts of noise.
More Visualization Types. While ZENVISAGE’s interactive inter-
face allows searching for line chart patterns, it doesn’t yet support
the search for scatterplots. We’ve been developing sketch-based
search techniques for scatterplots [36], wherein the goals are to
translate polygonal sketch specifications into matching objectives,
and dealing with the explosion in the number of data points that
arise across scatterplots.
More Recommendations. Broadly, when users do not know where
to start exploration, they need to be recommended visualizations as
a starting point. However, identifying what would constitute an
“interesting” insight or discovery to users is challenging [38, 69].
As a first step, we’ve explored the construction of a dashboard of
visualizations that summarizes all of the interesting and prominent
distributions in a dataset, while avoiding false discoveries [35].
There has been a lot of recent work on visualization generation
and search that has inspired our work. We share the research goals
set out by Wu and Nandi towards explicitly creating and building
perceptual models for visualization, as a step towards approximate
query processing for visualization [75]. The excellent paper on M4
targets the accelerated generation of time-series taking into account
perceptual aspects [31]; an orthogonal but important direction by
Wu et al [76] addresses the need to persist outliers in visualizations.
Work from the visualization community, such as Nanocubes [40]
and Immens [42], has adapted data cube techniques for exploring a
restricted space of visualizations. Other recent and complementary
work has evaluated the benefits of progressive visualization meth-
ods [47, 78], reaching similar conclusions as our work.

We’ve been encouraged that others in the visualization and data-
base community have been building flexible interfaces for search-
ing for visualizations, including Datatone [22], Eviza [59], Time-
Searcher [27], and Qetch [45]. At the same time, others have started
exploring visualization recommendation interfaces [19, 20, 32, 74],
while minimizing false discoveries [16].

4. CONCLUSION
Our research over the past five years has targeted the pressing

need for powerful tools that can help end-users—regardless of skill
level—extract insights from large data sets. In designing these
tools, we have recognized that human attention is, in fact, the scarc-
est resource—and, therefore, our designs optimize the participation
of humans in the data science process, impacting every layer of the
system stack. The data management community, in conjunction
with the data mining and human-computer interaction communi-
ties, have an important role to play in making data science accessi-
ble to all. We hope you’ll join us in this exciting journey!

2319

Acknowlegements
Many thanks to the VLDB Endowment Awards Committee for this
wonderful recognition for our work. This work was primarily done
by my talented, energetic, and creative group of Ph.D. students,
both past and present, Mangesh Bendre, Akash Das Sarma, Silu
Huang, Yihan Gao, Doris Lee, Stephen Macke, Sajjadur Rahman,
Tarique Siddiqui, Tana Wattanawaroon, Doris Xin, and Liqi Xu.
Several masters and undergraduate students have also contributed
to the projects listed, but they are far too many to name! It has been
a joy and a privilege to work alongside all of them.

I’ve learned a tremendous amount from my brilliant collabora-
tors, Eric Blais, Amol Deshpande, Aaron Elmore, Karrie Kara-
halios, Ronitt Rubinfeld, Saurabh Sinha, and Venkat Viswanathan,
as well as their students. Karrie Karahalios, in particular, was in-
strumental in grounding much of this work in the context of the
HCI literature and best-practice. Not much changes after one gets
a Ph.D.; even as a faculty member, I’ve turned to my mentors,
both formal and informal: Hector Garcia-Molina, Alon Halevy,
Joe Hellerstein, H. V. Jagadish, Samuel Madden, Alkis Polyzotis,
and Jennifer Widom, for wise counsel time and time again. Many
thanks are due to the University of Illinois, for being an excellent
home for nearly five years, and to several Illinois faculty for their
help, advice, and friendship: Indy Gupta, Jiawei Han, Jian Peng,
Hari Sundaram, and Marianne Winslett. Thanks are also due to my
new home, the University of California, Berkeley.

None of this research would be possible without support from
funding organizations—both federal and from industry. We grate-
fully acknowledge support from grants IIS-1513407, IIS-1633755,
IIS-1652750, and IIS-1733878 awarded by the National Science
Foundation, grants 1U54GM114838 awarded by NIGMS and 3U54-
EB020406-02S1 awarded by NIBIB through funds provided by the
trans-NIH Big Data to Knowledge (BD2K) initiative (www.bd2k.
nih.gov), grant W911NF-18-1-0335 awarded by the Army, and
funds from Microsoft, Adobe, Toyota Research Institute, Google,
and the Siebel Energy Institute.

5. REFERENCES
[1] Airline On-Time Performance Data, Bureau of

Transportation Statistics, 2019. https://www.transtats.
bts.gov/DatabaseInfo.asp?DB_ID=120&DB_URL=.

[2] Counted B-Trees, Simon Tatham, 2019.
https://www.chiark.greenend.org.uk/~sgtatham/
algorithms/cbtree.html.

[3] Digital Insights Are The New Currency Of Business,
Forrester Report, 2018. https:
//www.forrester.com/report/Digital+Insights+Are+
The+New+Currency+Of+Business/-/E-RES119109.

[4] India to overtake US on number of developers by 2017,
Computer World, 2013.
https://www.computerworld.com/article/2483690/
india-to-overtake-u-s--on-number-of-developers-by-2017.
html.

[5] Maslow’s hierarchy of needs, 2019. https://en.wikipedia.
org/wiki/Maslow%27s_hierarchy_of_needs.

[6] Piet Mondrian Wikipedia Page, 2019.
https://en.wikipedia.org/wiki/Piet_Mondrian.

[7] Examples of commonly used formulas.
support.office.com/en-us/article/
examples-of-commonly-used-formulas-b45a3946-819e
-455e-ac20-770ea6aa05da, 2017.

[8] A. Abouzied et al. Dataplay: interactive tweaking and
example-driven correction of graphical database queries. In
UIST, 2012.

[9] S. Acharya, P. B. Gibbons, V. Poosala, and S. Ramaswamy.
The aqua approximate query answering system. In ACM
Sigmod Record, volume 28, pages 574–576. ACM, 1999.

[10] S. Agarwal, B. Mozafari, A. Panda, H. Milner, S. Madden,
and I. Stoica. Blinkdb: Queries with bounded errors and
bounded response times on very large data. In EuroSys,
pages 29–42, New York, NY, USA, 2013. ACM.

[11] E. Bakke and D. R. Karger. Expressive query construction
through direct manipulation of nested relational results. In
SIGMOD. ACM, 2016.

[12] M. Bendre, B. Sun, D. Zhang, X. Zhou, K. C.-C. Chang, and
A. Parameswaran. Dataspread: Unifying databases and
spreadsheets. PVLDB, 8(12):2000–2003, 2015.

[13] M. Bendre, V. Venkataraman, X. Zhou, K. C. Chang, and
A. G. Parameswaran. Towards a holistic integration of
spreadsheets with databases: A scalable storage engine for
presentational data management. In 34th IEEE International
Conference on Data Engineering, ICDE 2018, Paris, France,
April 16-19, 2018, pages 113–124, 2018.

[14] M. Bendre, T. Wattanawaroon, K. Mack, K. Chang, and
A. Parameswaran. Anti-freeze for large and complex
spreadsheets: Asynchronous formula computation. In
Proceedings of the 2019 International Conference on
Management of Data, pages 1277–1294. ACM, 2019.

[15] M. Bendre, T. Wattanawaroon, S. Rahman, K. Mack, Y. Liu,
S. Zhu, Y. Lu, P. Yang, X. Zhou, K. C. Chang, K. Karahalios,
and A. G. Parameswaran. Faster, higher, stronger:
Redesigning spreadsheets for scale. In 35th IEEE
International Conference on Data Engineering, ICDE 2019,
Macao, China, April 8-11, 2019, pages 1972–1975, 2019.

[16] C. Binnig, L. De Stefani, T. Kraska, E. Upfal, E. Zgraggen,
and Z. Zhao. Toward sustainable insights, or why polygamy
is bad for you. In CIDR, 2017.

[17] M. Budiu, P. Gopalan, L. Suresh, U. Wieder, H. Kruiger, and
M. K. Aguilera. Hillview: A trillion-cell spreadsheet for big
data. arXiv preprint arXiv:1907.04827, 2019.

[18] Z. Chen and M. Cafarella. Automatic web spreadsheet data
extraction. In Proceedings of the 3rd International Workshop
on Semantic Search Over the Web, pages 1:1–1:8. ACM,
2013.

[19] F. Chirigati, H. Doraiswamy, T. Damoulas, and J. Freire.
Data polygamy: the many-many relationships among urban
spatio-temporal data sets. In Proceedings of the 2016
International Conference on Management of Data, pages
1011–1025. ACM, 2016.

[20] A. Crotty, A. Galakatos, E. Zgraggen, C. Binnig, and
T. Kraska. Vizdom: interactive analytics through pen and
touch. PVLDB, 8(12):2024–2027, 2015.

[21] Dark Energy Survey Collaboration: Fermilab, University of
Illinois at Urbana-Champaign, University of Chicago,
Lawrence Berkeley National Laboratory, Cerro-Tololo
Inter-American Observatory and Flaugher, Brenna. The dark
energy survey. International Journal of Modern Physics A,
20(14):3121–3123, 2005.

[22] T. Gao, M. Dontcheva, E. Adar, Z. Liu, and K. G.
Karahalios. Datatone: Managing ambiguity in natural
language interfaces for data visualization. In Proceedings of
the 28th Annual ACM Symposium on User Interface
Software & Technology, UIST ’15, pages 489–500, New
York, NY, USA, 2015. ACM.

2320

www.bd2k.nih.gov
www.bd2k.nih.gov
https://www.transtats.bts.gov/DatabaseInfo.asp?DB_ID=120&DB_URL=
https://www.transtats.bts.gov/DatabaseInfo.asp?DB_ID=120&DB_URL=
https://www.chiark.greenend.org.uk/~sgtatham/algorithms/cbtree.html
https://www.chiark.greenend.org.uk/~sgtatham/algorithms/cbtree.html
https://www.forrester.com/report/Digital+Insights+Are+The+New+Currency+Of+Business/-/E-RES119109
https://www.forrester.com/report/Digital+Insights+Are+The+New+Currency+Of+Business/-/E-RES119109
https://www.forrester.com/report/Digital+Insights+Are+The+New+Currency+Of+Business/-/E-RES119109
https://www.computerworld.com/article/2483690/india-to-overtake-u-s--on-number-of-developers-by-2017.html
https://www.computerworld.com/article/2483690/india-to-overtake-u-s--on-number-of-developers-by-2017.html
https://www.computerworld.com/article/2483690/india-to-overtake-u-s--on-number-of-developers-by-2017.html
https://en.wikipedia.org/wiki/Maslow%27s_hierarchy_of_needs
https://en.wikipedia.org/wiki/Maslow%27s_hierarchy_of_needs
https://en.wikipedia.org/wiki/Piet_Mondrian
support.office.com/en-us/article/examples-of-commonly-used-formulas-b45a3946-819e
support.office.com/en-us/article/examples-of-commonly-used-formulas-b45a3946-819e
-455e-ac20-770ea6aa05da

[23] Y. Gao, S. Huang, and A. Parameswaran. Navigating the data
lake with datamaran: Automatically extracting structure
from log datasets. In Proceedings of the 2018 International
Conference on Management of Data, SIGMOD ’18, pages
943–958, New York, NY, USA, 2018. ACM.

[24] M. N. Garofalakis and P. B. Gibbon. Approximate query
processing: Taming the terabytes. In VLDB, pages 725–, San
Francisco, CA, USA, 2001. Morgan Kaufmann Publishers
Inc.

[25] J. M. Hellerstein, P. J. Haas, and H. J. Wang. Online
aggregation. ACM SIGMOD Record, 26(2):171–182, jun
1997.

[26] N. Henke, J. Bughin, M. Chui, J. Manyika, T. Saleh,
B. Wiseman, and G. Sethupathy. The age of analytics:
Competing in a data-driven world. McKinsey Global
Institute, 4, 2016.

[27] H. Hochheiser and B. Shneiderman. Interactive exploration
of time series data. In The Craft of Information Visualization,
pages 313–315. Elsevier, 2003.

[28] S. Huang, L. Xu, J. Liu, A. J. Elmore, and A. Parameswaran.
Orpheus db: bolt-on versioning for relational databases.
PVLDB, 10(10):1130–1141, 2017.

[29] S. Idreos et al. dbtouch: Analytics at your fingertips. In
CIDR, 2013.

[30] H. V. Jagadish et al. Making database systems usable. In
SIGMOD, pages 13–24. ACM, 2007.

[31] U. Jugel, Z. Jerzak, G. Hackenbroich, and V. Markl. M4: a
visualization-oriented time series data aggregation. PVLDB,
7(10):797–808, 2014.

[32] S. Kandel, R. Parikh, A. Paepcke, J. Hellerstein, and J. Heer.
Profiler: Integrated statistical analysis and visualization for
data quality assessment. In Advanced Visual Interfaces, 2012.

[33] A. Kim, E. Blais, A. Parameswaran, P. Indyk, S. Madden,
and R. Rubinfeld. Rapid sampling for visualizations with
ordering guarantees. PVLDB, 8(5):521–532, 2015.

[34] A. Kim, L. Xu, T. Siddiqui, S. Huang, S. Madden, and
A. Parameswaran. Optimally leveraging density and locality
for exploratory browsing and sampling. In Proceedings of
the Workshop on Human-In-the-Loop Data Analytics,
page 7. ACM, 2018.

[35] D. J. L. Lee, H. Dev, H. Hu, H. Elmeleegy, and A. G.
Parameswaran. Avoiding drill-down fallacies with vispilot:
assisted exploration of data subsets. In IUI, pages 186–196,
2019.

[36] D. J. L. Lee, J. Kim, R. Wang, and A. G. Parameswaran.
SCATTERSEARCH: visual querying of scatterplot
visualizations. CoRR, abs/1907.11743, 2019.

[37] D. J. L. Lee, J. Lee, T. Siddiqui, J. Kim, K. Karahalios, and
A. G. Parameswaran. You can’t always sketch what you
want: Understanding sensemaking in visual query systems.
VAST at VIS, 2019.

[38] D. J. L. Lee and A. G. Parameswaran. The case for a visual
discovery assistant: A holistic solution for accelerating visual
data exploration. IEEE Data Eng. Bull., 41(3):3–14, 2018.

[39] X. Li, J. Han, and H. Gonzalez. High-dimensional olap: a
minimal cubing approach. In Proceedings of the Thirtieth
international conference on Very large data bases-Volume
30, pages 528–539. VLDB Endowment, 2004.

[40] L. D. Lins, J. T. Klosowski, and C. E. Scheidegger.
Nanocubes for real-time exploration of spatiotemporal
datasets. IEEE TVCG, 19(12):2456–2465, 2013.

[41] B. Liu and H. Jagadish. A spreadsheet algebra for a direct

data manipulation query interface. In ICDE, pages 417–428.
IEEE, 2009.

[42] Z. Liu, B. Jiang, and J. Heer. immens: Real-time visual
querying of big data. In CGF, volume 32, pages 421–430.
Wiley Online Library, 2013.

[43] K. Mack, J. Lee, K. C. Chang, K. Karahalios, and A. G.
Parameswaran. Characterizing scalability issues in
spreadsheet software using online forums. In Extended
Abstracts of the 2018 CHI Conference on Human Factors in
Computing Systems, CHI 2018, Montreal, QC, Canada,
April 21-26, 2018, 2018.

[44] S. Macke, Y. Zhang, S. Huang, and A. Parameswaran.
Fastmatch: Adaptive algorithms for rapid discovery of
relevant histogram visualizations. PVLDB, 2017.

[45] M. Mannino and A. Abouzied. Expressive time series
querying with hand-drawn scale-free sketches. In
Proceedings of the 2018 CHI Conference on Human Factors
in Computing Systems, CHI ’18, pages 388:1–388:13, New
York, NY, USA, 2018. ACM.

[46] Microsoft UK Enterprise Team. How finance leaders can
drive performance. https://enterprise.microsoft.com/
en-gb/articles/roles/finance-leader/
how-finance-leaders-can-drive-performance/, 2015.

[47] D. Moritz, D. Fisher, B. Ding, and C. Wang. Trust, but
verify: Optimistic visualizations of approximate queries for
exploring big data. In CHI, pages 2904–2915. ACM, 2017.

[48] B. A. Myers, A. J. Ko, T. D. LaToza, and Y. Yoon.
Programmers are users too: Human-centered methods for
improving programming tools. Computer, 49(7):44–52,
2016.

[49] A. Nandi, L. Jiang, and M. Mandel. Gestural Query
Specification. VLDB Endowment, 7(4), 2013.

[50] B. A. Nardi and J. R. Miller. An ethnographic study of
distributed problem solving in spreadsheet development. In
Proceedings of the 1990 ACM conference on
Computer-supported cooperative work, pages 197–208.
ACM, 1990.

[51] B. A. Nardi and J. R. Miller. The spreadsheet interface: A
basis for end user programming. Hewlett-Packard
Laboratories, 1990.

[52] R. R. Panko. What we know about spreadsheet errors.
Journal of Organizational and End User Computing
(JOEUC), 10(2):15–21, 1998.

[53] P. Pirolli and S. Card. The sensemaking process and leverage
points for analyst technology as identified through cognitive
task analysis. In Proceedings of international conference on
intelligence analysis, volume 5, pages 2–4, 2005.

[54] S. Rahman, M. Aliakbarpour, H. K. Kong, E. Blais,
K. Karahalios, A. Parameswaran, and R. Rubinfield. I’ve
seen “enough”: Incrementally improving visualizations to
support rapid decision making. In PVLDB, 2017.

[55] S. Rahman, M. Bendre, P. Yang, S. Z. Yuyang Liu, Z. Su,
K. Chang, K. Karahalios, and A. Parameswaran. Extending
Spreadsheets to Support Seamless Navigation at Scale.
http://dataspread.github.io/papers/noah.pdf ,
Technical Report, 2019.

[56] V. Raman et al. Online dynamic reordering for interactive
data processing. In VLDB, volume 99, pages 709–720, 1999.

[57] V. Raman and J. M. Hellerstein. Potter’s wheel: An
interactive data cleaning system. In VLDB, volume 1, pages
381–390, 2001.

2321

https://enterprise.microsoft.com/en-gb/articles/roles/finance-leader/how-finance-leaders-can-drive-performance/
https://enterprise.microsoft.com/en-gb/articles/roles/finance-leader/how-finance-leaders-can-drive-performance/
https://enterprise.microsoft.com/en-gb/articles/roles/finance-leader/how-finance-leaders-can-drive-performance/
http://dataspread.github.io/papers/noah.pdf

[58] V. Raman, B. Raman, and J. M. Hellerstein. Online dynamic
reordering. The VLDB Journal, 9(3):247–260, Dec. 2000.

[59] V. Setlur, S. E. Battersby, M. Tory, R. Gossweiler, and A. X.
Chang. Eviza: A Natural Language Interface for Visual
Analysis. Proceedings of the 29th Annual Symposium on
User Interface Software and Technology - UIST ’16, pages
365–377, 2016.

[60] B. Shneiderman. Direct Manipulation: A Step Beyond
Programming Languages. IEEE Computer, 16(8):57–69,
1983.

[61] T. Siddiqui, A. Kim, J. Lee, K. Karahalios, and
A. Parameswaran. Effortless data exploration with zenvisage:
an expressive and interactive visual analytics system.
PVLDB, 10(4):457–468, 2016.

[62] T. Siddiqui, J. Lee, A. Kim, E. Xue, X. Yu, S. Zou, L. Guo,
C. Liu, C. Wang, K. Karahalios, et al. Fast-forwarding to
desired visualizations with zenvisage. In CIDR, 2017.

[63] T. Siddiqui, P. Luh, Z. Wang, K. Karahalios, and
A. Parameswaran. Shapesearch: flexible pattern-based
querying of trend line visualizations. PVLDB,
11(12):1962–1965, 2018.

[64] S. Sinha, J. Song, R. Weinshilboum, V. Jongeneel, and
J. Han. Knoweng: a knowledge engine for genomics. Journal
of the American Medical Informatics Association,
22(6):1115–1119, 2015.

[65] C. Stolte, D. Tang, and P. Hanrahan. Polaris: A system for
query, analysis, and visualization of multidimensional
relational databases. IEEE TVCG, 8(1):52–65, 2002.

[66] E. R. Tufte. The visual display of quantitative information,
volume 2. Graphics press Cheshire, CT, 2001.

[67] J. Tyszkiewicz. Spreadsheet as a relational database engine.
In SIGMOD, pages 195–206. ACM, 2010.

[68] H. Varian. Artificial intelligence, economics, and industrial
organization. Technical report, National Bureau of Economic
Research, 2018.

[69] M. Vartak, S. Huang, T. Siddiqui, S. Madden, and A. G.
Parameswaran. Towards visualization recommendation
systems. SIGMOD Record, 45(4):34–39, 2016.

[70] M. Vartak, S. Rahman, S. Madden, A. Parameswaran, and
N. Polyzotis. Seedb: efficient data-driven visualization
recommendations to support visual analytics. PVLDB,
8(13):2182–2193, 2015.

[71] V. Viswanathan and B. M. Knapp. Potential for electric
aircraft. Nature Sustainability, 2(2):88–89, 2019.

[72] L. Wilkinson. The grammar of graphics. In Handbook of
Computational Statistics, pages 375–414. Springer, 2012.

[73] J. O. Wobbrock and J. A. Kientz. Research contributions in
human-computer interaction. interactions, 23(3):38–44,
2016.

[74] K. Wongsuphasawat, Z. Qu, D. Moritz, R. Chang, F. Ouk,
A. Anand, J. Mackinlay, B. Howe, and J. Heer. Voyager 2 :
Augmenting Visual Analysis with Partial View
Specifications. 2017.

[75] E. Wu and A. Nandi. Towards perception-aware interactive
data visualization systems. In DSIA Workshop, IEEE VIS,
2015.

[76] Y. Wu, B. Harb, J. Yang, and C. Yu. Efficient evaluation of
object-centric exploration queries for visualization. PVLDB,
8(12):1752–1763, 2015.

[77] D. Xin, S. Macke, L. Ma, J. Liu, S. Song, and
A. Parameswaran. Helix: Holistic optimization for
accelerating iterative machine learning. PVLDB,
12(4):446–460, 2018.

[78] E. Zgraggen, A. Galakatos, A. Crotty, J.-D. Fekete, and
T. Kraska. How progressive visualizations affect exploratory
analysis. IEEE transactions on visualization and computer
graphics, 23(8):1977–1987, 2016.

[79] M. M. Zloof. Query-by-example: A data base language. IBM
systems Journal, 16(4):324–343, 1977.

2322

	Introduction
	Enabling Data Manipulation
	Spreadsheet Issues and our Vision
	Spreadsheet Popularity
	Spreadsheet Issues
	DataSpread

	Spreadsheet Organization
	Spreadsheet Manipulation
	Spreadsheet Computation
	Next Steps and Selected Related Work

	Enabling Data Visualization
	Visualization Issues and Our Vision
	Visualization Generation
	Accelerating Comparisons
	Accelerating Termination

	Visualization Search
	Expressiveness
	Usability
	Scalability

	Next Steps and Selected Related Work

	Conclusion
	References

