
A Distributed System for Large-scale n-gram Language
Models at Tencent

Qiang Long†, Wei Wang‡, Jinfu Deng†, Song Liu†, Wenhao Huang†, Fangying Chen†, Sifan Liu†

†Tencent, ‡National University of Singapore
†{ecalezlong, austindeng, samanthaliu, zakerhuang, aachen, stephenliu}@tencent.com

‡wangwei@comp.nus.edu.sg

ABSTRACT
n-gram language models are widely used in language pro-
cessing applications, e.g., automatic speech recognition, for
ranking the candidate word sequences generated from the
generator model, e.g., the acoustic model. Large n-gram
models typically give good ranking results; however, they
require a huge amount of memory storage. While distribut-
ing the model across multiple nodes resolves the memory
issue, it nonetheless incurs a great network communication
overhead and introduces a different bottleneck. In this pa-
per, we present our distributed system developed at Ten-
cent with novel optimization techniques for reducing the net-
work overhead, including distributed indexing, batching and
caching. They reduce the network requests and accelerate
the operation on each single node. We also propose a cas-
cade fault-tolerance mechanism which adaptively switches to
small n-gram models depending on the severity of the fail-
ure. Experimental study on 9 automatic speech recognition
(ASR) datasets confirms that our distributed system scales
to large models efficiently, effectively and robustly. We have
successfully deployed it for Tencent’s WeChat ASR with the
peak network traffic at the scale of 100 millions of messages
per minute.

PVLDB Reference Format:
Qiang Long, Wei Wang, Jinfu Deng, Song Liu, Wenhao Huang,
Fangying Chen, Sifan Liu. A Distributed System for Large-scale
n-gram Language Models at Tencent. PVLDB, 12(12): 2206 -
2217, 2019.
DOI: https://doi.org/10.14778/3352063.3352136

Keywords
n-gram Language Model, Distributed Computing, Speech
Recognition, WeChat

1. INTRODUCTION
Language models estimate the probabilities of sequences

of words or tokens. Typically, they assign low probabilities
for rare sequences or sequences with grammar errors. For

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 12, No. 12
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3352063.3352136

example, a language model trained over computer science
articles is likely to assign a higher probability for s1:“VLDB
is a database conference” than s2:“VLDB eases a data base
conference”. Language models are widely used in natural
language processing applications [15], especially in applica-
tions that generate text, including automatic speech recog-
nition, machine translation and information retrieval. Typ-
ically, language models are applied to rank the candidate
outputs generated by a generator. For instance, in ASR, the
generator is an acoustic model that accepts audio and out-
puts candidate word sequences. For candidates with similar
scores from the acoustic model, e.g. s1 and s2, the language
model is vital for selecting the correct answer.

n-gram language models are specific language models with
simple and effective implementation. They estimate the
probability of a sequence of words based on the statistics
(e.g. frequency) of n-grams from the sequence. An n-gram
is a subsequence of n words. For example, “VLDB” and
“database” are 1-grams; “VLDB is” and “VLDB eases” are
2-grams. n-gram language models assign a higher proba-
bility to a sequence with frequent n-grams. The statistics
are calculated against a training text corpus. The estimated
probability reflects the likelihood that the sequence is gener-
ated from the training text corpus. For the sample sequence
s1 and s2, a 3-gram model would give s1 a higher proba-
bility because “VLDB is a” is more common than “VLDB
eases a”, and “a database conference” is more common than
“data base conference” in computer science articles.

One big issue of using n-gram language models is its high
storage cost. To produce accurate probability estimation, n-
gram language models need a big n-gram set with a large n.
On the one hand, with a larger n, the n-gram is more mean-
ingful as it covers a longer context. For instance, a 1-gram
model would give s2 a larger score than s1, because “data”
and “base” are more popular than “database”. In contrast,
a 2-gram language model is likely to give s1 a higher prob-
ability than s2, since “database conference” is more com-
mon than “base conference”. On the other hand, a larger
n-gram set includes more n-grams (i.e. a better coverage)
and thus gives better probability estimation for sequences
with rare n-grams. For example, if “database conference” is
not included in the n-gram set, the probability of s1 is es-
timated based on its suffix, i.e., “conference”. This process
is called backoff (See Section 2.2) and is not accurate. Our
experiment confirms that the larger model has better per-
formance. However, it is non-trivial to store large models in
the memory of a single machine and provide fast access to
the statistics.

2206

Distributed computing has been applied to handle large
n-gram models by distributing the statistics onto multiple
nodes. We call these models distributed n-gram models.
One challenge of implementing distributed n-gram models
is the high communication overhead. For example, if an
n-gram is not included in the text corpus, O(n) messages
are incurred to estimate its probability via backoff in [5].
Considering that there could be as many as 150,000 candi-
date n-grams per input (sentence) [5], the communication
cost becomes prohibitively expensive. Another challenge of
implementing distributed n-gram models is related to the
network failure, which happens quite often in a distributed
system with a large amount of network communication [23].
If some n-gram messages get lost, the model would produce
inaccurate estimation of the probability.

In this paper, we propose novel techniques for implement-
ing an efficient, effective and robust distributed system to
support large-scale n-gram language models. First, we cache
the statistics of short n-grams, e.g. 1-grams and 2-grams,
on the local node. The communication cost for low-order
n-grams is thus eliminated. Second, we propose a two-level
distributed index for efficient n-gram retrieval. The global
level index distributes the statistics for estimating the prob-
ability of an n-gram into the same node. Consequently, only
a single network message is issued for each n-gram. The lo-
cal level index stores the statistics in a suffix tree, which
facilitates fast search and saves storage. Third, we batch
messages being sent to the same server into a single mes-
sage. It significantly reduces the communication cost. In
particular, each n-gram incurs less than 1 message on aver-
age. Last, we propose a cascade fault-tolerance mechanism,
which uses the cached short n-grams, e.g., 2-grams, to es-
timate the probability of long n-grams, e.g., 4-grams, when
there are minor network failures (e.g. due to packet loss) and
uses a small n-gram model when there are major network
failures (e.g. due to node failure).

Our contributions are summarized as follows.

1. We propose caching, indexing, and batching optimiza-
tion techniques to reduce the communication overhead
and speed up the probability estimation process for
large-scale distributed n-gram language models.

2. We propose a cascade fault-tolerance mechanism, which
is adaptive to the severity of the network failure. It
switches between two local n-gram models to give ef-
fective probability estimation.

3. We implement a distributed system with the proposed
techniques and conduct extensive experiments over 9
datasets using automatic speech recognition as the ap-
plication. The system scales to large 5-gram models ef-
ficiently. The experimental results confirm that larger
n-gram models deliver higher accuracy. We have de-
ployed the system to support automatic speech recog-
nition in WeChat with 100 millions of audio tracks per
day, and the peak network traffic is at the scale 100
millions of messages per minute.

The rest of this paper is organized as follows: Section 2
gives the introduction about n-gram language models; Sec-
tion 3 presents the details of the system including the op-
timization techniques and fault-tolerance mechanisms; Our
experimental results are analyzed in Section 4; Section 5
reviews the related work and Section 6 concludes the paper.

2. PRELIMINARY
In this section, we first introduce how to estimate the

probability of a sequence of words using n-gram language
models. Then we describe the training and inference proce-
dures.

2.1 Language Models
Given a sequence of m words1 denoted as wm

1 = (w1, w2,
· · · , wm), from a vocabulary V , a language model provides
the probability of this sequence, denoted as P (wm

1).
According to probability theory, the joint probability can

be factorized as follows,

P (wm
1) = P (wm|wm−1

1)P (wm−1
1) (1)

= P (wm|wm−1
1)P (wm−1|wm−2

1)P (wm−2
1) (2)

... (3)

= P (w1)

m∏
i=2

P (wi|wi−1
1) (4)

Typically, in the natural language processing (NLP) ap-
plications, the probability in Equation 4 is combined with
the score from the sequence generator to rank the candidate
sequences. For example, ASR systems use acoustic models
to generate the candidate sentences. The acoustic score is
combined with the score (Equation 4) from the language
model to rank the candidate sentences. Those with gram-
mar errors or strange word sequences will get smaller scores
from the language model and thus be ranked at the lower
positions.

An n-gram language model assumes that a word in a se-
quence only depends on the previous n-1 words. Formally,

P (wi|wi−1
1) = P (wi|wi−1

k) (5)

where i ∈ [1,m], k = max(1, i − n + 1), P (w1|w0
1) = P (w1),

and wi−1
k = (wk, wk+1, · · · , wi−1).

Applying the assumption (Equation 5, called Markov as-
sumption [15]) in Equation 4, we have

P (wm
1) = P (w1)

m∏
i=2

P (wi|wi−1
k) (6)

For example, a 3-gram model estimates the probability of
a sequence of 4 words as,

P (w1, w2, w3, w4)

= P (w4|w2, w3)P (w3|w1, w2)P (w2|w1)P (w1)

Once we have the conditional probabilities of n-grams
(where n = 1, 2, · · ·), we can apply Equation 6 to get the
joint probability. Given an n-gram wn

1 , the conditional prob-
ability P (wn|wn−1

1) represents the likelihood that wn−1
1 is

followed by wn in the training text corpus. Therefore, the
conditional probability is estimated based on the frequency
of wn

1 and wn−1
1 . Equation 7 gives the formal definition,

where C() is the frequency count. For example, if (w2, w3)
is usually followed by w4, then C(w2, w3, w4) is close to
C(w2, w3) and P (w4|w2, w3) is close to 1.

1We assign each word an integer ID (i.e. the index of the
word in the vocabulary) and manipulate words using their
IDs instead of the word strings.

2207

P (wn|wn−1
1) =

C(wn
1)

C(wn−1
1)

(7)

The probability for a 1-gram, e.g. P (w1) in Equation 6,
is estimated as follows

P (w1) =
C(w1)∑
w∈V C(w)

, ∀w1 ∈ V

2.2 Smoothing Techniques
One problem of the frequency based estimation (Equa-

tion 7) is that when an n-gram does not appear in the train-
ing corpus, e.g. when the training corpus is small, the fre-
quency count is 0, i.e. C(wn

1) = 0. Consequently, the con-
ditional probability (Equation 7) is zero, which results in 0
for the joint probability (Equation 6). Smoothing is a tech-
nique for resolving this “zero frequency” problem. There
are two popular types of smoothing methods, namely back-
off models and interpolated models. The general idea is to
move some probability mass from frequent n-grams to rare
(or unseen) n-grams and estimate the probabilities of them
based on the suffix grams. A suffix gram of an n-gram wn

1

is wn
i , 1 ≤ i ≤ n.

Backoff smoothing model:

P (wn|wn−1
1) =

{
αwn

1
, if C(wn

1) > 0

γ
wn−1

1
P (wn|wn−1

2), otherwise
(8)

In Equation 8, αwn
1

represents the discounted probability
of (frequent) n-grams. For instance, a popular smoothing
technique, called Kneser-Ney smoothing, computes αwn

1
as

αwn
1

=
max(C(wn

1)−D, 0)

C(wn−1
1)

, where D is another hyper-parameter for deducting the
probability mass. If the n-gram is a rare n-gram, the prob-
ability of the suffix gram wn

2 is exploited, i.e., P (wn|wn−1
2),

which itself may depend on P (wn|wn−1
3). The backoff pro-

cess continues until there is a suffix gram wn
i with C(wn

i) ≥ k
(i ≤ n); k is a hyper-parameter, e.g., k=1; if such suffix
gram exist, it is called the hit gram of the backoff pro-
cess; otherwise, 0 is returned. For rare low-order grams,
e.g., 1-gram wn, their probabilities are increased using the
deducted probability mass from frequent high-order grams.
The coefficient γ

wn−1
1

, called the backoff weight, is trained

to make the probabilities form a proper distribution, i.e.,∑
w∈V P (w|wn−1

1) = 1. Closed-form solutions are avail-

able [6]. In addition, if C(wn−1
1) = 0, γ

wn−1
1

is set to 1.

Interpolated Kneser-Ney smoothing:

P (wn|wn−1
1) =

max(C(wn
1)−D, 0)

C(wn−1
1)

+ γ
wn−1

1
P (wn|wn−1

2)

(9)
In our experiments, we apply the interpolated version

of Kneser-Ney smoothing, which is defined in Equation 9.
With simple manipulation (Section 2.8 of [6]), the interpo-
lated models (e.g. Equation 9) can be converted into the
same formulation as Equation 8. Therefore, the two smooth-
ing methods share the same inference algorithm2. In the

2Note that the training algorithms are different.

rest of this paper, we use the backoff model (Equation 8) to
introduce the inference algorithm.

2.3 Training and Inference
The training procedure of n-gram language models counts

the frequencies over a training text corpus to estimate the
conditional probabilities (Equation 4) of all 1-grams, 2-grams,
· · · , n-grams appearing in the training corpus and compute
the coefficients. For example, a 5-gram model has the statis-
tics of 1-grams to 5-grams. Note that only grams appearing
in the training corpus are processed by the training algo-
rithm. There are two reasons: a) for a given n and a word
vocabulary V , the complete n-gram set whose size is |V |n
would consume a huge amount of memory when V is large;
b) Some grams are never used, e.g. “is be do”. There is
no need to pre-compute and store their statistics. In this
paper, we focus on the performance of the inference stage
and thus skip the details about the training. Note that the
training over a large text corpus (e.g. of Terabytes) is also
very challenging. Like [5], we use distributed framework (i.e.
Spark) to accelerate the training process.

The inference procedure accepts the n-gram wn
1 generated

by other modules e.g., the acoustic model of ASR systems, as
the input, and returns P (wn|wn−1

1). If the n-gram appears
in the training corpus, its conditional probability has already
been computed during training, which can be retrieved di-
rectly; otherwise, we estimate the probability online using
the smoothing technique (Equation 8).

All probabilities and coefficients generated from the train-
ing stage is saved on disk and is load into memory during
inference. ARPA [27] is a common file-format for n-gram
language models. One n-gram takes one line of the ARPA
file, which consists of three fields, namely log10 P (wn|wn−1

1),
the n-gram string wn

1 , and log10 γ(wn
1). For example, the

line “-0.3 ASR is -0.1” means log10P (is|ASR) = −0.3 and
log10γ(ASR is) = −0.1. For ease of presentation, in the rest
of this paper, we assume the backoff weight and the prob-
ability (instead of the log version) are stored in the ARPA
file. The probability stored in the ARPA file is denoted
as P̄ (wn|wn−1

1) to be different from the one in Equation 5.
For any n-gram wn

1 , if it appears in the ARPA file, then
P (wn|wn−1

1) is just P̄ (wn|wn−1
1), i.e., Equation 10. Oth-

erwise, it is calculated recursively according to Equation 8
until there is a hit gram that appears in the ARPA file. The
result is one of the equations between Equation 10 and 14.

P̄ (wn|wn−1
1) (10)

γ(wn−1
1) P̄ (wn|wn−1

2) (11)

γ(wn−1
1)γ(wn−1

2) P̄ (wn|wn−1
3) (12)

· · ·
γ(wn−1

1)γ(wn−1
2) · · · γ(wn−1

n−2) P̄ (wn|wn−1) (13)

γ(wn−1
1)γ(wn−1

2) · · · γ(wn−1
n−2)γ(wn−1) P̄ (wn) (14)

Given an n-gram wn
1 , Algorithm 1 implements a recursive

function to compute P (wn|wn−1
1) following Equation 8. A

denotes all the n-grams from the ARPA file. If wn
i is in-

cluded in the ARPA file, the algorithm simply retrieves the
entry for it and returns the probability (Line 2); otherwise,
it computes the probability via backoff in Line 4 (γ

wn−1
i

= 1

if wn−1
i 6∈ A). For 1-grams not included in the ARPA file,

0 is returned (Line 6). Note that it is expensive to retrieve

2208

Algorithm 1 CalcProb(wn
i)

1: if wn
i ∈ A then

2: return P (wn|wn−1
i)

3: else if i < n then
4: return γ(wn−1

i)× CalcProb(wn
i+1)

5: else
6: return 0
7: end if

the gram wn
i (Line 1-2) when A is large. In Section 3.2.2,

we propose a special index to accelerate the search.

2.4 Problem Definition
In this paper, we assume that the n-gram language model

has been trained offline. Our system loads the ARPA file(s)
into memory and conducts online inference to compute the
probabilities of sequences of words generated by other mod-
ules, e.g., the acoustic models for ASR. We present the tech-
niques we proposed to do the inference efficiently, effectively
and robustly for large-scale n-gram language models.

3. DISTRIBUTED SYSTEM
Typically, larger n-gram language models are more accu-

rate in probability estimation. However, when the language
model has too many (long) n-grams, e.g. a large ARPA file
with 400 GB storage, we cannot load the whole file into the
main memory of a single node. If we only load part of the
ARPA file into main memory and put the rest (n-grams)
on disk, the inference process is very expensive as it has to
retrieve statistics of n-grams from the disk.

We adopt distributed computing to resolve the issue by
partitioning the ARPA file onto multiple nodes, where each
node’s memory is large enough to store its shard. One such
node is called a server. Correspondingly, there is another
type of node called client. The client node runs the follow-
ing tasks. First, it generates sequences of words using other
modules, e.g. the acoustic model of ASR; Second, it sends
request messages to servers to retrieve the conditional prob-
ability of each n-gram from the sequences; An n-gram is a
query. if the query is not stored on the servers, the serves
apply backoff to estimate the probability as illustrated in
Algorithm 1. Last, the client combines the probabilities ac-
cording to Equation 6. This process is called decoding,
which is elaborated in Section 3.3.

In this section, we firstly introduce our optimization tech-
niques to reduce the communication overhead, including
caching, distributed indexing and batch processing. Af-
ter that, we describe our cascade fault-tolerance mechanism
against communication failures. Our system is denoted as
DLM, short for distributed language model.

3.1 Caching
Caching is widely used in databases for system optimiza-

tion. In DLM, we cache the statistics of short n-grams.
In particular, 1-grams and 2-grams are cached on the client
node. Caching long n-grams, e.g., 3-grams, would further re-
duce the network cost. However, it also incurs more storage
cost. Section 4.2.2 compares the storage cost and the com-
munication reduction in details. By caching these statistics,
we not only reduce the communication cost but also improve

the other components of the system. Specifically, we fulfill
three objectives as follows,

1. Reducing the number of network messages. For 2-
gram and 1-gram queries, the conditional probabilities
are estimated using the local cached statistics. Hence,
there is no need to send messages to remote servers.

2. Supporting hashing over 2-grams in Algorithm 2 (Sec-
tion 3.2.1), which makes the data on servers more bal-
anced.

3. Supporting fault-tolerance, which will be discussed in
Section 3.4.

3.2 Distributed Index
The distributed index in DLM consists of two levels, namely,

the global index on the client node and the local index on
the server nodes.

3.2.1 Global Index
With the local cache on the client node, the client esti-

mates the probability for 1-gram and 2-gram queries locally.
For a long n-gram query, the client uses the global index
to locate the servers that store the statistics for computing
P (wn|wn−1

1) (according to Algorithm 1), and then sends
messages to these severs. If we can put all required statis-
tics on the same server, only a single message is sent to the
server. The global index is built (Algorithm 2) to achieve
this goal. There are two arguments, namely the n-gram set
A from the ARPA file and the number of servers B. For each
1-gram and 2-gram, we replicate it on every node (Line 3) for
backoff estimation. For other n-grams (n ≥ 3), we distribute
the conditional probability based on the hash of wn−2wn−1

(Line 5-6). The backoff weight γ(wn
1) is distributed based

on wn−1wn (Line 7-8). The same hash function is shared in
Line 5 and Line 7.

Algorithm 2 BuildGlobalIndex(A, B)

1: for each n-gram wn
1 ∈ A do

2: if n ≤ 2 then
3: put < w1, P̄ (w1), γ(w1) > or <
w1w2, P̄ (w2|w1), γ(w2

1) > on every server and client
4: else
5: s1 = hash(wn−2wn−1) %B + 1
6: put < wn

1 , P̄ (wn|wn−1
1) > on server s1

7: s2 = hash(wn−1wn)%B + 1
8: put < wn

1 , γ(wn
1) > on server s2

9: end if
10: end for

During inference, if n ≤ 2, we do the estimation on the
local client without sending any messages; otherwise, we
we simply send the request message for P (wn|wn−1

1) to the
server with ID hash(wn−2wn−1)%B+ 1. Algorithm 1 is run
to get the probability using one of the equations between
Equation 10 and 14. The global index guarantees that for
any n-gram wn

1 (n > 2), all statistics used in Algorithm 1
can be accessed from the same server. For instance, we
denote w̄ =“a database”. According to Algorithm 2, the
backoff weights of all grams (e.g., “is a database”) ending
with w̄ (Line 7 and 8) are put on the same server as the con-
ditional probabilities of all grams (e.g., “is a database con-
ference”) whose third and second last word is w̄ (Line 5 and

2209

6). In addition, P̄ (wn|wn−1) and γ(wn−1
n−2) (resp. P̄ (wn) and

γ(wn−1)) used by Equation 13 (resp. Equation 14) are repli-
cated on ever server (Line 3). To conclude, all statistics used
in Equation 10 and 14 are available from the same server.
Consequently, the communication cost of Algorithm 1 is re-
duced to only one single network message per n-gram.

Load-balancing Algorithm 1 also works if we only cache
1-grams. However, caching both 1-grams and 2-grams re-
sults in better load-balance. We explain it as follows. Con-
sidering that some words are very popular, like “is” and
“the”, distributing n-grams based on the hash of a single
word is likely to result in imbalanced load among server
nodes. For example, the server storing n-grams ending with
‘the’ would have a larger shard and receive more messages
from the clients. Since the distribution of 2-grams is more
balanced than that of 1-grams (i.e. words), distributing n-
grams based on two words (wn−1wn or wn−2wn−1) in Al-
gorithm 1 would result in more balanced workload, which
is verified in the experiment section. In fact, we can hash
against 3-grams to make the distribution even more bal-
anced. However, by hashing against 3-grams, we need to
cache 3-grams on the local client node and replicate 3-grams
on every server node, which increases the storage cost sig-
nificantly.

3.2.2 Local Index
Once the server node receives the message for an n-gram

query from the client, it searches against the local index to
get the statistics and combines them to compute P (wn|wn−1

1).
A local index is built on every server for efficient retrieval
of the statistics. We use suffix tree as the index structure,
where each edge represents one or more words from the vo-
cabulary and each node represents a sequence of words by
concatenating the edges. For instance, the node for n-gram
wn

1 is denoted as node wn
1 . For simplicity of presentation,

we use this notation wn
1 for both the word sequence and

the node in the suffix tree. The backoff weights and condi-
tional probabilities are associated with the nodes as shown
in Figure 1.

Algorithm 3 BuildLocalIndex(G,P)

1: root = CreateNode()
2: U = {} . dictionary for 1-grams
3: for each < wn

1 , P̄ (wn|wn−1
1) >∈ P do

4: if n > 1 then
5: node=TraverseOrInsert(root, (wn−1, ..., w1))
6: node.insert(< wn, P̄ (wn|wn−1

1) >)
7: else . Uni-grams
8: U ←< wn, P̄ (wn) >
9: end if

10: end for
11: for each < wn

1 , γ(wn
1) >∈ G do

12: node=TraverseOrInsert((wn, wn−1, · · · , w1))
13: node.g=γ(wn

1)
14: end for
15: return root, U

We build the local index following Algorithm 3. Each
server has two sets of statistics generated from Algorithm 2,
namely the backoff weights denoted as G = {< wn

1 , γ(wn
1) >

} and the probabilities denoted as P = {< wn
1 , P̄ (wn|wn−1

1 >
}. For each pair from P, if it is for a 1-gram, we simply

a d

P(a|abc) P(d|abc)

b c d

P(b|bc) P(c|bc) P(d|bc)

a d e

P(a|c) P(d|c) P(e|c)

c

b

a

root

abc

bc

c𝛾(𝑐)

𝛾(𝑏𝑐)

𝛾(𝑎𝑏𝑐)

b d

Figure 1: Insert a 4-gram “abcd” into the local index.

store it in a dictionary U (Line 8); otherwise, we traverse
the tree following the path wn−1, wn−2, · · · , w1. If we reach
the leaf node before finishing the path, a new edge and node
for the rest words are created. The last visited node is re-
turned (Line 5). The conditional probability is inserted into
a sorted array with wn as the key (Line 6), which enables
binary search.

For each pair from G, we traverse the tree following the
path wn, wn−1, · · · , w1 (Line 7), which is the reverse of the
full n-gram. New nodes are inserted during the traversal.
γ(wn

1) is assigned to the returned node (Line 8). Note that
each node may have multiple associated probabilities; how-
ever, it can only have one backoff weight. This is because
the probabilities of all n-grams sharing the same prefix (i.e.
wn−1

1) are inserted into the same node; whereas the backoff
weight is associated with the node corresponding to the full
n-gram, which is unique. Figure 1 gives one example of in-
serting a 4-gram into the index. The conditional probability
of this 4-gram is at the right bottom (bold text).

During inference, we run Algorithm 4 to estimate the con-
ditional probability. It implements Algorithm 1 against the
suffix tree 3. Algorithm 4 traverses along (wn−1, · · · , w2,
w1) (Line 2). It stops when there is no edge for the next
word or when w1 is reached. The returned path is a stack of
visited nodes. The root node is at the bottom and the last
visited node is at the top. Then it pops the nodes out one
bye one. All types of n-grams are handled by computing the
probability using one of the equations between Equation 10
and 14. The detailed analysis of Line 3-14 is explained in
the Appendix A.

3.3 Batch Processing
Typically, the generator generates multiple candidate words

for each output position. Consequently, there are many can-
didate sentences. When the language model is applied to
rank the candidate words immediately after the candidates
of one position are generated, it is called on-the-fly rescor-
ing; when it is applied to rank the candidate sentences after
finishing all positions, it is called multi-pass rescoring. Com-
pared with multi-pass recoring, on-the-fly rescoring incurs
smaller storage cost and is more efficient as it maintains a
small set of candidate sentences by filtering words with low
scores. In DLM, we adopt on-the-fly rescoring.

3Algorithm 1 ignores the data structure for storing and ac-
cessing the statistics.

2210

Algorithm 4 SearchLocalIndex(wn
1 , root)

1: g = 1, p = 0
2: path = Traverse(root, (wn−1, wn−2, ..., w1))
3: while path.top() != root do
4: node = path.pop()
5: if wn ∈ node then . wn found
6: p =BinarySearch(node, wn)
7: break
8: else
9: g∗ = node.g

10: end if
11: end while
12: if p == 0 then p = U [wn] . U is from Algorithm 3
13: end if
14: return g ∗ p

For each new position, the generated words are concate-
nated to each candidate sentence pair-wisely to construct
new candidate sentences4. To estimate the joint probability
of each new candidate sentence, we need to get the con-
ditional probability of the last n-gram (the probabilities of
other n-grams are already computed). At the beginning,
the candidate sentences are short, with only a single word
“START” representing the start of a sentence. The first set
of query n-grams are thus 2-grams like “START I”. As the
sentences become longer, the query n-grams become longer,
e.g., 5-grams. If we maintain at most K candidate sen-
tences and generate W words for each position, we then
need to query KW n-grams, i.e., KW messages. This num-
ber could be very large, like 10,000, which results in many
network messages. To reduce the communication cost, we
propose to batch the messages sent to the same server into
a single message.

Want

Watch

Wait

Wash

ToI

Figure 2: An example of n-grams sharing the same prefix.

If two n-grams share the same prefix, according to Algo-
rithm 4 (and Equation 10-14), it is likely that they share
similar access patterns over the local index for the statistics
to compute the conditional probabilities. Suppose we use a
4-gram model to rank the candidate words in Figure 2, i.e,
“Watch”, “Wait” and “Wash”. Even with the distributed
index, we need one message for each of the 3 4-grams. Since
they share the same prefix “I Want To”, the three messages
are sent to the same server according to Line 5 of Algo-
rithm 2. To reduce the communication cost, we merge the
three messages into a single message. Once the message
is received by the server node, Algorithm 4 traverses along
the reverse of the common prefix “I Want To”, and then

4They are actually the prefixes of the sentences.

traverses back to get the statistics of the 3 n-grams respec-
tively. The results are put into a single message and sent
back to the client. For this example, we reduce the number
of messages from 1 per n-gram to 1/3 per n-gram. In other
words, we can save 2/3 cost.

Want

Watch

WaitTo

I

Not

Work

Worry
Do

Figure 3: An example of n-grams distributed to the same
server.

For n-grams not sharing the same prefix, we are still able
to merge their request messages as long as they are sent to
the same server. Suppose “Want To” and “Do Not” have
the same hash value, then in Figure 3, according to Line 5
of Algorithm 1, the messages for all 4-grams can be merged
(batched) into a single message. On the server side, the
n-grams sharing the same prefix are processed together by
Algorithm 4. The two batching methods are orthogonal and
thus can be combined together.

3.4 Fault-tolerance
Fault-tolerance is vital for distributed applications. De-

pending on the severity of the network failures, we provide
a cascade fault-tolerance mechanism. Figure 4 shows the
architecture of our system. The connection tester keeps
sending heartbeats to servers. when the failure rate is high,
e.g., more than 0.1% messages time out or the network delay
doubles, we redirect all messages to a local small language
model. In our experiment, we use a small (5-gram) model
with 50 GB statistics, which is pruned from the complete
model via entropy-based pruning [25]. When the failure
rate is low, we send the messages through the normal route.
Particularly, if the message reaches the server successfully,
Algorithm 4 is executed to estimate the probability; if the
message times out (e.g. due to network failure), we estimate
the probability locally using the cached 2-grams (backoff via
Equation 8) on the client. We call the cached n-grams a par-
tial n-gram model. Note that the partial model and the
small model are trained separately. Hence, we cannot mix
their statistics to estimate the sentence probability (Equa-
tion 6).

4. EXPERIMENTAL STUDY
In this section, we evaluate the proposed optimization

techniques for ASR over multiple datasets. The results show
that our distributed language model, denoted as DLM, scales
efficiently to large models (e.g. with 400 GB statistics) with
small communication overhead. Specifically, the overhead
of DLM increases only 0.1 second when the input audio
increases one second, which is small enough for real-time
deployment in WeChat.

2211

Rescore()

Small Model
2-gram Cache

Connection Tester

Severe failureMild failure / Normal

Heartbeat

Client

Global Index

Batching

Servers

Local index Local index Local index

Figure 4: System architecture of DLM.

Table 1: Size and recording environment of the test datasets.

Dataset Size (hours) Recording Environment
test-1 15 spontaneous speech
test-2 15 mix
test-3 17 spontaneous speech
test-4 2 spontaneous speech
test-5 10 mix
test-6 4 spontaneous speech
test-7 40 mix
test-8 20 noise
test-9 29 noise

4.1 Experimental Setup

4.1.1 Hardware
We conduct the experiments over a cluster with a Intel(R)

Xeon(R) CPU E5-2670 V3 (2.30GHz) and 128 Giga Bytes
(GB) memory on each node. The nodes are connected via
10 Gbps network cards. We use the open source message
passing library phxrpc5.

4.1.2 Datasets
We collect a large text corpus (3.2 Terabytes) to train a 5-

gram language model using interpolated Kneser-Ney smooth-
ing. After training, we get a 500 GB ARPA file, which is fur-
ther pruned to generate a 50GB, 100GB, 200GB and 400GB
model for experiments. Without explicit description, the ex-
periments are conducted over the 200GB model, which is the
currently deployed model. To evaluate the performance of
the language models, we use ASR as our application. 9 au-
dio datasets are collected as the test data. We name these
9 datasets as test-1 to test-9, with details shown in Table 1.
We can see that the test datases are recorded under dif-
ferent environments and vary in terms of the length. mix

5https://github.com/Tencent/phxrpc

indicates that the audio has both reading and spontaneous
speech. noise means that the audio was recorded in public
area with noise or the speaker was far away from the record-
ing device. In conclusion, our test data has a good coverage
of real-life application scenarios.

4.1.3 Evaluation metrics
We evaluate the effectiveness, efficiency and storage cost

of DLM in supporting ASR. For effectiveness, we use the
word error rate (WER), which is a common metric of
ASR. To calculate the WER, we manually generate the ref-
erence word sequence (i.e. the ground truth) for each audio
track from the test datasets. Given an input audio track, we
align the the word sequence generated by the model with the
the reference word sequence, and then apply Equation 15 to
compute WER. In Equation 15, D,S and I are the num-
bers of deletion, substitution and insertion operations re-
spectively involved in aligning the two sequences following
Levenshtein distance. N is the total number of words in
the reference sequence. For example, to convert the predic-
tion word sequence in Figure 5 to the reference sequence,
we need D = 1 deletion operation, S = 2 substitution oper-
ations, I = 1 insertion operation. The corresponding WER
is 1+2+1

5
= 0.8.

ASR is becoming very popular

ASR is be coming poppular

substitution deletion insertion

Reference:

Prediction:

Figure 5: An example of aligning the prediction word se-
quence with the reference sequence.

WER =
D + S + I

N
(15)

For efficiency, we measure the average processing time
spent by the language model per second input audio. Dis-
tributed n-gram model incurs communication overhead. We
also measure the number of network messages, which are the
major cause of the communication overhead.

4.2 Scalability and Efficiency Evaluation
We firstly study the overall efficiency and scalability of

DLM. After that, we do a breakdown analysis of the perfor-
mance of each optimization technique.

4.2.1 Scalability test
We test the scalability of DLM in terms of throughput,

i.e., the number of messages processed by the servers per sec-
ond. We use a large model with 400GB data, and measure
the number of messages per minute handled by DLM. By
controlling the rate of messages from clients to servers, the
maximum CPU utilization rate on all servers is kept at 75%.
We run two sets of workloads: a) real workload, denoted as
DLM-Real, whose messages are generated by the decoder
without any moderation; b) balanced workload, denoted
as DLM-Balanced, whose messages are manually balanced
among all servers of DLM. For DLM-Real, the distribution

2212

 10

 20

 30

 40

 50

 60

 70

 80

2 4 8 16

N
um

be
r

of
 m

es
sa

ge
s

Number of servers

DLM-Real
DLM-Balanced

Figure 6: Scalability test by measuring the throughput.

of messages to servers are imbalanced. Hence, some servers
would receive fewer messages and the overall throughput is
affected. The result in Figure 6 shows that DLM-Balanced
and DLM-Real scale well with only a small difference. The
good scalability is due to the proposed optimization tech-
niques, which will be analyzed in details in the following
subsections.

A scalable system should minimize the overhead incurred
when there are more servers. In Figure 7, we measure the
overhead by the change of querying time and number of
messages generated per second audio when the number of
servers is increased. We compare DLM with two baseline ap-
proaches, denoted as Baseline A[5] and Baseline B[20].
Baseline A distributes both the backoff weights and the
probabilities based on the hash of the last two words of each
n-gram. Batch processing is briefly mentioned in the paper
with the details omitted. We use the same batch process-
ing method of DLM for Baseline A. Baseline B distributes
the probabilities and backoff weights based on the hash of
all words in the n-gram; in addition, it caches short grams
locally. We implement Baseline B following the same cache
mechanism as DLM, i.e., cache 1-grams and 2-grams.

 100

 200

 300

 400

 500

 600

 700

2 4 8 16

Q
ue

ry
 t

im
e

(m
s)

Number of servers

Baseline B
Baseline A

DLM

(a)

 500

 1000

 1500

 2000

 2500

 3000

2 4 8 16

N
um

be
r

of
 m

es
sa

ge
s

Number of servers

Baseline B
Baseline A

DLM

(b)

Figure 7: Comparison with baselines.

The processing time per one second input audio of DLM
and the baselines is shown in Figure 7a. We can see that
when the number of servers increases, DLM and Baseline A
scale well with little overhead (or change) in terms of query-
ing time. The querying time of Baseline B remains high and
almost the same for different number of servers. This can
be explained by the number of messages from the client to
servers per second audio (Figure 7b). Note that the y-axis

Table 2: Time breakdown per communication.

Stage Time (µs)
Decoding & encoding 60

Transmission 130
Local index search 10

of Figure 7b is different to that in Figure 6, which stands
for the messages6 processed by the servers per second. Al-
gorithm A and DLM incur fewer messages than Algorithm
B mainly because of batch processing. For Algorithm A and
DLM, when the number of servers increases, the chance for
two messages sent to the same server decreases. Therefore,
the number of messages and the processing time increases.
In addition, DLM’s distributed index guarantees that all
statistics of one n-gram is on a single server; However, for
Baseline A, it can only guarantee that all probabilities used
in the backoff process of an n-gram are distributed to the
same server (because the suffix grams in Equation 8 share
the same last two words), whereas the backoff weights may
be distributed to different servers. Consequently, fewer mes-
sages are generated by DLM than Algorithm A.

To understand where the time goes, We measure the time
spent for each stage of a single network communication in
Table 2. We can see that, with the optimized local index,
most time is spent on message transmission, encoding and
decoding, which requires the optimization of the message
passing library. In this paper, we focus on reducing the
number of messages. Next, we study the effectiveness of our
proposed optimization techniques in communication reduc-
tion.

4.2.2 Caching
DLM caches the 2-grams and 1-grams on the client side.

Consequently, 1-gram and 2-gram queries are answered lo-
cally without sending messages to server nodes. From Ta-
ble 3, we can see that 16.09% 2-gram queries can be an-
swered directly. Therefore, we reduce 16.09% messages (with-
out considering batch processing) by caching 2-gram queries
locally. There is only one 1-gram query, i.e., “START”,
which has no influence on the performance.

Table 3: Distribution of queries.

n-gram 2 3 4 5 total
percent (%) 16.09 13.51 13.49 56.89 1

with hit gram (%) 16.09 10.6 4.2 2.5 33.39

We do not cache 3-grams and 4-grams because they are
very large as shown in Table 4. Moreover, only a small por-
tion of 3-gram and 4-gram queries can be answered directly
without backoff. The rest 3-gram and 4-gram queries have to
be estimated by the remote servers. In other words, caching
3-grams and 4-grams brings small reduction in communi-
cation cost. The size of 5-grams is not large, because the
training algorithm prunes many 5-grams that can be esti-
mated using 4-grams or 3-grams accurately in order to save
the storage. We do not cache 5-grams because only 2.5% 5-
grams queries (Table 3) can be answered using the 5-grams

6The messages could be sent from multiple clients to keep
the servers’ CPU utilization rate at 75%.

2213

Table 4: Distribution of n-grams in the ARPA file.

n-gram 1 2 3 4 5
number (million) 0.13 600 3600 2000 400

size (GB) ≈ 0 18 108 66 15

in the ARPA files; other 5-gram queries need backoff, which
incurs network communication.

4.2.3 Distributed Index
We conduct an ablation study to evaluate the performance

of the global and local index of DLM (Section 3.2) sepa-
rately. We do not consider the batching and caching opti-
mization for this experiment. The global index of DLM puts
all data for estimating the probability of an n-gram in the
same server node and thus reduces the number of messages
to 1 per n-gram. To evaluate the effect of this reduction,
we list the query distribution in Table 3. There is only one
1-gram query, i.e., “START”. Hence, we do not list it in the
table. We can see that 33.39% of all queries have hit grams.
In other words, these 33.39% queries do not need backoff and
incur only one message per query. The rest queries need at
least one time backoff, which incur at least one more mes-
sage. With the global index, we always issue one message
per query, which save at least (1-33.39%)=66.61% cost.

 0

 10

 20

 30

 40

 50

 60

2 4 8 16

Lo
ad

 b
al

an
ce

 (
%

)

Number of servers

Hash one word
Hash two words

Figure 8: Load-balance comparison

The global index partitions the data in the ARPA file onto
multiple servers. We evaluate the load-balance among the
servers. The load-balance is calculated as

max(S)− avg(S)

avg(S)

, where S denotes the set of local index sizes on all server
nodes, max(avg) computes the largest (resp. average) in-
dex size. Figure 8 compares the load balance of the global
index by hashing over a single word and two words. We can
see that the distribution of data among servers are more
balanced when the hash is done over two words.

To evaluate the performance of the local index of DLM,
i.e., the suffix tree, we create an n-gram query set and com-
pare the search time using the our local index versus using a
baseline index which stores the conditional probability and
the backoff weight using two separate hash functions (with
the whole n-gram as the key). Table 5 shows that DLM’s

Table 5: Evaluation of the local index.

DLM local index Hash Index
Number of searches 732 1663
Time per search (µs) 6.5 4.0
Total time (ms) 4.76 6.65

Table 6: Storage cost comparison.

ARPA DLM WFST
Size (GB) 200 100 200

local index is much faster than the hash index (see the Total
time). This is mainly because that the local index saves the
time by reducing the number of searches. To be specific, on
average, each n-gram needs 2.27 times of backoff to reach
the hit gram. DLM searches down the local index (suffix
tree) once per n-gram and then traverses back to get all the
information required by the backoff process. In contrast, the
baseline method calls the hash index repeatedly during the
backoff process (Algorithm 1) to get the backoff weights and
probabilities. Although the speed of the hash index is fast
per search, the overall efficiency gap is dominated by the big
difference in the number of searches. Note that the time per
search in Table 5 is smaller than that in Table 2. This is
because in Table 2, we measure the time for per message,
which includes a batch of n-grams. Some of these n-grams
may share the same prefix (see Section 3.3) and are thus
processed together. Consequently, the search time is longer.
The time in Table 5 is only for a single n-gram.

The local index also saves storage because the suffix tree
stores the prefix words only once among all n-grams sharing
this prefix. Figure 6 compares the storage cost of ARPA
file, DLM (i.e., the local index) and another popular data
structure for storing the language model, i.e. WFST[22].
We can see that DLM saves nearly half of the space.

4.2.4 Batch processing
Batch processing proposed in Section 3.3 merges the mes-

sages sent to the same server into a single message to reduce
the overhead. Figure 9 compares DLM with batch process-
ing and DLM without batch processing over two sets of n-
gram queries. The y-axis is the total number of messages for
each query set. We can see that batch processing reduces
the number of network messages significantly. In fact, al-

 2

 4

 6

 8

 10

 12

 14

Set 1 Set 2

N
um

be
r

of
 r

eq
ue

st
s

(m
ill

io
n)

No-batch
Batch

Figure 9: Evaluation of batch processing.

2214

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

test-0 test-1 test-2 test-3 test-4 test-5 test-6 test-7 test-8

W
ER

Full
Partial
Small

Figure 10: Performance of different models for fault-tolerance.

most half of all messages are eliminated. Consequently, it
saves much time. The big gap between DLM and Baseline
B in Figure 7 is also mainly due to batch processing.

4.3 Fault-tolerance Evaluation
Our distributed system has two back-up models for fault-

tolerance, which help to make the system robust against
network failures. However, since we are using a partial or a
small language model, the recognition performance is likely
to degrade. To compare the accuracy of these models, we
run each model over the 9 test datasets independently. Fig-
ure 10 shows the WER of the small, partial and full model.
The full model’s ARPA file has 200 GB data. The partial
model includes all 1-grams and 2-grams of the full model.
The small model is a 5-gram language model trained over a
subset of the text corpus. The ARPA file size is 50 GB.

We can see that the full model has the smallest WER,
which confirms our assumption that the larger model has
better performance. In addition, the small model is better
than the partial model and is competitive with the full model
on some test datasets. This is because the small model is
pruned from the full model via sophisticated pruning strat-
egy[25], whereas the partial model is simply pruned by re-
moving 3-grams, 4-grams and 5-grams. Note that the par-
tial model is only invoked for mild network failures, which
has limited influence on the overall WER at runtime. Al-
though the small model has similar performance as the full
model on multiple test datasets (environments), it is still
worth to use the full model as the full model is more robust
across different environments, including noisy environment
with multiple speakers, which is very important for commer-
cial deployment.

5. RELATED WORK

5.1 Language Models
Many research papers [6] on n-gram models focus on the

smoothing techniques, which resolve the zero-probability prob-
lem for n-grams not seen in the (small) training corpus.
Among them, Kneser-Ney smoothed 5-gram models [17] pro-
vide a strong baseline.

Big web data7 has been collected for training large n-gram
models. Big data brings significant improvement on accu-
racy [5]; however, it introduces challenges of storing large
models in the memory of a single machine. To handle large
n-gram models, distributed computing is applied for both
training [5, 1] and inference [28, 5]. For example, Brants et
al. [5] use Map-Reduce to train an n-gram language model
over a terabyte corpus. Each mapper processes one chunk
of the corpus to count the statistics, and the reducers ag-
gregate the statistics to generate the ARPA file(s).

In this paper, we focus on the online inference stage of
n-gram models and assume that models have already been
trained. Zhang et al.[28] and Emami et al.[8] partition the
training corpus onto multiple server nodes. Each server
trains an n-gram language model separately. During infer-
ence, the client sends messages to all servers to fetch the
statistics and merge them to estimate the n-gram proba-
bility. Brants et al.[5] partition the original ARPA file by
hashing the last two words of each n-gram. Using a new
smoothing technique, called stupid backoff, they can reduce
the number of network messages to 1 per n-gram; however,
for normal smoothing techniques like Kneser-Ney, O(n) mes-
sages have to be sent per n-gram. Mandery [20] studies dif-
ferent partitioning approaches and uses the sum of the IDs of
the prefix (n-1) words as the hash key. This strategy results
in good load-balance. However, it does not guarantee that
the probabilities and backoff weights of an n-gram query are
on the same server. In the worst case, a single n-gram query
can incur 2n− 1 messages. Our distributed index works for
most popular smoothing methods and reduces the network
messages to 1 per n-gram.

Neural language models (NLM)[4, 24] that use neural
networks to estimate the probability for LM become pop-
ular. NLM, especially the recurrent neural network based
LMs[21], have the potential to use longer context for prob-
ability estimation than n-gram LMs, whose context length
is at most n. However, the large vocabulary size and big
training corpus bring computation challenge for NLM [14].
Large scale LMs [14, 26, 12] show that NLMs and n-gram
LMs complement each other and the performance degrades
when they are used in isolation.

7https://ai.googleblog.com/2006/08/
all-our-n-gram-are-belong-to-you.html

2215

5.2 Automatic Speech Recognition
In recent years, we have witnessed the big changes of

ASR. Hidden Markov model (HMM) + Gaussian mixture
model (GMM) were used as the acoustic model for ASR for
a long time[15]. Around 2010s, deep neural network (DNN)
replaced GMM, and DNN+HMM became the state-of-the-
art[11]. Since 2013, researchers[10, 9, 19, 2] have been trying
to train end-to-end recurrent neural network models for ASR
by removing the HMM. For both the traditional models and
the end-to-end models [19, 2], n-gram LMs are integrated to
help rank the candidate words and sentences.

5.3 Optimization for Machine Learning
Despite the fast improvement of computation hardware,

optimization from the algorithm and system perspective is
still demanding as the models are becoming more complex
and the datasets are increasing at the same time. Database
researchers have been working on exploiting the optimiza-
tion techniques from database systems like batch processing,
indexing, caching, etc. for optimizing machine learning sys-
tems or tasks[18, 13, 7, 3, 16]. Clipper[7] proposes a general
system for machine learning inference, which batches the
messages received from users and feed them into the model
for higher throughput; MacroBase [3] accelerates the ana-
lytics of fast data streams by applying the machine learning
models only over sampled data. NoScope [16] provides spe-
cific optimization for video search. It trains a sequence of
cheap video classifiers tailored for the query and exploits a
cost-optimizer to search for the most efficient video classi-
fier with the given accuracy constraint. DLM shares some
ideas with these approaches, however, which are developed
for other applications instead of n-gram language modelling.

6. CONCLUSION
n-gram language models are ubiquitous in NLP applica-

tions. Distributed computing enables us to run larger n-
gram language models with better accuracy. However, it is
challenging to make the system scalable due to the commu-
nication cost and network failures. Towards the challenges,
we present a distributed system to support large-scale n-
gram language models. To reduce the communication over-
head, we propose three optimization techniques. First, we
cache low-order n-grams on the client node to serve some
requests locally. Second, we propose a distributed index to
process the rest requests. The index distributes the statis-
tics required by each n-gram query onto the same server
node, which reduces the number of messages per n-gram to
only one. In addition, it builds a suffix tree on every server
for fast retrieval and estimation of the probabilities. Third,
we batch all messages being sent to the same server node
into a single message. Besides the efficiency optimization,
we also propose a cascade fault-tolerance mechanism, which
switches to local small language models adaptively. The
experiment results confirm that our system scales to large
n-gram models efficiently, effectively and robustly.

7. ACKNOWLEDGEMENT
The work in this paper is supported by the Tencent-NUS

Collaborative Research Grant, the National Research Foun-
dation, Prime Ministers Office, Singapore under its National

Cybersecurity RD Programme (No. NRF2016NCR-NCR002-
020), and Singapore Ministry of Education Academic Re-
search Fund Tier 1.

8. REFERENCES
[1] C. Allauzen, M. Riley, and B. Roark. Distributed

representation and estimation of wfst-based n-gram
models. In Proceedings of the ACL Workshop on
Statistical NLP and Weighted Automata (StatFSM),
pages 32–41, 2016.

[2] D. Amodei, R. Anubhai, E. Battenberg, C. Case,
J. Casper, B. Catanzaro, J. Chen, M. Chrzanowski,
A. Coates, G. Diamos, E. Elsen, J. Engel, L. Fan,
C. Fougner, T. Han, A. Y. Hannun, B. Jun,
P. LeGresley, L. Lin, S. Narang, A. Y. Ng, S. Ozair,
R. Prenger, J. Raiman, S. Satheesh, D. Seetapun,
S. Sengupta, Y. Wang, Z. Wang, C. Wang, B. Xiao,
D. Yogatama, J. Zhan, and Z. Zhu. Deep speech 2:
End-to-end speech recognition in english and
mandarin. CoRR, abs/1512.02595, 2015.

[3] P. Bailis, E. Gan, S. Madden, D. Narayanan, K. Rong,
and S. Suri. Macrobase: Prioritizing attention in fast
data. In SIGMOD, pages 541–556, 2017.

[4] Y. Bengio, R. Ducharme, P. Vincent, and C. Janvin.
A neural probabilistic language model. J. Mach.
Learn. Res., 3:1137–1155, Mar. 2003.

[5] T. Brants, A. C. Popat, P. Xu, F. J. Och, and
J. Dean. Large language models in machine
translation. In EMNLP-CoNLL, pages 858–867,
Prague, Czech Republic, June 2007.

[6] S. F. Chen and J. Goodman. An empirical study of
smoothing techniques for language modeling.
Computer Speech & Language, 13(4):359–394, 1999.

[7] D. Crankshaw, X. Wang, G. Zhou, M. J. Franklin,
J. E. Gonzalez, and I. Stoica. Clipper: A low-latency
online prediction serving system. In NSDI, pages
613–627, Boston, MA, 2017. USENIX Association.

[8] A. Emami, K. Papineni, and J. Sorensen. Large-scale
distributed language modeling. In ICASSP, volume 4,
pages IV–37–IV–40, April 2007.

[9] A. Graves and N. Jaitly. Towards end-to-end speech
recognition with recurrent neural networks. In ICML -
Volume 32, ICML’14, pages II–1764–II–1772.
JMLR.org, 2014.

[10] A. Graves, A. Mohamed, and G. E. Hinton. Speech
recognition with deep recurrent neural networks.
CoRR, abs/1303.5778, 2013.

[11] G. Hinton, L. Deng, D. Yu, G. E. Dahl,
A. r. Mohamed, N. Jaitly, A. Senior, V. Vanhoucke,
P. Nguyen, T. N. Sainath, and B. Kingsbury. Deep
neural networks for acoustic modeling in speech
recognition: The shared views of four research groups.
IEEE Signal Processing Magazine, 29(6):82–97, Nov
2012.

[12] S. Ji, S. V. N. Vishwanathan, N. Satish, M. J.
Anderson, and P. Dubey. Blackout: Speeding up
recurrent neural network language models with very
large vocabularies. CoRR, abs/1511.06909, 2015.

[13] J. Jiang, F. Fu, T. Yang, and B. Cui. Sketchml:
Accelerating distributed machine learning with data
sketches. In SIGMOD, SIGMOD ’18, pages
1269–1284, New York, NY, USA, 2018. ACM.

2216

[14] R. Józefowicz, O. Vinyals, M. Schuster, N. Shazeer,
and Y. Wu. Exploring the limits of language
modeling. CoRR, abs/1602.02410, 2016.

[15] D. Jurafsky and J. H. Martin. Speech and Language
Processing (2nd Edition). Prentice-Hall, Inc., Upper
Saddle River, NJ, USA, 2009.

[16] D. Kang, J. Emmons, F. Abuzaid, P. Bailis, and
M. Zaharia. Noscope: Optimizing neural network
queries over video at scale. PVLDB, 10(11):1586–1597,
2017.

[17] R. Kneser and H. Ney. Improved backing-off for
m-gram language modeling. In ICASSP, volume 1,
pages 181–184 vol.1, May 1995.

[18] Y. Lu, A. Chowdhery, S. Kandula, and S. Chaudhuri.
Accelerating machine learning inference with
probabilistic predicates. In SIGMOD, SIGMOD ’18,
pages 1493–1508, New York, NY, USA, 2018. ACM.

[19] A. L. Maas, A. Y. Hannun, D. Jurafsky, and A. Y.
Ng. First-pass large vocabulary continuous speech
recognition using bi-directional recurrent dnns. CoRR,
abs/1408.2873, 2014.

[20] C. Mandery. Distributed n-gram language models :
Application of large models to automatic speech
recognition. 2011.

[21] T. Mikolov, S. Kombrink, L. Burget, J. Cernocky, and
S. Khudanpur. Extensions of recurrent neural network
language model. pages 5528 – 5531, 06 2011.

[22] M. Mohri, F. Pereira, and M. Riley. Weighted
finite-state transducers in speech recognition. Comput.
Speech Lang., 16(1):69–88, Jan. 2002.

[23] Y. Shen, G. Chen, H. V. Jagadish, W. Lu, B. C. Ooi,
and B. M. Tudor. Fast failure recovery in distributed
graph processing systems. PVLDB, 8(4):437–448,
2014.

[24] D. Shi. A study on neural network language modeling.
CoRR, abs/1708.07252, 2017.

[25] A. Stolcke. Entropy-based pruning of backoff language
models. CoRR, cs.CL/0006025, 2000.

[26] W. Williams, N. Prasad, D. Mrva, T. Ash, and
T. Robinson. Scaling recurrent neural network
language models. In ICASSP, pages 5391–5395, April
2015.

[27] S. Young, G. Evermann, M. Gales, T. Hain,
D. Kershaw, X. Liu, G. Moore, J. Odell, D. Ollason,
D. Povey, V. Valtchev, and P. Woodland. The HTK
book. 01 2002.

[28] Y. Zhang, A. S. Hildebrand, and S. Vogel. Distributed
language modeling for n-best list re-ranking. In
EMNLP, EMNLP ’06, pages 216–223, Stroudsburg,
PA, USA, 2006.

APPENDIX
A. ANALYSIS OF ALGORITHM 4

Denote each node using the words from that node to the
root. For example, if Traverse completes all words, then the
last node is node wn−1

1 . The execution of Line 3 to Line 13

has four states,

1. If the top of the stack is node wn−1
1 , and < wn, P̄ (wn|

wn−1
1) > is associated with this node, the probability

is retrieved at Line 6 and returned at Line 14 (g = 1).
This case corresponds to Equation 10.

2. If the top of the stack is node wn−1
k , where 1 ≤ k < n,

and < wn, P̄ (wn| wn−1
k) > is not associated with this

node, it indicates that ∀i < k node wn−1
i does not

exist, and thus wn−1
i 6∈ A. According to Section 2.2,

γ(wn−1
i) = 1. Algorithm 4 accumulates the backoff

weight at Line 9 (node.g = 1) and checks the next
node in the stack, i.e. node wn−1

k+1 . The execution goes
to (2), (3) or (4).

3. If the top of the stack is node wn−1
l , and < wn, P̄ (wn|

wn−1
l) > (1 < l < n) is associated with this node, the

probability is retrieved and the result is returned at
Line 14. If the execution is from state (2), we have

g ∗ p =

l−1∏
i=k

γ(wn−1
i)P̄ (wn|wn−1

l)

=

l−1∏
i=1

γ(wn−1
i)P̄ (wn|wn−1

l) = P (wn|wn−1
1)

The second equation is derived as γ(wn−1
i) = 1,∀i <

k. The last equation is according to the l-th equation
between Equation 10 and Equation 14. If the execution
is directly from the initial state, we have

g ∗ p = 1 ∗ P̄ (wn|wn−1
l)

=

l−1∏
i=1

γ(wn−1
i)P̄ (wn|wn−1

l) = P (wn|wn−1
1)

The second equation is derived as ∀i < l node wn−1
i

does not exist, which indicates wn−1
i 6∈ A and γ(wn−1

i) =
1.

4. If the top node is the root, Line 12 is then executed.
Similar to state (3), we can prove the returned value
is just the conditional probability. If the execution is
from (2), the returned value is

g ∗ p =

n−1∏
i=k

γ(wn−1
i)P̄ (wn)

=

n−1∏
i=1

γ(wn−1
i)P̄ (wn) = P (wn|wn−1

1)

The last equation is according to Equation 14. If the
execution is from the initial state, the returned value is

g ∗ p = 1 ∗ P̄ (wn)

=

n−1∏
i=1

γ(wn−1
i)P̄ (wn) = P (wn|wn−1

1)

From the analysis, we can see Algorithm 4 handles all
types of n-grams by computing the probability using one of
the equations between Equation 10 and 14.

2217

