
Performance in the Spotlight 
Adrian Colyer 

Accel 

acolyer@accel.com 

 
 

 

ABSTRACT 

Performance in its various guises features prominently in research 

evaluations, and rightly so. Without adequate performance a 

system is not fit for purpose. That doesn’t necessarily mean we 

should pursue performance at all costs though. In this talk we’ll 

explore a variety of additional evaluation criteria, with a focus on 

those that are most important to practitioners, and ask whether or 

not considering them can open up interesting avenues of research. 
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1. INTRODUCTION 
VLDB is “a premier international forum for data management and 

database researchers, vendors, practitioners, application 

developers, and users” [1]. It’s the Formula 1 of data systems, 

where race cars carefully prepared by teams of researchers line up 

to compete around the great racetracks: YCSB [2], TPC-C [3], 

TPC-H [4], and friends. To the cars with the fastest lap times and 

the best performance over race distance go the spoils of victory. A 

champagne spray on the podium, fame and celebrity, time in the 

spotlight. Or a published paper at VLDB anyway! I’m 

exaggerating for effect of course, but it’s certainly true that in the 

papers I read, the vast majority of evaluations are focused very 

heavily on performance. 

As fabulous as those Formula 1 cars are though, you don’t see 

many of them on the road. Even if we equalised the purchase 

price, you wouldn’t want one as a daily driver. You need an entire 

team to operate one - a pit crew in your driveway! Tyre life is 

terrible, and fuel economy isn’t great either. Service intervals are 

incredibly short. And then there’s the user experience: the ride is 

uncomfortable, the cabin is cramped, the controls are confusing. 

Good luck fitting in even a small bag of groceries on the way back 

from the shops. 

So when it comes to cars at least, performance obviously does 

matter but there are clearly a number of other factors that also 

have a significant influence on fitness-for-purpose away from the 

racetrack. Is the same thing true for database systems? Sometimes 

absolute performance really is the prime consideration - either 

because you’re competing on latency or because of the sheer 

volume you need to process. In my experience though it’s much 

more common to have a performance bar set, e.g., we need to be 

able to handle at least this many requests per second, and respond 

within n milliseconds. Once the bar is met, attention turns to other 

factors. We don’t always want to have to squeeze into a six-point 

safety harness and put on a crash helmet just to take our data for a 

spin! 

2. EVALUATION CRITERIA 
What other factors are considered when making technology 

selections? Scalability certainly, as in "will I hit a wall as my 

business grows?" This aspect of scalability does tend to get good 

coverage in research paper evaluations. We’re also increasingly 

interested in scaling down as well as up. Under periods of very 

light or no load does the system reduce its resource consumption 

accordingly? How rapidly can the system adjust to changes in 

load? Resource consumption, especially on cloud platforms, is a 

proxy for cost, and we want systems that support usage-based 

pricing. So there’s a big difference between a system that offers 

very high levels of performance through static (over-)provisioning 

and hence a constant high baseline cost, and one that can attain 

very high levels of performance on demand but can also scale 

costs down to near zero in the absence of demand. 

Performance, scalability, and “size of my cloud provider bill” cost 

are all reasonably easy to quantify, and hence fit naturally into 

evaluation sections. If we were to write an objective function for 

the technology selection criteria I most commonly observe in 

practice though, these would be constraints, not the variables to 

be maximised or minimised. Such an objective function would be 

something like "subject to performance within this ballpark, costs 

no greater than x, and with some headroom to grow, minimise the 

human costs of developing solutions for, and operating, the 

platform." Developer experience and operator experience are all-

important, and very often absent from evaluations. Of the two, in 

a world where developers often have the power to make 

technology selections, it shouldn’t be a great surprise that I 

frequently observe developer experience playing a very significant 

part in determining marketplace success. 

There is a gap between the typically performance-oriented focus 

in research evaluations, and the criteria used in practitioner 

technology selection evaluations. Does this gap matter? I think it 

does for two reasons: firstly, it puts us at the mercy of Goodhart’s 

law [5], and secondly it means a whole set of interesting research 

questions are getting less attention than they otherwise might. The 

streetlight effect [6] explains why we tend to put more emphasis 

on measuring criteria that are easy to measure and quantify, at the 

expense of criteria such as developer and operator experience 

which are more subjective and harder to quantify. Goodhart’s law, 

"when a measure becomes a target it ceases to be a good 

measure," then kicks in and if we are not careful will cause us to 

optimise for performance at all costs. Even if the result is, for 

example, a highly-strung system with very narrow operating 

margins. 
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2.1 Developer Experience 
If developer experience were an orthogonal concern, chiefly 

addressed by good documentation, tutorials, and samples, then it 

would be much less interesting from a research perspective. 

However, we know that system design truly does have a big 

impact on the developer experience. Consider something as 

simple as the way we connect to a datastore. Connection-based 

protocols made sense in a world of static deployments, three-tier 

web applications, and connection pools. But they don’t work 

nearly so well for cloud-native applications with lots of fine-

grained auto-scaling components. A connectionless protocol is a 

much better fit here.  

Then of course there is the consistency model. I have come to the 

conclusion that for the vast majority of developers, the mental 

model they have when developing an application is strict 

serializability. That is, they look at the lines of code in front of 

them and reason as if there were no other concurrent activity 

possible. This mental model holds regardless of the actual 

underlying consistency model(s) supported by the system. So the 

set of anomalies that can occur given any weaker consistency 

model also amount to a set of ways developers can get caught out! 

A classic example of this is reported by Google in "Spanner, 

becoming a SQL system" [7], in which the authors describe 

Spanner’s evolution towards a fuller database-like experience 

over time because developers at Google "found it difficult to build 

applications without a strong schema system, cross-row 

transactions, consistent replication, and a powerful query 

language." 

The data model and the programming model layered on top of it 

have a lot to say about what’s easy to express, what’s possible to 

express, and also what classes of developer mistakes are possible. 

See "Understanding real-world concurrency bugs in Go" for a 

recent discussion of these issues in the context of the design of the 

Go programming language [8] and Van Roy’s “Programming 

paradigms for dummies” for a broader programming language 

survey [9]. Bloom [10] is a good example of the creative 

possibilities at the intersection of programming paradigms and 

data paradigms. 

Developers probably aren’t going to get strict serializability 

(arguably they’ve never really had it! [11]), although we may be 

able to get close [12]. What happens when the system fails to 

meet their implicit expectations? Are application invariants 

silently broken with inconsistencies lying in wait as-yet 

undetected? Memories, guesses, and apologies [13] gives us a 

way of thinking about building applications in the real world, but 

how do we know when we need to apologise? What would a 

programming model be like that treated potential anomalies like 

checked exceptions for example?? But maybe not every potential 

anomaly is an issue for a given workload: if we could rely on 

developers to accurately articulate the actual invariants for a 

workload then we could focus reparation efforts where it really 

matters [14], and understanding invariants at the application level 

can also be a key to unlocking performance by avoiding 

coordination where we know we don’t need it [15]. Is this a 

realistic expectation though? And how could we assist developers 

in getting it right? 

Beyond correctness, there are other important components to 

developer experience too. Predictability is one. Can small changes 

to the application or data model have big impacts on performance? 

Is it easy to predict when this will happen or can a seemingly 

innocuous change catch you out? The ability to easily diagnose 

and debug problems is another. When an output isn’t what you 

expect, can you determine why? Can the provenance of data easily 

be captured and explained? 

I expect provenance to be an increasingly important concern for 

future data systems and applications, right alongside purpose, 

permission, and privacy. At point of capture we obtain consent to 

use data for a given purpose or purposes. We need to track 

provenance as we join, project, and aggregate, which informs the 

permissions we grant to see or use the results and to preserve 

privacy expectations. 

2.2 Operator Experience 
System design clearly has a big impact on operator experience too. 

How does the operational overhead scale as the system scales? 

Under what circumstances is operator intervention required? How 

many configuration parameters and parameter values does the 

system expose? Since parameter spaces can quickly become vast, 

it probably makes sense to compare these across systems on a log-

scale. Fewer is generally better. Does the system offer generally 

good performance across a broad sub-space of parameters, with 

predictable and gentle gradients as parameter values are changed? 

Or is tuning a dark art with sharp performance peaks and steep 

gradients? 

How do hotspots and failures propagate across the system, and 

how long does it take to recover from them? Gan et al.’s recently 

published microservices benchmark suite, DeathStarBench [16], 

illustrates nicely how architectural decisions, such as the way 

responsibilities are divided amongst distributed components, can 

impact this. Does a database system play nice when placed in a 

broader architectural context? Are tail latencies tightly bounded? 

Just like developers, when things go wrong operators value the 

ability to easily explain the observed behaviour and troubleshoot 

the system. 

3. STANDING UNDER THE 

STREETLIGHT 
The traditional story that gave its name to the streetlight effect 

goes as follows: 

A policeman sees a drunk man searching for something under a 

streetlight and asks what the drunk has lost. He says he lost his 

keys and they both look under the streetlight together. After a few 

minutes the policeman asks if he is sure he lost them here, and the 

drunk replies, no, and that he lost them in the park. The 

policeman asks why he is searching here, and the drunk replies, 

"this is where the light is." [6] 

A researcher is trying to build a better database system. A 

colleague comes along and asks where the big opportunities are. 

After the researcher explains, the colleague asks why therefore the 

researcher is focusing so hard on pushing the frontiers of 

performance. And the researcher replies, "this is where the 

spotlight is." 
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