
QTune: A Query-Aware Database Tuning System with Deep
Reinforcement Learning

Guoliang Li†, Xuanhe Zhou†, Shifu Li‡, Bo Gao‡
† Department of Computer Science,Tsinghua University, Beijing, China ‡ Huawei Company

liguoliang@tsinghua.edu.cn, zhouxuanhe@bupt.edu.cn, {gaobo15,lishifu}@huawei.com

ABSTRACT
Database knob tuning is important to achieve high perfor-
mance (e.g., high throughput and low latency). However,
knob tuning is an NP-hard problem and existing methods
have several limitations. First, DBAs cannot tune a lot of
database instances on different environments (e.g., differ-
ent database vendors). Second, traditional machine-learning
methods either cannot find good configurations or rely on a
lot of high-quality training examples which are rather hard
to obtain. Third, they only support coarse-grained tuning
(e.g., workload-level tuning) but cannot provide fine-grained
tuning (e.g., query-level tuning).

To address these problems, we propose a query-aware
database tuning system QTune with a deep reinforcement
learning (DRL) model, which can efficiently and effectively
tune the database configurations. QTune first featurizes the
SQL queries by considering rich features of the SQL queries.
Then QTune feeds the query features into the DRL model to
choose suitable configurations. We propose a Double-State
Deep Deterministic Policy Gradient (DS-DDPG) model to
enable query-aware database configuration tuning, which
utilizes the actor-critic networks to tune the database config-
urations based on both the query vector and database states.
QTune provides three database tuning granularities: query-
level, workload-level, and cluster-level tuning. We deployed
our techniques onto three real database systems, and exper-
imental results show that QTune achieves high performance
and outperforms the state-of-the-art tuning methods.

PVLDB Reference Format:
Guoliang Li, Xuanhe Zhou, Shifu Li, Bo Gao. QTune: A Query-
Aware Database Tuning System with Deep Reinforcement Learn-
ing. PVLDB, 12(12): 2118 - 2130, 2019.
DOI: https://doi.org/10.14778/3352063.3352129

1. INTRODUCTION
Databases have hundreds of knobs (or parameters) and

most of knobs are in continuous space. For example, MySQL,
PostgreSQL, and MongoDB have 215, 247, 132 knobs re-
spectively. Database knob tuning is important to achieve

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 12, No. 12
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3352063.3352129

high performance (e.g., high throughput and low latency) [2,
5, 34]. Traditionally, databases rely on DBAs to tune the
knobs. However, this traditional method has several limita-
tions. First, knob tuning is an NP-hard problem [27] and
DBAs can only tune a small percentage of the knobs and
may not find a good global knob configuration. Second,
DBAs require to spend a lot of time (e.g., several days)
to tune the database, and thus they are not efficient to
tune many database instances under different environments
(e.g., cloud databases). Third, DBAs are usually good at
tuning a specific database, e.g., MySQL, but cannot tune
other databases, e.g., PostgreSQL. These limitations are ex-
tremely severe for tuning cloud databases, because they have
to tune a lot of database instances on different environments
(e.g., different CPU, RAM and disk).

Recently, there are some studies on automatic knob tun-
ing, e.g., BestConfig [38], OtterTune [2], and CDBTune [36].
However, BestConfig uses a heuristic method to search for
the optimal configuration from the history and may not find
good knob values if there is no similar configuration in the
history. OtterTune utilizes machine-learning techniques to
collect, process and analyze knobs and tunes the database by
learning DBAs’ experiences from the historical data. How-
ever, OtterTune relies on a large number of high-quality
training examples from DBAs’ experience data, which are
rather hard to obtain. CDBTune uses deep reinforcement
learning (DRL) to tune the database by using a try-and-
error strategy. However, CDBTune has three limitations.
First, CDBTune requires to run a SQL query workload mul-
tiple times in the database to get an appropriate configu-
ration, which is rather time consuming. Second, CDBTune
only provides a coarse-grained tuning (i.e., tuning for read-
only workload, read-write workload, write-only workload),
but cannot provide a fine-grained tuning (i.e., tuning for a
specific query workload). Third, it directly uses the existing
DRL model, which assumes that the environment can only
be affected by reconfiguring actions, but cannot utilize the
query information, which is more important for configura-
tion tuning and environment updates.

To address these problems, we propose a query-aware
database tuning system QTune using a DRL model, which
can efficiently and effectively tune the databases. QTune

first featurizes the SQL queries by considering rich features
of the SQL queries, including query type, tables, and query
cost. Then QTune feeds the query features into the DRL
model to dynamically choose suitable configurations. Dif-
ferent from the traditional DRL methods [16, 30], we pro-
pose a Double-State Deep Deterministic Policy Gradient

2118



(DS-DDPG) model using the actor-critic networks. The
DS-DDPG model can automatically solve the tuning prob-
lem by learning the actor-critic policy according to both the
database states and query information. Moreover, QTune

provides three database tuning granularities. The first is
query-level tuning, which finds a good configuration for each
SQL query. This method can achieve low latency but low
throughput, because it cannot run the SQL queries in par-
allel. The second is workload-level tuning, which finds a
good configuration for a query workload. This method can
achieve high throughput but high latency, because it cannot
find a good configuration for every SQL query. The third
is cluster-level tuning, which clusters the queries into sev-
eral groups and finds a good database configuration for the
queries in each group. This method can achieve both high
throughput and low latency, because it can find the good
configuration for a group of queries and run the queries
in each group in parallel. Thus QTune can make a trade-
off between latency and throughput based on a given re-
quirement, and provide both coarse-grained tuning and fine-
grained tuning. We propose a deep learning based query
clustering method to classify queries according to the simi-
larity of their suitable configurations.

We make the following contributions in this paper.
(1) We propose a query-aware database tuning system using
deep reinforcement learning, which provides three database
tuning granularities (see Section 2).
(2) We propose a SQL query featurization model that fea-
turizes a SQL query to a vector by using rich SQL features
(see Section 3).
(3) We propose the DS-DDPG model, which embeds the
query features and utilizes the actor-critic algorithm to learn
the relations among queries, database state and configura-
tions to tune database configurations (see Section 4).
(4) We propose a deep learning based query clustering method
to classify queries according to the similarity of their suit-
able configurations (see Section 5).
(5) We conducted extensive experiments on various query
workloads and databases. Experimental results showed that
QTune achieved high performance and outperformed the state-
of-the-art tuning methods (see Section 6).

2. SYSTEM OVERVIEW
In this section, we present the system overview of QTune.

QTune supports three types of tuning requests based on dif-
ferent tuning granularities.

Query-level Tuning. For each query, it first tunes the
database knobs and then executes the query. Note that
the session-level knobs (e.g., bulk write size) can be con-
currently tuned for different queries, while the system-level
knobs (e.g., working memory size) cannot be concurrently
tuned because when we tune these knobs for a query, the
system cannot process other queries. This method can op-
timize the latency but may not achieve high throughput.

Workload-level Tuning. It tunes the database knobs for
the whole query workload. This method cannot optimize
the query latency, because different queries may require to
use different best knob values. This method, however, can
achieve high throughput, because different queries can be
concurrently processed after setting the newly tuned knobs.

Cluster-level Tuning. It partitions the queries into differ-
ent groups such that the queries in the same group should
use the same tuning knob values while the queries in differ-

`

Figure 1: The QTune Architecture
ent groups should use different knob values. Next it tunes
the knobs for each query group and executes the queries in
each group in parallel. This method can optimize both the
latency and throughput.

Architecture. Figure 1 shows the architecture of QTune,
which contains five main components. Figure 2 shows the
workflow. The client interacts with Controller to pose tun-
ing requests. Query2Vector featurizes each query into a vec-
tor. It first analyzes the SQL query, extracts the query plan
and the estimated cost of each query from the database en-
gine, and uses this information to generate a vector. Based
on the feature vectors, Tuner recommends appropriate knobs
and then the database executes these queries based on the
new knob values. Tuner uses the deep reinforcement model
DS-DDPG to tune the model and recommend continuous
knob values as a new configuration. Tuner also requires to
train the model using some training data, which is stored in
the Training Data repository. We will explain more details
of Tuner in Section 4.

For query-level tuning, Query2Vector generates a feature
vector for the given query. Tuner takes this vector as input,
and recommends continuous knob values. Next the system
executes the query based on the recommended knob values.

For workload-level tuning, Query2Vector generates a fea-
ture vector for each query in the workload and merges them
to generate a unified vector. Tuner takes this unified vec-
tor as input, and recommends knob values. Next the system
executes the queries based on the recommended knob values.

For cluster-level tuning, Query2Vector first generates a
feature vector for each query and Tuner learns a configura-
tion pattern for each query which can learn the continuous
knob values that best match the query. However, Tuner

may be expensive to generate the configuration pattern for
all the queries. To improve the performance, we propose a
deep learning model, Vector2Pattern, which learns a dis-
crete value for the knobs. Then Pattern2Cluster classi-
fies these queries based on their discrete configuration pat-
terns. Note that Vector2Pattern uses deep learning to pre-
dict the configuration pattern for each query, which also
involves a training step that learns a discrete configuration
pattern for a given query. For example, considering the knob
host cache size in MySQL, which limits the size of the host
cache, Tuner recommends a continuous value between 0 to
65536, while Vector2Pattern recommends a discrete value
in {-1, 0, +1}. After clustering, we get a set of groups. For
each query group, Tuner recommends appropriate configu-
rations and then the database executes these queries in the
group based on the new knob values. So in Figure 2, we
provide two cluster-level algorithms. Cluster-level(C) uses
the DRL model to learn continuous values while Cluster-
level(D) uses the DL model to learn discrete values.

3. QUERY FEATURIZATION
In this section we introduce how to vectorize the queries.

There are several challenges in query featurization. The

2119



Queries

Q = {Q1, Q2, ..., Qn}

Configuration

Figure 2: Workflow of QTune

first is to capture the query information, e.g., which tables
are involved in the query. The second is to capture the
query cost of processing the query, e.g., the selection cost
and join cost. The third is to uniformly featurize the query
and cost information such that each feature of the vector
for different queries has the same meaning. Next we discuss
how to address these challenges in the following sections.

3.1 Query Information
A SQL query includes query type (e.g., insert, delete, se-

lect, update), tables, attributes, operations (e.g., selection,
join, groupby). Query type is important as different query
types have different query cost (e.g, OLTP and OLAP have
different effect on the database), and thus we need to capture
the query type information in the vector. Tables involved in
a query are also important, because the data volumes and
structures of tables will significantly affect the database per-
formance. Based on the table information, our tuning model
decides whether the current system configuration can pro-
vide high performance; if not, our tuning system can tune
the corresponding knobs. For example, if the buffer is not
large enough, we can increase the buffer.

Note that we do not featurize the attributes (i.e., columns)
and operations (i.e., selection conditions) due to three rea-
sons. First, the query cost will capture the operation infor-
mation and cost, and we do not need to maintain duplicated
information. Second, operations are too specific and adding
specific operations into the vectors will reduce the general-
ization ability. Third, the attributes and operations will be
frequently updated and it requires to redesign the model for
the updates. We will compare with the method that also
considers attributes and operations in Section 6.1.2 .

In summary, for query information, we maintain a 4 + |T |
dimensional vector, where |T | is the number of tables in the
database. The first four features capture the query types,
e.g., insert, select, update, delete. For an insert/select/up-

date/delete query, the corresponding value is 1; 0 otherwise.
Each last |T | feature denotes a table. If the query contains
the table, the corresponding value is 1; 0 otherwise. For ex-
ample, Figure 3 shows a query vector. There are 8 tables.
The first 12 features are used for query information. It is a
selection query and uses tbl1, tbl2 and tbl3, so the first four
values are 1 and the other 8 values are 0.

3.2 Cost Information
The cost information captures the cost of processing the

query. However, a query usually has many possible phys-
ical plans and each plan has different query cost. So it is
not realistic to directly parse the query statement to extract
query cost. Instead, we utilize the query plan generated by
the query optimizer, which has a cost estimation for each op-
eration. Figure 3 shows an example query plan, where each
node has a cost estimation. As each database has a fixed
number of operations, e.g., scan, hash join, aggregate, we use
the cost on these operations to capture the cost information.
For example, in PostgreSQL there are 38 operations. Note
that an operation may appear in different nodes of the tree
plan, and the cost of the same operation should be summed
up as the corresponding cost value in the query cost vector.
For example, in Figure 3, the value of hash join equals to the
sum of the costs in the two Hash Join nodes. After gaining
the query cost, we normalize the cost by subtracting mean
and dividing the std deviation.

In summary, for cost information, we maintain a |P | di-
mensional vector, where P is the set of operations in database,
and |P | is the number of operations.

3.3 Character Encoding
We concatenate the query vector and cost vector to gen-

erate an overall vector of a query. For example, Figure 3
shows the vector of a SQL query.

2120



                                                                                            

                                                                                            

                                                                                            

                                                                                            

                                                                                            

                

tbl1.info = '%act%'

Total
17.8

Startup
0

Child 
0

tbl3

tbl1.id = tbl3.type_id
tbl2

tbl2.movie_id = tbl3.movie_id

MIN(tbl3.movie_id)

0 0

2.430

23.24

Seq Scan

Total
2.41

Startup
0

Child 
0

Seq Scan

Total 
23.19

Startup
2.43

Child 
0

Hash Join

Total 
20.7

Startup
0

Child 
0

Seq Scan

Total
48.16

Startup
23.24

Child 
2.43

Hash Join

Total 
48.28

Startup
48.27

Child 
23.24

Aggregate

Insert Delete Update Select   tbl1   tbl2  tbl3 ... tbl8  Hash_Join    Seq_Scan    Aggregate  ...

[ 0 0 0 1 1 1 1 ... 0 68.92 40.91 25.04 ... ]

Insert Delete Update Select   tbl1   tbl2  tbl3 ... tbl8  Hash_Join    Seq_Scan    Aggregate  ...

[ 0 0 0 1 1 1 1 ... 0 0.1401 -0.166 -0.2423 ... ]

(1) DML (2) Tables (3) Operation Costs

Normalized Feature Vector

           

FROM                                     tbl1,   tbl2,   tbl3              

WHERE                                tbl1.info = '%act%'            

                       AND              tbl1.id = tbl3.type_id      

                       AND       tbl2.movie_id = tbl3.movie_id  

SELECT MIN(tbl3.movie_id)

Figure 3: Character Encoding.
Vector for multiple queries. Given multiple queries
q1, q2, · · · , qm, suppose their vectors are v1, v2, · · · , vm re-
spectively. To tune the database for this query workload,
we need to combine the vectors together. To this end, for
each query vector, we need to consider all the query types
and tables, and thus we compute the union of the query vec-
tors. And for each table, if the value is 1, we replace it with
the row number of the table. Thus it can capture the actions
like deleting/inserting rows and improve system’s adaptiv-
ity; for cost vector, we need to sum up all the costs. Thus
we can combine the vector as follows.

[∪m1 vi[1], . . . ,∪m1 vi[4+|T |],
∑m

1 vi[5+|T |], · · · ,
∑m

1 vi[4+|T |+|P |]]
Supporting Update. We discuss how to support the up-
date of the databases. The database update can only affect
the query vector, as the cost vector is computed on-the-fly
from the optimizer, which can get the updated cost. For
query vector, only adding/removing tables will affect the
query vector. To this end, we can leave several positions for
capturing future updates of adding/deleting tables.

4. DRL FOR KNOB TUNING
Since there are hundreds of knobs in a database and many

of them are in continuous space [5], the database tuning
problem is NP hard and it is rather expensive to find high-
quality configurations [34]. We utilize the deep reinforce-
ment learning model, which combines reinforcement learn-
ing and neural networks to automatically learn the knob
values from limited samples. Note that existing DRL mod-
els [16, 19, 12] cannot utilize the query features as they
ignore the effects to the environment state from the query,
and we propose a Double-State Deep Deterministic Policy
Gradient (DS-DDPG) model to enable query-aware tuning.

4.1 DS-DDPG Model
The DS-DDPG model contains five components as shown

in Figure 4. Table 1 shows the mapping from the DS-DDPG

Figure 4: The DS-DDPG Model

Table 1: Mapping from DS-DDPG to Tuning

DS-DDPG The tuning problem
Environment Database being tuned
Inner state Database knobs (e.g., work mem)

Outer metrics State statistics (e.g., updated tuples)
Action Tuning database knobs
Reward Database performance changes
Agent The Actor-Critic networks

Predictor A neural network for predicting metrics
Actor A neural network for making actions
Critic A neural network for evaluating Actor

model to the tuning problem. Environment contains the
database information, which includes the inner state and the
outer metrics. The inner state records the database config-
uration (i.e., knob configurations) which can be tuned, and
the outer metrics record the state statistics (e.g., database
key performance indicators), which reflect database status
and cannot be tuned. For example, in PostgreSQL the
inner state includes working memory, effective cache size,
etc, and the outer metrics include the number of committed
transactions, the number of deadlocks, etc. Query2Vector

generates the feature vector for a given query (or a work-
load). Predictor is a deep neural network, which predicts
the changes in outer metrics of before/after processing the
queries. We predict ∆S because most of the outer metrics
are accumulative variables (others are related to the system
performance, such as the time to read a block) and their
difference in values can reflect the workload’s effect to the
database state. Besides, predicting ∆S is much easier than
S′, as S′ is not only related to the workload features, but cur-
rent database state. Environment combines these changes
∆S with its original metrics S and generates the observation
S′ = S + ∆S to simulate the outer metrics after executing
the queries. Agent is used to tune the inner state based
on the observation S′. Agent contains two modules, Actor
and Critic, which are two independent neural networks.
Actor takes S′ as input, and outputs an action (a vector
of tuned knob configurations). Environment executes the
query workload and computes a reward based on the perfor-
mance. Critic takes the observation S′ and the action as
input, and outputs a score (Q-value), which reflects whether
the action tuning is effective. Critic updates the weights of
its neural network based on the reward value. Actor updates
the weights of its neural network based on the Q-value. So

2121



Actor generates a tuning action and Environment deploys
the tuning action and generates a reward value based on the
performance change on the new configuration. If the per-
formance change is positive, it will return a positive reward;
negative otherwise. Critic updates the network based on
the reward. The five components work together and can
automatically recommend good configurations.

DS-DDPG is an effective strategy to solve optimal prob-
lems with continuous action space by concurrently learning
the Q-value function and the action policy. When the num-
ber of actions is finite, we can compute each action’s Q-value
and choose the action with maximal Q-value. But in contin-
uous space, this method such as Q-learning does not work,
because it’s impossible to exhaustively search the space. In-
stead, in DDPG, we train two neural networks to adapt to
continuous action space: the Critic network can give the
Q-value for each 〈observation, action〉 and the Actor net-
work updates its action policy based on the Q-value and
chooses proper action according to the observation. Since
neural network can perform well in high-dimensional data
mapping with proper architecture design and training, DS-
DDPG can also handle problems with high-dimensional in-
put/output data. In the database tuning problem, we need
to tune many knobs which are in continuous space, and thus
DS-DDPG is suitable for this problem.

4.2 Training DS-DDPG
We discuss how to train the DS-DDPG model (Predictor,

Actor and Critic), and Algorithm 1 shows the pseudo code.

4.2.1 Training the Predictor
Training Data TP . Predictor aims to predict the database
metrics change if processing a query in the database. The
training data is a set of tuples TP = {〈v, S, I,∆S〉}, where
v is a vector of a query, S is the outer metrics, I is the inner
state and ∆S is the outer metrics change by processing v in
a database. For each 〈v, S, I〉, we train Predictor to output
a value that is close to ∆S.

The training data can be easily obtained as follows. Given
a query workload, for each query q, we first use Query2Vector
to generate v and obtain metrics S and state I from the
Environment. Then we run q in the database and record
the metrics change ∆S.

Training. Predictor is a multilayer perceptron model,
which is composed of four fully connected layers: the input
layer accepts the feature vector and outputs the mapped
tensor (higher dimensions) to the hidden layers. These two
hidden layers have a series of non-linear data transforma-
tions. The output restricts the tensor to the scale of the
database state and generates a vector representing the pre-
dicted database metrics changes. The network actually rep-
resents a chain of function compositions which transform
the input to the output space (a pattern) [6]. To avoid our
network model from just learning in linear transformations,
we add ReLU (a type of activation function most commonly
used in neural network [1]) to the hidden layers to capture
more complicated patterns. The weights in the network are
initialized by the standard normal distribution.

Given a training dataset {(v1, S1, I1,∆S1), . . .}, the train-
ing target is to minimize the error function, defined as

E =
1

2

|U|∑
i=1

||Gi −∆Si||2 . (1)

Algorithm 1: Training DS-DDPG

Input: U: the query set {q1, q2, · · · , q|U|}
Output: πP , πA, πC

1 Generate training data TP ;
2 TrainPredictor(πP , TP );
3 Generate training data TA;
4 TrainAgent(πA, πC , TA);

Function TrainPredictor(πP , TP )

Input: πP : The weights of a neural network; TP :
The training set

1 Initiate the weights in πP ;
2 while !converged do
3 for each (v, S, I,∆S) ∈ TP do
4 Generate the output G of 〈v, S, I〉;
5 Accumulate the backward propagation error:

E = E + 1
2
||G−∆S||2;

6 Compute gradient ∇θs(E), update weights in πP ;

Function TrainAgent(πA, πC , TA)

Input: πA: The actor’s policy; πC : The critic’s
policy; TA: training data

1 Initialize the actor πA and the critic πC ;
2 while !converged do
3 Get a training data

T 1
A = (S′1, A1, R1), (S′2, A2, R2), . . . , (S′t, At, Rt);

4 for i = t− 1 to 1 do
5 Update the weights in πA with the

action-value Q(S′i, Ai|πC);
6 Estimate an action-value

Yi = Ri + τQ(S′i+1, πA(S′i+1|θπA)|πC);
7 Update the weights in πC by minimizing the

loss value L = (Q(S′i, At|πC)− Yi)2;

where Gi is the output value by Predictor for query qi, and
U is the query set.

We adopt Adam [10] to train Predictor. Adam is a
stochastic optimization algorithm. It iteratively updates the
network weights by the first and second moments of the gra-
dients, which are computed using stochastic objective func-
tion. The training procedure terminates if the model is con-
verged or runs a given number of steps.

4.2.2 Training the Actor-Critic Module
Training Data TA. The agent (i.e., the Actor-Critic mod-
ule) aims to judiciously tune the database configurations.
Given a query workload, we randomly select a subset of
queries and generate a sample workload. For the sample
query workload, we generate its feature vector via Query2Vector,
predict a database metrics S′1 via Predictor, get an action
A1 via Actor, deploy the actions in the databases, run the
database to get a reward R1 (the reward function will be
discussed later). In the next step, we get a new database
metrics S′2 by updating S′1 using the new metrics, and repeat
the above steps to get A2 and R2. Iteratively, we get a set of
triples 〈T 1

A = (S′1, A1, R1), (S′2, A2, R2), . . . , (S′t, At, Rt)〉 un-
til the average reward value is good enough (e.g., the average
reward of ten runs is larger than 10.)

Training Actor and Critic. The training of the Actor-
Critic module is to update the weights in their neural net-

2122



works. We first initiate the DS-DDPG model, including the
environment, the actor policy πA and the critic policy πC .
Then we use the experience replay method to train the actor
and the critic in the reinforcement learning process.

Given a training dataset 〈T 1
A = (S′1, A1, R1), (S′2, A2, R2), . . .,

(S′t, At, Rt)〉, we consider (S′i, Ai, Ri) and update Actor and
Critic as follows.

(1) We update the actor policy πA using the gradient value

∇θπAπA = ∇AiQ(S′i, Ai|πC) · ∇θπAπA(S′i|θπA)

where θ is the parameters in πA and Q(S′i, Ai|πC) is the
Q-value computed by Critic.

(2) We estimate the real action-value Yi. We use the Bell-
man function [32] to compute Yi based on the reward and
Q-value, i.e.,

Yi = Ri + τ ·Q(S′i+1, πA(S′i+1|θπA)|πC)

where τ is a tuning factor to tradeoff the Q-value and the
reward value.

(3) We calculate the loss value L with Q and Y . Critic

updates the weights in πC by minimizing the loss value

L = (Q(S′i, Ai|πC)− Yi)2

We run the three steps for i = t− 1 to i = 1.
The algorithm terminates if the model is converged (e.g.,

the performance improvement is smaller than a threshold);
otherwise we select next training data T 2

A, T
3
A, · · · .

Target network. To improve the stability of training, we
can introduce two extra target actor and critic networks
(whose policies are π′A and π′C respectively). These two
networks are updated at every step and their weights (pa-
rameters of the policy) are updated slower than the normal
networks. Then the weights in the normal critic network are
updated by minimizing loss compared with the target:

L(πC) = (Q(S′i, Ai|πC)− Yi)2

Yi = Ri + τ ·Q(S′i+1, π
′
A(S′i+1|θπ

′
A)|π′C)

Reward Function. Our reward function is designed to
capture two abilities. 1) It can provide valuable feedback
of the database performance; 2) It takes multiple metrics
into consideration, and each metric can have different im-
portance by assigning different weights.
Step 1. For each metric m, e.g., latency and throughput,
calculate the performance change compared with that at
initial time (∆0,t) and that at last time (∆t−1,t).

∆0,t =

{
mt−m0
m0

, the higher the better
m0−mt
m0

, the lower the better

∆t−1,t =

{
mt−mt−1

mt−1
, the higher the better

mt−1−mt
mt−1

, the lower the better

Step 2. The reward function of metric m is designed as:

rm =

{
((1 + ∆t−1,t)

2 − 1)|1 + ∆0,t|, ∆0,t > 0

−(((1−∆t−1,t)
2 − 1)|1−∆0,t|), ∆0,t ≤ 0

Step 3. The reward function R on multiple metrics is

R =
∑

wmrm

where wm is the weight manually assigned for metric m.

Algorithm 2: Tuning with DS-DDPG

Input: Q: a query set {q1, q2, · · · , q|Q|}
Output: Action A

1 V = Query2Vector(Q);
2 ∆S =Predictor(V );
3 S = Enviorment();
4 A =Actor(S′ = S + ∆S);
5 Deploy A;
6 Run Q;

The reward function is similar to that in CDBTune [36].

Remark. We have three neural networks in DS-DDPG,
Predictor, Actor and Critic. Although there is no “stan-
dard” concepts in constructing a neural network [6], we de-
sign each network by considering two factors. First, the
scale of input/output vectors. Generally, the input/output
sizes determine the number of neurons in each layer. For
example, in PostgreSQL, Actor’s input size is 19 and out-
put size is 64. So the neuron number in each layer ranges
from min(input size, output size) to two times bigger than
max(input size, output size). In this way, there is a proce-
dure from expending the output space to converging to tar-
get space when the network transforms input data. Second,
the uncertainty between input and output. Usually, an input
is not only mapped to an output or an optimal output area,
especially when the output is of high dimension. Instead, in
the case where one input with multiple output values occurs
in the training set, it can confuse a simple neural network
and requires more layers to figure out the relations. For ex-
ample, for the same observation, diverse actions outputted
by Actor can gain similar high Q-values, which estimate the
benefit of an action. To help Actor further discover opti-
mal areas, we add a dropout layer after each dense layer,
which randomly deactivates neurons in the upper layer to
explore wider action space and cut down the possibility of
over-fitting. Based on the two factors, we construct a basic
architecture. The network’s configuration needs to be man-
ually tuned iteratively during training by pruning redundant
nodes, expanding the network or editing the weights. We in-
crease the value if network is slow to converge; otherwise we
decrease the value. When all the networks are well trained,
the DS-DDPG model is captable to adapt to new workloads
(with the Predictor), database state (with the observation)
and even the hardware environment (with the reward).

4.3 Tuning with DS-DDPG
Algorithm 2 shows the pseudo code of tuning with DS-

DDPG. Given a tuning request (a query or a query work-
load), Query2Vector generates a feature vector. Predictor

utilizes the feature vector and generates the predicted state
change ∆S. Environment takes ∆S as input and generates
the observation S′ = ∆S + S based on its current metrics
S. Actor takes the metrics S′ as input, and outputs an
action (a vector of suggested knob values). Environment

deploys the new configurations and executes the query. For
cluster-level tuning, given a tuning request (a query work-
load), Query2Vector generates a feature vector for each vec-
tor. Vector2Pattern predicts a pattern for each vector using
the DL model. Pattern2Cluster clusters the queries into
several groups. Next we use the above algorithm to tune
each query group.

2123



5. QUERY CLUSTERING
For workloads including both transactional queries and

analytical queries [25], if the user aims to optimize the la-
tency, we recommend query-level tuning; if the user aims
to improve the throughput, we recommend workload-level
tuning. For analytical only queries, we recommend cluster-
level tuning to balance the throughput and latency. The
key problem in the cluster-level tuning is (1) how to effi-
ciently find the appropriate configuration pattern for each
query and (2) how to cluster the queries based on the con-
figuration pattern. This section studies these two problems.

5.1 Configuration Pattern
The configuration pattern of a query should include all

the knobs used in the DS-DDPG model. Thus a nature
idea is to use DS-DDPG to generate a continuous knob con-
figuration and take the knob configuration as the pattern.
However it is rather expensive to get the continuous knob
values, especially for a large number of queries. More im-
portantly, when we cluster the queries, we do not need to
use the accurate configuration pattern; instead approximate
patterns are good enough to cluster the queries.

To this end, we discretize the continuous values into dis-
cretized values. For example, we can discretize each knob
into {-1,0,+1}. Specifically, for each knob, if the tuned knob
value is around the default value, we set it as 0; 1 if the esti-
mated value is much larger than the default value; -1 if the
estimated value is much smaller than the default value.

To avoid the curse of dimensionality when clustering queries,
we only choose knobs most frequently tuned by DS-DDPG
as the features, about 20 in PostgreSQL. But the new knob
space is still very large. For example, if 20 knobs are used
and each has 3 possible values, then there are 320 possible
cases. The traditional machine learning methods or regres-
sion models are hard to solve this problem, because they
either assume the labels are independent such as Binary
Relevance [18] or cannot support so many labels such as
Classifier chain [26].

Learning Discrete Configuration Patterns Using Deep
Learning. We choose the deep learning method to map
queries to discrete configuration patterns. As Figure 5 shows,
the Vector2Pattern uses a neural network, which adopts a
five-layer architecture.

The input layer takes the feature vector as input and maps
it to the target knob space, in order to make the input and
output in the same scale.

The second layer is designed to explore the configuration
patterns. It is a dense layer with ReLU as the activation
function (y = max(x, 0), where x is an input feature and
y is the corresponding output features, using to learn two
aspects of knowledge: 1) Interaction effects; 2) Non-linear
effects. Interaction effects capture the correlations among
the input features. For example, feature vi captures the
value difference when other features’ value changes. While
Non-linear effects learns non-linear mapping relations be-
tween input vector and output vector.

The third layer is a BatchNormal layer. It normalizes the
input vector in favor of gaining discretized results.

The fourth layer has the same function as the second and
the value of each feature in this layer’s output vector ranges
from 0 to 1. But different from Predictor in Section 4, the
last layer uses a sigmoid activation function S(zi) = 1

1+e−zi
,

where zi is the ith feature of the input vector. It takes a real

ReLU

.

.

.

v1

v2

vk

.

.

.

.

.

.

.

.

.

Figure 5: Architecture of the DL model

value as input and outputs a value in 0 to 1. This aims to
do a non-linear data transformation and at the same time
keeps the features in the limited range.

For the DL model, we also append a step function to the
network’s end and use the output layer as a probability dis-
tribution function: for each feature y in the output vector,
the resulting bit is -1 if y is below 0.5; 0 if y equals to 0.5; and
1 otherwise. In this way, the DL model can automatically
finish data transformation and discretization work.

Workflow of Vector2Pattern. The DL model works in
4 steps: 1) For each training sample 〈q, pr〉, where q is a
query and pr is the real pattern that matches q, compute
the feature vector v of query q; 2) Propagate these features
through its network; 3) Output an estimated pattern pe; 4)
Based on the output pattern pe and the actual pattern pr,
update the weights in the network by minimizing |pe − pr|.
Training Step. We need to generate a large volume of
samples to train Vector2Pattern until the performance on
a new testing set is good enough (i.e., high generalization
ability). Each training sample is in the form of 〈q, p〉, where
q is a query statement and p is a configuration pattern un-
der which the database can efficiently execute q. To collect
these samples, we follow 3 steps: 1) Train the DS-DDPG
model until it converges; 2) Select 10,000 real queries from
the training data; 3) For each query q in the selected queries,
use Query2Vector to featurize q and get v. We input the
vector v into the DS-DDPG model, and get a recommended
configuration to measure the performance of this query. If
the performance is good enough, we discretize this configu-
ration into pattern and the iteration terminates.

5.2 Query Clustering
After gaining the suitable configuration pattern for each

query, we classify the queries into different clusters based
on the similarity of these patterns. Any clustering algo-
rithms can be used to cluster the configurations, and we
take DBSCAN [8] as an example. Based on the configuration
pattern, DBSCAN groups the patterns together that are close
to each other according to a distance measurement and the
minimum number of points to be clustered together.

6. EXPERIMENT
Out tuning system QTune has been deployed into Huawei

Gauss database. We compare QTune with state-of-the-art
methods [2, 36, 38]. We first evaluate our techniques, in-
cluding evaluating the three types of tuning methods and
the featurization methods. We then compare QTune with
existing methods OtterTune [2], CDBTune [36], BestCon-
fig [38]. Finally, we evaluate the generalization ability by
varying different workloads, databases and hardware.

2124



Q
W

(a) IF-Throughput (b) RC-Throughput (c) IF-Latency (d) RC-Latency
Figure 6: Performance by increasing knobs in Important First (IF) and Randomly Choosing (RC) respectively
when running Sysbench (RO) on PostgreSQL.

Table 2: Database information
Database Knobs without restart State Metrics

PostgreSQL 64 19
MySQL 260 63

MongoDB 70 515

Table 3: Workloads. RO, RW and WO denote read-
only, read-write and write-only respectively.

Name Mode Table Cardinality Size(G) Query

JOB RO 21 74,190,187 13.1 113

TPC-H RO 8 158,157,939 50.0 22

Sysbench RO, RW 3 4,000,000 11.5 474,000

Database Systems. We implement the neural networks
using Keras1 with TensorFlow2 as the backend, and use
Python tools such as psycopg2, scikit-learn and numpy3

to interact with databases and pre-process data. Since the
database metrics and knobs in different database systems are
different, we utilize three database systems and their related
information is shown in Table 2. As restarting database is
not acceptable in many real business applications, here we
only use the knobs that do not need to restart databases.
Note that MongoDB4 is a document-oriented NoSQL Database.
It uses json format queries rather than SQL. To run a SQL
benchmark, we convert the data sets into json documents
before injecting them into the database and transforms the
SQL queries to json format queries.

Workload. We use three query workloads JOB5, TPC-H6

and Sysbench7. Table 3 shows the details.

Training Data. Table 4 shows the training data to train
the DL model and DRL model.

Metrics. We use latency and throughput to evaluate the
performance. We also evaluate the training and tuning time.

The experiments are conducted on a machine with 128GB
RAM, 5TB disk, and 4.00G CPU.

6.1 Evaluation on Our Techniques
6.1.1 Evaluation on Tuning Methods

We compare four tuning methods, query-level, workload-
level, cluster-level using DRL for tuning continuous knobs
(denoted by cluster-level(C)), and cluster-level using DL
model for tuning discrete knobs (denoted by cluster-level(D)).
We vary the number of knobs. Here we use two methods to

1https://keras.io
2https://tensorflow.google.cn/
3http://initd.org/psycopg,scikit-learn.org,numpy.org
4https://www.mongodb.com/
5https://github.com/gregrahn/join-order-benchmark
6http://www.tpc.org/tpch/
7https://github.com/akopytov/sysbench

Table 4: The number of training samples for the DL
model in query clustering, the Predictor and the
Actor-Critic module in DS-DDPG.

Name Sysbench JOB TCP-H
DL 3792 8000 40,000

Predictor 3792 8000 40,000
Actor-Critic 1500 480 300

sort the knobs: (1) Random. We permute the knobs in
a random way. If we tune k knobs, we select the first k
knobs. (2) Important first. We sort the knobs based on
their importance (e.g., which knobs were tuned more in the
query workload). If we tune k knobs, we select the first
k knobs. We conduct this experiment using JOB(RO) on
PostgreSQL. Figures 6(a) to 6(d) show the results, where
the point with x-axis of 0 represents the default configura-
tion without tuning.

We make the following observations from the results. First,
the more knobs we use to tune, the better performance
(higher throughput and lower latency) we can achieve. This
is because, we have higher opportunities to use more knobs
to improve the database performance. But at the same time,
all methods take more training time, because they increase
the network size and require to tune more parameters.

Second, cluster-level tuning achieves higher throughput
than query-level and workload-level tuning. The reasons are
two fold. First, cluster-level tuning can execute the query
in parallel but query-level tuning cannot. Second, cluster-
level tuning can provide better knob values for the queries
while workload-level tuning can only provide the same knob
values for all queries (which may not be optimal for most
of queries). Cluster-level(D) tuning achieves higher through-
put than Cluster-level(C) tuning, as continuous tuning takes
more time to generate the patterns than discrete tuning.

Third, query-level tuning achieves lower latency than cluster-
level tuning, which in turn achieves lower latency than workload-
level tuning. This is because query-level tuning can get the
best knob values for each query, cluster-level tuning gets
good knob values for a cluster of queries, and workload-
level tuning generates the same knob values for all queries.
Cluster-level (D) tuning and Cluster-level (C) tuning achieve
similar latency, because the former achieves shorter tuning
time but worse tuning knob values; while the latter has
longer tuning time and better knob values.

Fourth, all the methods have the same performance trends
on the two knob selection strategies. The importance first
method has much higher performance gain than the random
method, because the former first tunes the most important
knobs. So using the important knobs can help the learning
of the neural networks very efficiently. By comparison, ran-
domly choosing knobs may use many knobs that have little
effect on the performance or is of complex relationships with

2125



Database Featurization Tuner Vector2Pattern Clustering Recommendation Execution Overhead

MySQL 9.37 ms 2.23 ms 0.29 ms 1.64 ms 4.36 ms 0.45 s - 262.9 s 3.8 % - 0.0068 %
PostgreSQL 9.46 ms 2.38 ms 0.39 ms 2.51 ms 5.01 ms 0.46 s - 263.3 s 4.1 % - 0.0075 %
MongoDB 13.48 ms 2.16 ms 0.36 ms 2.32 ms 4.31 ms 0.63 s - 264.5 s 3.5 % - 0.0085 %

Table 5: Time distribution of queries in JOB (RO) benchmark on MySQL, PostgreSQL and MongoDB
respectively. Execution is the range of time the database executes a query. Overhead is the percentage of
tuning in the total time for a query.

 0

 100

 200

 300

 400

 500

 600

 700

T
h

ro
u

g
h

p
u

t 
(t

x
n

/m
in

)

Default
Q(E1)
Q(E2)

W(E1)
W(E2)

C-C(E1)

C-C(E2)
C-D(E1)
C-D(E2)

(a) Throughput

 0

 1

 2

 3

 4

 5

L
a

te
n

cy
 (

s)

Default
Q(E1)
Q(E2)

W(E1)
W(E2)

C-C(E1)

C-C(E2)
C-D(E1)
C-D(E2)

(b) Latency
Figure 7: Performance comparison of 2 Featuriza-
tion methods (E1, E2) when running JOB (RO) on
PostgreSQL. (Query-level(Q), Workload-level(W),
Cluster-level-C (C-C)), Cluster-level-D(C-D)

the other knobs and the database performance. It leads to
longer learning time and less obvious performance gains.

6.1.2 Evaluation on featurization Methods
We evaluate two featurization methods. The first (E1) is

our method in Section 3 that uses query type, tables, and
costs. The second (E2) uses query type, tables, attributes,
operations, and costs. Figure 7 shows the results. We find
that under any tuning method, E1 and E2 achieve similar
performance in throughput and latency. So we can find that
adding attribute information into the feature vector does not
make much difference in performance optimization. This is
because the detailed attribute information is less important
when tuning for all the queries together. Besides, the num-
ber of attributes in a database varies by creating or deleting
tables. So to add attribute information, we need to either
leave several reserved bits for attributes or re-tune the neu-
ral networks every time the attributes change, which signif-
icantly weakens the adaptivity of QTune.

6.1.3 Evaluation on Tuning Time
In order to better understand the distribution of execu-

tion time in a tuning and training step, we compare time
consumption in each main components of QTune.

(1) Featurization: It generates the query plan using
database optimizer, extracts query information and cost fea-
tures from the plan and produces the feature vector.

(2) Tuner: The DS-DDPG model predicts the state changes,
recommends a suitable configuration by the Actor-Critic
module and re-configures the database.

(3) Vector2Pattern: The DL model transforms the in-
put features via each layer and produces a discretized con-
figuration pattern.

(4) Clustering: It divides the queries into some clusters.
We use the clustering algorithm DBSCAN, which takes the
query patterns as input and outputs some clusters.

(5) Recommendation: It runs the DS-DDPG model and
configures the database.

(6) Query Execution: It executes queries in the database.
From the results in Table 5 we can see that 1) the over-

head (tuning time) takes a very small percent compared with
query execution; 2) It takes QTune more time to tune Mon-

goDB, a NoSQL database, compared with the other two
RDBMSs, because rather than using statistics methods to
estimate the execution cost, MongoDB adopts an empirical
method: it actually runs different query plans in round-robin
fashion and chooses the one with the best performance. So
it is relatively costly to explain the queries in MongoDB.

6.2 Comparison with Existing Techniques
We compare the performance of QTune with 1) database

default settings, 2) BestConfig [38], 3) OtterTune [2], 4)
DBA, 5) the traditional RL model CDBTune [36]. BestCon-
fig is a search-based tuning method. OtterTune is a tuning
system using traditional machine learning model. For Post-
greSQL, we have invited a DBA with 8 years of working
experience at Huawei; for MySQL, we invited a DBA with
5 years working experience; for Mon- goDB, we have in-
vited DBA with 2 years working experi- ence. For a new
tuning requirement, DBAs took 5 days to tune. CDBTune
uses a deep reinforcement learning based method to tune
the database. It requires to do stress testing using query
workload and takes dozens of minutes for online tuning. For
each method, we conduct experiments on PostgreSQL with
Sysbench (RW), JOB (RO) and TPC-H (RO) respectively.
The hardware environment is Instance B in Table 6. Figures
8(a)-8(i) show the results.

We make the following observations. First, QTune achieves
the best performance in all cases. For example, QTune (C-D)
gains about 151.10% throughput improvement, 60.18% la-
tency reduction and 66.15% training time reduction over
that of CDBTune. The reason is as follows. CDBTune
adopts the Actor-Critic module to recommend configura-
tion, which only takes the database state as the observation
but does not contain the current queries’ information. So
it can only indirectly learn the knowledge of the queries
via the reward function. For each training cycle, our work-
load is randomly made up rather than repeating the same
workload monotonously. So CDBTune performs much worse
than QTune. But since CDBTune can efficiently learn from
the past experience, it outperforms the other four meth-
ods. OtterTune works by mapping the workload to a work-
load template and generating better knob values. OtterTune
utilizes Gaussian Process (GP) to map configurations and
also can learn from the history, but this regression model
is still too simple compared with the neural networks and
cannot explore new knowledge to refine itself. Besides, Ot-
terTune filters twice to gain the most important metrics and
knobs. This filtering procedure can cause information loss,
because those filtered information might be less important
than the chosen ones but still takes effect on the database
performance. This pipeline architecture limits the model
from learning from real data. The DBAs are experienced
experts, who can map the state to a typical scenario tem-
plate and tune the related configurations by experience. But
it’s nearly impossible for humans to master the complex cor-
relations among hundreds of knobs. DBAs usually just try

2126



 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000
T

h
ro

u
g

h
p

u
t 

(t
x

n
/s

ec
)

Default
BestConfig
OtterTune

CDBTune
DBA

QTune(Q)

QTune(W)

(a) Sysbench (RW)

 0

 100

 200

 300

 400

 500

 600

 700

T
h

ro
u

g
h

p
u

t 
(t

x
n

/m
in

)

Default
BestConfig
OtterTune

CDBTune
DBA

QTune(Q)

QTune(W)
QTune(C-C)
QTune(C-D)

(b) JOB (RO)

 0

 10

 20

 30

 40

 50

T
h

ro
u

g
h

p
u

t 
(t

x
n

/m
in

)

Default
BestConfig
OtterTune

CDBTune
DBA

QTune(Q)

QTune(W)
QTune(C-C)
QTune(C-D)

(c) TPC-H (RO)

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

L
a

te
n

cy
 (

u
s)

Default
BestConfig
OtterTune

CDBTune
DBA

QTune(Q)

QTune(W)

(d) Sysbench (RW)

 0

 5

 10

 15

 20

L
a

te
n

cy
 (

s)

Default
BestConfig
OtterTune

CDBTune
DBA

QTune(Q)

QTune(W)
QTune(C-C)
QTune(C-D)

(e) JOB (RO)

 0

 100

 200

 300

 400

 500

 600

 700

 800

L
a

te
n

cy
 (

s)

Default
BestConfig
OtterTune

CDBTune
DBA

QTune(Q)

QTune(W)
QTune(C-C)
QTune(C-D)

(f) TPC-H (RO)

 0

 10

 20

 30

 40

 50

 60

 70

T
ra

in
in

g
T

im
e 

(h
)

BestConfig
OtterTune

CDBTune
QTune(Q)

QTune(W)

(g) Sysbench (RW)

 0

 10

 20

 30

 40

 50

 60

 70

T
ra

in
in

g
T

im
e 

(h
)

BestConfig
OtterTune
CDBTune

QTune(Q)
QTune(W)

QTune(C-C)

QTune(C-D)

(h) JOB (RO)

 0

 10

 20

 30

 40

 50

 60

 70

T
ra

in
in

g
T

im
e 

(h
)

BestConfig
OtterTune
CDBTune

QTune(Q)
QTune(W)

QTune(C-C)

QTune(C-D)

(i) TPC-H (RO)
Figure 8: Comparison with existing methods Default settings, BestConfig, OtterTune, CDBTune, DBA on
Sysbench (RW), JOB (RO) and TPC-H (RO) on PostgreSQL. QTune (Q) represents query-level tunig. QTune

(W) represents workload-level tuning. And QTune (C-C) and QTune (C-D) indicate cluster-level tuning using
Continuous Tuner and Discrete Tuner respectively.

several impactful knobs. With rich experience they can find
a usable configuration in a short time, but the results are
usually not good enough. Moreover, it takes DBAs very
long time to figure out an ideal knob pattern. BestConfig
starts by randomly choosing some knob combinations and
explores from the best configuration points iteratively. Since
the provided resource is limited, it usually can only gain a
sub-optimal configuration. Besides, each searching period
restarts and cannot utilize the past searching results. So
the performance improvement is not very good sometimes.

Second, QTune (C-D), cluster-level tuning with discrete
tuner, achieves the highest throughput, because it makes
good tradeoff between providing good knobs for a group of
queries and achieving high tuning time. QTune (Q), query-
level tuning achieves the lowest latency, because it provides
the best knob values for each query.

Third, CDBTune takes the longest training time. On the
one hand, in each training cycle, it requires to run training
examples on the databases, which is time consuming. On
the other hand, it only tunes according to the database state
and without filtering it utilizes all the dynamic knobs, which
takes longer time to meet the performance requirements. In-

stead, the training time of BestConfig is controlled by the
resource limits. OtterTune recommends configurations ac-
cording to both the workload and performance metrics and
do not need to actually run the training examples.

Fourth, our method has much larger improvement on TPC-
H than JOB and Sysbench. This is because TPC-H simu-
lates the real OLAP working scenarios and each query con-
tains many complex operations, such as the “join”. In order
to support such complex workload, QTune has large improve-
ment space to explore and thus gets great gains by efficiently
analyzing the query characters and database states. And
queries in JOB also contain many join operations and are
costly to execute, and thus QTune still can optimize the query
plan and execution procedure. But in Sysbench, the queries
are simple and randomly produced based on several simple
rules. They have similar structures and take few resources
to finish. So the improvement is not obvious in Sysbench.
Considering the other methods, we find the performance of
the traditional RL model is still not bad, only worse than
QTune on the three benchmarks. It can verify that it is
feasible to use reinforcement learning in database tuning.
And the performance of DBA and OtterTune is not steady.

2127



 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

T
h

ro
u

g
h

p
u

t 
(t

x
n

/s
ec

)
Default

BestConfig
OtterTune

CDBTune
DBA

QTune(Q)

QTune(W)

(a) JOB(RO) to Sysb.(RW)

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

L
a

te
n

cy
 (

u
s)

Default
BestConfig
OtterTune

CDBTune
DBA

QTune(Q)

QTune(W)

(b) JOB(RO) to Sysb.(RW)

 0

 100

 200

 300

 400

 500

 600

 700

T
h

ro
u

g
h

p
u

t 
(t

x
n

/m
in

)

Default
BestConfig
OtterTune

CDBTune
DBA

QTune(Q)

QTune(W)
QTune(C-C)
QTune(C-D)

(c) TPC-H(RO) to JOB(RO)

 0

 5

 10

 15

 20

L
a

te
n

cy
 (

s)

Default
BestConfig
OtterTune

CDBTune
DBA

QTune(Q)

QTune(W)
QTune(C-C)
QTune(C-D)

(d) TPC-H(RO) to JOB(RO)
Figure 9: Performance when workload changes on PostgreSQL.

Because it is a bit tough for humans and the shallow ma-
chine learning methods to handle the tuning problem with
different workload and data sets. For the throughput, the
results are similar. And we can find from the training time
that QTune is quite efficient to learn knowledge from a com-
pletely new starting point. But it takes relatively long time
for DBA, OtterTune and the traditional RL to converge.

In summary, the DS-DDPG model suits this tuning sce-
nario better. Rather than blindly tuning without the knowl-
edge of the tasks to be conducted, QTune characterizes the
queries and integrates these query features and database
state into the DRL model. QTune can provide much bet-
ter decision based on these two aspects. Besides, for work-
loads like OLAP, we can divide them into different clusters
(cluster-level) and execute the queries by cluster.

6.3 Evaluation on Generalization
6.3.1 Varying Different Workloads

We verify the performance of QTune when workload changes.
On PostgreSQL, we conduct two experiments: 1) Use the
model trained on JOB (RO) benchmark to tune database
on Sysbench (RW) benchmark; 2) Use the model trained
on TPC-H (RO) benchmark to tune database on JOB (RO)
benchmark. And we compare QTune with database default
settings, BestConfig, OtterTune, CDBTune and DBA. Fig-
ures 9(a) to 9(d) show the results. Note that JOB queries
vary in time and resource consumption, but there are only
113 queries. So we expend JOB into 10000 queries, based on
the data set and existing query structures. We also extend
TPC-H benchmark to generate more queries.

First, we apply these trained model for JOB (RO) to Sys-
bench (RW) and evaluate the performance. We make the
following observations. First, QTune still outperforms the
baselines. Query-level or workload-level tuning can adapt
to query changes from Sysbench (RW). Since the optimal
knob space changes after altering workload, it’s tough for
BestConfig to recommend suitable configurations without
enough time to search. Since OtterTune relies on workload
to map configuration patterns, it actually suffers most from
the change. While CDBTune is free from these problems
and even preforms better for JOB. This is because CDB-
Tune does not consider queries directly and only observes
the changes in database state. QTune performs better, be-
cause queries are vectorized by Query2Vector and utilized
by Predictor. The query features include the data distribu-
tion and query costs. So our model is capable of adapting to
different workloads. And even if the table schemas are differ-
ent across different benchmarks, the difference in data scale
and cost features can be obtained and the tuning model can
recommend different configuration based on such difference.

Second, for TPC-H (RO) to JOB (RO), the results are
similar. For JOB (RO), first, QTune performs the best among
the five tuning methods. In general, TPC-H queries are

Table 6: Two hardware configurations

Instance RAM (GB) Disk (GB) CPU (GHz)

A 16 780 2.49
B 128 5000 4.00

much more complex than JOB queries, and QTune can eas-
ily utilize the knowledge learned from the query features
of TPC-H to correctly estimate new feature vectors parsed
from JOB, so QTune outperforms the others even if the work-
load changes. Moreover, compared with Figures 9(a)-9(b),
the performance of QTune changes little. While the perfor-
mance of BestConfig and OtterTune gets worse because it’s
tough for them to adapt to new workloads in a short time.
The performance of CDBTune turns better because it’s ca-
pable of adjusting the model according to the state change.

6.3.2 Varying Different Databases
Different databases have completely different system pa-

rameters, including different meanings, types, names and
value ranges. Besides, RDBMSs may have very similar op-
erating mechanisms, but NoSQL databases are completely
different, e.g., MongoDB is based on key-value data struc-
tures and lacks of many concepts in RDBMSs such as for-
eign keys. To verify that QTune can perform well on dif-
ferent databases, we use three other databases to conduct
experiments. We run JOB on MySQL and run TPC-H on
MongoDB. For each experiment, the performance of QTune

is compared with the other four methods. Figures 10(a)-
10(d) show the results. We have the following observations.

First, QTune performs well on the three databases and
outperforms the other four methods. This is contributed to
our query-aware tuning techniques. Second, on MongoDB,
QTune achieves the best performance improvement. This is
because operating mechanisms such as index optimizations
and task scheduling are not as good as RDBMS like MySQL,
and PostgreSQL and MongoDB is more sensitive to different
database configurations. Third, latency reduction is much
less than throughput improvement, because we have large
opportunity to tune throughput but less opportunity to tune
latency. Fourth, QTune can efficiently adapt to different en-
vironments and keep in relatively good performance.

6.3.3 Varying Different Hardware environments
It is a challenge to adapt to new hardware environment,

because the learnt knowledge of the disk size, RAM size and
computing ability needs to be updated when the model is
migrated to a different hardware environments. We conduct
experiment to evaluate whether QTune can adapt to new
hardware environments. We use two instances as shown in
Table 6. B is better than A in each aspect. So the model
trained on A has very large configuration space to explore
once it’s migrated to B. As shown in Figures 11(a)-11(d),
M B on A (model trained on B is used to tune on A) per-
forms even better than M A on A (model trained on A is
used to tune on A). This is because the model trained on B

2128



 0

 200

 400

 600

 800

 1000

T
h

ro
u

g
h

p
u

t 
(t

x
n

/m
in

)
Default

BestConfig
OtterTune

CDBTune
DBA

QTune(Q)

QTune(W)
QTune(C-C)
QTune(C-D)

(a) MySQL

 0

 5

 10

 15

 20

L
a

te
n

cy
 (

s)

Default
BestConfig
OtterTune

CDBTune
DBA

QTune(Q)

QTune(W)
QTune(C-C)
QTune(C-D)

(b) MySQL

 0

 10

 20

 30

 40

 50

T
h

ro
u

g
h

p
u

t 
(t

x
n

/m
in

)

Default
BestConfig
OtterTune

CDBTune
DBA

QTune(Q)

QTune(W)
QTune(C-C)
QTune(C-D)

(c) MongoDB

 0

 100

 200

 300

 400

 500

 600

 700

 800

L
a

te
n

cy
 (

s)

Default
BestConfig
OtterTune

CDBTune
DBA

QTune(Q)

QTune(W)
QTune(C-C)
QTune(C-D)

(d) MongoDB
Figure 10: Performance for different databases.

 0

 100

 200

 300

 400

 500

 600

T
h

ro
u

g
h

p
u

t 
(t

x
n

/m
in

)

Default
BestConfig
OtterTune

CDBTune
DBA

QTune(Q)

QTune(W)
QTune(C-C)
QTune(C-D)

(a) M A on A

 0

 5

 10

 15

 20

 25

L
a

te
n

cy
 (

s)

Default
BestConfig
OtterTune

CDBTune
DBA

QTune(Q)

QTune(W)
QTune(C-C)
QTune(C-D)

(b) M A on A

 0

 200

 400

 600

 800

 1000

 1200

T
h

ro
u

g
h

p
u

t 
(t

x
n

/m
in

)

Default
BestConfig
OtterTune

CDBTune
DBA

QTune(Q)

QTune(W)
QTune(C-C)
QTune(C-D)

(c) M B on A

 0

 5

 10

 15

 20

 25

L
a

te
n

cy
 (

s)

Default
BestConfig
OtterTune

CDBTune
DBA

QTune(Q)

QTune(W)
QTune(C-C)
QTune(C-D)

(d) M B on A
Figure 11: Performance for different hardware environments.

has already explored large enough configuration space which
overlaps the optimal information of instance A, or includes
better configuration space than that by M A. And for each
knob value recommended by model B, if it’s above the al-
lowed range, we will change it to the boundary value. So
there can be many “invalid” recommendations, but this usu-
ally won’t cause resource waste. And this convergence is
faster than exploring for new optimal space.

7. RELATED WORK
Database Tuning. There has been several studies on au-
tomatic database tuning, which can be divided into two cat-
egories: rule-based methods and learning-based methods.
(1) Rule-based Methods. Rule-based methods explore op-
timal database configurations by using rules or heuristics.
iTuned [7] uses statistical methods to find most impact-
ful knobs and tune database according to the correlations
of performance and knobs. Wei et al. [33] propose a per-
formance tuning framework which generates rules and uses
these rules to conduct tuning. BestConfig [38] divides the
high-dimension knob space into subspaces and iteratively
chooses configurations using recursive bound and search.
However they rely on either rules or history data.
(2) Learning-based Methods. Learning-based methods uti-
lize the machine learning techniques to tune database knobs.
OtterTune [2] uses a traditional ML model to map a work-
load to a specific configuration. However it relies on large-
scale high-quality training samples. Zheng et al. [37] propose
to identify key system parameters using statistical methods
and utilize a neural network to match configurations for a
specific workload. It also requires large volume of training
samples and has the problem of overfitting. CDBTune [36]
utilizes a DRL model that recommends configurations based
on the database states. However, it only provides a coarse-
grained tuning but cannot provide fine-grained tuning.
Reinforcement Learning. Reinforcement learning (RL)
was proposed to address game theory [24, 9, 23]. RL is
a framework that enables a learner (agent) to take actions
in a specific scenario (environment) and learn from the in-
teractions with the environment in discrete time steps [24].
Unlike supervised learning, RL does not need a large volume
of training data. Instead, through trial and error, the agent

iteratively optimizes its policy of choosing actions, with the
goal of maximizing an objective function (reward). By the
exploration and exploitation mechanism, RL can make a
tradeoff between exploring untouched space and exploiting
current knowledge. But the traditional RL approaches have
difficulty in choosing the state features [22]. Mnih et al. [21]
propose a DRL model combining RL with deep learning
methods to solve problems with limited prior knowledge and
high-dimensional state space. And many DRL algorithms,
such as DQN [30] and DDPG [16], have been successfully
utilized in different optimal problems [17, 3, 35, 15, 31].

There have been many researches in solving database prob-
lems with reinforcement learning [13]. Basu et al. proposed
to learn the cost model with RL and use this learnt knowl-
edge to implement index tuning [4]. Tzoumas et al. [29]
assume a suitable query plan residing in the routing policies
and they use a RL model to learn the policies. ReJoin [20]
optimizes query plans by enumerating join orderings with
RL. Sun et al. [28] proposed an end-to-end cost estimator.
SageDB [11] provides a vision that the core components in
a database may be replaced by learned models. Li et al. [14]
propose AI-native databases that not only utilize AI to op-
timize databases but provide in-database AI capabilities.

8. CONCLUSION
We proposed a query-aware database tuning system QTune

with a deep reinforcement learning (DRL) model. QTune fea-
turized the SQL queries by considering rich features of the
SQL queries. QTune fed the query vectors into the DRL
model to dynamically choose suitable configurations. Our
DRL model used the the actor-critic networks to find opti-
mal configurations according to both the current and pre-
dicted database states. Our tuning system can support
query-level, workload-level and cluster-level database tun-
ing. We also proposed a query clustering method using deep
learning model to enable cluster-level tuning. Experimental
results showed that QTune achieved high performance and
outperformed the state-of-the-art tuning methods.
Acknowledgement This work was supported by the 973
Program of China (2015CB358700), NSF of China (61632016,
61521002, 61661166012), Huawei, and TAL education. Guo-
liang Li is the corresponding author.

2129



9. REFERENCES
[1] A. F. Agarap. Deep learning using rectified linear

units (relu). CoRR, abs/1803.08375, 2018.

[2] D. V. Aken, A. Pavlo, G. J. Gordon, and B. Zhang.
Automatic database management system tuning
through large-scale machine learning. In SIGMOD,
pages 1009–1024, 2017.

[3] R. Ali, N. Shahin, Y. B. Zikria, B. Kim, and S. W.
Kim. Deep reinforcement learning paradigm for
performance optimization of channel
observation-based MAC protocols in dense wlans.
IEEE Access, 7:3500–3511, 2019.

[4] D. Basu, Q. Lin, W. Chen, H. T. Vo, Z. Yuan,
P. Senellart, and S. Bressan. Regularized cost-model
oblivious database tuning with reinforcement learning.
T. Large-Scale Data- and Knowledge-Centered
Systems, 28:96–132, 2016.

[5] P. Belknap, B. Dageville, K. Dias, and K. Yagoub.
Self-tuning for SQL performance in oracle database
11g. In ICDE, pages 1694–1700, 2009.

[6] S. G. Dikaleh, D. Xiao, C. Felix, D. Mistry, and
M. Andrea. Introduction to neural networks. In
CASCON, page 299, 2017.

[7] S. Duan, V. Thummala, and S. Babu. Tuning
database configuration parameters with ituned.
PVLDB, 2(1):1246–1257, 2009.

[8] M. Ester, H. Kriegel, J. Sander, and X. Xu. A
density-based algorithm for discovering clusters in
large spatial databases with noise. In KDD, pages
226–231, 1996.

[9] V. François-Lavet, P. Henderson, R. Islam, M. G.
Bellemare, and J. Pineau. An introduction to deep
reinforcement learning. CoRR, abs/1811.12560, 2018.

[10] D. P. Kingma and J. Ba. Adam: A method for
stochastic optimization. CoRR, abs/1412.6980, 2014.

[11] T. Kraska, M. Alizadeh, A. Beutel, E. H. Chi,
A. Kristo, G. Leclerc, S. Madden, H. Mao, and
V. Nathan. Sagedb: A learned database system. In
CIDR, 2019.

[12] S. Krishnan. Hierarchical Deep Reinforcement
Learning For Robotics and Data Science. PhD thesis,
University of California, Berkeley, USA, 2018.

[13] G. Li. Human-in-the-loop data integration. PVLDB,
10(12):2006–2017, 2017.

[14] G. Li, X. Zhou, and S. Li.
Xuanyuan:anai-nativedatabase. In IEEE Data
Bulletin, 2019.

[15] K. Li and G. Li. Approximate query processing: What
is new and where to go? Data Science and
Engineering, 3(4):379–397, 2018.

[16] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess,
T. Erez, Y. Tassa, D. Silver, and D. Wierstra.
Continuous control with deep reinforcement learning.
CoRR, abs/1509.02971, 2015.

[17] R. Lin, M. D. Stanley, M. M. Ghassemi, and
S. Nemati. A deep deterministic policy gradient
approach to medication dosing and surveillance in the
ICU. In EMBC, pages 4927–4931, 2018.

[18] O. Luaces, J. Dı́ez, J. Barranquero, J. J. del Coz, and
A. Bahamonde. Binary relevance efficacy for

multilabel classification. Progress in AI, 1(4):303–313,
2012.

[19] V. Maglogiannis, D. Naudts, A. Shahid, and
I. Moerman. A q-learning scheme for fair coexistence
between LTE and wi-fi in unlicensed spectrum. IEEE
Access, 6:27278–27293, 2018.

[20] R. Marcus and O. Papaemmanouil. Deep
reinforcement learning for join order enumeration. In
SIGMOD workshop, pages 3:1–3:4, 2018.

[21] V. Mnih, K. Kavukcuoglu, D. Silver, and etc.
Human-level control through deep reinforcement
learning. Nature, 518(7540):529–533, 2015.

[22] R. Munos and A. W. Moore. Variable resolution
discretization in optimal control. Machine Learning,
49(2-3):291–323, 2002.

[23] Z. Ni, H. He, D. Zhao, and D. V. Prokhorov.
Reinforcement learning control based on multi-goal
representation using hierarchical heuristic dynamic
programming. In IJCNN, pages 1–8, 2012.

[24] A. Nowé and T. Brys. A gentle introduction to
reinforcement learning. In SUM, pages 18–32, 2016.

[25] J. S. Oh and S. H. Lee. Resource selection for
autonomic database tuning. In ICDE, page 1218, 2005.

[26] J. Read, B. Pfahringer, G. Holmes, and E. Frank.
Classifier chains for multi-label classification. Machine
Learning, 85(3):333–359, 2011.

[27] D. G. Sullivan, M. I. Seltzer, and A. Pfeffer. Using
probabilistic reasoning to automate software tuning.
In SIGMETRICS, pages 404–405, 2004.

[28] J. Sun and G. Li. An end-to-end learning-based cost
estimator. CoRR, abs/1906.02560, 2019.

[29] K. Tzoumas, T. Sellis, and C. S. Jensen. A
reinforcement learning approach for adaptive query
processing. 2008.

[30] H. van Hasselt. Double q-learning. In NIPS, pages
2613–2621, 2010.

[31] G. Vargas-Solar, J.-L. Zechinelli-Martini, and J.-A.
Espinosa-Oviedo. Big data management: What to
keep from the past to face future challenges? Data
Science and Engineering, 2(4):328–345, 2017.

[32] C. Watkins and P. Dayan. Technical note q-learning.
Machine Learning, 8:279–292, 1992.

[33] Z. Wei, Z. Ding, and J. Hu. Self-tuning performance of
database systems based on fuzzy rules. In FSKD,
pages 194–198, 2014.

[34] G. Weikum, A. Mönkeberg, C. Hasse, and P. Zabback.
Self-tuning database technology and information
services: from wishful thinking to viable engineering.
In VLDB, pages 20–31, 2002.

[35] E. Wu. Crazy idea! databases reinforcement-learning
research. In CIDR, 2019.

[36] J. Zhang, Y. Liu, K. Zhou, and G. Li. An end-to-end
automatic cloud database tuning system using deep
reinforcement learning. In SIGMOD, 2019.

[37] C. Zheng, Z. Ding, and J. Hu. Self-tuning performance
of database systems with neural network. In ICIC,
pages 1–12, 2014.

[38] Y. Zhu, J. Liu, M. Guo, Y. Bao, W. Ma, Z. Liu,
K. Song, and Y. Yang. Bestconfig: tapping the
performance potential of systems via automatic
configuration tuning. In SoCC, pages 338–350, 2017.

2130


	INTRODUCTION
	SYSTEM OVERVIEW
	Query featurization
	Query Information
	Cost Information
	Character Encoding

	DRL for Knob Tuning
	DS-DDPG Model
	Training DS-DDPG
	Training the Predictor
	Training the Actor-Critic Module

	Tuning with DS-DDPG

	QUERY Clustering
	Configuration Pattern
	Query Clustering

	EXPERIMENT
	Evaluation on Our Techniques
	Evaluation on Tuning Methods
	Evaluation on featurization Methods 
	Evaluation on Tuning Time

	Comparison with Existing Techniques
	Evaluation on Generalization
	Varying Different Workloads
	Varying Different Databases
	Varying Different Hardware environments


	RELATED WORK
	CONCLUSION
	References

