
Couchbase Analytics:
NoETL for Scalable NoSQL Data Analysis

Murtadha Al Hubail1 Ali Alsuliman1 Michael Blow1

Michael Carey12 Dmitry Lychagin1 Ian Maxon12 Till Westmann1

1Couchbase, Inc. 2University of California, Irvine

mike.carey@couchbase.com

ABSTRACT
Couchbase Server is a highly scalable document-oriented database
management system. With a shared-nothing architecture, it exposes
a fast key-value store with a managed cache for sub-millisecond
data operations, indexing for fast queries, and a powerful query
engine for executing declarative SQL-like queries. Its Query Ser-
vice debuted several years ago and supports high volumes of low-
latency queries and updates for JSON documents. Its recently intro-
duced Analytics Service complements the Query Service. Couch-
base Analytics, the focus of this paper, supports complex analytical
queries (e.g., ad hoc joins and aggregations) over large collections
of JSON documents. This paper describes the Analytics Service
from the outside in, including its user model, its SQL++ based
query language, and its MPP-based storage and query processing
architecture. It also briefly touches on the relationship of Couch-
base Analytics to Apache AsterixDB, the open source Big Data
management system at the core of Couchbase Analytics.

PVLDB Reference Format:
Murtadha Al Hubail, Ali Alsuliman, Michael Blow, Michael Carey, Dmitry
Lychagin, Ian Maxon, and Till Westmann. Couchbase Analytics:
NoETL for Scalable NoSQL Data Analysis. PVLDB, 12(12): 2275-2286,
2019.
DOI: https://doi.org/10.14778/3352063.3352143

1. INTRODUCTION
It has been fifty years (yes, a full half-century!) since Ted Codd

changed the face of data management with the introduction of the
relational data model [12, 13]. His simple tabular view of data, re-
lated by values instead of by pointers, made it possible to design
declarative query languages to allow business application develop-
ers and business analysts to interact with their databases logically
rather than physically – specifying what, not how, they want. The
ensuing decades of research and industrial development brought
numerous innovations, including SQL, indexing, query optimiza-
tion, parallel query processing, data warehouses, and many other
features that are now taken for granted in today’s multibillion-dollar
database industry. The world of data and applications has changed,

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 12, No. 12
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3352063.3352143

Eventing DataQuery IndexingFull-Text
SearchAnalytics

Figure 1: Couchbase Server Overview

however, since the early days of mainframes and their attached ter-
minals.

Today’s mission-critical applications demand support for mil-
lions of interactions with end-users via the Web and mobile devices.
In contrast, traditional database systems were built for thousands of
users. Designed for strict consistency and data control, they tend to
lack agility, flexibility, and scalability. To handle a variety of use
cases, organizations today often end up deploying multiple types
of databases, resulting in a “database sprawl” that brings with it in-
efficiencies, slow times to market, poor customer experiences, and
for analytics, slow times to insight as well. This is where Couch-
base Server comes in – it aims to reduce the degree of database
sprawl and to reduce the mismatch between the applications’ view
of data and its persisted view, thereby enabling the players – from
application developers to DBAs and now data analysts as well – to
work with their data in its natural form. It adds the much-needed
agility, flexibility, and scalability while also retaining the benefits
of a logical view of data and SQL-like declarative queries.

2. COUCHBASE SERVER
Couchbase as a company was created through a merger of two

startups, Membase and CouchOne, in 2011. This brought two
technologies together: Membase Server, a distributed key-value
database based on memcached, and CouchDB, a single-node doc-
ument database supporting JSON. The goal of the merged com-
pany was to combine and build on the strengths of these two com-
plementary technologies and teams. Couchbase Server today is a
highly scalable document-oriented database management system
[5]. With a shared-nothing architecture, Couchbase Server exposes
a fast key-value store with a managed cache for sub-millisecond
data operations, secondary indexing for fast queries, and a high-
performance query engine (actually two complementary engines)
for executing declarative SQL-like N1QL∗ queries.

Figure 1 provides a high-level overview of Couchbase Server.
(Not included in the figure is Couchbase Mobile, which extends

∗Short for Non-1NF Query Language.

2275

Couchbase data platform to the edge, securely managing and sync-
ing data from any cloud to all edge devices.) Architecturally, the
system is organized as a set of services that are deployed and man-
aged as a whole on a Couchbase Server cluster. Physically, a clus-
ter consists of a group of interchangeable nodes that operate in a
peer-to-peer topology and the services running on each node can
be managed as required. Nodes can be added or removed through a
rebalance process that redistributes the data evenly across all nodes.
The addition or removal of nodes can also be used to increase or
decrease the CPU, memory, disk, or network capacity of a cluster.
This process is done online and requires no system downtime. The
ability to dynamically scale the cluster capacity and individually
map services to sets of nodes is sometimes referred to as Multi-
Dimensional Scaling (MDS).

An important aspect of the Couchbase Server architecture is how
data mutations are communicated across services. Mutation coor-
dination is done via an internal Couchbase Server protocol, called
the Database Change Protocol (DCP), that keeps components in
sync by notifying them of all mutations to documents managed by
the Data Service. The Data Service in Figure 1 is the producer of
such mutation notifications, with the other services participating as
DCP listeners.

The Couchbase Data Service provides the foundation for doc-
ument management. It is based on a memory-first, asynchronous
architecture that provides the core capabilities of caching, data per-
sistence, and inter-node replication. The document data model for
Couchbase Server is JSON [17], a flexible, self-describing data for-
mat capable of representing rich structures and relationships. Doc-
uments are stored in containers called buckets. A bucket is a logical
collection of related documents in Couchbase, similar to a database
or a schema in a relational database. It is a unique key space and
documents can be accessed using a (user-provided) document ID
much as one would use a primary key for lookups in an RDBMS.

Unlike a traditional RDBMS, the “schema” for documents in
Couchbase Server is a logical construct defined based on the appli-
cation code and captured in the structure of the stored documents.
Since there is no explicitly defined schema to be maintained, de-
velopers can add new objects and properties at any time simply by
deploying new application code that stores new JSON data without
having to also make and deploy corresponding changes to a static
schema. This provides significant agility, allowing modern appli-
cations to evolve quickly and seamlessly.

The Indexing, Full-Text Search, and Query Services shown in
Figure 1 coordinate through DCP to provide highly performant,
user-facing document database management functionality, support-
ing high volumes of low-latency queries and updates for JSON doc-
uments. The Indexing Service provides scalable global secondary
indexing for the data managed by the Data Service, and the Full-
Text Search service extends Couchbase Server’s indexing capabil-
ities to include rich text indexing and search (plus a set of APIs
for search-oriented applications that prefer to interact with this ser-
vice directly). The Query Service ties this all together by exposing
Couchbase Server’s database functionality through N1QL, a declar-
ative, SQL-based query language that relaxes the rigid 1NF and
strongly-typed schema demands of the relational SQL language
standard.

Two recently introduced services also appear in Figure 1. One is
the Eventing Service, a framework that application developers can
use to respond to data changes in a Couchbase cluster in real time.
The Eventing Service provides an Event-Condition-Action based
model for invoking functions registered by applications. Last but
not least, particularly for this paper, is the Analytics Service, which
was first introduced in Couchbase Server 6.0 in late 2018.

3. COUCHBASE ANALYTICS SERVICE
The Couchbase Analytics Service complements the Query Ser-

vice by providing support for complex and potentially expensive
ad-hoc analytical queries (e.g., large joins and aggregations) over
collections of JSON documents.† Figure 2 provides a high-level
illustration of the role that the Analytics Service plays in Couch-
base Server. The Data Service and the Query Service provide user-
facing applications with low-latency key-value and/or query-based
access to their data. The design point for these services is a large
number of users making relatively small, inexpensive requests. In
contrast, the Analytics Service is designed to support a much smaller
number of users posing much larger, more expensive N1QL queries
against a real-time shadowed copy of the same JSON data.

The technical objectives of Figure 2’s approach are similar to
those of Gartner’s HTAP concept for hybrid workloads [15]: Data
doesn’t have to be copied from operational databases to data ware-
houses before analysis can commence, operational data is readily
available for analytics as soon as it is created, and analyses always
utilize fresh application data. This minimizes the time to insight
for application and data analysts by allowing them to immediately
pose questions against their operational data in terms of its natu-
ral data model. This is in contrast to traditional architectures [11]
that, even today, involve warehouse schema design and mainte-
nance, periodically-executed ETL (extract-transform-load) scripts
to copy and reformat data into its “analysis home” before being
queried, and the understanding of a second/different data model in
order to perform analyses on the warehouse’s rendition of the ap-
plication data. Like HTAP, this reduces the time to insight from
days or hours to seconds.

The next two sections of the paper will drill down, respectively,
on the Analytics Service’s user model and internal technology. Be-
fore proceeding, however, it is worth noting several differences
between Couchbase Server’s NoSQL model and architecture and
“traditional HTAP” in the relational world. One relates to scale:
Like all of the services in Couchbase Server, the Analytics Service
is designed to scale out horizontally on a shared-nothing cluster.
Also like other Couchbase Server services, it can be scaled inde-
pendently, as Figure 2 shows. The Analytics Service maintains a
real-time shadow copy of the operational data that the enterprise
wants to have available for analysis; the copy is because Analytics
should be run on disjoint nodes of a Couchbase cluster in order to
ensure performance isolation between the enterprises’s operational
and analytical workloads. The other difference relates to technol-
ogy: Because of the intended scale, Couchbase Analytics is not an
in-memory solution; it is designed for processing large amounts of
NoSQL document data, documents whose individual value would
not warrant an expensive memory-resident solution, but whose ag-
gregated content is still invaluable for decision-making.

4. ANALYTICS USER VIEW
As described in Section 2, Couchbase Server’s document data

model is JSON. This means that its data objects are self-describing
and that they can be nested and/or type-variant from object to ob-
ject. To enable declarative querying over collections of such JSON
objects, the Analytics Service provides N1QL, specifically N1QL
for Analytics‡ [20]. For the remainder of the paper we will just use

†For planned analytical queries, e.g., daily reports, another option
in Couchbase Server is to create a covering index for such queries.
This amounts to a materialized view approach.
‡There are minor differences between N1QL for Query, which the
Query Service supports, and N1QL for Analytics. These differ-
ences have been shrinking over time and will continue to do so.

2276

Data Analytics

Users AnalystsDCP

Figure 2: Bringing hybrid workloads to NoSQL

N1QL to refer to the query language. N1QL is based on SQL++
[10], a generalization of SQL for non-1NF and potentially schema-
less data that was designed by researchers at UC San Diego [22].
In this section of the paper we will look in more detail at the impact
of JSON as a data model and the way that its semistructured nature
is addressed by N1QL. We will also see how little effort it takes to
make data available through the Analytics Service in a Couchbase
cluster.

4.1 Getting data flowing (no ETL)
CREATE DATASET customers ON salesbucket

WHERE ‘type‘ = "customer";
CREATE DATASET orders ON salesbucket

WHERE ‘type‘ = "order";
CONNECT LINK Local;

Query 1: Setup DDL (No ETL!)

The Couchbase Data Service, as mentioned earlier, currently
provides the notion of a bucket as the container for storing and ac-
cessing documents. The Analytics Service offers more fine-grained
control; its universe of data is divided into dataverses, and each
dataverse can contain any number of datasets for managing its doc-
uments. A default dataverse is provided for applications that do not
feel a need to have more than one namespace to organize their data.

Query 1 shows N1QL DDL statements that arrange for the cus-
tomer and order documents residing in a Data Service bucket named
salesbucket to be available, respectively, in two Analytics datasets
named customers and orders in the default dataverse. To make the
world friendlier for analysts, these statements choose to route docu-
ments that have a type field containing the value "customer" to the
dataset named customers, similarly routing the "order" typed ob-
jects to the orders dataset. (Such routing is optional; one can sim-
ply route all data in a Data Service bucket to a single dataset in the
Analytics Service if desired.) The CONNECT LINK statement, once
issued, initiates the shadowing of data – the relevant Data Service
data will then flow into the Analytics Service, as will all subsequent
changes to that data. No ETL is required – and in the steady state,
the data content in these two Analytics Service shadow datasets
will track the corresponding Data Service data in real time.

4.2 N1QL

4.2.1 Data model: NoSQL vs. SQL
Data Examples 1 and 2 show some examples of what typical

JSON data looks like and thus how it differs from SQL data. The
customer objects in Data Example 1 contain a nested object address

{
"custid":"C37",
"name":"T. Hanks",
"address":{
"street":"120 Harbor Blvd.",
"city":"Boston, MA",
"zipcode":"02115"

},
"rating":750

}
...

{
"custid":"C47",
"name":"S. Lauren",
"address":{
"street":"17 Rue d’Antibes",
"city":"Cannes, France"

},
"rating":625

}

Data Example 1: Customers

{
"orderno":1004,
"custid":"C35",
"order_date":"2017-07-10",
"ship_date":"2017-07-15",
"items":[
{
"itemno":680,
"qty":6,
"price":9.99

},
{
"itemno":195,
"qty":4,
"price":35.00

}
]

}
...

{
"orderno":1008,
"custid":"C13",
"order_date":"2017-10-13",
"items":[
{
"itemno":460,
"qty":20,
"price":99.99

}
]

}

Data Example 2: Orders

and the fields of this object are different in the two customer in-
stances shown; the foreign customer’s address has no zipcode field.
The order objects in Data Example 2 contain a nested array of ob-
jects items so orders are decidedly non-1NF in nature. They also
have field differences; one of the objects has a ship_date field,
while that field is missing in the other object. In a normalized or
“flat” relational schema, items would require their own table, linked
by value back to their containing orders, and any field differences
between customer or order instances would require pre-declaration
of all possible fields with NULL ALLOWED annotations. If it were de-
cided that an application needed to add additional fields, this would
require a schema change in the relational world as well as a change
in any downstream ETL scripts. With this background, we can now
look in more depth at the query side of N1QL.

4.2.2 SQL-based query basics
N1QL, with its basis in SQL++, is a thoughtful, semistructured

generalization of standard relational SQL. As such, its design seeks

2277

to match SQL to the extent possible for “flat”, regular data, differ-
ing only where necessary due to the lack of a predefined schema or
due to JSON’s more general data model and its support for nested
objects and collection-valued fields. Query 2 shows an example of
a standard SQL query that is also a N1QL query. This query counts
the orders from customers with a rating of over 500 by order_date,
printing the results for those dates having at least one order — and
its N1QL and SQL versions are identical. This makes it relatively
easy for an analyst familiar with SQL-based data analysis to con-
duct the same sorts of analyses on their Couchbase NoSQL data.

SELECT o.order_date, count(*) AS cnt
FROM orders o, customers c
WHERE o.custid = c.custid
AND c.rating > 500

GROUP BY o.order_date
HAVING count(*) > 0
ORDER BY o.order_date DESC
LIMIT 3;

Query 2: Standard SQL Query

4.2.3 Missing information
One area where the relational world and the JSON world begin

to diverge is in regards to their handling of missing information.
As mentioned earlier, SQL requires all of the fields of all of its
tables to be declared. If information can be missing, this possibility
must be anticipated, and the relevant fields must be declared as
NULL ALLOWED fields. JSON is both more forgiving and a bit more
complicated – depending on the desire of an application developer,
a field may be either null-valued (NULL, as in SQL) or altogether
absent (MISSING). Because both are possible in JSON, both must
be supported and discernable in N1QL.

To address JSON’s more diverse notion of missing information,
N1QL supports a four-valued logic [10] rather than the three-valued
logic of SQL, and it includes IS MISSING as well as IS NULL among
its missing-value-testing predicates. It also supports IS UNKNOWN,
which covers both possibilities at once. The WHERE clause in Query
3 illustrates how this might be put to good use for our example data;
it prints the order number, customer id, order date, and number of
ordered items for those orders whose ship_date is missing. (It also
illustrates another beyond-SQL feature of N1QL, namely the avail-
ability of functions to compute simple aggregates on set-valued ar-
guments, such as the array_count function in this example.)

SELECT o.orderno, o.custid, o.order_date,
array_count(o.items) AS size

FROM orders o
WHERE o.ship_date IS MISSING

Query 3: Missing Information

4.2.4 Nesting data...
A major difference between the worlds of SQL and JSON is the

nesting of data allowed by JSON. N1QL thus supports the con-
struction of JSON objects that are nested in nature. Query 4 illus-
trates one of the ways in which this can be done. This query iden-
tifies customers with an address that has a zipcode field with value
"02116" (note the path expression to traverse nested objects) – and
for each one, it forms a new object with a field CustomerName that
has their name and a second, array-valued field Orders that contains
their order numbers, populated via a subquery. The VALUE keyword
in the outermost query requests that the SELECT results be JSON
values (vs. objects), but the query then illustrates the use of an ex-
plicit JSON object constructor to form the desired object for each

qualifying customer. (Saying SELECT and omitting VALUE and the
curly-bracketed constructor syntax would have led to an equivalent
query result.) The VALUE keyword in the inner subquery requests
that the results that it returns for each customer to be an array of
the primitive orderno values matching the customer rather than an
array of objects with "orderno" fields containing those values. In
SQL, the query results are always records; with JSON, however,
SQL++ queries can return primitives, arrays (or multisets§), or ob-
jects [22].

SELECT VALUE {
"CustomerName":c.name,
"Orders":(SELECT VALUE o.orderno FROM orders AS o

WHERE o.custid = c.custid)
}
FROM customers AS c
WHERE c.address.zipcode = "02115";

Query 4: Forming Nested Data

4.2.5 ... and unnesting data
Like “what goes up, must come down” in the physical world,

the NoSQL world has “what can be nested must be unnested.” To
analyze and manipulate nested data, such as orders with their con-
tained items, N1QL supports the UNNESTing of nested data. This
is illustrated in the next query, Query 5. This query produces a
list of objects with fields orderno, order_date, item_number, and
quantity, with an object in its result for each item and for each
order where the order item has a quantity greater than 100 in the
containing order. The unnesting of items is expressed via the FROM

clause in the query. Saying “... FROM orders AS o, o.items AS i ...”
leads to one binding of the query variables o and i for each order
and its WHERE-qualifying items. The FROM clause items in a N1QL
query are correlated left to right, so o.items refers to the items
in each qualifying order o. An equivalent FROM clause based on a
more explicit syntax, akin to SQL’s explicit JOIN syntax, is also
supported, and in this example it would read: “... FROM orders AS

o UNNEST o.items AS i ...”.

SELECT o.orderno,
o.order_date,
i.itemno AS item_number,
i.qty AS quantity

FROM orders AS o, o.items AS i
WHERE i.qty > 100
ORDER BY o.orderno, item_number;

Query 5: Unnesting Nested Data

4.2.6 Grouping and aggregation
For data analysis, grouping and aggregation are key pieces of the

query language puzzle. In SQL, groups of tuples actually lie out-
side the (flat) relational data model, making it difficult to explain
the GROUP BY construct and its restrictions and semantics to new-
comers to the language. In contrast, in the NoSQL world, nested
JSON data and nested collections in particular are supported and
very natural. As a result, grouping and aggregation are separate
concepts and thus separate capabilities in N1QL. This aspect of the

§A multiset is an unordered collection, whereas an array is ordered.
Internally, the SQL++ data model is at work, supporting both, only
retaining order when the input is an ordered array or the query in-
volves the use of ORDER BY. When serializing results in JSON
form, however, multisets are converted to arrays since JSON lacks
the unordered collection concept.

2278

language is treated in some depth in [10], and it is most easily il-
lustrated here via an example. Query 6 and its corresponding query
result in Data Example 3 show some of the language’s power in this
regard. For each matching customer/order pair, this query groups
the pairs by customer city – but instead of just aggregating (e.g.,
counting orders by city) as would be necessary in SQL, this query
uses a GROUP AS clause to return the groups themselves. It names
the group field g, returning result objects with two fields, city and
g, for each city. Each group’s value is a collection of objects with
a pair of fields – c and o – that are named after the corresponding
FROM-clause variables in the query.

In N1QL, thanks to its ability to handle nested data, the aggre-
gates themselves are just regular functions – as opposed to requir-
ing the use of a difficult-to-explain magic SQL syntax and a special
notion of “aggregate functions”. An example is the array_count

function used in Query 3. N1QL has one array_xxx function for
each of the SQL aggregates, and as arguments each one takes an ar-
ray (or multiset) of values and performs the indicated aggregation,
as illustrated in that earlier example. (The SQL syntax shown in
Query 2 is supported for convenience and familiarity; internally it is
rewritten by the N1QL engine into its more explicit native NoSQL
form.)

SELECT c.address.city, g
FROM customers AS c, orders AS o
WHERE c.custid = o.custid
GROUP BY c.address.city GROUP AS g;

Query 6: Grouping and Nesting

[
{

"city": "Boston, MA",
"g": [{

"c": {
"address": { "city": "Boston, MA", },
"custid": "C35", "name": "J. Roberts",
"rating": 565

},
"o": {
"custid": "C35",
"items": [

{ "itemno": 680, "price": 9.99, "qty": 6 },
{ "itemno": 195, "price": 35, "qty": 4 }],

"order_date": "2017-07-10", "orderno": 1004,
"ship_date": "2017-07-15"

}
},
{

"c": {
"address": { "city": "Boston, MA", },
"custid": "C37", "name": "T. Hanks",
"rating": 750

},
"o": {
"custid": "C37",
"items": [

{ "itemno": 460, "price": 99.98, "qty": 2 },
{ "itemno": 347, "price": 22, "qty": 120 },
{ "itemno": 780, "price": 1500, "qty": 1 },
{ "itemno": 375, "price": 149.98, "qty": 2 }

],
"order_date": "2017-08-30", "orderno": 1005

}
}

]
},
. . .

]

Data Example 3: Grouping Query Result

4.2.7 WINDOWed analytics
Analytical window functions are an advanced feature of the SQL

language that will be supported in the next release of Couchbase
Analytics. As in SQL, the OVER clause associated with a function
call defines how the input data is partitioned, ordered, and how win-
dow frames are computed. The specified function is then evaluated
over the input dataset and produces one output value for each in-
put item in each partition. Unlike SQL, in N1QL, window function
calls can appear not only in SELECT and ORDER BY clauses, but also
in other clauses such as WHERE, HAVING and LET clauses. This is
possible due to SQL++ semantics that specify that each clause con-
sumes and produces a bag of binding tuples. As a result, a window
function is simply computed on the binding tuples that are input to
the clause containing the function call irrespective of the clause’s
kind. SQL aggregate functions that appear in window function calls
are rewritten into their explicit array_* forms in a manner similar
to SQL++’s GROUP BY processing. An example of window function
use appears in Query 7. This query lists the names of customers
that are in the top quarter, by rating, in their zip codes. The quarter
number is computed by calling the ntile window function, which
receives data partitioned by the zipcode field and ordered by de-
scending rating values within those partitions.

SELECT c.name
FROM customers AS c
WHERE ntile(4) OVER (PARTITION BY c.address.zipcode
ORDER BY c.rating DESC) = 1;

Query 7: Window Query

5. ANALYTICS UNDER THE HOOD
The design goal for the Couchbase Analytics Service is to sup-

port a (modest) number of data analysts concurrently posing com-
plex N1QL queries against the operational data model in order to
gain fast insights into key aspects of their business. In addition, the
Analytics Service design aims to provide linear scale-up and speed-
up so that analysts can linearly boost the data handling capability of
the service and/or its query performance by incrementally adding
more nodes to the Analytics portion of their Couchbase Server clus-
ter. In this section of the paper we take a look under the hood to see
how the architecture of Couchbase Analytics addresses the result-
ing requirements.

5.1 Architecture
Figure 3 depicts the shared-nothing architecture of the Couch-

base Analytics Service. Working bottom up, each node in the An-
alytics portion of a Couchbase cluster has its own locally-attached
storage, and each of its datasets is hash-partitioned (sharded) across
the cluster by key. The underlying storage technology used for
Analytics datasets and indexes is based on LSM (Log-structured
merge) B+ trees [21].

Moving up a level, each node runs an instance of Hyracks [7],
a dataflow query engine designed to coordinate the execution of
parallel queries. Each node also has a DCP listener that listens for
operational data mutations from the Data Service and reflects them
in Analytics’ shadow datasets. The Data Service is currently the
source of all Analytics-resident data, as the Analytics Service con-
tains only those datasets and indexes needed to support the perfor-
mance-isolated parallel query processing that enables it to deliver
on its complex query promises.

Moving up another level, each node also runs an instance of the
Analytics Service’s HTTP-based client interface, accepting incom-
ing requests and directing them to one of the nodes in the Analytics

2279

Query Compiler

Client Interface

Metadata Manager

Hyracks Dataflow Engine

Dataset Storage

LSM Tree Manager (B+ Tree Based)

Cluster Controller

DCP

Query Compiler

Client Interface

Metadata Manager

Hyracks Dataflow Engine

Dataset Storage

LSM Tree Manager (B+ Tree Based)

Cluster Controller

DCP

N1QL for Analytics (SQL++) queriesData Service (via DCP)

Figure 3: High-Level Architecture

subcluster that is designated as the current cluster controller. Its
responsibilities include keeping watch on the overall state of the
running and waiting queries, implementing admission control, and
monitoring their resource consumption and progress. Another re-
sponsibility is to run an instance of the N1QL query compiler. Any
node can potentially take on this role, as indicated by the (light
gray) presence of the components fulfilling these reponsibilities on
other nodes in the figure. In addition, one node is designated as
the Metadata Manager and maintains the Analytics Service’s sys-
tem catalogs (which have backup replicas on all nodes in order to
prevent metadata loss in the event of a failure). All of the service’s
dataverses, datasets, indexes, data types, functions, and other arti-
facts are catalogued in its metadata datasets.

Moving to the top of Figure 3, we find two main connection
points to the Analytics Service. One connection is from the Data
Service via DCP, as discussed above. The other is the HTTP-based
query API itself, the API through which new analytical queries ar-
rive and their results are returned to the requesting clients.

5.2 Data Ingestion and Storage
In this section we describe where Analytics Service data comes

from and how it is stored and managed on arrival.

5.2.1 Incoming! (DCP)
As mentioned earlier, any mutation that happens to an object in

the Data Service must be propagated to all other services in the
system that need to know. Couchbase Server’s DCP protocol keeps
all of the different components in sync and can move data between
the components at high speed. DCP lies at the heart of Couchbase
Server and supports its memory-first architecture by decoupling po-
tential I/O bottlenecks from many critical functions. Each node
running the Analytics Service includes a DCP listener that mon-
itors the DCP stream for relevant changes and keeps its shadow
datasets up to date. As Figure 2 indicated, this is a parallel ac-
tivity, with all Analytics nodes potentially receiving DCP events
from any Data Service node since they reside on different nodes
and are independently sharded across their respective Couchbase
Server subclusters.

Since the Analytics Service shadows the Data Service for con-
tent, DCP is also the fallback in the event of a failure that impacts
a dataset. When such a failure occurs, the Analytics Service is able

to use DCP to re-request the required data from the Data Service.
DCP can also help applications to ensure that the data that they
read is sufficiently current, as a client can optionally request that
its query proceed to execution only when the content of its target
datasets are caught up to the point on the Data Service DCP time-
line when their query was submitted.

5.2.2 Storage and Indexing
The top of figure 4 shows how data is distributed across the Ana-

lytics Service’s subcluster. An Analytics node can have one or more
storage partitions, and by default, each storage partition holds one
logical (hashed) partition of each dataset. Zooming in further, each
dataset consists of a primary index whose structure is based on an
LSM B+ tree [21, 19] variant that stores the dataset’s documents
indexed by key. A dataset’s LSM primary index is made up of mul-
tiple components, including an in-memory component (the leftmost
component in the figure) – where new objects (or delete operations)
are first stored and then later flushed as a new disk component – and
a time-ordered series of disk components. Each disk component is
immutable and has an associated Bloom filter to help prevent un-
necessary component searches for a given key. Non-point queries
must search all components, so disk components are periodically
merged according to a merge policy to form fewer larger compo-
nents to make such queries less expensive [1].

In addition to the primary index, a dataset can have zero or more
associated secondary indexes, as Figure 4 indicates. The Analyt-
ics Service uses a local indexing strategy, so each secondary index
is co-partitioned with its primary index – all secondary index en-
tries refer (by key) to locally stored primary objects. In general, a
secondary index can be built on any field(s) of a dataset’s objects.
Also available, as indicated in the figure, is the option to create a
primary key index, essentially just an indexed list of the keys in the
dataset, to accelerate certain operations (such as COUNT(*) queries
and key presence checks). Transaction support in the Analytics
Service is currently object-level; thanks to the use of local index-
ing, secondary index entries are kept transactionally consistent with
the referenced objects in the primary index.

5.2.3 Compression
When dealing with very large volumes of data, complex queries

can be I/O-bound depending on what they do and on their corre-

2280

Node 1 Node n…

Dataset

0101100

Secondary Index
on Name

Primary Key Index

Primary Index

Secondary Index
on Zipcode

1101100
0111001

Figure 4: Datasets and Indexes

sponding CPU-intensity. In the I/O-bound case, reducing the on-
disk footprint of a dataset’s primary index can significantly improve
query performance. To this end, the next release of the Analytics
Service will include support for data compression. To minimize the
code impact of compression on the rest of the system, compression
occurs at the page level, and data in the system’s buffer cache is
compressed as it is being flushed or merged but is uncompressed
when it is read into the buffer cache and thus when it is being oper-
ated on by the various physical query operators.

5.3 Local Big Data operators
From the very beginning, the Analytics query engine has aimed

to support “Big Data” – data whose per-node volume exceeds, pos-
sibly by a large margin, the cluster’s per-node memory resources.
All of the engine’s operators for performing selections, joins, sort-
ing, grouping, and windowing are designed to work strictly within
a compiler-allotted memory budget and to spill portions of data
dynamically to and from disk if/as needed during their evaluation
on large operands. More details on exactly how this works for each
memory-intensive operator can be found in [18]; we provide a brief
summary here for the key operators.

5.3.1 Selections
Queries involving selections are sent to all nodes for evaluation

on their partitions of the target dataset. Local evaluation can involve
either a full primary dataset scan or the use of one or more indexes.
Secondary indexes map secondary keys (e.g., customer.rating) to
primary keys; when a secondary index is utilized, it is searched and
then the resulting primary keys are sorted before being used to lo-
cally retrieve the target objects in order to reduce the number of

I/Os needed for their retrieval. If several indexes match a query, the
optimizer will engage them all and intersect the resulting primary
key lists to identify candidates that satisfy all of the indexed con-
ditions. (These behaviors can also be influenced with hints in the
event that an especially knowledgeable user wants to discourage
the use of a particular index for their query.)

5.3.2 Joins
The Analytics Service currently supports three of the classic lo-

cal join methods: a dynamic variant of hybrid hash join [23], index
nested-loop join, and block nested-loop join. The dynamic hash
join algorithm is the algorithm of choice by default for equality-
based joins, as it has good/stable cost characteristics when joining
large volumes of data (as is expected to occur in many Analytics use
cases). In the event that its “build”-side input data fits in memory,
it behaves like an in-memory hash join, and if not, it spills some
of the build input and corresponding “probe”-side objects to disk
for later joining [18]. For non-equality joins, the join method cho-
sen will be block nested-loop. Both dynamic hash join and block
nested-loop join operate strictly within their given operator mem-
ory budgets; they will use as much of the given memory as possible
to execute the join efficiently, but will not exceed their given allo-
cation. Also available, and accessible via a query hint, is an index
nested-loop method (which is not memory-intensive) for use when
one side of a given equi-join is known to be small and the other side
is indexed on one or more of the join field(s).

5.3.3 External sorting
Local sort operations in Couchbase Analytics are performed us-

ing a mostly traditional external sort algorithm in which input is
incrementally read, the allocated memory budget is filled with in-
coming objects, and the memory-load of objects (actually point-
ers to them) are sorted in memory and streamed to form a sorted
runfile [18]. If the input is sufficiently small, an in-memory sort
results; otherwise this run formation process is repeated until the
input stream is exhausted, and is then followed by a merge phase
where a multi-way merge of sorted runs (using as much of the
memory budget as needed) is performed (possibly recursively, for
very large data) to compute the final sorted output. In the event that
a query includes a LIMIT clause, the N1QL optimizer will attempt
to push the LIMIT operation into the sort (which yields tremendous
savings for top-K queries when K is small).

5.3.4 Grouped aggregation
Couchbase Analytics supports two algorithms for grouped ag-

gregation, hash-based and pre-sorted. To evaluate a grouped ag-
gregate, Analytics by default will choose a generally robust pre-
sorted strategy wherein the input data is first sorted on the group-
ing field(s) and then the aggregation can proceed in constant mem-
ory, outputting each group result when it encounters the first object
outside the currently active group. Also available, via a hint, is a
hash-based strategy that works particularly well for low-cardinality
grouping fields. The latter strategy is roughly similar to dynamic
hash join in its behavior with respect to memory use and handling
of large inputs; more details can again be found in [18].

5.3.5 Presorted windowing
Local window function evaluation in the Analytics query engine

is performed by a window operator that is able to evaluate one or
more window functions at a time. The query compiler determines
which functions can be evaluated by the same window operator and
which would require a separate operator based on their window
specifications. Each window operator expects to receive its input

2281

clustered according to the PARTITION BY sub-clause, with each par-
tition sorted as specified by the ORDER BY sub-clause of the OVER

clause. These requirements are satisfied by the query compiler, as
it inserts sort operations whenever necessary. A window operator’s
execution proceeds by identifying window partitions and comput-
ing a window frame for each item in each partition; it then evaluates
a window function on the frame. Some window functions, such as
row_number(), do not operate on window frames and are instead
evaluated as running aggregates on every item in each partition. As
with the other memory-intensive operators, the window operator
works within the memory budget given to it by the query compiler,
so if a window function or a frame specification requires partition
materialization, the partition data is kept in memory but spilled to
disk if necessary.

5.4 Parallel query processing
To handle complex analytics queries efficiently, and to deliver

the desired scale-up and speed-up properties, the Analytics Service
employs the same kinds of state-of-the-art, shared-nothing MPP
(massively parallel processing) based query processing strategies
[14] found in traditional parallel relational database products (e.g.,
Teradata, DB2 Parallel Edition, or Microsoft PDW). The Analytics
query processing stack has adapted these time-tested partitioned-
parallel query execution strategies to operate over NoSQL data. In
what follows we will look in more detail at some of the relevant
strategies.

5.4.1 Query optimization
To process a given request from an analyst, the Analytics Ser-

vice takes in their N1QL query and converts it into an expression
tree that is then handed to the system’s SQL++ query optimizer.
This optimizer is based on rule-based optimization technology de-
scribed in [6], wherein each query is turned into an Algebricks al-
gebraic program – including traditional relational algebra-like op-
erators as well as extensions to deal with semistructured and nested
data – that is then optimized via algebraic rewrite rules that reorder
the Algebricks operators and introduce partitioned parallelism for
scalable execution. On the parallelism front, the optimizer was
strongly influenced by the recent work reported in [9], which in-
troduced a formal framework for keeping track of how data is par-
titioned, grouped, and ordered, both locally and globally; this helps
the optimizer to not move (repartition) data that is already appropri-
ately partitioned for a given operation. After logical and physical
optimization, a code generation phase translates the resulting phys-
ical query plan into a corresponding Hyracks job that is handed to
Hyracks to compute the desired query result.

While the detailed workings of the SQL++ query optimizer are
outside the scope of this paper, some of its attributes are worthy of
calling out here. The Algebricks layer receives a translated logical
SQL++ query plan from the upper layer and performs rule-based
optimizations. A given rule can be assigned to multiple rule sets;
based on the configuration of a rule set, each rule set can be ap-
plied repeatedly until no rule in the set can further transform the
plan. For logical plan transformation, there are currently 10 rule
sets and 111 rules (including multiple assignments of a rule to dif-
ferent rule sets). After performing logical optimization, the physi-
cal optimization phase of Algebricks selects the physical operators
for each logical operator in the plan. For example, for a logical join
operator, a dynamic hash join or block nested-loop join can be cho-
sen based on the join predicate. There are 3 rule sets and 38 rules
involved in the physical optimization phase. After the physical op-
timization process is done, the Algebricks layer generates the job
to be executed by the Hyracks layer.

5.4.2 Parallel selection
To process a single-dataset selection query, the Analytics service

utilizes the power of its sub-cluster in an “embarrassingly parallel”
manner. Indexes are local so, as discussed earlier, each partition is
able to compute its contribution to the result in parallel on its subset
of the relevant data using the local selection algorithm described
in the preceding section. When these parallel searches (or dataset
partition scans, in the absence of any applicable secondary indexes)
complete on all partitions, the overall query result can be returned
to the user by concatenating the results from each partition.

5.4.3 Parallel grouping
The Analytics Service employs a partitioned-parallel processing

strategy to evaluate grouped aggregation queries. For such a query,
e.g., to count the number of customers by city, the overall result
is computed via a local step followed by a global step [16]. For
the local step, each partition is tasked with computing the answer
to the aggregation problem over its partition’s subset of the data
using one of the local algorithms described in the previous section
of the paper. In our example, each partition then knows the count
of its subset of customers grouped by city. These partial results are
then rehashed across the cluster based on the grouping field(s), so
each partition involved in processing the query receives all of the
partial results for the groups that hash to it. Each partition can then
perform another local aggregation on these incoming partial results
to compute the final result per group. In our example, this would
involve summing the incoming customer counts for each city-based
group. After this step, the overall query result can be returned to
the user by concatenating the results from each partition.

5.4.4 Parallel sorting
The Analytics Service employs a partitioned-parallel processing

strategy for sorting data as well. In the current release of the sys-
tem, each partition is tasked with sorting its subset of the data and
passing it on to a designated single partition whose job is to merge
the results of these parallel sub-sorts. The next release of the sys-
tem will include an improved parallel sorting strategy in which the
data being sorted is first re-partitioned based on contiguous ranges
of the sorting key(s); each partition then sorts its assigned subset of
the data, and the overall query result is the ordered concatenation
of the results from each partition. The ranges are determined in a
preliminary phase of the algorithm wherein each participant first
saves its input while sampling the keys to compute a histogram of
their distribution, and the resulting histograms are combined to de-
termine the desired ranges for partitioning the data [2]. The saved
inputs are then range partitioned and sorted as just described.

5.4.5 Parallel joins
The Analytics Service uses the classic partitioned-parallel hash

join strategy to parallelize the execution of an equi-join – depicted
in Figure 5(a). Assuming the join’s input data is not partitioned in
a useful way, the algorithm redistributes the data by hashing both
inputs on the join key(s) – thereby ensuring that objects that should
be joined will be routed to the same partition for processing – and
then effects the join using the dynamic hash join described in the
previous section. In slightly more detail, the “build” side of the
join is first re-partitioned and fed over the network into the build
step of a local hash join; each partition will then have some portion
(perhaps all) of the to-be-joined build input data in memory, with
the rest (if any) in overflow partitions on disk. The “probe” side
of the join is then re-partitioned similarly, thus creating a pipelined
parallel orchestration of a dynamic hash join. In the event that one
of the inputs is already partitioned on the join key(s), e.g., because

2282

R S

R1
S1

R2
S2

R

R1 R2

S

S1 S2

SR

S1
R1 R2

S2

(a) Parallel Hash Join (b) Broadcast Join (c) Nested-loop Index Join

Figure 5: Parallel Join Strategies

the join is a key/foreign key join, re-partitioning is skipped (unnec-
essary) for that input and communication is saved.

While this parallel hash join strategy is robust, the Analytics Ser-
vice makes two other strategies available (via optional query hints)
to handle two special cases that can arise, performance-wise. One
is referred to as a broadcast join (Figure 5 (b)); this strategy em-
ploys a local dynamic hash join where one of the inputs (ideally a
small one) is broadcast – replicated, that is – to all partitions of the
other input. The broadcast input is used as the build input to the
join, and once the build phase is done the participating partitions
can each probe their local (full) copy of the other input in order
to effect the join. The other alternative is referred to as a nested-
loop index join (Figure 5 (c)), and it is the parallelization of the
local nested-loop index join described earlier. In this join method,
one of the inputs is broadcast (replicated) to all of the partitions of
the other input, which for this strategy must be a base dataset with
an index on the join key(s); as the broadcast objects arrive at each
partition they are used to immediately probe the index of the other
(often called “inner”) dataset.

In the case of a non-equi-join, the system uses a broadcast-based
version of the local block nested-loop algorithm described earlier.
In this case, one of the join inputs is broadcast and temp’ed upon
receipt by the participating partitions. Each participating partition
then uses the local block nested-loop algorithm in order to effect its
portion of the overall nested-loop join.

In all cases, regardless of the communication pattern and local
join method, the overall join result can then be returned to the user
by simply concatenating the join results from each partition.

5.4.6 Parallel windowing
Window operators are also evaluated in a partition-parallel fash-

ion by the Analytics Service. Similar to GROUP BY, a window opera-
tor’s input data is re-partitioned into independent computation par-
titions as specified by the PARTITION BY sub-clause. Each resulting
computation partition receives one or more window partitions that
are then locally sorted and processed according to the local mecha-
nism described earlier. As with other operators, the re-partitioning
and local sorting is only performed if necessary (i.e., if the data
isn’t already appropriately partitioned and/or ordered).

5.5 Memory and workload management
As indicated in the description of its local Big Data operators,

the Analytics Service is careful about its use of memory and also
about its degree of concurrent commitment of both memory and
CPU resources.

5.5.1 Memory categories and budgeting
There are three main regions of main memory used and managed

by the Analytics Service. These include in-memory component

Total
CPU

Total
Mem

Total
CPU

Total
Mem

… …

…

… Stage p,0

Activity p,0,1 Mem

Activity p,0,0

+
CPU

Mem

max

CPU

Stage p,m Activity p,m,0 Mem CPU

maxmax

Stage 0,0

Activity 0,0,1 Mem

Activity 0,0,0

+
CPU

Mem

max

CPU

Stage 0,m Activity 0,m,0 Mem CPU

maxmax

Partition 0 Partition p

Figure 6: Resource-Based Admission Control

memory for datasets, a fairly traditional buffer cache, and working
memory for the runtime system’s memory-intensive operators.

The in-memory component region holds the results of recent
DML operations on currently active datasets. The amount of mem-
ory used for this purpose is controlled by a budget parameter that
specifies the maximum amount of such memory that a dataset, in-
cluding its primary index and any additional indexes, can occupy.
When the in-memory component occupancy of a dataset reaches
this limit, its primary index and all secondary indexes are flushed
to disk and become immutable. The Analytics Service also controls
the overall maximum in-memory component memory for an Ana-
lytics process. If this limit is reached and an in-memory component
of a new dataset needs to be created, one of the active datasets is
chosen to be flushed to disk to accommodate the new dataset.

The buffer cache is used to read disk pages from LSM disk com-
ponents. Since these components are immutable, there is never a
dirty page in the buffer cache that was read from a disk component.
The maximum size of the buffer cache is limited by a buffer cache
size parameter.

The last memory section, working memory, is used to satisfy
memory allocation requests from the operators in a query execution
plan. These requests require careful management since there can
sometimes be a large number of operators in a complex query plan
and each of the operators has different characteristics regarding its
memory usage and requirements.

5.5.2 Admission control and tuning
To prevent resource over-commitment, the Analytics Service has

a query admission control feature that takes two factors in each
query’s plan into account in order to control the number of con-
current queries. The relevant factors are the number of CPU cores
(concurrent threads) requested by the query and the amount of work-
ing memory needed for its query plan. A query with aggregate
working memory requirements that exceed the memory of the An-
alytics instance will be rejected. A query whose requirements ex-

2283

ceed the currently available memory will be queued until one or
more previous queries finish, thereby freeing up memory. For the
CPU core requirement, Analytics considers the degree of paral-
lelism induced by the number of partitions where the query’s data
resides. By default, queries use one execution worker thread per
storage partition, but an advanced user can request a different num-
ber of worker threads (via a query parameter called parallelism),
e.g., to exploit additional cores on the Analytics subcluster’s nodes.
The admission control policy also includes an adjustable coremul-
tiplier parameter that can be used to control the maximum number
of concurrent query workers per core (which defaults to 3).

Figure 6 provides a more detailed overview of how the admis-
sion control mechanism views its query workload. As indicated,
each query’s Hyracks job consists of a sequence of stages for p
partitions, and each stage of a job contains anywhere from 1 to
n activities. (Most stages are either single-activity or two-activity
operations.) Drilling down, each activity (e.g., the build step in a
dynamic hash join) has an associated operator memory requirement
and CPU core requirement. The operator memory requirement of a
given stage is the sum of the memory requirements of its activities
over p partitions, and the CPU core requirement of a stage is the
maximum of the CPU requirements of its activities for p partitions.
The overall operator memory requirement of a job is then the maxi-
mum of the memory requirements of the stages for p partitions (i.e.,
the memory requirement at its “fattest” execution point). The CPU
core requirement of a job is the maximum of the requirements of
the stages for p partitions (i.e., the CPU requirement at its “widest”
execution point).

5.6 Performance characteristics
As was described in Section 3, the Analytics Service comple-

ments the Query Service by making it possible to safely ask com-
plex ad-hoc N1QL queries and have them answered quickly thanks
to Analytics’ MPP-based query processing approach. In this sec-
tion we demonstrate this point empirically though a small set of
experiments based on Query 8. Specifically, we will present rela-
tive performance results obtained by running this analytical query
with different time window sizes to explore the operating regions
and tradeoffs between the Query and Analytics services when this
query arrives as an ad-hoc query.

For the experiments reported here, Couchbase Server was set
up on a four-node cluster in which each node had an Intel Xeon
e5-2680v3, 12c24t @ 2.5ghz CPU, 32GB of RAM, two PM863a
SSDs, and four 1 TB 7200rpm HDDs. For the Analytics experi-
ments, Analytics is running on all four nodes, each configured with
three storage partitions on one SSD; the Data Service data nodes
live elsewhere for loading purposes; the Analytics heap size is set
to 20GB. For the Query service experiments, the data lives on the
same four nodes as for Analytics, with three for the Indexing ser-
vice and one for the Query service. In this case, node memory is
split, with 16GB for data and 4GB for index. The indexes to sup-
port the Query Service were partitioned GSI indexes on the META
key derived from the PK of the data.

The experiment’s data was generated using the SocialGen data
generator from UC Irvine [24] and the total size of the data is
approximately 475 GB. From this data, Query 8 retrieves the 10
users who have sent the most messages in a social network in a
specified time period. The time period is given as 2 strings in
a comparable ISO8601 format, e.g. "2018-11-28T09:57:13" and
"2018-11-29T09:57:13". For the experiments here we vary the
time period size from 10 seconds up to 1 month, yielding between
less than 10 and 1.68M messages to be joined with their sending
users.

Figure 7: Performance cross-over

Query runs were assumed to be ad-hoc, meaning that they were
run individually and that their statements were not prepared and
no covering indexes or materialized views are available. For both
systems, there are indexes on the keys of the datasets users.id and
message.author_id, and supporting indexes on message.author_id

(for the index join) and message.send_time (for the filter).
It is important to note that, in order to focus on analytical query

performance, this experiment measures query latency as opposed
to query throughput. The Analytics Service optimizes for latency
on large data by spreading the work over multiple nodes. In con-
trast, the Query Service optimizes for throughput on smaller data
by running many queries on a single node. Thus, just looking at
query latency gives only one side of the picture. For the purpose of
this particular paper, however this is the side of interest.

SELECT users.id, count(message) AS count
FROM gleam_users AS users
JOIN gleam_messages AS message
ON message.author_id = users.id
WHERE message.send_time BETWEEN $1 AND $2
GROUP BY users.id
ORDER BY count DESC
LIMIT 10;

Query 8: Join, Grouping, and Aggregation Query

The experimental results obtained for six different time windows
are shown in Figure 7. (Note the use of a log scale for the query re-
sponse times.) Two results are shown for Analytics, one where the
join method used was a hash join, and the other where it was an in-
dex nested-loop join. The Query service used an index nested-loop
join strategy. The series of results in the figure shows how the query
latency varies with the size of the query. When the message time
period in the query is small (10s), the Query service is the fastest

2284

by far, outperforming the better Analytics plan by an order of mag-
nitude and its hash join plan (which reads all of the users dataset,
albeit in parallel) by several orders of magnitude. However, as the
time window size increases, many more messages participate in the
join. The Query Service’s throughput-optimized serial query exe-
cution strategy – which was not designed or intended for this op-
erating region – then begins losing to Analytics’ parallel strategies,
first to its broadcast-based index nested-loop strategy (1h window)
and then to its hash-based strategy as well (crossing over at the 12h
window).

As more and more messages participate in the query, the perfor-
mance of Analytics’ index nested-loop strategy approaches that of
the hash-based strategy. With even larger time windows, it would
eventually lose to it as well due to the cost of performing too many
index lookups in the user dataset (as compared to scanning it in
its entirety once most/all of its pages have relevant data). For this
query, data, and cluster configuration, the window size for the join
method crossover is about 2 years worth of messages.

6. ANALYTICS AND APACHE ASTERIXDB
The core of Couchbase Server’s Analytics Service is based on

the query compilation, query execution, and storage technologies
of the Apache AsterixDB project [3].

6.1 The origin story
Couchbase’s relationship with Apache AsterixDB began in 2015,

at which time its Senior VP of Engineering was introduced by a
mutual friend to members of the AsterixDB community [8]. The
discussions that followed revealed a shared view of where NoSQL
and Big Data platforms should be heading: a declarative, general-
purpose, query-based (database) view. Fast-forward to 2016, and a
decision was made to create a team within Couchbase to develop
a new Analytics Service with AsterixDB as the foundation. This
made sense because Couchbase’s existing Data, Index, and Query
services were aimed at use cases involving high volumes of oper-
ational requests, while AsterixDB’s parallel database architecture
seemed poised to provide the parallel query capabilities needed for
complex analytics over large volumes of JSON data.

6.2 A balancing act
The famous expression “You get what you pay for” has very

different meanings for Apache AsterixDB (which is free) and the
Couchbase Analytics Service (an enterprise feature of Couchbase
Server). The Apache AsterixDB project and code base currently
serves three user bases. The first is the open source community.
They expect Apache-branded Big Data software to meet certain
quality requirements, particularly as it matures over time. The sec-
ond is Couchbase and its paying customers, who rightfully have a
high quality bar. The third are researchers and educators at univer-
sities and research institutes on multiple continents; there Apache
AsterixDB provides a basis for teaching “NoSQL done right” and
for empirical, systems-oriented, graduate-level database research.
Many other projects lose that third role over time; we are aiming to
avoid that outcome for Apache AsterixDB.

6.3 Benefits and synergy
Inviting Couchbase committers to the Apache project has been

tremendously beneficial; the code base is much stronger today, stu-
dent committers learn from their interactions with Couchbase’s sea-
soned professionals, and Couchbase’s uses of the system inform the
students’ ongoing research. Couchbase also benefits, as some of the
university efforts enable the system to offer more features and im-
provements than it could if only Couchbase manpower was utilized.

Recent examples include the forthcoming storage compression and
parallel sorting improvements. It has also been beneficial for teach-
ing; teaching use of Apache AsterixDB at the University of Wash-
ington has been a highlight, as the UW faculty and students have
been a terrific source of early user feedback. Universities benefit
from Apache AsterixDB’s availability for use as a software labora-
tory; many MS and PhD thesis have resulted from the project [4].

6.4 Ongoing AsterixDB research
There are a number of AsterixDB-based projects underway that

are of potential interest to Couchbase. Current UC Irvine and UC
Riverside projects include work on handling expensive user-defined
functions, integration of Apache AsterixDB with components of
the Python data science ecosystem, resource management for com-
plex join queries, advanced join methods for spatial or interval data,
support for continuous queries, alternative semi-structured storage
formats, and various optimizations for LSM storage systems.

7. CONCLUSION
This paper has provided a first technical tour of both the “exter-

nals” and internals of the Couchbase Analytics Service. This new
service is the latest addition to the set of services that comprise
Couchbase Server, a highly scalable document-oriented database
management system that brings to the NoSQL world the same sort
of declarative and scale-independent data management capabilities
that relational database users have enjoyed for decades. Its Query
Service supports high volumes of low-latency queries and updates
for JSON documents, and the Analytics Service now provides com-
plementary support for complex analytical queries (e.g., large ad
hoc joins and aggregations) over the same operational data content.

Our tour of Couchbase Analytics has covered a number of differ-
ent dimensions of the new service. Included on the tour was a de-
scription of how its dual-engine architecture provides performance-
isolated and independently scalable operational and analytical query
support. Also covered was how it eliminates ETL as a prerequisite
to data analysis. We showed how N1QL for Analytics, based on
SQL++, enables analysts to directly query their operational JSON
data without having to first flatten it for warehouse consumption.
We also provided a look under the hood at its MPP-based stor-
age and query processing architectures, both of which are derived
from and still developed based on Apache AsterixDB, an Apache
open-source Big Data management system project with a number
of Couchbase committers.

The functionality described here has opened up new possibili-
ties for Couchbase Server usage, and more is around the corner.
Planned additions that are under current development or visible on
the horizon include support for user-defined functions (including
both N1QL and external UDFs), the ability to use a single analyt-
ical cluster to analyze data from multiple operational clusters, and
generalizations for N1QL of various additional analytical features
drawn from the SQL standard.

8. ACKNOWLEDGMENTS
The authors would like to acknowledge the significant technical

contributions of past Analytics team members Yingyi Bu and Ab-
dullah Alamoudi as well as the Apache AsterixDB community who
built the intial open-source system and continues to evolve it. We
would also like to acknowledge Yannis Papakonstantinou for his
work on the design and evolution of SQL++. Finally, we would
also like to offer a special thanks to Don Chamberlin, a.k.a. the
“Father of SQL”, who has provided significant technical assistance
and feedback related to the design of SQL++.

2285

9. REFERENCES
[1] S. Alsubaiee, A. Behm, V. R. Borkar, Z. Heilbron, Y.-S. Kim,

M. J. Carey, M. Dreseler, and C. Li. Storage management in
asterixdb. PVLDB, 7(10):841–852, 2014.

[2] A. Alsuliman. Optimizing external parallel sorting in
AsterixDB. M.S. Thesis, Department of Computer Science,
University of California, Irvine, 2018.

[3] Apache AsterixDB, http://asterixdb.apache.org.
[4] ASTERIX, http://asterix.ics.uci.edu.
[5] D. Borkar, R. Mayuram, G. Sangudi, and M. J. Carey. Have

your data and query it too: From key-value caching to Big
Data management. In Proceedings of the ACM International
Conference on Management of Data (SIGMOD), San
Francisco, CA, USA, June 26 - July 01, 2016, pages 239–251.

[6] V. Borkar, Y. Bu, E. P. Carman, Jr., N. Onose, T. Westmann,
P. Pirzadeh, M. Carey, and V. Tsotras. Algebricks: A data
model-agnostic compiler backend for Big Data languages. In
Proceedings of the Sixth ACM Symposium on Cloud
Computing (SoCC), pages 422–433, New York, NY, USA,
2015.

[7] V. R. Borkar, M. J. Carey, R. Grover, N. Onose, and
R. Vernica. Hyracks: A flexible and extensible foundation
for data-intensive computing. In Proceedings of the 27th
International Conference on Data Engineering (ICDE),
April 11-16, pages 1151–1162, Hannover, Germany, 2011.

[8] M. Carey. AsterixDB mid-flight: a case study in building
systems in academia. In Proceedings of the 35th
International Conference on Data Engineering (ICDE),
April 8-11, Macao, China, pages 1–12, 2019.

[9] R. Chaiken, B. Jenkins, P.-Å. Larson, B. Ramsey, D. Shakib,
S. Weaver, and J. Zhou. SCOPE: easy and efficient parallel
processing of massive data sets. PVLDB, 1(2):1265–1276,
2008.

[10] D. Chamberlin. SQL++ for SQL Users: A Tutorial.
September 2018. (Available via Amazon.com.).

[11] S. Chaudhuri, U. Dayal, and V. Narasayya. An overview of
business intelligence technology. Commun. ACM,

54(8):88–98, Aug. 2011.
[12] E. F. Codd. Derivability, redundancy and consistency of

relations stored in large data banks. IBM Research Report,
San Jose, California, RJ599, 1969.

[13] E. F. Codd. A relational model of data for large shared data
banks. Commun. ACM, 13(6):377–387, 1970.

[14] D. J. DeWitt and J. Gray. Parallel database systems: The
future of high performance database systems. Commun.
ACM, 35(6):85–98, 1992.

[15] T. Elliott. What is hybrid transaction/analytical processing
(HTAP)? https://www.zdnet.com/article/what-is-hybrid-
transactionanalytical-processing-htap/, December 15,
2014.

[16] G. Graefe. Query evaluation techniques for large databases.
ACM Comput. Surv., 25(2):73–170, 1993.

[17] JSON. http://www.json.org/.
[18] T. Kim, A. Behm, M. Blow, V. Borkar, Y. Bu, M. J. Carey,

M. Hubail, S. Jahangiri, J. Jia, C. Li, C. Luo, I. Maxon, and
P. Pirzadeh. Robust and efficient memory management in
Apache AsterixDB. 2019. Submitted for publication.

[19] C. Luo and M. J. Carey. LSM-based Storage Techniques: A
survey. CoRR, abs/1812.07527, 2018.

[20] Couchbase N1QL for Analytics language web page,
Couchbase, Inc.,
https://docs.couchbase.com/server/6.0/analytics/introduction.
html#n1ql-for-analytics-query-language.

[21] P. E. O’Neil, E. Cheng, D. Gawlick, and E. J. O’Neil. The
log-structured merge-tree (lsm-tree). Acta Inf.,
33(4):351–385, 1996.

[22] K. W. Ong, Y. Papakonstantinou, and R. Vernoux. The
SQL++ semi-structured data model and query language: A
capabilities survey of SQL-on-Hadoop, NoSQL and
NewSQL databases. CoRR, abs/1405.3631, 2014.

[23] L. D. Shapiro. Join processing in database systems with large
main memories. ACM Transactions on Database Systems
(TODS), 11(3):239–264, 1986.

[24] SocialGen, https://github.com/pouriapirz/socialGen.

2286

 https://docs.couchbase.com/server/6.0/analytics/introduction.html#n1ql-for-analytics-query-language
 https://docs.couchbase.com/server/6.0/analytics/introduction.html#n1ql-for-analytics-query-language

	Introduction
	Couchbase Server
	Couchbase Analytics Service
	Analytics User View
	Getting data flowing (no ETL)
	N1QL
	Data model: NoSQL vs. SQL
	SQL-based query basics
	Missing information
	Nesting data...
	... and unnesting data
	Grouping and aggregation
	WINDOWed analytics

	Analytics Under the Hood
	Architecture
	Data Ingestion and Storage
	Incoming! (DCP)
	Storage and Indexing
	Compression

	Local Big Data operators
	Selections
	Joins
	External sorting
	Grouped aggregation
	Presorted windowing

	Parallel query processing
	Query optimization
	Parallel selection
	Parallel grouping
	Parallel sorting
	Parallel joins
	Parallel windowing

	Memory and workload management
	Memory categories and budgeting
	Admission control and tuning

	Performance characteristics

	Analytics and Apache AsterixDB
	The origin story
	A balancing act
	Benefits and synergy
	Ongoing AsterixDB research

	Conclusion
	Acknowledgments
	References

