
Performance in the Spotlight
Adrian Colyer

Accel

acolyer@accel.com

ABSTRACT

Performance in its various guises features prominently in research

evaluations, and rightly so. Without adequate performance a

system is not fit for purpose. That doesn’t necessarily mean we

should pursue performance at all costs though. In this talk we’ll

explore a variety of additional evaluation criteria, with a focus on

those that are most important to practitioners, and ask whether or

not considering them can open up interesting avenues of research.

PVLDB Reference Format:

Adrian Colyer. Performance in the Spotlight. PVLDB, 12(12) :

2287-2289, 2019.

DOI: https://doi.org/10.14778/3352063.3352144

1. INTRODUCTION
VLDB is “a premier international forum for data management and

database researchers, vendors, practitioners, application

developers, and users” [1]. It’s the Formula 1 of data systems,

where race cars carefully prepared by teams of researchers line up

to compete around the great racetracks: YCSB [2], TPC-C [3],

TPC-H [4], and friends. To the cars with the fastest lap times and

the best performance over race distance go the spoils of victory. A

champagne spray on the podium, fame and celebrity, time in the

spotlight. Or a published paper at VLDB anyway! I’m

exaggerating for effect of course, but it’s certainly true that in the

papers I read, the vast majority of evaluations are focused very

heavily on performance.

As fabulous as those Formula 1 cars are though, you don’t see

many of them on the road. Even if we equalised the purchase

price, you wouldn’t want one as a daily driver. You need an entire

team to operate one - a pit crew in your driveway! Tyre life is

terrible, and fuel economy isn’t great either. Service intervals are

incredibly short. And then there’s the user experience: the ride is

uncomfortable, the cabin is cramped, the controls are confusing.

Good luck fitting in even a small bag of groceries on the way back

from the shops.

So when it comes to cars at least, performance obviously does

matter but there are clearly a number of other factors that also

have a significant influence on fitness-for-purpose away from the

racetrack. Is the same thing true for database systems? Sometimes

absolute performance really is the prime consideration - either

because you’re competing on latency or because of the sheer

volume you need to process. In my experience though it’s much

more common to have a performance bar set, e.g., we need to be

able to handle at least this many requests per second, and respond

within n milliseconds. Once the bar is met, attention turns to other

factors. We don’t always want to have to squeeze into a six-point

safety harness and put on a crash helmet just to take our data for a

spin!

2. EVALUATION CRITERIA
What other factors are considered when making technology

selections? Scalability certainly, as in "will I hit a wall as my

business grows?" This aspect of scalability does tend to get good

coverage in research paper evaluations. We’re also increasingly

interested in scaling down as well as up. Under periods of very

light or no load does the system reduce its resource consumption

accordingly? How rapidly can the system adjust to changes in

load? Resource consumption, especially on cloud platforms, is a

proxy for cost, and we want systems that support usage-based

pricing. So there’s a big difference between a system that offers

very high levels of performance through static (over-)provisioning

and hence a constant high baseline cost, and one that can attain

very high levels of performance on demand but can also scale

costs down to near zero in the absence of demand.

Performance, scalability, and “size of my cloud provider bill” cost

are all reasonably easy to quantify, and hence fit naturally into

evaluation sections. If we were to write an objective function for

the technology selection criteria I most commonly observe in

practice though, these would be constraints, not the variables to

be maximised or minimised. Such an objective function would be

something like "subject to performance within this ballpark, costs

no greater than x, and with some headroom to grow, minimise the

human costs of developing solutions for, and operating, the

platform." Developer experience and operator experience are all-

important, and very often absent from evaluations. Of the two, in

a world where developers often have the power to make

technology selections, it shouldn’t be a great surprise that I

frequently observe developer experience playing a very significant

part in determining marketplace success.

There is a gap between the typically performance-oriented focus

in research evaluations, and the criteria used in practitioner

technology selection evaluations. Does this gap matter? I think it

does for two reasons: firstly, it puts us at the mercy of Goodhart’s

law [5], and secondly it means a whole set of interesting research

questions are getting less attention than they otherwise might. The

streetlight effect [6] explains why we tend to put more emphasis

on measuring criteria that are easy to measure and quantify, at the

expense of criteria such as developer and operator experience

which are more subjective and harder to quantify. Goodhart’s law,

"when a measure becomes a target it ceases to be a good

measure," then kicks in and if we are not careful will cause us to

optimise for performance at all costs. Even if the result is, for

example, a highly-strung system with very narrow operating

margins.

This work is licensed under the Creative Commons Attribution-

NonCommercial-NoDerivatives 4.0 International License. To view a copy of

this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For any

use beyond those covered by this license, obtain permission by emailing

info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 12, No. 12

ISSN 2150-8097.

DOI: https://doi.org/10.14778/3352063.3352144

2287

2.1 Developer Experience
If developer experience were an orthogonal concern, chiefly

addressed by good documentation, tutorials, and samples, then it

would be much less interesting from a research perspective.

However, we know that system design truly does have a big

impact on the developer experience. Consider something as

simple as the way we connect to a datastore. Connection-based

protocols made sense in a world of static deployments, three-tier

web applications, and connection pools. But they don’t work

nearly so well for cloud-native applications with lots of fine-

grained auto-scaling components. A connectionless protocol is a

much better fit here.

Then of course there is the consistency model. I have come to the

conclusion that for the vast majority of developers, the mental

model they have when developing an application is strict

serializability. That is, they look at the lines of code in front of

them and reason as if there were no other concurrent activity

possible. This mental model holds regardless of the actual

underlying consistency model(s) supported by the system. So the

set of anomalies that can occur given any weaker consistency

model also amount to a set of ways developers can get caught out!

A classic example of this is reported by Google in "Spanner,

becoming a SQL system" [7], in which the authors describe

Spanner’s evolution towards a fuller database-like experience

over time because developers at Google "found it difficult to build

applications without a strong schema system, cross-row

transactions, consistent replication, and a powerful query

language."

The data model and the programming model layered on top of it

have a lot to say about what’s easy to express, what’s possible to

express, and also what classes of developer mistakes are possible.

See "Understanding real-world concurrency bugs in Go" for a

recent discussion of these issues in the context of the design of the

Go programming language [8] and Van Roy’s “Programming

paradigms for dummies” for a broader programming language

survey [9]. Bloom [10] is a good example of the creative

possibilities at the intersection of programming paradigms and

data paradigms.

Developers probably aren’t going to get strict serializability

(arguably they’ve never really had it! [11]), although we may be

able to get close [12]. What happens when the system fails to

meet their implicit expectations? Are application invariants

silently broken with inconsistencies lying in wait as-yet

undetected? Memories, guesses, and apologies [13] gives us a

way of thinking about building applications in the real world, but

how do we know when we need to apologise? What would a

programming model be like that treated potential anomalies like

checked exceptions for example?? But maybe not every potential

anomaly is an issue for a given workload: if we could rely on

developers to accurately articulate the actual invariants for a

workload then we could focus reparation efforts where it really

matters [14], and understanding invariants at the application level

can also be a key to unlocking performance by avoiding

coordination where we know we don’t need it [15]. Is this a

realistic expectation though? And how could we assist developers

in getting it right?

Beyond correctness, there are other important components to

developer experience too. Predictability is one. Can small changes

to the application or data model have big impacts on performance?

Is it easy to predict when this will happen or can a seemingly

innocuous change catch you out? The ability to easily diagnose

and debug problems is another. When an output isn’t what you

expect, can you determine why? Can the provenance of data easily

be captured and explained?

I expect provenance to be an increasingly important concern for

future data systems and applications, right alongside purpose,

permission, and privacy. At point of capture we obtain consent to

use data for a given purpose or purposes. We need to track

provenance as we join, project, and aggregate, which informs the

permissions we grant to see or use the results and to preserve

privacy expectations.

2.2 Operator Experience
System design clearly has a big impact on operator experience too.

How does the operational overhead scale as the system scales?

Under what circumstances is operator intervention required? How

many configuration parameters and parameter values does the

system expose? Since parameter spaces can quickly become vast,

it probably makes sense to compare these across systems on a log-

scale. Fewer is generally better. Does the system offer generally

good performance across a broad sub-space of parameters, with

predictable and gentle gradients as parameter values are changed?

Or is tuning a dark art with sharp performance peaks and steep

gradients?

How do hotspots and failures propagate across the system, and

how long does it take to recover from them? Gan et al.’s recently

published microservices benchmark suite, DeathStarBench [16],

illustrates nicely how architectural decisions, such as the way

responsibilities are divided amongst distributed components, can

impact this. Does a database system play nice when placed in a

broader architectural context? Are tail latencies tightly bounded?

Just like developers, when things go wrong operators value the

ability to easily explain the observed behaviour and troubleshoot

the system.

3. STANDING UNDER THE

STREETLIGHT
The traditional story that gave its name to the streetlight effect

goes as follows:

A policeman sees a drunk man searching for something under a

streetlight and asks what the drunk has lost. He says he lost his

keys and they both look under the streetlight together. After a few

minutes the policeman asks if he is sure he lost them here, and the

drunk replies, no, and that he lost them in the park. The

policeman asks why he is searching here, and the drunk replies,

"this is where the light is." [6]

A researcher is trying to build a better database system. A

colleague comes along and asks where the big opportunities are.

After the researcher explains, the colleague asks why therefore the

researcher is focusing so hard on pushing the frontiers of

performance. And the researcher replies, "this is where the

spotlight is."

2288

4. ACKNOWLEDGMENTS
With thanks to Pat Helland and Wolfgang Lehner for encouraging

me to submit a talk and for their feedback, help, and guidance in

getting me through the process.

5. REFERENCES
[1] VLDB 2019: Overview, 2019. http://vldb.org/2019

[2] Cooper, B., Silberstein, A., Tam, E., Ramakrishnan, R. and

Sears, R. Benchmarking Cloud Serving Systems with YCSB.

In ACM Symposium on Cloud Computing (SoCC ’10)

(Indianapolis, IN, USA, 2010).

[3] TPC-C On-Line Transaction Processing Benchmark.

http://www.tpc.org/tpcc/default.asp

[4] TPC-H Decision Support Benchmark.

http://www.tpc.org/tpch/default.asp

[5] Goodhart’s Law.

https://en.wikipedia.org/wiki/Goodhart%27s_law. Accessed

May 2019

[6] Streetlight Effect.

https://en.wikipedia.org/wiki/Streetlight_effect. Accessed

May 2019

[7] Bacon, D., Bales, N., Bruno, N., Cooper, B., Dickinson, A.,

Fikes, A., Fraser, C., Gubarev, A., Joshi, M., Kogan, E.,

Lloyd, A., Melnik, S., Rao, R., Shue, D., Taylor, C., van der

Holst, M. and Woodford, D. Spanner: Becoming a SQL

System. In Proceedings of the 2017 ACM International

Conference on Management of Data, pages 331-343, 2017.

[8] Tu, T., Liu, X., Song, L. and Zhang, Y. Understanding Real-

World Concurrency Bugs in Go. In Proceedings of 2019

Architectural Support for Programming Languages and

Operating Systems (ASPLOS’19), 2019

[9] Van Roy, P. Programming Paradigms for Dummies: What

Every Programmer Should Know. In New Computational

Paradigms for Computer Music, 2009.

[10] Alvaro, P., Conway, N., Hellerstein, J., and Marczak, W.

Consistency analysis in Bloom: a CALM and Collected

Approach. In CIDR, 2011

[11] Fekete, A., Goldrei, S., and Asenjo, J. Quantifying Isolation

Anomalies. PVLDB, 2(1):467-478, 2009.

[12] Bailis, P., Davidson, A., Fekete, A., Ghodsi, A. Hellerstein, J.

and Stoica, I. Highly available transactions: Virtues and

limitations. PVLDB, 7(3):181-192, 2013.

[13] Helland, P. and Campbell, D. Building on quicksand In

CIDR, 2009.

[14] Balegas, V., Duarte, S., Ferreira, C., Rodrigues, R., Preguiça,

N., Najafzadeh, M. and Shapiro, M. Putting consistency back

into eventual consistency. In Proceedings of the Tenth

European Conference on Computer Systems, ACM, 2015.

[15] Bailis, P., Fekete, A. Franklin, M., Ghodsi, A., Hellerstein, J.,

and Stoica, I. Coordination avoidance in database systems.

PVLDB, 8(3):185-196, 2014.

[16] Gan, Y., Zhang, Y., Cheng D., Shetty, A., Rathi, P., Katarki,

N., Bruno, A., Hu, J., Ritchken, B., Jackson, B., Hu, K.,

Pancholi, M., He, Y., Clancy, B., Colen, C., Wen, F., Leung,

C., Wang, S., Zaruvinsky, L., Espinosa, M., Lin, R., Liu, Z.,

Padilla, J. and Delimitrou, C. An Open-Source Benchmark

Suite for Microservices and Their Hardware-Software

Implications for Cloud & Edge Systems. In Proceedings of

the 2019 Architectural Support for Programming Languages

and Operating Systems (ASPLOS’19), ACM, 2019.

2289

