
S3: A Scalable In-memory Skip-List Index for Key-Value
Store

Jingtian Zhang†, Sai Wu†
∗

, Zeyuan Tan†, Gang Chen†,
Zhushi Cheng‡, Wei Cao‡, Yusong Gao‡, Xiaojie Feng‡
†Zhejiang University, Hangzhou, Zhejiang, China.
‡Alibaba Group, Hangzhou, Zhejiang, China.

{11421015, wusai, 3160103832, cg}@zju.edu.cn
{zhushi.chengzs, mingsong.cw, jianchuan.gys, xiaojie.fxj}@alibaba-inc.com

ABSTRACT
Many new memory indexing structures have been proposed
and outperform current in-memory skip-list index adopted
by LevelDB, RocksDB and other key-value systems. How-
ever, those new indexes cannot be easily intergrated with
key-value systems, because most of them do not consider
how the data can be efficiently flushed to disk. Some as-
sumptions, such as fixed size key and value, are unrealistic
for real applications. In this paper, we present S3, a scal-
able in-memory skip-list index for the customized version of
RocksDB in Alibaba Cloud. S3 adopts a two-layer struc-
ture. In the top layer, a cache-sensitive structure is used
to maintain a few guard entries to facilitate the search over
the skip-list. In the bottom layer, a semi-ordered skip-list
index is built to support highly concurrent insertions and
fast lookup and range query. To further improve the per-
formance, we train a neural model to select guard entries
intelligently according to the data distribution and query
distribution. Experiments on multiple datasets show that
S3 achieves a comparable performance to other new mem-
ory indexing schemes, and can replace current in-memory
skip-list of LevelDB and RocksDB to support huge volume
of data.

PVLDB Reference Format:
Jingtian Zhang, Sai Wu, Zeyuan Tan, Gang Chen, Zhushi Cheng,
Wei Cao, Yusong Gao, Xiaojie Feng . S3: A Scalable In-memory
Skip-List Index for Key-Value Store. PVLDB, 12(12): 2183-2194,
2019.
DOI: https://doi.org/10.14778/3352063.3352134

1. INTRODUCTION
Many popular key-value stores, such as LevelDB [8] ,

RocksDB [13] and HBase [1], maintain an in-memory skip-
list [32] to support efficient data insertion and lookup. The

∗Sai Wu is the corresponding author.

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 12, No. 12
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3352063.3352134

reason of adopting skip-list is two-fold. First, its mainte-
nance cost is low, since it does not require complex adjust-
ment operations in the tree-like index to keep balance. Sec-
ond, when skip-list is full (4MB case in LevelDB), it can be
efficiently flushed to disk and merged with other disk data
structures (e.g., SSTable).

However, many new in-memory indexing structures [4,
20, 26, 7, 30, 37, 42] are proposed, showing superior per-
formance than the classic skip-list index. Some core tech-
niques, when designing those efficient new indexes, include
cache-sensitive structure, SIMD speedup for multi-core ar-
chitecture, specific encoding of the key, latch-free concurrent
access and other optimization approaches. Those sophisti-
cated designs allow the new indexes to achieve an order-of-
magnitude better performance than skip-list[41]. The prob-
lem, on the other hand, is that they are difficult to be ap-
plied to existing disk-based key-value systems. Since many
services on Alibaba Cloud are supported by our customized
RocksDB (tailored for the cloud environment), we use the
RocksDB as our example to illustrate the idea.

All hash-based in-memory indices [4, 20] cannot be direct-
ly integrated with the disk-part of LevelDB or RocksDB, be-
cause they do not maintain the keys in order. Consequently,
they do not support range queries, or we need to transfor-
m the range queries into multiple lookup requests. Before
flushing those data back to the disk as a SSTable, a sorting
process is invoked, which is costly and may block write and
read operations.

In RocksDB, the in-memory index is kept small (4MB-
64MB) so that it can be efficiently flushed to disk and does
not trigger high compaction overhead 1. This strategy caus-
es the in-memory index to be frequently rebuilt and flushed
out. Many in-memory indices have not taken the case into
consideration. To achieve a high in-memory performance,
keys and values are normally formatted to be friendly to the
cache. Trie-based indices, such as ART [26], Judy [7] and
Masstree [30], split a key into multiple key slices to facili-
tate the search and cache usage. Each slice contains a few
bytes of the original key. For example, each layer in the
Masstree is indexed by a different 8-byte slice of key. This
will significantly slow down the flushing process, as we need
to assemble the keys back. Masstree also maintains the key

1Another reason is that skip-list does not perform well for
large datasets. However, even if we replace skip-list with
other indices, we still cannot maintain a too large in-memory
index, since the compaction overhead will become the bot-
tleneck and block the insertion and lookup operations.

2183

and value separately and as a result, we need to merge them
together before writing the data to disk.

Many other skip-list-based indices, such as CSSL [37] and
PI [42, 43], will periodically restructure the index to opti-
mize the performance. During the restructuring process, the
read and write operations are blocked. Besides, both indices
assume that keys are of the same size, so that a specified
number of keys can be exactly processed by a SIMD vector.
A single SIMD load instruction can load all those keys into
a SIMD register. Such optimization may not be possible for
real applications. On the other hand, FAST [25] addressed
the problem by mapping variable length keys to 4-byte fixed
size keys. But if we want to flush the memory data back to
the disk, we must reverse the mapping.

In this paper, we present S3, a scalable in-memory skip-
list index for the customized version of RocksDB in Alibaba
Cloud. Usability is the first-class citizen in our design. S3
can be seamlessly integrated with the disk-part of LevelDB
and RocksDB to replace their old skip-list index. S3 al-
so supports high throughput insertion, efficient lookup and
range search. The performance of S3 is approaching to the
state-of-the-art in-memory index, ART [26], while it can be
easily extended as a disk-based index.

S3 adopts a two-layer design. In the bottom layer, we
build a semi-order skip-list, where keys inside one data entry
are not required to be sorted. Data entries remain ordered.
Namely, the maximal key of a data entry is smaller than
the minimal key of its successor. This strategy allows us
to further improve the insertion performance, but may slow
down the search process. To address the problem, we inten-
tionally create some guard entries as shortcuts. Instead of
starting the search from the head of the skip-list, we jump
to the closest shortcut and resume our search, which sig-
nificantly reduces the search overhead. In the paper, we
study the effect of guard entry selection on the performance
theoretically.

But searching for the proper shortcut introduces addition-
al overhead. So in the top layer, we adopt a cache-sensitive
index for fast retrieval of guard entries. Currently, we use
FAST [25] as our top layer index. Other cache-sensitive
indices can be adopted as well. Note that since only a few
guard entries are generated, the top layer index is quite com-
pact, allowing to buffer most of the data in L2/L3 cache.
The search cost of top layer is almost free, compared to the
search in the bottom skip-list.

Finally, we provide the same API as the original skip-list
in LevelDB and RocksDB to flush data back to disk. We
also propose a series of optimization techniques to facilitate
the guard entry selection and multi-threading access. The
remaining of the paper is organized as follows. In Section 2 ,
we briefly review some recent work on the in-memory index-
ing. We show our general design in Section 3 and present
our key ideas in Section 4. In Section 5, we discuss some op-
timization techniques. Experimental evaluation results are
shown in Section 6 and we conclude the paper in Section 7.

2. RELATED WORK
Key-value stores are widely used for managing large-scaled

data[13, 8, 14, 10, 5]. Some key-value stores, such as Re-
dis[12], are designed as in-memory systems for fast data re-
trieval. But most others are targeting at supporting huge
volume disk data on top of distributed file systems. Since

accessing disk data generates more overhead[39], many key-
value stores adopt the log-structured merge tree (LSM) ar-
chitecture[31].

LevelDB is the most popular LSM key-value stores[8]. In
LevelDB, a small in-memory index is employed to support
fast data insertion and lookup. When the in-memory part,
MemTable, is full, we will flush it back to the disk and cre-
ate a new one. The disk files, SSTables, are also organized
as multiple levels. If the number of SSTables at one level
reaches the predefined threshold, we will pick one SSTable
and merge it with the next level SSTables. This operation
is called compaction in LevelDB and may incur extremely
high processing overhead.

Original LevelDB adopts a simple concurrent process s-
trategy. It buffers all insertions into a buffer and asks one
thread to conduct all insertions sequentially. Hyper-LevelDB
improves the strategy by allowing concurrent updates[6].
RocksDB, on the other hand, introduces a multi-threaded
merging strategy for the disk components[13]. cLSM[21] re-
places the global mutex lock with a global reader-writer lock
and uses a concurrent memory component. Hence, opera-
tions can proceed in parallel, but need to be blocked at the
start and end of each concurrent compaction. Write ampli-
fication is also an important performance issue for LSM-like
systems. The LSM-trie data structure uses tries to organize
keys to reduce write amplification. However, it cannot sup-
port range queries[40]. RocksDB’s universal compaction re-
duces write amplification by sacrificing read and range query
performance[13]. PebblesDB proposes a scheme to balance
the costs of write amplification and range query[33]. WiscK-
ey directly separates values from keys, significantly reducing
write amplification regardless of the key distribution in the
workload[29]. Most of the above works are orthogonal to
our improvements on the memory component.

Some works have been done on the memory componen-
t of LSM key-value stores. RocksDB offers two hash-based
memory components as options[13]. HashSkipList organizes
data in a hash table with each hash bucket as a skip-list.
HashLinkList also maintains data in a hash table with each
hash bucket as a sorted single linked list. The biggest lim-
itation of the hash-based memory component is that doing
scan across multiple prefixes requires copy and sort, which
is very slow and memory costly. FloDB adds a small in-
memory buffer layer on top of the memory component[17].
New entries are inserted into a small hash table, and then
shuffled to the bottom skip-list as a background process.
Our proposed in-memory skip-list index, S3, can be used
to replace the skip-list in FloDB and other skip-list based
index, such as the ones used in LevelDB[8] or RocksDB[13].

Besides the LSM-like index, other in-memory indices are
also very popular. There have been many works trying to
improve the performance of the in-memory B+-tree. CSS-
tree is a cache-sensitive search tree, where nodes are stored
in a contiguous memory area in order to eliminate the use of
child pointers in each node[34]. CSB+-tree applies a similar
idea to B+-trees and achieves cache consciousness and effi-
cient update[35]. The effect of node size is studied in CSB+-
tree and B+-tree[22, 18]. The results have shown that using
node size larger than a cache line results in better search per-
formance. Masstree[30] is a trie variant of B+-tree, which
can efficiently handle keys of arbitrary length with all the
optimizations presented in [34]. It is capable of providing a
high query throughput[30].

2184

To avoid the overhead of latches, Bwtree uses CAS opera-
tions and can perform substantially better than traditional
B+-trees[27]. PALM adopts a bulk synchronous parallel (B-
SP) model to process queries in batches[36]. FAST uses a
similar searching method, together with Single Instruction
Multiple Data (SIMD) processing to boost the key compar-
ison during index traversal[25]. As a result, FAST achieves
twice the query throughput of PALM while be quite efficient
in scan and reverse scan.

The Adaptive Radix Tree (ART) also enables SIMD pro-
cessing via a customized memory layout for the internal tree
nodes and achieves a comparable performance to FAST[26].
However, ART does not necessarily cover full keys or val-
ues and is primarily used as a noncovering index. It cannot
be used to replace the skip-list in the LSM-based system.
Nor can it be used as our top layer index, since ART does
not perform well in the scan and reverse scan process[16](we
must support range queries for applications).

Skip-list is originally presented as a probabilistic data
structure similar to B-trees [32]. Compared with B+-tree,
a skip-list shows a similar search performance, but requires
much less effort to maintain. However, native linked list
based implementation of skip-list has poor cache utilization
due to the nature of linked lists. CSSL [37] and PI [42, 43]
solve this problem by separating the index layer from the s-
torage layer and assume that a specified number of keys can
exactly occupy a whole SIMD vector. Thus, the layout of
the index layer can be optimized for cache utilization at the
cost of fixed key length. However, both of the structure peri-
odically restructure the index to optimize the performance.
During the restructuring process, the read and write opera-
tions are blocked.

3. OVERVIEW OF THE FRAMEWORK
To resolve the confliction between the high performance

and low compaction cost to disk in existing LSM-based sys-
tems, we proposed a two-layer in-memory indexing struc-
ture. In particular, the disk part of RocksDB remains the
same and we mainly change its in-memory part. Figure 1
shows the overview of our indexing structure. The top layer
can be any cache-sensitive index. For efficiency and simplic-
ity, we adopt FAST(Fast Architecture Sensitive Tree) [25] in
our current implementation. The bottom layer is a variant
of skip-list [32]. The intuition of using a two-layer structure
is two-fold:
• The performance of skip-list is not comparable to other

recently proposed in-memory indexes [30, 27].
• Most in-memory indexes do not consider the problem of

how to efficiently flush memory data into disk like what
we do in LevelDB [8] and RocksDB [13].

The variant of skip-list, compared to the vanilla one, main-
tains two types of index entries:
• data entry (denoted as dei), maintaining serval user-entered

keys and values, same as the original definition.
• guard entry (denoted as gei), indicating a routing key for

speeding up the search process of the skip-list.

One typical optimization for lookup and insertion operations
on skip-list is to buffer the historical routing paths and reuse
them as much as possible. When processing future queries,
we check the routing paths and reuse the index entries that
are closer to the destinations.

This motivates the idea of guard entries. We material-
ize some popular entries in the routing paths as shortcuts,

333 2 5 13 11 21 17 27 29 31

…

… …

… …

25

0 15 33 ……

0

guard
entry
ge1

guard
entry
ge2

guard
entry
ge3

guard
entry
geM

data
entry
de6

data
entry
de5

data
entry
de4

data
entry
de3

data
entry
de2

data
entry
de1

… …

15

Figure 1: Two Layer Structure(Each data entry have two
keys, the value is omitted)

which can potentially reduce the routing cost from O(logN)
to O(log(N

M
)) (we will show this theoretically in the follow-

ing section). However, remember that our indexing struc-
ture will be periodically flushed to disk and rebuilt (name-
ly, freezed as a immutable MemTable and created a new
one from scratch). It is challenging to decide which entry
should be promoted as the guard entry during runtime. In
this paper, we adopt a neural model to predict the impor-
tance of an index entry based on the data distribution and
query distribution of the last index. Although it may not re-
flect the distributions of current index, the model is a good
approximation since both data distribution and query dis-
tribution change smoothly over time. Moreover, after the
current index is freezed for flushing, we will train and up-
date the neural model using the new data. Therefore, the
model will be up-to-date.

To lookup a key keyi, we need to find the guard entry that
contains the largest key less than or equal to keyi. If too
many guard entries are maintained, the search overhead of
guard entries may compromise the performance gain. Hence,
in the top layer, we use a cache-sensitive index, FAST, to
support the search among guard entries. Because only few
entries are used as guard entries, most FAST data can be
maintained in cache. The search over FAST is almost free
compared to the search over skip-list.

Another advantage of adopting the two-layer indexing struc-
ture is that it makes concurrent control over multiple threads
much simpler. We limit the updates of skip-list within the
data entries. So the pointer adjustments are always per-
formed between guard entries and do not effect the data
entries between adjacent guard entries. Thus, by assigning
each thread to a series of guard entries, the query processing
becomes latch-free.

One more optimization of our index is to employ par-
tial order strategy to reduce the write overhead. As LSM-
structures are designed to support write-intensive applica-
tions, we consider the priority of write operation over the
read one. Our skip-list is organized as semi-ordered between
two guard entries to further improve writing throughput.
Specifically, the data entries and guard entries are kept in or-
der, while the keys inside the data entries can be unordered.
We will drill down the details of semi-order skip-list in the
Section 5.1.

4. THE KEY IDEA

2185

In this section, we use a series of examples to show how
our two-layer indexing structure works. We briefly show the
effect of the guard entries and our entry selection strategy.
Finally, we discuss the implementation details of flushing
the memory index data back as disk components, namely,
SSTables in LevelDB [8] and RocksDB [13].

4.1 Basic Operators
We use the example structure in Figure 1 to demonstrate

how operators, such as lookup, range query and insertion,
are supported in our index. The search process is almost
identical to the original skip-list, except for the processing
of guard entry and semi-ordered data entry. Given a lookup
request for key1 = 25, we check our up-layer cache sensi-
tive index (FAST[25] in current implementation) to find the
guard entry with its key less than or equal to key1. In Fig-
ure 1, this is the second guard entry denoted as ge2, because
the next guard entry ge3 has a key 33, larger than key1. We
follow the links of ge2 to route the query. Its top link points
to data entry de5 with two keys 27 and 25. We are lucky
to find the exact key. Since we use semi-order skip-list, the
data entry does not sort its keys. Hence, we may need to
scan all keys to retrieve our requested key-value pair. This
is fast, as all keys inside a data entry can be obtained via a
few cachelines. If we cannot find the proper data entry in
current link, we need to follow the other links of ge2 until
we find a data entry with its maximal key less than key1
and route the query to that data entry. The search contin-
ues until we reach key1 or report a miss after checking all
possible links.

To insert key2 = 31 into the index, we find the last guard
entry whose key is less than or equal to key2 (ge2 in Figure
1). Then, we follow the top-level link of ge2 in the skip-list
to find the rightmost entry de5 whose key is less than key2.
Then we move on to de5 and repeats the search process
in the next level. We find de5 itself is the entry less than
key2 at the level. The search terminates, since we reach
the bottom-level link. de5’s next neighbor, de6, is our re-
sult. Since data entry does not necessary maintain its keys
in order, we just append key2 = 31 to the end of key list
in de6. For each data entry, we maintain its maximal key
value explicitly. So if the data insertion violates the curren-
t maximal key, we also need to update it correspondingly.
Currently, one data entry is allowed to maintain nL bytes
key-value pairs, where L is the size of cacheline and n is a
tunable parameter. Previous work assumes that both keys
and values are of fixed sizes. So that specific optimization
techniques can be applied to improve the cache hit ratio.
In our case, real applications may pose arbitrary keys and
values. Such optimizations are not valid. We just maintain
keys continuously to improve the scan efficiency. Our intu-
ition is to improve the insertion performance, while slightly
sacrificing the lookup performance. This is because many of
our applications are write-intensive.

For range query [key3 = 5, key4 = 18], we retrieve the
guard entries with the largest keys less than key3 respec-
tively via the top layer cache-sensitive index, which are ge1
in Figure 1. Then, we traverse the semi-order skip-list to
find the last data entry dei whose maxkey is less than key3,
which is de1 in our example. To process the query, we s-
can from the neighbors of de1, de2, to de4, whose maxkey is
greater or equal than key4, to retrieve all qualified key-value
pairs within key3 and key4. In our example, we get the keys

5, 11, 13, 15, 17 and their corresponding values. key = 21 in
the de4 is not included as 21 > 18.

4.2 Selection of Guard Entry
Apparently, the selection of guard entries plays an impor-

tant role for the query performance. As said in Section 3, we
suggest that both data distribution and query distribution
change smoothly over time. Thus, we can select the guard
entries based on the data distribution and query distribution
of the last index.

In this section, we give a detailed theoretic analysis based
on the assumption that both data and queries share the same
distribution. Namely, queries are evenly distributed over
the keys. The simple assumption surprisingly works well for
most real applications. In next section, we will show our
optimization technique to handle the case where data and
queries are of different distributions.

We focus on two operations, lookup and insertion. In fact,
the insertion operation is performed by a lookup and an up-
date operation. For the insertion operation, when perform-
ing the lookup, we need to record the predecessor of each
level in the skip-list to enable the update. After reaching the
destination entry, if the entry is not full, we directly insert
the key. Otherwise, we may need to create a new entry and
update previous routing links for the recorded predecessors.
However, note that this cost is bounded by L, the maximal
level of skip-list. As a result, in the following discussion, we
mainly focus on the lookup cost.

As a normal skip-list, for a newly generated entry, if it
has created routing link for level i, then it will create a link
for level i+ 1 with the probability P . In Figure 1, we have
P = 1

2
and hence, the skip-list is actually a variant of binary

search tree. In our implementation, we adopt the semi-order
skip-list, where all entries share the same probability P and
can only maintain at most num key-value pairs.

In our skip-list, the data has been split into θM equal-size
partitions, where M is the number of guard entries and θ is
a parameter for tuning the granularity. In other words, each
guard entry gei is responsible for a few partitions denoted
as f(gei). We try to find the optimal f , so that the total
lookup cost and insertion cost are minimized.

Let (Si, Si+1] be the key range of the ith partition pi. The
data distribution in pi is denoted by Pdi , while the query
distribution in pi is represented as Pqi . Suppose we have N
data entries in total. The number of entries(Nk) maintained
by guard entry gek can be estimated as

Nk = N ·
∑

∀pi∈f(gek)

Pdi

The query distribution in pk can be estimated similarly as
Qk = Q

∑
∀pi∈f(gek)

Pqi

where Q is the total number of queries.
If the data and query roughly share the same distribution

(namely, queries are evenly distributed over data), we have∑
∀pi∈f(gek)

Pdi ∝
∑

∀pi∈f(gek)
Pqi . To simplify, we use xk and

αxk to denote
∑

∀pi∈f(gek)
Pdi and

∑
∀pi∈f(gek)

Pqi respectively.

Thus, Nk and Qk are represented as N · xk and αN · xk.
Based on the characteristics of skip-list, the maximal lev-

el of data entries in pk, denoted as h(pk), is estimated as
log 1

P
(Nk). The level of the whole skip-list H can be com-

puted similarly as max
1≤k≤M

h(pk). Because in our case, the

2186

guard entry always maintains the routing tables for all lev-
els within its range, we perform at most H level switch for
processing a lookup request. Assume the overhead of each
switch is oh, the level switch cost of lookup is cl = H · oh.

Besides the overhead of level switch, we also need to route
the request along each level within the partition pk. Luckily,
the original skip-list paper[32] gives an approximate estima-
tion for the cost of such routing, which is roughly l(pk) =
(1
P
− 1) · h(pk). Assume the overhead of each hop along the

linked list is fixed to ol, the total overhead of routing with-
in the partition pk can be computed by ct(pk) = l(pk) · ol.
Take the query distribution of each partition pk into con-
sideration, we have the average routing overhead for our
semi-order skip-list:

ct =

M∑
k=1

{(
∑

∀pi∈f(gek)

Pqi)ct(pk)}

In other words, ct =
M∑
k=1

{αxk · ct(pk)}.

As we have
M∑
k=1

xk = 1, we can obtain the following theo-

rem.
Theorem 1. Assume the query and data follow the same

distribution. Both the costs of level switch (cl) and routing
(ct) are optimal when x1 = x2 · · = xM .

Proof. First, we will show that cl is optimal when x1 =
x2 · · = xM .

We have cl = H · oh
= max

1≤k≤M
h(pk) · oh

= max
1≤k≤M

log 1
P

(Nk) · oh

= max
1≤k≤M

log 1
P

(N · xk) · oh.
Obviously, cl is minimized when max

1≤k≤M
xk is minimized,

and the only solution is that x1 = ·· = xM .
Next, we show that ct is also minimized when x1 = ·· =

xM . We have

ct = α

M∑
k=1

{xk · ct(pk)}

= α

M∑
k=1

{xk · l(pk) · ol}

= α

M∑
k=1

{xk · (
1

P
− 1) · h(pk) · ol}

= α

M∑
k=1

{xk · (
1

P
− 1) · log 1

P
(N · xk) · ol}

.
Assume g(xk) = xk · (1

P
− 1) · log 1

P
(N · xk), we have ct =

α
M∑
k=1

g(xk) · ol and

g(xk) = xk · (
1

P
− 1) log 1

P
(N · xk)

= xk · (
1

P
− 1)(log 1

P
(N) + log 1

P
(xk))

= (
1

P
− 1) log 1

P
(N) · xk + xk · (

1

P
− 1) log 1

P
(xk)

= (
1

P
− 1) log 1

P
(N) · xk + xk · (

1

P
− 1)(

ln(xk)

ln 1
P

)

= (
1

P
− 1) log 1

P
(N) · xk +

(1
P
− 1)

ln 1
P

xk · ln(xk)
.

Hence, we have g′(xk) = (1
P
− 1) log 1

P
(N) +

(1
P
−1)

ln 1
P

· (1 +

ln(xk)) and g′′(xk) =
(1
P
−1)

ln 1
P

· 1
xk

. Since P is always less

than 1 and xk > 0, we have f ′′(x) > 0. According to Jensen

inequality,
M∑
k=1

g(xk) · ol ≥M · f(

M∑
k=1

xk

M
) · ol. The equal sign

only holds in the case that x1 = · · · = xM = 1
M

. So that, ct
is optimal when x1 = x2 = ·· = xM .

Based on Theorem 1, the optimal selection of guard en-
tries, namely, the selection of function f , are equal-size parti-
tions under the assumption that the data and queries follow
the same distribution. This is a strong assumption. How-
ever, it works good for real applications. When data and
queries significantly show different distributions, we will ap-
ply a neural model to predict how to select guard entries.
Details of the neural model will be discussed in the next
section.

4.3 Implementation Details
One naive approach is to increase the number of guard

entries to improve the search efficiency. In this way, the
search cost of top layer cache-sensitive index also increas-
es, compromising the performance benefit and introducing
other maintainance overhead. Our current implementation
maintains a very small top layer index. The configuration
depends on the hardware. Since our current servers adopts a
Xeon CPU with 4MB L2 cache, we set our top layer index to
be 2MB at most (50% of the L2 cache). The intuition is to
guarantee that almost all top layer index can be maintained
in the cache.

Our two-layer indexing structure not only speeds up the
query process, but also makes it simple and elegant for con-
current processing. To process an insertion, we need to up-
date the routing links of skip-list. Since we set the guard
entries to have a full set of links for all levels, the pointer
adjustments are limited within guard entries and do not ef-
fect the data entries in adjacent guard entries. Suppose we
have n threads and m guard entries. The ith guard entry
and data entries between the ith and i + 1th guard entries
are all handled by the i%nth thread. A processing thread,
on the other hand, maintains m

n
queues, one for each guard

entry. All requests within the ith and i+ 1th guard entries
will be maintained in its corresponding queue and processed
one by one. In this case, the queries are naturally distribut-
ed and latch-free. One problem is the load imbalancing. We
will discuss our optimization techniques in the next section.

Finally, similar to LevelDB and RocksDB, when the in-
memory index is large enough (64MB in our case), we will
freeze it as a immutable structure and recreate a new one.
The immutable structure is written back to the disk as a
SSTable following the same interface of RocksDB. The new
index is initialized with all M guard entries and the cor-
responding top layer cache-sensitive index. This helps us
address the cold-start problem. We have a model to predict
how the guard entries should be created based on previous
data and query distributions. We discuss it in our optimiza-
tion section.

5. OPTIMIZATIONS
In this section, we introduce the optimization techniques

adopted in the S3. In Section 5.1, we show the structure
of semi-order skip-list. The neural model for guard entry

2187

selection is discussed in Section 5.2. Finally, we show how
multiple skip-lists can be supported in Section 5.3.

5.1 Semi-order Skip-List
The traditional skip-list adopts a dynamic memory allo-

cation strategy, where new nodes are allocated in an ad-hoc
way. In this strategy, the adjacent nodes of skip-list may
not reside with a continuous memory area and hence re-
sulting in a poor cache line utilization. In this section, we
introduce our semi-order skip-list to address the problem,
which achieves high write efficiency with slightly sacrificing
the read performance.

As mentioned before, semi-order skip-list is a multiple-
layer linked list consists of two types of entries: data entry
and guard entry. The data entries are used to maintain the
user data (keys and values) while the guard entries are used
to speed up the search and insertion operations. The two
types of entries are linked in the same list, and we use a
boolean variable to indicate that the entry is a data entry
or a guard entry.

Each guard entry only maintains an indicative key which
is used to routing queries. The entry area of a guard entry
gei is defined as the part of semi-order skip-list from gei to
the next guard entry gei+1 (including gei but not gei+1).

The data entry has two more attributes, compared to the
original skip-list:
• (1)num, which indicates the current number of keys and

values in the entry.
• (2)maxkey, which is the maximal key in the entry and can

be used in the search process of semi-order skip-list. We
maintain a general order for data entries. So the maxkey
of a predecessor should be smaller than the minimal key
of its successor.

In this way, our data entry maintains a block of key-value
pairs. To further improve the performance of write, we do
not sort the keys inside each data entry. So the insertion is
conducted as an “append” operation, which can significantly
improve the throughput. Each data entry can hold at most
M key-value pairs. M is a tunable parameter to balance
the insertion and lookup performance. Current setting of
M is 8. Moreover, since each block is stored in a continuous
memory area, the scan of data entry is extremely fast via a
few cacheline reads.

The penalty of semi-order skip-list is two-fold. First, we
need to sort keys in a data entry before flushing it back
to the disk. Fortunately, we still maintain a general order
for data entries and only M key-value pairs are maintained
together. Suppose there are totally N key-value pairs. It
adds N logM sorting cost for the compaction process. This
is an acceptable cost. Second, the semi-order skip-list may
slightly slow down the search process. We can skip a data
entry by comparing the maxkey, but if the query overlaps
with the data entry, we need to read out the data to check.
The details of search and insertion process are shown below
(It should be noted that deletion is performed by insertion
and compaction in the LSM-based structure and we omit
details of deletion here.).

Before performing search queries and insertion queries,
we find guard entry gei that has the largest key less than or
equal to the user-specified keyi using the top layer index[25].
gei is then used as the start point of routing our queries,
instead of the head node.

To search key keyi, we move along the top level of skip-list
until we find the rightmost data entry whose maxkey is less

than keyi. If the maxkey of its next entry is equal to keyi,
we scan the next entry to find the requested key and values
directly. Otherwise, we move to the next level of skip-list
and repeat our search process progressively, until we reach
the bottom level of the semi-order skip-list. We then follow
the bottom level link to scan data entries one by one to find
the requested key and value.

To process an insertion query for keyi, we need to perfor-
m a search first. We move along all levels of skip-list until
we find the rightmost data entry whose maxkey is less than
keyi. Note that we need to trace the rightmost data entries
in our search at every level of skip-list to support possible
pointer adjustment process incurred by the insertion. We
never insert user data into a guard entry, since the guard
entry is only used to speed up the search and insertion op-
erations.

Algorithm 1 Insertion(key and value kv)

key = kv.getkey()
gei = Find guard entry(key)
x, prev = Find less than(key, gei)
next = x.getnext(0)
if next is a guard entry then

if x is not full andx 6= gei then
insert kv into x
adjust maxkey in x if necessary
return

else if next is not full then
insert kv into next
return

generate new data entry y
adjust pointers using prev
if next is not a guard entry then

redistribute keys and values in y and next
return

After find the rightmost data entries, we insert the data
into the semi-order skip-list as follows.
• For the rightmost data entries x at the bottom level, we

check if its next entry xnext at the bottom level is a guard
entry.

– If xnext is a guard entry, then we check if x is not
full. If the answer is yes, we insert the data into x
and update the maxkey of x if necessary. As the
xnext is a guard entry, insert the data into x will not
cause the data redistribution between the entry area
of x and xnext, which is used to maintain the semi-
order characteristic of the skip-list. Thus, the data
insertion completes.

– If xnext is not a guard entry, then we check if xnext

is not full. If the answer is yes, we insert the data
into xnext and finish the insertion. As the maxkey in
the xnext is larger than or equal to keyi, inserting the
data into xnext will not cause any data redistribution.
Thus, the data insertion completes.

• In all cases if the data entry is full, we build a new entry y
between x and xnext. The height of y is randomly gener-
ated with a probability P and the pointers are adjusted as
in the traditional skip-list. Besides, if xnext is not a guard
entry, the data in y and xnext need to be redistributed in
order to maintain the semi-order characteristic.

Algorithm 1 shows the pseudo-code of our insertion process.
S3 also supports range queries. The difference is that

range query [keyi, keyj] may overlap with multiple entry ar-
eas of guard entries. First, we traverse the top-layer index-
ing structure to find the guard entries with the largest keys

2188

less than keyi . Then, we traverse the semi-order skip-list
to find the last data entry deli whose maxkey is less than
keyi. We traverse from the next entry of deli , denoted as
dei, until we find the first data entry dej , whose maxkey is
larger than or equal to keyj , in order to find the data whose
key are between keyi and keyj . The data in the dei and
dej need to be checked to answer range query [keyi, keyj].
To improve the performance, we can split a range query in-
to some sub-queries. Let G = {ge0, ge1, ..., gek−1} be all
the guard entries between keyi and keyj . We start up k
threads, one for each guard entry, and forward the query to
those threads, which will invoke our range query processing
algorithm concurrently. This is very effective to reduce the
response time of long range search.

5.2 Neural Model for Guard Selection

LSTM LSTM LSTM

fu
ll

co
nn

ec
tio

n

fu
ll

co
nn

ec
tio

n

at
te

nt
io

n
ve

ct
or

(16,0,2,10)

0

(16,1,1,20)

0 1

(16,2,3,5)

short query histogram=(3,3,1,5,……）
short data histogram=(30,15,40,35,……)

total guard entries=16
query histogram=(2,1,3,0,1,0,2,3,……)
data histogram=(10,20,5,10,30,10,15,20,……)

Figure 2: Neural Model for Guard Entry Selection

Our theoretic analysis for guard entry selection is based on
the assumption that the data and queries follow the same
distribution, which may not be true for real applications.
Even if the data and queries share the same distribution, it
is costly to use the mathematic equations to generate the
optimal guard selection strategy for a complex distribution.
Therefore, we proposed a neural model to produce an ap-
proximate result, since neural model is proved to be able
to catch the data/query distribution effectively. One phi-
losophy when designing the neural model is that the model
should be small and efficient. So we do not include complex
computation here.

Figure 2 shows the structure of our neural network. In
particular, we adopt a simple seq2seq model [38], which is
widely used for processing streaming and sequential data.
The idea is to partition the whole key space into equal-size
small ranges, e.g., R = {r0, r1, ..., rn}, and we try to predict
that whether a guard entry should be created for one small
range ri. If so, we generate a guard entry with a specific key
ri.low+ri.up

2
, where ri.low and ri.up are the lower and upper

bounds of ri respectively. To precisely catch the data and
query patterns, the partitioning is conducted in a very fine
granularity. In current setting, n is set as 250,000.

Since the impact of guard entries on query performance
is mainly affected by the query and data distribution, our
model accepts the corresponding two histograms as its in-
puts. Specifically, before a MemTable is flushed to the disk,
we build a query and data histogram for the key range,
Hq = {q0, q1, ..., qn} and Hd = {d0, d1, ..., dn}. qi and di
denote the number of queries and keys in ri during the life-
time of the MemTable. Then, we train our neural network
to predict the optimal guard entries for the MemTable.

We consider Hq and Hd as a sequence, and each time,
we will employ an LSTM [24, 23] network to do a bina-
ry classification. The result (0 or 1) indicates whether we
should build a guard entry or not. One of the simple LSTM

model is that when predicting a label, it does not have the
knowledge about the whole data and query distribution. To
address the problem, we add an attention module.

In the attention module, we cannot use Hq and Hd direct-
ly, as they are very large vectors and costly to compute in
a neural network. Instead, we summarize them into short
query and data histograms with only m (m << n, e.g.,
m=2000) dimensions. We get two coarse histograms, H̄q

and H̄d, which are used as inputs for the attention mod-
ule. The attention module consists of two fully connected
layers and one softmax layer. The output is a m-dimension
vector V = {v0, v1, ..., vm}. vi is a float between 0 and 1,
and we have

∑m
i=0 vi = 1. V actually estimates the PDF

(probability density function) of the data.
The output of attention module is linked to the last layer

of the LSTM network with a weighted matrix. So when pre-
dicting the labels, the LSTM is tuned to be aware about the
general data/query distribution. To better leverage the at-
tention module, we transform the input sequence as a tuple
as (c, i, qi, di), where c is the total number of guard entries
that we plan to generate, i is the id of the sub-range, qi and
di are as defined before. Note that except c, all data need to
be normalized as floats between 0 and 1 to achieve a better
prediction performance.

In our running scenario, we generate Hq and Hd for the
last MemTable and use it to predict the guard entries for
the new MemTable. In other words, the guard entries will
be set up during the initial process of a new MemTable.
And, we assume that the data and query distribution re-
main unchanged or change slowly. This is true for many
real applications. Another problem is that the neural model
may generate δ more or fewer guard entries than required. If
more guard entries are predicted, we simply randomly delete
some ones. If fewer guard entries are created, we run the
model again to do the prediction by setting c as δ.

One possible optimization is to split the prediction into
multiple phases during the lifetime of a MemTable, e.g., 25%
full of MemTable and 50% full of MemTable. This allows us
to build guard entries gradually to better catch the dynamic
data and query distributions. However, due to its complex
learning process, we do not implement the strategy in our
running system.

To train the neural model, we use the log data to repeat
the MemTable creation and flushing process. Each time a
MemTable is full, we use the mathematic equations to gen-
erate an approximate result 2 of the optimal guard entry
selection as our groundtruth result. We collect 50,000 train-
ing records, among which 45,000 are used as training data
and 5,000 are used for testing.

5.3 Multiple Semi-order Skip-Lists
In RocksDB, multiple immutable MemTables can be cre-

ated to delay the compaction and improve the memory u-
tility. In that case, to search for a specific key, we need
to check all corresponding skip-lists, before we switch to
the disk search. This does not add additional overhead to
RocksDB. But for the S3, since we maintain a top-layer
cache-sensitive index for fast guard entry search, the search
becomes complicated. The top-layer index may become the
bottleneck.

2The problem of finding optimal selection for an arbitrary
distribution is an NP-complete problem. We discard the
details here.

2189

4 M 8 M 1 6 M 3 2 M 6 4 M0

2

4

6
Th

rou
ghp

ut
(M

 qu
eri

es/
sec

)

T h e n u m b e r o f k e y s

 S 3
 M a s s t r e e
 C i c a d a
 B w t r e e
 S k i p l i s t + F A S T
 S k i p l i s t

(a) Insertion

4 M 8 M 1 6 M 3 2 M 6 4 M0 . 0

1 . 5

3 . 0

4 . 5

Th
rou

ghp
ut

(M
 qu

eri
es/

sec
)

T h e n u m b e r o f k e y s

 S 3
 M a s s t r e e
 C i c a d a
 B w t r e e
 S k i p l i s t + F A S T
 S k i p l i s t

(b) Lookup

Figure 3: Query Throughput(uniform workload,single
thread)

4 M 8 M 1 6 M 3 2 M 6 4 M0

1 5

3 0

4 5

Th
rou

ghp
ut

(M
 qu

eri
es/

sec
)

T h e n u m b e r o f k e y s

 S 3
 M a s s t r e e
 C i c a d a
 B w t r e e

(a) Insertion

4 M 8 M 1 6 M 3 2 M 6 4 M0

2 0

4 0

6 0

Th
rou

ghp
ut

(M
 qu

eri
es/

sec
)

T h e n u m b e r o f k e y s

 S 3
 M a s s t r e e
 C i c a d a
 B w t r e e

(b) Lookup

Figure 4: Query Throughput(uniform workload)

0 4 8 1 2 1 60

1 0

2 0

3 0

Th
rou

ghp
ut

(M
 qu

eri
es/

sec
)

T h r e a d n u m b e r

 S 3
 M a s s t r e e
 C i c a d a
 B w t r e e

(a) The number of keys=4M

0 4 8 1 2 1 60

1 0

2 0

3 0

Th
rou

ghp
ut

(M
 qu

eri
es/

sec
)

T h r e a d n u m b e r

 S 3
 M a s s t r e e
 C i c a d a
 B w t r e e

(b) The number of keys=16M

0 4 8 1 2 1 60

1 0

2 0

3 0

Th
rou

ghp
ut

(M
 qu

eri
es/

sec
)

T h r e a d n u m b e r

 S 3
 M a s s t r e e
 C i c a d a
 B w t r e e

(c) The number of keys=64M

Figure 5: Query Throughput(Insertion,uniform workload)

[,5) [5,12) [12,16) [16,)

32 85 1212 2316

Semi-order SkipList Semi-order SkipList

Figure 6: Top-Layer Index for Multiple Skip-Lists

A simple solution is to maintain one top-layer index for
each semi-order skip-list. In this way, our assumption about
the top-layer index (almost all top-layer index can be main-
tained in L3 cache) does not hold any more. When searching
different skip-lists, we will occasionally swap in/out the data
of different top-layer indices, resulting in low cache utility.
Therefore, instead of maintaining an individual top-layer in-
dex for each skip-list, we build a global one for all skip-lists.
Figure 6 illustrates the idea by using the FAST as our index
structure.

The inner nodes of the FAST remain unchanged. The leaf
nodes are used to maintain keys within a key range. Those
keys refer to guard entries of different skip-lists. To search
a key ki, we first locate the leaf node responsible for the
overlapped key range. Then, we scan the corresponding leaf
node to find the guard entries with maximal keys smaller
than ki. Normally, we will obtain one guard entry for each
skip-list. The search can continue in two strategies. One
is that we first jump to the newest skip-list to start our
search. If no result is found, we switch to the next newest
one, until all skip-lists have been searched. This one reduces
the total search cost. The second strategy is to issue the
query for all skip-lists, which can leverage the concurrent
search capability to improve the performance. Our current
implementation adopts the second strategy.

In Section 5.2, we show that our guard entries are created
during the initialization of a skip-list. So during the lifetime
of a skip-list, the guard entries are static. Moreover, we ask

the user to predefine the maximal number M of MemTables
(skip-lists) that can be maintained concurrently (default val-
ue is 1). So we have all information about guard entries of
the M skip-lists. We sort them altogether and build our
top-layer index in a batch way from the bottom to the top.
The only update happens, when one or more MemTables
are flushed to the disk. In that case, the top-layer index will
be rebuilt once the new skip-list completes its initialization.

6. EXPERIMENTS
We conduct extensive experiments to evaluate the per-

formance of our approach. First, we show the lookup and
write throughputs with different number of keys. Then, we
vary the number of threads to investigate the concurrent
throughput. Besides, we use a multi-center zipfian distribu-
tion workload to study the effectiveness of our neural model
for guard entry selection. We also show the performance of
our index for processing range queries. Afterwards, we test
the performance of minor compaction, namely the cost of
flushing the S3 index to the disk as a SSTable. Finally, we
show the overall performance of the whole RocksDB embed-
ded with our in-memory skip-list index. All experiments are
conducted on a server equipped with Intel Xeon Processor
E5 2660 v2(25M Cache, 2.20 GHz).

For in-memory comparison, we show the results of Ci-
cada[28], Masstree[30] and Bwtree[27] under the same ex-
periment settings. Both Cicada and Masstree codes are re-
trieved from their authors’ open sourced implementation-
s[3][9] . BwTree[2] does not provide an official implemen-
tation. Therefore, we retrieve an implementation from the
code of Peloton[11]. Since ART does not necessarily cover
full keys or values and is primarily used as a non-covering in-
dex, we did not include it in our current evaluation. We did
not include FAST in our evaluation too, as it is optimized for
lookup queries only. The key length is four bytes for all in-
memory indexes. The query workloads are generated using
a C-implementation[15] of Yahoo’s YCSB benchmark[19].
The generated queries are persisted in the disk and read
into memory for experiments in order to ensure the same
query workload for all in-memory tests. To evaluate the

2190

0 4 8 1 2 1 60

2 0

4 0

6 0

Th
rou

ghp
ut

(M
 qu

eri
es/

sec
)

T h r e a d n u m b e r

 S 3
 M a s s t r e e
 C i c a d a
 B w t r e e

(a) The number of keys=4M

0 4 8 1 2 1 60

1 5

3 0

4 5

Th
rou

ghp
ut

(M
 qu

eri
es/

sec
)

T h r e a d n u m b e r

 S 3
 M a s s t r e e
 C i c a d a
 B w t r e e

(b) The number of keys=16M

0 4 8 1 2 1 60

1 0

2 0

3 0

Th
rou

ghp
ut

(M
 qu

eri
es/

sec
)

T h r e a d n u m b e r

 S 3
 M a s s t r e e
 C i c a d a
 B w t r e e

(c) The number of keys=64M

Figure 7: Query Throughput(Lookup,uniform workload)

improvement of RocksDB with our in-memory skip-list in-
dex, we compare the overall throughput equipped with and
without our in-memory skip-list index using the benchmark
provided by RocksDB.

6.1 Effect of Data Size
In this experiment, we show the effect of the numbers of

keys. We limit the search to memory for a fair comparison,
so the maximal number of keys is 64 million. The keys in
the workload follow a uniform distribution.

First of all, we use single thread for processing search
and insertion. The results are shown in Figure 3. In the
following, we use “Skiplist+FAST” to represent the index
structure which uses the traditional skip-list as the bottom
layer and FAST for the upper layer. Obviously, our two-layer
in-memory indexing structure S3 performs better than the
Masstree, Cicada and Bwtree. Besides, S3 achieves almost
2X better than traditional skip-list and 1X better than the
“Skiplist+FAST”. Due to the relatively poor performance
of traditional skip-list and the “Skiplist+FAST”, we omit
them in the following experiments.

By default, we start 16 threads for processing search and
insertion in the following experiments.

As shown in Figure 4, our two-layer in-memory indexing
structure S3 performs better than the Masstree and Bwtree,
especially for insertions. For memory-only processing, all in-
dices show a better performance for the lookup operations
than the insertion operations. In skip-list based indices,
insertion is performed by a lookup and routing link restruc-
ture process. In the tree-like index, tree structure also needs
occasionally restructured. The advantage of skip-list ap-
proaches for write-intensive workload is when data need to
be flushed to the disk, the LSM(log structured merge tree)
can delay the high I/O operations into the compaction pro-
cess.

Finally, both of the insertion and lookup throughput de-
crease as the number of keys increases from 4 millions to 64
millions. The reason is that as the number of keys increases,
less index entries can be maintained in the cache, resulting
in low throughput. This also explains why the throughput
gap shrinks as the number of keys increases.

6.2 Concurrent Test
In this section, we examine the query throughput with

varies number of processing threads. We test three cases,
where the number of keys is 4 millions, 16 millions and 64
millions respectively. The results are shown in the Figure 5
and 7. The keys in the workload follow a uniform distribu-
tion.

We can see that both lookup and insertion throughput
increase as the number of threads increases, but among all
four approaches, S3 achieves the best speedup, showing its
support for highly concurrent processing.

For the read-only query, almost all the index achieves a
linear scale-up for small number of keys. As the number of
threads and keys increase, the read-only query throughputs
of Bwtree and Cicada gradually converge. Even if the num-
ber of keys reaches 64 millions, which is quite large for the
in-memory structure of LSM-based systems, the read-only
query throughput of S3 is still better than the other three.

For the insertion operation, the gap between S3 and the
other two approaches becomes larger than the lookup case.
This is due to the usage of semi-order skip-list, which further
reduces the cost of insertion. Another reason is that the
structure of S3 is latch free, so it can support high concurrent
processing.

6.3 Result on Skewed Distribution

4 M 8 M 1 6 M 3 2 M 6 4 M0

4 0

8 0

1 2 0
Th

rou
ghp

ut
(M

 qu
eri

es/
sec

)

T h e n u m b e r o f k e y s

 S 3
 M a s s t r e e
 C i c a d a
 B w t r e e

(a) Insertion

4 M 8 M 1 6 M 3 2 M 6 4 M0

8 0

1 6 0

2 4 0

Th
rou

ghp
ut

(M
 qu

eri
es/

sec
)

T h e n u m b e r o f k e y s

 S 3
 M a s s t r e e
 C i c a d a
 B w t r e e

(b) Lookup

Figure 8: Query Throughput(complex workload)

In this section, we examine the query throughput in a
skewed distribution, where both of the data distribution and
query distribution follow a multi-center zipfian distribution
with the probability parameter θ = 0.99. In particular, we
random select some keys as our centers and generate a nor-
mal zipfian distribution for each center. We then merge
those distributions into one complex distribution. The data
and query distribution are generated separately with differ-
ent center sets.

The experiment results are shown in the Figure 8. We get
the same observation as in the uniform distribution case.
S3 still has a much better performance than the Masstree,
Cicada and Bwtree. Since the query and data follow dif-
ferent distributions, the guard entries in S3 are selected by
the neural model. We will show the effect of different guard
entry selection approaches in the Section 6.5.

The concurrent results are shown in the Figure 9 and Fig-
ure 10 respectively. We can see that given a complex work-
load, the speedup of lookup operation is better than the in-
sertion operation. This is because insertion incurs high pro-
cessing overhead and may trigger the routing link updates
for the skip-list. Compared to the uniform case (Figure 5
and Figure 7), the scalability drops for the complex distri-
bution. This is because the selection of guard entries is more
difficult and different guard entries may be responsible for
varied numbers of keys, resulting in imbalanced workloads
between threads.

2191

0 4 8 1 2 1 60

4 0

8 0

1 2 0

Th
rou

ghp
ut

(M
 qu

eri
es/

sec
)

T h r e a d n u m b e r

 S 3
 M a s s t r e e
 C i c a d a
 B w t r e e

(a) The number of keys=4M

0 4 8 1 2 1 60

4 0

8 0

1 2 0

Th
rou

ghp
ut

(M
 qu

eri
es/

sec
)

T h r e a d n u m b e r

 S 3
 M a s s t r e e
 C i c a d a
 B w t r e e

(b) The number of keys=16M

0 4 8 1 2 1 60

4 0

8 0

1 2 0

Th
rou

ghp
ut

(M
 qu

eri
es/

sec
)

T h r e a d n u m b e r

 S 3
 M a s s t r e e
 C i c a d a
 B w t r e e

(c) The number of keys=64M

Figure 9: Query Throughput(Insertion,complex workload)

0 4 8 1 2 1 60

8 0

1 6 0

2 4 0

Th
rou

ghp
ut

(M
 qu

eri
es/

sec
)

T h r e a d n u m b e r

 S 3
 M a s s t r e
 C i c a d a
 B w t r e e

(a) The number of keys=4M

0 4 8 1 2 1 60

6 0

1 2 0

1 8 0

Th
rou

ghp
ut

(M
 qu

eri
es/

sec
)

T h r e a d n u m b e r

 S 3
 M a s s t r e e
 C i c a d a
 B w t r e e

(b) The number of keys=16M

0 4 8 1 2 1 60

5 0

1 0 0

1 5 0

Th
rou

ghp
ut

(M
 qu

eri
es/

sec
)

T h r e a d n u m b e r

 S 3
 M a s s t r e e
 C i c a d a
 B w t r e e

(c) The number of keys=64M

Figure 10: Query Throughput(Lookup,complex workload)

6.4 Mixed Workload
In this section, we examine the query throughput in the

mixed workloads. Four datasets are used during the exper-
iment and the number of threads is 16 . The ratio of write
operations to the whole query set is set as 20%, 40%, 60%,
80%, respectively. The number of insertion is fixed to 64
millions. The keys in the workload follow a uniform distri-
bution.

As shown in Figure 11, with the increase of write ratio in
the query workload, the performance of S3 drops slightly,
demonstrating S3’s capability in processing uniform query
workload. Masstree, Cicada and BwTree also experience a
similar variance trend in the query throughput.

6.5 Guard Entry Selection
In this section, we study the effect of the number of guard

entries first. We set the total number of keys to 64 million-
s, and the number of guard entries varies from 219 to 223.
The keys in the workload follow a uniform distribution. 16
threads are started up for processing during the experiment.
In the experiment, we first insert 64 million keys and collect
the total insertion time of each module. Then, we perform
64 million times random lookup to test the lookup time of
each module. The result is shown in Figure 12. We show
the accumulative time of each module for processing all 64
million insertions and lookups.

We can see that as the number of guard entries increases,
the search cost of top-layer index increases, while the search
cost of bottom-layer index decreases. The total search cost
is optimal, when guard entry number is set to 222.

In the next test, we use three workloads(uniform work-
load, Gaussian distribution with σ = 107, and zipfian distri-
bution with θ = 0.5) to examine our guard entry selection
strategy. To examine the effectiveness of our neural model
for guard entry selection, we compare with the other two s-
trategies. One is to randomly select a key to create a guard
entry. The other one is to uniformly generate guard entries
among all keys. The result is shown in Figure 13. For the
uniform distribution, three guard selection approaches do
not differ much. This is consistent with our expectation.
But for Gaussian distribution and zipfian distribution, the

neural model based guard entry selection shows significantly
improvement over the other two approaches.

6.6 Range Query Performance
In this test, we study the performance of range query. The

number of keys varies from 4M to 64M. The query range
varies from 0.0001% to 0.1% key range. The keys in the
workload follow a uniform distribution. And we totally issue
4 million random range queries. 16 threads are used during
the processing.

We split the cost into two parts, lookup cost and scan cost.
The former denotes the time of locating the first key, while
the latter is the time of scanning the index to retrieve all
key-value pairs in the range. Although we do not maintain
a strict key order in the skip-list, the general order between
data entries are still valid. So the range search is performed
as a normally skip-list.

We first fix the number of keys to 4 millions and the key
range varies from 0.0001% to 0.1%. The result is shown
in Figure 15. Since the key number remains the same, the
lookup cost does not change much. But the scan time in-
creases gradually and plays a more important role in the
total time.

In the second test, we fix the key range to 0.0005% and
vary the number of keys from 4 millions to 64 millions. The
result is shown in Figure 16. Both the lookup time and the
scan time increases as the number of keys increases. It seems
that the lookup cost is more sensitive to the number of keys.
This is because the search cost of skip-list is O(N logN),
while the scan cost is always linear to the number of keys.

6.7 Cost of Flushing Data as SSTables
In this section, we examine the efficiency of flushing the

data from S3 to the disk part of RocksDB. We compare
the performance of S3 with the original skip-list using the
interface of RocksDB, together with the best case that sorted
entries are kept in the contiguous memory space(which is
abbreviated as “Full order”). The number of keys varies
from 4 millions to 64 millions, and the keys in the workload
follow a uniform distribution. The result is shown in Figure
17. Note that in the test, we only use a single thread for data
flushing. If multiple threads are employed, the performance
can be further improved.

2192

2 0 % 4 0 % 6 0 % 8 0 %0

2 5

5 0

7 5
Th

rou
ghp

ut
(M

 qu
eri

es/
sec

)

W r i t e r a t i o

 S 3
 M a s s t r e e
 C i c a d a
 B w t r e e

Figure 11: Query Throughput

2 ^ 1 9 2 ^ 2 0 2 ^ 2 1 2 ^ 2 2 2 ^ 2 3
T h e n u m b e r o f g u r a d e n t r i e s

 L o o k u p (f a s t)
 L o o k u p (s k i p l i s t)

0

3

6

9

 I n s e r t i o n (f a s t)
 I n s e r t i o n (s k i p l i s t)

tim
e(s

)

Figure 12: Query Through-
put(64M Queries)

U n i f o r m G a u s s i a n Z i p f i a n0

2 0

4 0

6 0

Th
rou

ghp
ut

(M
 qu

eri
es/

sec
)

T y p e s o f d i s t r i b u t i o n

 I n s e r t i o n (r a n d o m)
 I n s e r t i o n (u n i f o r m)
 I n s e r t i o n (n e u r a l)
 L o o k u p (r a n d o m)
 L o o k u p (u n i f o r m)
 L o o k u p (n e u r a l)

Figure 13: Query Through-
put(64M Queries)

4 M 8 M 1 6 M 3 2 M 6 4 M0 . 0 1
0 . 1

1
1 0

1 0 0
1 0 0 0

1 0 0 0 0

Th
rou

ghp
ut

(M
 qu

eri
es/

sec
)

T h e n u m b e r o f k e y s

 0 . 0 0 0 1 % R a n g e S i z e
 0 . 0 0 1 % R a n g e S i z e
 0 . 0 1 % R a n g e S i z e
 0 . 1 % R a n g e S i z e

Figure 14: Range Query
Throughput

0 . 0 0 0 1 % 0 . 0 0 1 % 0 . 0 1 % 0 . 1 0 %1 E - 3
0 . 0 1
0 . 1

1
1 0

1 0 0
1 0 0 0

tim
e(s

)

R a n g e s i z e

 L o o k u p t i m e
 S c a n t i m e

Figure 15: Range Query Time
for 4M Queries

4 M 8 M 1 6 M 3 2 M 6 4 M1 E - 3
0 . 0 1
0 . 1

1
1 0

1 0 0
tim

e(s
)

T h e n u m b e r o f k e y s

 L o o k u p t i m e
 S c a n t i m e

Figure 16: Range Query Time
for 4M Queries

4 M 8 M 1 6 M 3 2 M 6 4 M0

2 0

4 0

6 0

tim
e(s

)

T h e n u m b e r o f k e y s

 S 3
 S k i p l i s t
 F u l l o r d e r

Figure 17: Cost of Writing
SSTables

1 2 3 40

1 0

2 0

3 0

Th
rou

ghp
ut

(M
 qu

eri
es/

sec
)

T h e n u m b e r o f s e m i - o r d e r s k i p - l i s t s

 I n s e r t i o n
 L o o k u p

Figure 18: Query Throughput

We can see that the flushing efficiency of S3 is even a little
bit better than the original skip-list, despite of the addition-
al overhead of re-sorting the data in the data entries. The
reason is as follows. In a traditional skip list, each data en-
try maintains one key-value pair. Data entries are created
on the fly and hence, keys do not reside within a contiguous
memory area. Non-contiguous memory access causes high
cache misses. In contrast, S3 maintains several keys in a da-
ta entry which are grouped in one continuous memory area
and can be obtained via a few cachelines, making the ac-
cess more efficient. S3 needs to sort the data before flushing
them back to the disk. However, since the data are actual-
ly partially ordered, the cost is acceptable compared to the
benefit of using continuous storage.

6.8 Multiple Semi-order Skip-Lists
In this section, we study the performance when multi-

ple semi-order skip-lists are created during the processing,
which is described in the Section 5.3. Each semi-order skip-
list contains 64 million keys. The number of semi-order skip-
list varies from 1 to 4 and we show the results in Figure 18.

If we try to maintain more semi-order skip-lists in mem-
ory, the in-memory query throughout decreases, especially
for the lookup workload. This is no surprise. But remember
that when more data are maintained in memory, we actually
reduce the processing cost of disk parts of RocksDB. So the
total cost of the whole system is still improved.

6.9 Overall Performance

1 2 4 8 1 60 . 0 0

0 . 2 5

0 . 5 0

0 . 7 5

Th
rou

ghp
ut

(M
 qu

eri
es/

sec
)

T h r e a d n u m b e r

 O r i g i n a l R o c k s D B
 R o c k s D B w i t h S 3

(a) Insertion

1 2 4 8 1 60 . 0

0 . 8

1 . 6

2 . 4

Th
rou

ghp
ut

(M
 qu

eri
es/

sec
)

T h r e a d n u m b e r

 O r i g i n a l R o c k s D B
 R o c k s D B w i t h S 3

(b) Lookup

Figure 19: Overall performance
Lastly, we show the effect of our in-memory skip-list in-

dex integrated with RocksDB. We first insert 100 million
entries. Then, we perform 100 million times random lookup.

For the sake of fairness, we mainly use the default setting of
“db bench” benchmark provided by RocksDB, where each
key-value entry has a key size of 16 bytes and a value size of
100 bytes(50 bytes after compression). The maximum num-
ber of concurrent background compactions that can occur
in parallel is set to 16. The maximum number of concurrent
background flushes that can occur in parallel is set to 4. The
results are shown in the Figure 19. Note that RocksDB is
a complex system and its performance relies on many dif-
ferent modules. Optimizing one module may not result in
a huge improvement. However, we can see that both of the
RocksDB’s insertion and lookup performance are improved
by the equipment with our in-memory skip-list index, due
to the enhancement of in-memory throughput.

7. CONCLUSIONS
In this paper, we propose S3, a scalable in-memory skip-

list index for disk-based key-value store. S3 is built as an
in-memory part of the LevelDB and RocksDB, which can
be seamlessly integrated into such systems. The intuition
of S3 is to create some guard entries as the shortcuts in the
skip-list to speed up the search process. S3 is designed as
a two-layer index. The top layer is a cache-sensitive index
used for fast retrieval of guard entries. The bottom layer
is a semi-order skip-list, where keys inside a data entry are
not required to be sorted. The semi-order skip-list enables
our bottom layer to achieve high write performance while
slightly sacrificing the read performance. To process a re-
quest, the top layer will return a guard entry, and we start
our search in the bottom layer from the guard entry, instead
of the head of the skip-list. We built a mathematical model
to analyze the selection of guard entries when queries and
data follow a similar distribution. For more complex scenar-
ios, a neural model is proposed to generate an approximate
strategy. We conduct performance study on a series of work-
loads. The results show that our proposed index, S3, is more
efficient than Masstree, Cicada and Bwtree. It can also flush
the memory data as a SSTable efficiently. As a result, the
performance of RocskDB can be improved by the equipment
with our in-memory skip-list index.

2193

8. ACKNOWLEDGMENTS
The authors would like to thank the anonymous reviewers

for their valuable suggestions and opinions. Besides, this
work was supported by the Fundamental Research Funds for
Alibaba Group through Alibaba Innovative Research (AIR)
Program, the Central Universities (2018FZA5015), NSFC
(61661146001, 61872315) and ZJNSF(LY18F020005).

9. REFERENCES
[1] Apache hbase. http://hbase.apache.org/.

[2] Bw-tree. https://github.com/wangziqi2013/bwtree.

[3] Cicada. https://github.com/efficient/cicada-engine.

[4] Clht. https://github.com/lpd-epfl/clht.

[5] Cockroachdb. https://github.com/cockroachdb/
cockroach.

[6] Hyperleveldb.
https://github.com/rescrv/hyperleveldb.

[7] Judy arrays. http://judy.sourceforge.net/.

[8] Leveldb. http://ccrma.stanford.edu/ jos/
bayes/bayes.html.

[9] Masstree. https://github.com/kohler/masstree-beta.

[10] Mongodb. https://www.mongodb.com.

[11] Peloton. https://github.com/cmu-db/peloton.

[12] Redis. https://redis.io/.

[13] Rocksdb. http://rocksdb.org.

[14] Search results apache flink: Scalable stream and batch
data processing. https://flink.apache.org.

[15] Yahoo! cloud serving benchmark in c++. https://
github.com/basicthinker/ycsb-c.

[16] V. Alvarez, S. Richter, X. Chen, and J. Dittrich. A
comparison of adaptive radix trees and hash tables. In
ICDE, pages 1227–1238, 2015.

[17] O. Balmau, R. Guerraoui, V. Trigonakis, and
I. Zablotchi. Flodb: Unlocking memory in persistent
key-value stores. In EuroSys, pages 80–94, 2017.

[18] S. Chen, P. B. Gibbons, and T. C. Mowry. Improving
index performance through prefetching. In SIGMOD,
pages 235–246, 2001.

[19] B. F. Cooper, A. Silberstein, E. Tam,
R. Ramakrishnan, and R. Sears. Benchmarking cloud
serving systems with YCSB. In SoCC, pages 143–154,
2010.

[20] T. David, R. Guerraoui, and V. Trigonakis.
Asynchronized concurrency: The secret to scaling
concurrent search data structures. In ASPLOS, pages
631–644, 2015.

[21] G. Golan-Gueta, E. Bortnikov, E. Hillel, and
I. Keidar. Scaling concurrent log-structured data
stores. In EuroSys, pages 32:1–32:14, 2015.

[22] R. A. Hankins and J. M. Patel. Effect of node size on

the performance of cache-conscious b+-trees. In
SIGMETRICS, pages 283–294, 2003.

[23] S. Hochreiter. The vanishing gradient problem during
learning recurrent neural nets and problem solutions.
International Journal of Uncertainty, Fuzziness and
Knowledge-Based Systems, 6(2):107–116, 1998.

[24] S. Hochreiter and J. Schmidhuber. Long short-term
memory. Neural Computation, 9(8):1735–1780, 1997.

[25] C. Kim, J. Chhugani, N. Satish, E. Sedlar, A. D.
Nguyen, T. Kaldewey, V. W. Lee, S. A. Brandt, and

P. Dubey. FAST: fast architecture sensitive tree search
on modern cpus and gpus. In SIGMOD, pages
339–350, 2010.

[26] V. Leis, A. Kemper, and T. Neumann. The adaptive
radix tree: Artful indexing for main-memory
databases. In ICDE, pages 38–49, 2013.

[27] J. J. Levandoski, D. B. Lomet, and S. Sengupta. The
bw-tree: A b-tree for new hardware platforms. In
ICDE, pages 302–313, 2013.

[28] H. Lim, M. Kaminsky, and D. G. Andersen. Cicada:
Dependably fast multi-core in-memory transactions.
In SIGMOD, pages 21–35, 2017.

[29] L. Lu, T. S. Pillai, H. Gopalakrishnan, A. C.
Arpaci-Dusseau, and R. H. Arpaci-Dusseau. Wisckey:
Separating keys from values in ssd-conscious storage.
TOS, 13(1):5:1–5:28, 2017.

[30] Y. Mao, E. Kohler, and R. T. Morris. Cache craftiness
for fast multicore key-value storage. In EuroSys, pages
183–196, 2012.

[31] P. E. O’Neil, E. Cheng, D. Gawlick, and E. J. O’Neil.
The log-structured merge-tree (lsm-tree). Acta Inf.,
33(4):351–385, 1996.

[32] W. Pugh. Skip lists: A probabilistic alternative to
balanced trees. Commun. ACM, 33(6):668–676, 1990.

[33] P. Raju, R. Kadekodi, V. Chidambaram, and
I. Abraham. Pebblesdb: Building key-value stores
using fragmented log-structured merge trees. In SOSP,
pages 497–514, 2017.

[34] J. Rao and K. A. Ross. Cache conscious indexing for
decision-support in main memory. In VLDB, pages
78–89, 1999.

[35] J. Rao and K. A. Ross. Making b+-trees cache
conscious in main memory. In SIGMOD, pages
475–486, 2000.

[36] J. Sewall, J. Chhugani, C. Kim, N. Satish, and
P. Dubey. PALM: parallel architecture-friendly
latch-free modifications to B+ trees on many-core
processors. PVLDB, 4(11):795–806, 2011.

[37] S. Sprenger, S. Zeuch, and U. Leser. Cache-sensitive
skip list: Efficient range queries on modern cpus. In
IMDM, pages 1–17, 2016.

[38] I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to
sequence learning with neural networks. CoRR,
abs/1409.3215, 2014.

[39] G. Wu, X. He, and B. Eckart. An adaptive write
buffer management scheme for flash-based ssds. TOS,
8(1):1:1–1:24, 2012.

[40] X. Wu, Y. Xu, Z. Shao, and S. Jiang. Lsm-trie: An
lsm-tree-based ultra-large key-value store for small
data items. In USENIX, pages 71–82, 2015.

[41] Z. Xie, Q. Cai, G. Chen, R. Mao, and M. Zhang. A
comprehensive performance evaluation of modern
in-memory indices. In ICDE, pages 641–652, 2018.

[42] Z. Xie, Q. Cai, H. V. Jagadish, B. C. Ooi, and
W. Wong. PI : a parallel in-memory skip list based
index. CoRR, abs/1601.00159, 2016.

[43] Z. Xie, Q. Cai, H. V. Jagadish, B. C. Ooi, and
W. Wong. Parallelizing skip lists for in-memory
multi-core database systems. In ICDE, pages 119–122,
2017.

2194

