
Customizable and Scalable Fuzzy Join for Big Data

Zhimin Chen Yue Wang Vivek Narasayya Surajit Chaudhuri
Microsoft Research, Redmond, WA, US

{zmchen, wang.yue, viveknar, surajitc}@microsoft.com

ABSTRACT
Fuzzy join is an important primitive for data cleaning. The
ability to customize fuzzy join is crucial to allow applica-
tions to address domain-specific data quality issues such as
synonyms and abbreviations. While efficient indexing tech-
niques exist for single-node implementations of customizable
fuzzy join, the state-of-the-art scale-out techniques do not
support customization, and exhibit poor performance and
scalability characteristics. We describe the design of a scale-
out fuzzy join operator that supports customization. We use
a locality-sensitive-hashing (LSH) based signature scheme,
and introduce optimizations that result in significant speed
up with negligible impact on recall. We evaluate our im-
plementation on the Azure Databricks version of Spark us-
ing several real-world and synthetic data sets. We observe
speedups exceeding 50X compared to the best-known prior
scale-out technique, and close to linear scalability with data
size and number of nodes.

PVLDB Reference Format:
Zhimin Chen, Yue Wang, Vivek Narasayya, Surajit Chaudhuri.
Customizable and Scalable Fuzzy Join for Big Data. PVLDB,
12(12): 2106-2117, 2019.
DOI: https://doi.org/10.14778/3352063.3352128

1. INTRODUCTION
Record linkage [25], also known as record matching, is an

important task in data cleaning, and helps in preparing data
for more accurate analysis. Fuzzy join (also referred to as
set-similarity join or fuzzy matching) is a powerful operator
used in record matching that can efficiently identify pairs of
records that are similar to each other according to a given
similarity function. Given a reference table R and an input
table S, for each record s ∈ S the fuzzy join operator re-
turns all records r ∈ R such that sim(s, r) ≥ θ, where sim
is a similarity function and θ is a user-specified threshold.
Commonly used similarity functions include Soundex, Lev-
enshtein distance (edit distance), Hamming distance, cosine
similarity, Jaro-Winkler similarity, Jaccard similarity etc.

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 12, No. 12
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3352063.3352128

reference
table (rhs)

input table
(lhs)

filter Candidate
pairs

outputverify

reference
table (rhs)

input table
(lhs)

filter Candidate
pairs

outputverify

Figure 1: Filtering-Verification architecture for
fuzzy join

As an example scenario, if R is a table of existing customers
of an enterprise that acquired another company, and S is a
table of customers of the acquired enterprise, fuzzy join can
be helpful in identifying which customers the two companies
share in common and which new customers were acquired.

Many approaches have been adopted in industry and re-
search for supporting fuzzy join. One approach is vertical
(i.e. domain-specific) solutions. For example, for the im-
portant domain of addresses, custom solutions such as Tril-
lium [37] and Melissa [26] have been developed. Another
approach in the industry is to provide fuzzy join capability
as part of a platform, allowing applications to develop their
own record matching solutions. A few examples of such plat-
forms are Informatica [23], Microsoft SQL Server Integration
Services (SSIS) [35], Knime [24], and Talend [36]. These ap-
proaches expose a fixed menu of similarity functions to use
for matching.

The näıve approach of evaluating the similarity function
on each pair of records in S×R is not feasible except for very
small data sets. Therefore, most prior techniques e.g., [21,
32, 5] use a filtering-verification architecture as depicted in
Figure 1. The filtering step uses a signature-based algo-
rithm to generate a set of signatures for each string in S
and R. The signatures have the correctness property: if
sim(s, r) ≥ θ, then s and r share at least one common sig-
nature. Since set overlap can be tested using an equi-join,
a big data engine or relational database engine can be used
for evaluating this step. Signature schemes have been pro-
posed for several common similarity functions such as edit
distance, Jaccard similarity etc. In the verification step, the
similarity function is invoked for each surviving candidate
pair (s, r), and only those pairs for which the similarity ex-
ceeds the given threshold are output.

To obtain good recall for record matching it is necessary to
capture differences between records s and r that can arise
due to various data quality issues such as edit errors, ab-

2106

breviations, and synonyms. It is therefore important that
the similarity function is customizable by the application.
Customization can be domain or application specific. For
instance, an application may want to specify that Bob and
Robert are synonyms in a column containing first names.
The work by Arasu et al. [4] develops a transformation-
based framework for fuzzy join where customization is ex-
pressed via transformation rules (e.g. Bob → Robert). To
obtain good performance, they use locality sensitive hash-
ing (LSH) [20] to generate signatures for each record, and
create an index on the signatures over the reference table R.
Unlike prefix filtering, which is an exact method, LSH’s ran-
domized algorithm guarantees correctness with high proba-
bility by generating multiple signatures. The LSH approach
for signature generation significantly improves upon previ-
ous techniques and results in superior performance, even
while supporting customizable similarity. This approach
also parallelizes well across multiple cores of a single node
since lookups for different s records can proceed in parallel
against the index [3].

Once the reference table R becomes large, a single-node
solution is no longer feasible. Therefore, scale-out approaches
including [18, 39, 8, 33, 27, 31, 13, 16, 17, 30] have been
developed on MapReduce [15] engines such as Hadoop. A
recent experimental study by Fier et al. [19] compared sev-
eral scale-out techniques. Based on these results, the state-
of-the-art scale-out fuzzy join techniques are lacking in two
fundamental ways. First, their scalability is limited. For
instance, the top ranked technique in the above study: Ver-
nica et al. (VJ) ([39]) uses a variant of a popular signature
scheme called prefix filtering [10]. However, the scalability
of this approach is sensitive to frequent tokens and memory
in the reducers becomes a bottleneck, which often leads to
job failure or eventual timeout. Intermediate result sizes,
and therefore the data shuffling cost during the execution of
the equi-join step can be very large. Further, prefix filtering
is not very selective except when the similarity threshold θ is
very high (e.g. 0.95). Thus, the verification step can also be
very expensive. In practice, lower values of θ around 0.8 are
often necessary to obtain the desired precision-recall trade-
off in record matching. Second, existing scale-out techniques
lack the customizability available in single-node approaches
such as [4] described above. In fact, as we show in this paper,
supporting customizations to handle edit errors, abbrevia-
tions and synonyms can further exacerbate the scalability
problem of prefix filtering.

We have developed a scale-out fuzzy join operator that
supports transformation-based customizability [4]. Analo-
gous to joins in parallel DBMSs, for cases where the input
table S is large but the reference table R is small enough for
the index to fit into the main memory of a single node, we
develop a broadcast fuzzy join technique wherein the index
on R is broadcast (i.e. replicated) to multiple worker nodes
and the input table S is partitioned across those nodes. The
more challenging case is when the index on R does not fit
into the main memory of a single node. For this case, we
develop a shuffle fuzzy join technique where both S and R
are partitioned across nodes. In contrast to prior scale-out
approaches such as VJ [39] that use prefix filtering as the
signature scheme, we use LSH to generate signatures. One
implication of using LSH, which is a randomized method, is
that in practice, all signatures except a few, have very low
frequency. As an example, in one of the real-world datasets

we have experimented with, less than 1% all signatures are
associated with more than 10 rows in the dataset. Although
a few signatures are in fact very frequent, these can be
pruned with negligible impact on matching recall since there
is sufficient redundancy of signatures per row. This pruning
results in dramatic reduction in data shuffle cost since the
signatures that are very frequent in either one or both ta-
bles do not need to be joined. We observe that such pruning
is ineffective for prefix filtering based techniques since: (a)
prefix filtering does not have the redundancy of signatures
present in LSH, and (b) the frequency distribution of signa-
tures is not as skewed; hence the impact of pruning on recall
is too high.

We have implemented the broadcast and shuffle versions
of scale-out fuzzy join on Spark [40]. Our fuzzy join oper-
ator is potentially applicable in multiple data preparation
platforms such as Azure Data Factory [1], Microsoft Power
Query [29] and Azure Machine Learning Data Prep SDK [2].

One of the key contributions of this paper is a thorough
empirical evaluation of performance and scale. We report
the results of experiments run on Azure Databricks [6] using
several real-world and synthetic data sets. Some of the key
findings of our empirical study are:

• Fuzzy join that uses LSH signatures is significantly faster
than a prefix filtering based technique.

• Our technique of pruning high-frequency LSH signatures
provides large speedups (exceeding 50× for some datasets)
with negligible impact on matching recall.

• The shuffle and broadcast versions of fuzzy join scale close
to linearly with the number of nodes and size of the data.

• In cases where broadcast fuzzy join is applicable, it is
faster than the shuffle version.

The rest of the paper is organized as follows. We first
review in Section 2 the need for customization, and how the
similarity function can be made customizable. In Section 3
we review prefix filtering and LSH based signature gener-
ation schemes, and describe optimized implementations for
them. We describe the data flow pipelines on Spark for
broadcast and shuffle fuzzy join in Section 4; and provide
an analysis of the cost of the pipelines. We present the re-
sults of experiments in Section 5, discuss related work in
Section 6 and conclude in Section 7.

2. CUSTOMIZING FUZZY JOIN
Formally, fuzzy join is an operator parameterized with a

similarity function sim and a threshold θ that takes as in-
put two relations S and R as input and returns for each
row in S all rows in R whose similarity is above the spec-
ified threshold, that is, FJsim,θ(S,R) = {〈s, r〉|s ∈ S, r ∈
R, sim(s, r) ≥ θ}.

The need for customizing fuzzy join is ubiquitous. While
a particular similarity function (e.g. edit distance) can han-
dle one class of data quality issues, no individual similarity
function can handle the large and diverse class of issues,
some of which can be domain or application specific. From
our prior experience with Microsoft’s Bing Maps service [3]
as well as other Microsoft internal applications that require
fuzzy join we observe several examples. For instance, Bing
Maps, needs to match user queries against a reference table

2107

of points of interest (e.g. landmarks, businesses, addresses)
in many countries across the world. The similarity func-
tion must be able to handle edit errors due to misspellings
(Space Needle ↔ Space Neede), token merge and split is-
sues (DisneyLand ↔ Disney Land), abbreviations (United
States↔ US↔ U.S., and Ave↔ Avenue), synonyms (Xing
↔ Crossing, 1st ↔ First). Furthermore, synonyms can be
country specific. In other applications in different domains,
e.g. involving people names, synonyms such as Robert ↔
Bob, which are far apart in terms of string similarity, need
to be specifiable via the similarity function.

2.1 Core Similarity Function
We follow the approach in [4] which uses weighted Jac-

card as the core similarity function, and a transformation
rule based framework for expressing customizations such as
edit errors, abbreviations, synonyms etc. Here we briefly re-
view the framework, and provide examples to illustrate how
customization is achieved.

Given two strings a and b, we use a tokenization function
to convert them into two sequences of tokens [a1, a2, ..., am]
and [b1, b2, ..., bn]. A weighting function w assigns a weight
to a token. We use the Inverse Document Frequency (idf)
weight [7] by default, which models the intuition that less
frequent words should carry more weight for determining
similarity.

wi(token) = log(
total #rows

#rows containing token in column i
)

The similarity of a and b is defined as the weighted Jac-
card similarity of the multiset A = {a1, a2, ..., am} and B =
{b1, b2, ..., bn}, i.e.,

sim([a1, a2, ..., am], [b1, b2, ..., bn]) =

∑
x∈A∩B w(x)∑
x∈A∪B w(x)

Since we use multiset similarity, the order of tokens does
not affect similarity but multiplicity of a token is counted
accordingly.

2.2 Customization Using Transformation Rule
We define a string transformation rule as 〈lhs → rhs〉,

where lhs and rhs are sequences of tokens and rhs can be
empty. An application of a transformation rule on a token
sequence s substitutes each matching sequence of lhs in s
with the sequence rhs.

For example, the transformation 〈Micosoft → Microsoft〉
when applied on a token sequence [Micosoft,Corporation]
results in [Microsoft,Corporation]. To apply more than one
transformation on a token sequence, we require that the
matching of the lhs of the transformation must come from
the original token sequence, and not from a sequence of to-
kens substituted using another rule.

Given a set of transformation rules, we apply all subsets
of rules that are relevant to s. The application of each sub-
set generates a variant of s. The similarity between s and
a record r in the reference table is the Jaccard similarity of
the variant with the highest Jaccard similarity. In the case
of edit transformations, these transformations are generated
programmatically by an edit transformation provider, which
is a function that uses the distinct tokens in the reference
table to identify those variants of tokens in s that are within
the specified edit distance. Other classes of transformations

such as token merge and split, acronyms, abbreviations etc.
can also be generated programmatically by transformation
providers. Figure 2 shows an example of how the similarity
function is customized under the application of edit transfor-
mation rules. Without application of edit transformations,
the Jaccard similarity between the original records is 3

8
. Ap-

plication of edit transformations results in three additional
variants. The maximum Jaccard similarity over all variants
is boosted to 5

6
.

2.3 Multi-column Records
In the case of multi-column records, we define similar-

ity as the transformation-based weighted Jaccard similarity
between tokens across all columns. The token weights are
multiplied by configurable column weights, so identical to-
kens from different columns may have different weights. A
user could further specify column level similarity thresholds
between pairs of columns as a post-processing step to refine
the quality of matched records.

In the rest of the paper, for simplicity, we describe our
techniques for a single-column record (or table), and do not
distinguish between string similarity and record similarity.

3. SIGNATURE GENERATION
The signature scheme determines the selectivity of the fil-

tering step (see Figure 1), which affects both the cost of
joining signatures from tables R and S, and also the cost of
the verification step since a more selective signature scheme
will require fewer row pairs to be verified. In this section, we
first review two well-known signature schemes: prefix filter-
ing and locality sensitive hashing (LSH). We then describe
optimized algorithms to generate signatures for the case of
customization using weighted tokens and transformations.
Finally, we compare the effectiveness of the two signature
schemes. We observe that while the techniques and op-
timizations described below are applicable in both single-
node and scale-out approaches to fuzzy join, the pruning
optimization for LSH described in Section 3.4 has a much
more pronounced impact on performance and scalability in
the scale-out scenario.

3.1 Prefix Filtering
Prefix filtering sorts the tokens in a string s by their

weights (and use token id as tie breaker because prefix fil-
tering requires a stable global total order among all tokens).
Let the sorted sequence denoted as [s1, s2, ..., sm]. Let i be
the smallest index such that∑i

k=1 w(sk)∑n
k=1 w(sk)

≥ (1− θ)

where θ is the similarity threshold. Then tokens {s1, ..., si}
are the signatures of s because any string with weighted
Jaccard similarity higher than θ must include one of the to-
kens in {s1, ..., si}. In the presence of transformations, let
T be all the variants that s generates, then the signatures
for s is ∪t∈T {signatures(t)}. If the transformations are all
one-to-one, e.g., in the case with edit distance transforma-
tions, then there is no need to enumerate all the variants
to generate the signatures and only need to check the vari-
ants generated by replacing all tokens with their minimum
weight transformed tokens. For example, let s be [a, b, c],
and A, B, C are the transformed tokens respectively, let a′

2108

On Microsft Wy,
Redmond, 98052

One Microsoft Wy, Redmond,
WA, 98052

One Microsft Wy,
Redmond, 98052

On Microsoft Wy,
Redmond, 98052

One Microsoft Wy,
Redmond, 98052

On Microsft Wy, Redmond,
98052 sim(r,s) = 3/8

 sim(r,s) = 4/7

sim(r,s) = 4/7

 sim(r,s) = 5/6

LHS record r RHS record s

φ

On →One

Microsft
→Microsoft

On →One
Microsft →Microsoft

On Microsft Wy,
Redmond, 98052

One Microsoft Wy, Redmond,
WA, 98052

One Microsft Wy,
Redmond, 98052

On Microsoft Wy,
Redmond, 98052

One Microsoft Wy,
Redmond, 98052

On Microsft Wy, Redmond,
98052 sim(r,s) = 3/8

 sim(r,s) = 4/7

sim(r,s) = 4/7

 sim(r,s) = 5/6

LHS record r RHS record s

φ

On →One

Microsft
→Microsoft

On →One
Microsft →Microsoft

Figure 2: Example of matching in the presence of edit transformations

be the token of minimum weight among {a} ∪ A, b′ be the
token of minimum weight among {b} ∪B, to check whether
c should be a signature, we only need to check whether c is
in the prefix of {a′, b′, c}.

3.2 Locality Sensitive Hashing (LSH)
Locality Sensitive Hashing (LSH) [20] is another well-

known signature scheme used for set similarity join. It uses
k×m independent hash functions. Let h be one of the hash
functions and the set of tokens be {s1, ..., sn}. Then, the min
hash token under h is defined as arg minx∈{s1,...,sn} h(x).
Let yi be the min hash token under hi for 1 ≤ i ≤ (k ×m).
LSH divides them into m groups and each group has k min
hash tokens, i.e., ((y1, ..., yk), (yk+1, ..., y2k), ...), then gener-
ates m signatures by hashing each group, i.e., signature1 =
h′(y1, y2, ..., yk), signature2 = h′(yk+1, yk+2, ..., y2k), etc.
where h′ is a different hash function. It can be shown that
for any two strings with Jaccard similarity higher than θ the
above signature scheme has higher than 1−(1−θk)m proba-
bility to generate at least one of {signature1, ..., signaturem}
for both strings. In our implementation we use k = 4 and
m = 6 as default, for θ ≥ 0.8, 1− (1− θk)m ≥ 0.95

We use the approach in [4] to extend the above LSH
scheme to weighted Jaccard similarity. Let si be a token
in string s and w(si) be its weight, and h be one of the
hash functions (we use the MurmurHash3 [28] in the stan-
dard Scala library). Instead of using h(si) as the hash value
to compute the min hash token, it first maps h(si) uni-
formly to a number between 0 and 1, denoted as h′, and use
−log(h′)/w(si) as the hash value [12]. The rest of procedure
to generate signatures is the same.

In the presence of transformations, the baseline method to
generate signatures is to enumerate all the variants of s and
generate signatures for each of the variants. If the trans-
formations are all one-to-one, sometimes it’s more efficient
to generate the signatures in alternative way. Here is an
example. Let s be a three-token string [a, b, c], and A, B,
C are the transformed tokens respectively, so A′ = {a} ∪A,
B′ = {b} ∪ B, and C′ = {c} ∪ C are the token domains
at each position. For k = 1 meaning we use a single hash
function h to generate a signature, let H be the min hash
tokens from all possible combinations of variants:

H = ∪a′∈A′,b′∈B′,c′∈C′{ arg min
x∈{a′,b′,c′}

h(x)}

which is equivalent to:

H = {y|y ∈ A′ ∪B′ ∪ C′ ∧ h(y) <= v}

where v is defined as v = min(maxa′∈A′h(a′),maxb′∈B′h(b′),
maxc′∈C′h(c′)). Therefore instead of enumerating the cross
product of A′ × B′ × C′, it only needs a linear scan of
A′ ∪B′ ∪ C′.

When k = 2, that is, we use 2 hash functions h1 and h2

to generate a signature, and then the min hash tokens H is:

H = ∪a′∈A′,b′∈B′,c′∈C′{〈 arg min
x∈{a′,b′,c′}

h1(x), arg min
x∈{a′,b′,c′}

h2(x)〉}

Let H1 = {y|y ∈ A′ ∪B′ ∪ C′ ∧ h1(y) <= v1}, H2 = {y|y ∈
A′ ∪ B′ ∪ C′ ∧ h2(y) <= v2}, then H ⊆ H1 × H2. Note
that H1 × H2 may be a superset of min hash tokens H
because two hash functions may achieve minimum at the
same token. For example, let A′ = {a1, a2}, B′ = {b1, b2},
and C′ = {c}. Suppose h1(a1) < h1(c) < h1(a2) < h1(bi),
and h2(a1) < h2(c) < h2(a2) < h2(bi). The min hash tokens
under 〈h1, h2〉 is H = {〈a1, a1〉, 〈c, c〉}, which is a subset of
H1 ×H2, where H1 = H2 = {a1, c}.

Similarly for more hash functions, the set of min hash
tokens is a subset of

∏
Hi. |

∏
Hi| can be smaller than the

number of variants when the weights of variant tokens are
high, suggesting that generating

∏
Hi can be more efficient

than enumerating variants.

3.3 Comparison
Below we summarize some of the key differences between

prefix filtering and LSH.
Exact vs. Probabilistic: Prefix filtering is an exact scheme
with respect to the guarantee of not missing any pair of rows
with similarity higher than the specified threshold. On the
other hand LSH provides this guarantee with high proba-
bility. The probability can be tuned by choosing different
(k,m) parameters described above. In the default setting of
our implementation (k = 4,m = 6), the theoretical guaran-
tee is a probability higher than 0.95 for a similarity threshold
0.8. In practice in our target use case of joining relatively
short records (around 20 tokens) with similarity 0.8, exper-
iments show that the actual recall is much higher (≥ 0.999)
than that theoretical bound.
Signature generation cost: Prefix filtering typically gen-
erates fewer signatures per row than LSH, and is less com-
putationally intensive than LSH, which requires invocation

2109

1E+0

1E+1

1E+2

1E+3

1E+4

1E+5

80 85 90 95 100

REAL1
LSH Prefix

1E+0

1E+1

1E+2

1E+3

1E+4

1E+5

80 85 90 95 100

REAL2
LSH Prefix

1E+0

1E+1

1E+2

1E+3

1E+4

1E+5

80 85 90 95 100

FEBRL
LSH Prefix

Percentile

Fr
eq

u
en

cy

1E+0

1E+1

1E+2

1E+3

1E+4

1E+5

80 85 90 95 100

REAL3
LSH Prefix

1E+0

1E+1

1E+2

1E+3

1E+4

1E+5

80 85 90 95 100

USPS
LSH Prefix

1E+0

1E+1

1E+2

1E+3

1E+4

1E+5

80 85 90 95 100

IMDB
LSH Prefix

Figure 3: Signature frequency distribution: LSH vs
Prefix-Filtering

of several hash functions per record. Thus the signature
generation cost of prefix filtering is lower.
Distribution of signature frequency: Although prefix
filtering generates fewer signatures per row than LSH does,
most signatures generated using prefix filtering are typically
associated with many more rows in the table than a signa-
ture generated using LSH. For several real-world datasets
and synthetic datasets (see Section 5 for descriptions of
these datasets), we analyzed the distribution of signature
frequency for the reference table (R) using each technique.
As we see from Figure 3, one observation is that in the LSH
(k=4, m=6) scheme, most of the signatures it generates has
very good selectivity, i.e., for a particular signature sig, the
number of rows in the table for which sig is a signature is
very small (below 10 at the 99th percentile), because a sig-
nature is effectively a random k-gram from the row. Unless
there exists big clusters identical or almost identical rows
in the reference table, it is unlikely that a signature will
be associated with a large number of rows. Only a small
number of “outliers” are associated with a large number of
rows. In contrast, the selectivity for prefix filtering is sig-
nificantly worse. For example, around 20% of all signatures
are associated with more than 10 rows, and about 5% of all
signatures are associated with more than 100 rows except
for one dataset.

The adversarial case for both signature schemes occurs
when there are a number of rows that consist of only frequent
tokens, either from the original data or generated via ap-
plicable transformations. In such cases prefix filtering uses
those frequent tokens as signatures, and those signatures are
associated with many rows. LSH on the other hand gener-
ates hashes of random k tokens as signatures that usually
are associated with far fewer rows. Only in rare cases does
LSH generate signatures associated with many rows. Given
these properties, we use LSH as the default signature scheme
in our implementation.

3.4 Signature Pruning
Our signature pruning strategy is based on the following

observations. First, the running time of the fuzzy join op-
erator depends heavily on the selectivity of signatures. For
LSH, as described above, the vast majority of signatures are
associated with only a few rows in the reference table. Thus
the join size is dominated by only a few signatures which
are very frequent. Second, recall that our LSH scheme re-
peats the signature generation procedure m(= 6) times per
row. This creates redundancy in the signatures per row and
provides resilience to dropping signatures. For example, if a
pair of rows (s, r) from the two tables S and R has Jaccard
similarity greater than 0.8, and we use k = 4 minhash tokens
as one signature, then using 5 instead of 6 (default m) signa-
tures results in 93% probability of (s, r) sharing at least one
signature, and using 4 signatures results in 89% probability.
In other words, dropping one signaure decreases the proba-
bility of them sharing at least one signature by only around
2% (from 95% to 93%) and dropping two signatures reduces
the probability by 6% percent (95% to 89%). These two ob-
servations motivate us to use a pruning strategy of removing
the signatures associated with more than a certain number
rows in the reference table because they contribute the ma-
jority to the running time and removing them is expected
to have minimal impact on recall. We evaluate the effective-
ness of such pruning strategy in Section 5, and in practice we
find that the impact on recall is negligible (far smaller than
the theoretical analysis). One of the factors that further
works in favor of such pruning is the use of IDF weight-
ing for tokens. Frequent signatures typically correspond to
tokens (or sequence of tokens) with low weight. Dropping
such signatures therefore has a small impact on similarity.

It is worth noting that the above pruning technique is not
effective for prefix filtering. The distribution of signature
frequency is not very skewed and many signatures is associ-
ated with a large number of rows in the database; hence an
attempt to gain significant speedup via pruning will result
in a very large hit on recall. This intuition is confirmed in
our experiments in Section 5.

4. SCALE-OUT FUZZY JOIN
In this section we outline how a scale-out implementation

of fuzzy join can be implemented on a modern Big Data
platform such as Spark [40]. Similar to traditional joins
in parallel databases, we implement two variants of fuzzy
join. For the special case when the reference table R is
small and an inverted index over the signatures of R fits
into the memory of a single node, we implement a broadcast
fuzzy join dataflow pipeline. For the general case where the
reference table is large, we implement a shuffle fuzzy join
pipeline.

Since the actual join step works in the token-ID space
for efficiency and not with the original strings in the data,
both broadcast and shuffle fuzzy join pipelines share the
same initial steps to convert the reference table and input
table to the token-ID space; which we describe first (Sec-
tion 4.1). In the pre-processing and broadcast fuzzy join
pipelines, we leverage Spark’s support for broadcast vari-
ables, which makes it easy to get important data structures
such as the dictionary of tokens and applied transformations
to each worker node.

2110

4.1 Pre-processing
Figure 4 depicts the pipeline of the pre-processing job.

At the end of the pre-processing process, we generate an
intermediate representation of the reference table rows and
input table rows, converted into the space of token-ID and
token weights. For rows from the input table S, we also track
the transformations applied. Below we discuss for the case of
edit transformations. Similar logic can be applied for other
kinds of transformations (e.g. synonyms), we omit those
details for brevity. The pre-processing pipeline includes the
following steps.
Step P1: Count the number of rows in the reference
table (R). The count is stored in memory and used in Step
P2. In principle, this step can be combined with Step P2
(compute token frequencies) by inserting an empty token
per row and use the count of empty token as the number of
rows. Since this step is not typically the bottleneck, such
optimization does not significantly reduce the running time.
Step P2: Compute token frequencies in R. We tok-
enize the strings in each row of the right (reference) table
into tokens and group them. We count token frequencies
and sort them by token value then collect them as an array
of 〈token, freq〉. Using the number of rows computed in Step
P1, it computes the IDF weights for each token and pro-
duces an array of 〈token, weight〉. The sorting is required
because the LSH signature generation scheme that we use
requires stable token IDs across runs to be repeatable. We
use the index in the array as the token-ID and therefore each
run of fuzzy join on the same input data assigns the same
token-ID for the same token. We also assume the number of
distinct tokens in R is relatively small and all of them can
be held in memory and broadcast to all the worker nodes.
This assumption is borne out in practice: even on large real-
world datasets the number of distinct tokens typically does
not exceed 1− 2M .
Step P3: Compute edit transformation rules. We to-
kenize the strings in the input table (S) and group them into
a dataframe of distinct tokens. We then broadcast the ar-
ray of 〈token,weight〉 array collected in Step P2 to all worker
nodes and run a map step, where for each token we compute
all the tokens that are within k-edits from it (k = 2 is effec-
tive in datasets we have evaluated). The algorithm we use
to compute all the tokens within k-edits leverages a trie. We
initialize the trie by inserting all the tokens from the array
into it. Then for each token in S, we traverse the trie. If the
prefix is already more than k-edits away then we can avoid
visiting all the subtrees in the trie. Despite this optimiza-
tion, such computation is expensive (around 1 millisecond
per token for a set of millions of reference tokens); therefore
we trade-off a scan and shuffling all the tokens for comput-
ing edit transformation rules only once per token. We then
collect the transformation rules as an array of 〈token, array
of token-IDs of tokens within k-edits〉. Once again, since
the number of transformation rules is relatively small, this
array can be held in memory and broadcast.
Step P4: Prepare reference table rows for the join.
We convert each row in reference table into 〈rid, (〈token-ID,
weight〉)*〉. Towards that end we broadcast the 〈token-ID,
weight〉 array produced in Step P2 and build a hash table.
Step P5: Prepare input table rows for the join.
We convert each row in input table into 〈rid, (〈token-ID,
weight〉)*, (〈position, (token-ID and weight of transformed
token)*〉)*〉. We broadcast the token weights array produced

in Step P2 and the token to similar token-IDs and weights
array in Step P3 and build hash tables. Then we run a map
step that for each tokenized row in the input table looks up
each token’s ID and weight, and if it matches the edit dis-
tance transformation rule, construct a struct of position as
well as an array of token-IDs and weights corresponding to
the reference table token after transformation. We use posi-
tion here because the same token can occur more than once
in the string and each replacement with a transformation
needs to be tracked independently.

4.2 Broadcast Fuzzy Join
Figure 5 depicts the broadcast join pipeline. It takes the

“prepared” reference and input table rows produced in Steps
P4 and P5 of the pre-processing pipeline as input. The
major steps in the pipeline are:
Step B1: Generate signatures for the reference ta-
ble. We run a map step, which for each row in the dataframe
produced in Step P4 in the pre-processing process, call LSH
signature generator (section 3.2) to generate signatures and
flatten it as a dataframe of 〈rid, signature〉. This is the
signature index over the reference table.
Step B2: Prune signatures. Compute the pruned sig-
nature set from the signature index produced in Step B1
(see Section 3.4). We group the signature index by signa-
ture and filter out those having count higher than a specified
cutoff . We observe that pruning results in a speedup even
for broadcast fuzzy join due to fewer lookups against the
signature index (although the gain is much more dramatic
for shuffle fuzzy join).
Step B3: Generate and verify candidate pairs. We
collect the dataframes produced in Step B1 and B2 and
broadcast them to all worker nodes. Then we run a map step
on the dataframe produced in Step P5 of the pre-processing
process: we invoke signature generator to get signatures,
ensure that the signature is not pruned, look up the index
to find candidate rows, and finally verify the similarity is
above the given threshold.

4.3 Shuffle Fuzzy Join
Figure 6 depicts the shuffle join pipeline. Like the broad-

cast version, it also takes as input the “prepared” reference
and input table rows produced in Step P4 and P5 of the
pre-processing pipeline, then proceeds as follows:
Step S1: Generate signatures for the reference table.
We run a map step, which for each row in the dataframe pro-
duced in Step P4 in the pre-processing step, calls the LSH
signature generator (Section 3.2) to generate signatures and
flatten it as a dataframe of 〈rid, signature〉. This is the sig-
nature index over the reference table.
Step S2: Prune signatures. We group the signature
index by signature, and extract those with count less than
the cutoff threshold. They are the remaining signatures
after pruning.
Step S3: Generate signatures for the input table.
We run a map step, for each row in the dataframe produced
in Step P5 of pre-processing, invoking the LSH signature
generator and flattening it as a dataframe of 〈rid, signature〉.
Step S4: Generate candidate pairs. This step equi-
joins the pruned signature index on R produced in Step S2
with the left signature index in Step S3. We then run a
distinct operator on the join output to eliminate duplicate
(s, r) pairs. The output is a dataframe of 〈ridleft, ridright〉.

2111

right
table

count

tokenize
token &

freq
token &
weight

count(*)

rows in
tokens

count freq weighting lookup
rows in id

and weight

left
table

tokenize
rows in
tokens

lookup
compute

xform
xforms

rows in id
and weight
and xforms

Figure 4: Pre-processing

rows in id
and weight

rows in id
and weight
and xforms

sig gen sig idx prune
pruned
sig idx

sig gen, lookup, verify output

Figure 5: Broadcast Join

rows in id
and weight

rows in id
and weight
and xforms

sig gen

sig gen

sig idx

sig idx

prune
pruned
sig idx

join
cand
pairs

verify output

Figure 6: Shuffle Join

Finally, we join this dataframe with the right and left table
and each row is a candidate pair to be verified.
Step S5: Verify candidate pairs. This map step verifies
the candidate pairs by invoking the similarity function sim
and outputs the pairs satisfying the given threshold θ.

4.4 Cost Analysis
All the steps in the preparation and broadcast pipeline

are either map or group by. The overall cost of the broad-
cast join is proportional to the size of inputs O(|R|)+O(|S|)
where R is the reference table and S is the input table, plus
the size of the output of fuzzy join; and it avoids shuffle en-
tirely. In the case of shuffle fuzzy join, Step S4 is the most
expensive and dominates the cost of pipeline because: (a)

there are three joins and the size of join outputs can be much
larger than the size of inputs. (b) shuffling large results of
intermediate joins involves large amount of I/O. Depending
on the selectivity of the signature scheme (quantified by av-
erage number of rows in the right table joined with a row in
the left table and denoted as α thereafter), the cost can be
modeled as O(α× (|R|+ |S|)).

For example, in a setting where the size of the input table
is much bigger than the size of the reference table, if α is
200, the join size is roughly 200 times the input size. This
implies we would need to shuffle 10 TBs of data even for a
modest 50 GB input table, which not only dominates the
running time of the pipeline, but can cause some of the
reducer nodes to run out of memory. In fact, we do see such
out-of-memory behavior for prefix filtering signature scheme
in some datasets, since its selectivity can be poor; whereas
we have not observed this behavior with the LSH signature
scheme where effective signature pruning can be applied.

5. EXPERIMENTS
We have implemented the broadcast and shuffle version of

a customizable and scale-out fuzzy join operator (Section 4)
in Scala for Spark. We implement both prefix filtering and
locality sensitive hashing signature schemes (Section 3). The
goals of our experiments are:

1. Compare the performance of prefix filtering and LSH
signature schemes.

2. Study the effectiveness of signature pruning technique
(Section 3.4) for prefix filtering and LSH.

3. Measure the scalability characteristics of scale-out
fuzzy join with data size and number of nodes in the
cluster.

4. Compare the performance of broadcast and shuffle
based fuzzy join methods.

5. Compare the performance of scale-out fuzzy join on
nodes (VMs) with varying CPU and memory re-
sources.

5.1 Experimental Settings
We run our experiments on Azure Databricks [6] Spark

clusters, runtime version 4.3 with Spark version 2.3.1 and

2112

Scala version 2.11. Unless described otherwise, all experi-
ments run on a standard cluster of 16 worker nodes. Each
worker node is an Azure Standard L4s VM with 4 vCPUs,
32 GB main memory and 678 GB SSD local storage. There-
fore the aggregate resources across the cluster are 64 vCPUs,
512 GB main memory and 10 TB SSD storage. The driver
node is a separate standard L4s VM. We use the default
configuration of Azure Databricks for Spark settings and
JVM setting except changing spark .sql .shuffle.partitions to
512 for all experiments.

For any fuzzy join job that we run on Azure Databricks,
we set the maximum running time at 10 hours. If a job does
not finish within 10 hours, we report it as timeout. In some
cases, a job fails since it gets out of memory on a node. We
also indicate such error explicitly in the results below.

5.2 Datasets
We use six datasets to test our fuzzy join operator. Table 1

lists the number of rows, the number of distinct tokens, and
the average number of tokens per row of each dataset. The
first three datasets, REAL1, REAL2, REAL3 are propri-
etary datasets used by applications within Microsoft. They
contain names, addresses and other contact information of
organizations. USPS is a dataset of addresses in the United
States [38], from which we extract distinct concatenation of
street address, city, state and zip code. FEBRL is a syn-
thetic dataset generated using an open source tool [11]. We
extract person name, address, suburb, state, and postcode
columns from it. IMDB contains movie data from the Inter-
net Movie Data Base [22], in particular the Title, Directors
and Genres columns.

The number of distinct tokens is usually much smaller
than the number of rows in the dataset and does not exceed
1.2M across all datasets. Not surprisingly, all the real-world
datasets exhibit a heavily skewed (Zipfian-like) distribution.
For the scalability experiments, we generate datasets with
scale factors: 1×, 2×, 3×, 4× and 5× the number of rows
in the original dataset. We follow the methodology similar
to that used in Vernica et al. [39] and Fier et al. [19], which
preserves the original set of distinct tokens, their distribu-
tion and record lengths; but increases the number of records
by replacing a token with a neighboring token in the sorted
token frequency order.

For each dataset, we use the table as the reference table R.
We generate the input table S as follows: for each row in R,
we generate 10 rows by randomly applying some of following
operations: inserting token, deleting token or replacing a
token with some spelling error. Table 2 summarizes the
number of rows of the fuzzy join operations at Scale 1×.
For scale factor k, the size of both the reference and the
input table are increased by a factor of k.

5.3 Performance of Shuffle Fuzzy Join
We run the shuffle pipeline with LSH and prefix filter-

ing as signature generation schemes with and without using
transformation rules. Note that we do not include the signa-
ture pruning optimization described in Section 3.4. In Fig-
ure 7 and Figure 8 respectively, we report the running time
in minutes and the number of signature pairs generated in
Step S4 (Section 4.3) of the pipeline. The number of signa-
ture pairs is a good metric for comparing signature schemes,
and is often a good indicator of running time. We see that:
(a) Fuzzy join is a very expensive operator, especially when

Table 1: Datasets used in experiments

Dataset #Rows
#Distinct Avg #Tokens

Tokens per Row

REAL1 25.8M 1.2M 6.4
REAL2 7.7M 1.2M 10.3
REAL3 2.0M 1.2M 9.5
USPS 10.0M 0.3M 5.7

FEBRL 5.0M 0.05M 7.9
IMDB 1.1M 0.3M 6.9

Table 2: Number of rows of input and reference
tables to fuzzy join (at scale factor 1×.)

Dataset #Rows in Input
Table

#Rows in Reference
Table

REAL1 258M 25.8M
REAL2 77M 7.7M
REAL3 20M 2.0M
USPS 100M 10.0M

FEBRL 50M 5.0M
IMDB 11M 1.1M

used with transformation rules. Four cases run more than
10 hours (marked by “*”), three of which are with trans-
formation rules. One case fails due to out-of-memory error
(marked by “ˆ”). (b) LSH generates significantly fewer sig-
nature pairs, and is typically much faster (particularly with
transformations).

5.4 Impact of Signature Pruning
As discussed in Section 3.4, we prune all signatures whose

frequency (defined as number of rows in the reference table
R associated with it) exceeds a particular cutoff value. We
vary the cutoff value at 50, 100, 150, 200 for LSH and report
the recall compared to the case where there is no pruning.
The recall is shown in Figure 9. It can be seen that the recall
for all the cutoff values are very close to 1, and the difference
is small enough to be acceptable for most real-world scenar-
ios. The running time and number of signature pairs are
shown in Figure 10 and Figure 11 respectively. Note that
the y-axis uses a log scale. Both running time and number
of signature pairs are dramatically smaller compared to the
case of no pruning, in some cases by more than an order of
magnitude. In contrast, when we apply signature pruning to
the prefix filtering scheme, the impact on recall (Figure 12)
is drastic. Specifically, it may work when the dataset is
small and the signature fanout is small (i.e. REAL3 and
IMDB), but it will miss the majority of the result for big
datasets. These experiments confirm the intuition that the
randomized nature and the signature redundancy inherent
in our LSH scheme can be leveraged to improve fuzzy join
performance. Overall, we conclude that the signature prun-
ing optimization is very effective for LSH, but inappropriate
for prefix filtering.

Finally, in Figure 13 we measure the speedup that is ob-
tained by LSH+Pruning (cutoff value = 50) relative to Pre-
fix filtering (without pruning) for each dataset, since both
these approaches have almost identical recall. For REAL1,
the speedup is a lower bound (marked by “*”) since the fuzzy

2113

Dataset

R
u

n
n

in
g

T
im

e
 (

m
in

) 3
6

6

1
5

2

5
9

8

1

1
2

0

1
4

1
3

2

1
3

8

2

1

10

100

w/o edits

*

3
6

5

1
0

8

1
8

3

5
3

2
6

4

6

w/ edits

LSH

Prefix-
Filtering

** * ^

Figure 7: Running time: LSH vs Prefix-Filtering

Dataset

Si

gn
at

u
re

 P
ai

rs

1E+7

1E+8

1E+9

1E+10

1E+11

1E+12
w/o edits w/ edits

LSH

Prefix-
Filtering

Figure 8: #Signature pairs: LSH vs Prefix-Filtering

join job using prefix filtering times out. We observe that the
speedups range from 2.5× to over 50×, and the speedups are
over 12× for the big datasets: REAL1, REAL2, USPS, and
FEBRL.

In this Subsection 5.4, we only present experimental re-
sults without transformations. For cases with transforma-
tions, we have similar results for LSH+Pruning, but observe
timeout for Prefix+Pruning. We omit the charts due to lim-
ited space.

5.5 Scalability of LSH+Pruning
We first evaluate the scalability of the LSH+Pruning ap-

proach with the number of nodes in the cluster. We create
clusters of 4, 8, 12, 16, 32, and 64 L4s worker nodes, re-
spectively. We run fuzzy join on each cluster and report its
running time. The signature pruning cutoff value is set as
50. Figure 14 summarizes the results and we can see that
LSH+Pruning scales almost linearly with number of nodes
in the cluster.

Next, we evaluate scalability of LSH+Pruning in terms
of size of input data. We use scaled datasets, generated
as described in Section 5.2, that are 2×, 3×, 4× and 5×
bigger reference and input tables. We run LSH+Pruning
with cutoff = 50 on a 16-node cluster. From Figure 15 we
see that the running time of the LSH+Pruning approach
scales roughly linearly with input size as well. As discussed
in Section 4.4, the shuffle pipeline running time is primarily
determined by number of candidate pairs. In Figure 16, we
report the number of signature pairs generated with and
without pruning as the dataset size is scaled. The number
of signature pairs grows super-linearly without pruning but
grows almost linearly with pruning for all datasets.

We also evaluate LSH+Pruning in a scale-up setting. We
run experiments on a E64s machine with 64 cores and 432
GB memory. The running time is 20% to 55% more com-
pared to using the 16-node cluster due to the aggregate I/O
bandwidth available on 16 nodes.

0.00

0.20

0.40

0.60

0.80

1.00

REAL1 REAL2 REAL3 USPS FEBRL IMDB

R
ec

al
l

Dataset

cutoff-50 cutoff-100 cutoff-150

cutoff-200 no cutoff

Figure 9: LSH+Pruning: Recall at different cutoffs

18

5

1

1
1

2

1

2
8

5

1

1
7

3

1

4
1

6

1

2
3

3

1

5
1

6

1

3
1

3

1

3
6

6

1
5

2

59

8

2

0.1

1

10

100

1000

REAL1 REAL2 REAL3 USPS FEBRL IMDBR
u

n
n

in
g

Ti
m

e
(m

in
)

Dataset

cutoff-50 cutoff-100 cutoff-150

cutoff-200 no cutoff

Figure 10: LSH+Pruning: Running time at differ-
ent cutoffs

5.6 Broadcast vs. Shuffle
We compare broadcast and shuffle versions of fuzzy join.

We use LSH+Pruning in both cases. Figure 17 shows that
broadcast pipeline is faster than the shuffle pipeline for each
of these datasets since our VMs have sufficient memory (32
GB) to hold the signature index over R in memory on each
worker node.

Next, we run shuffle and broadcast fuzzy join pipelines on
a 16-node cluster with Azure D8 v3 VM. D8 v3 VMs have
8 cores compared in L4s VMs which have 4 cores. Figure 18
and 19 shows the results respectively. Since the bulk of the
work in broadcast fuzzy join is done in mappers on each
worker node, it is able to exploit the increase in number
of cores effectively. In contrast, while shuffle fuzzy join also
seems some performance improvement, since its cost is dom-
inated by the I/O cost associated with data shuffles, it does
not benefit as much from increasing the number of cores per
VM.

Finally, when we use datasets with a larger scale factor,
and VMs with less memory, broadcast fuzzy join runs out of
memory on the worker nodes. In these cases, shuffle fuzzy
join still runs efficiently to completion. For example, for the
dataset REAL1 (at scale factor 1×), when we use F4S VM
nodes in Azure with 8 GB memory on each node, broadcast
fuzzy join runs out of memory. However, shuffle fuzzy join
runs to completion in 55 minutes.

Thus, in practice, when users can afford to rent VMs with
large amounts of main memory, or the reference table is
relatively small, broadcast fuzzy join is faster. However,

2114

1E+07

1E+08

1E+09

1E+10

1E+11

REAL1 REAL2 REAL3 USPS FEBRL IMDB

Si

gn
at

u
re

 P
ai

rs

Dataset

cutoff-50 cutoff-100 cutoff-150

cutoff-200 no cutoff

Figure 11: LSH+Pruning: #Signature pairs at dif-
ferent cutoffs

0.00

0.20

0.40

0.60

0.80

1.00

REAL1 REAL2 REAL3 USPS FEBRL IMDB

R
ec
al
l

Dataset

cutoff-50 cutoff-100 cutoff-150 cutoff-200

Figure 12: PF+Pruning recall at different cutoffs

when datasets are large or per-node memory is constrained,
shuffle fuzzy join is the only option.

6. RELATED WORK
There is a large body of work on fuzzy join, also referred

to as set-similarity join (or fuzzy matching), that spans the
last two decades both in research and industry. Several
papers focused on signature based indexing schemes that
would help identify (a smaller number of) candidate pairs
on which the similarity function needed to be evaluated.
Such schemes include, for example, [9, 21, 32, 5, 10]. These
techniques varied in the similarity functions that they could
support, e.g. edit distance and variants, cosine similarity,
Jaccard similarity etc. While these techniques significantly
improved performance of fuzzy join for certain similarity
functions, the customization of the similarity function that
they allowed was limited.

As noted in the introduction, the paper by Arasu et al. [4]
introduced a transformation-based framework for record
matching that allowed application or domain specific cus-
tomizations such as synonyms and abbreviations, but also
allowed traditional functions such as edit distance to be ex-
pressed in the same framework. This is also the approach
we adopt. In this paper we show how via an implementation
on Spark, such a framework can be made to perform well in
a scale-out setting through optimized signature generation
and pruning techniques.

As MapReduce [15] engines such as Hadoop started be-
coming used for ETL workloads, several new scale out fuzzy
join techniques for MapReduce were proposed such as [18,

3
3
.3

2
6
.7

1
1
.7

1
2
.0

5
7
.5

2
.5

1

10

100

REAL1 REAL2 REAL3 USPS FEBRL IMDB

Sp
ee
d
u
p

Dataset

*

Figure 13: Speedup of LSH+Pruning relative to
Prefix filtering

1

4

16

64

256

1024

4 16 64
R

u
n

n
in

g
Ti

m
e

(m
in

)

Nodes

REAL1

REAL2

REAL3

USPS

FEBRL

IMDB

Figure 14: Running time vs #nodes

39, 8, 33, 27, 31, 13, 16, 17, 30]. Most of these techniques re-
tained the overall approach used in single-node techniques:
signature-based identification of candidate pairs followed by
a verification step. For instance, Vernica et al. [39] show
how a prefix filtering based technique can be efficiently im-
plemented using Map and Reduce operations. More re-
cently, an experimental comparison of several scale-out fuzzy
join techniques was reported in [19]. Although most of the
datasets they used to evaluate were relatively modest in size
(the largest dataset contained around 10 million rows, and
most datasets were below 1 million rows), they found that
many of these techniques timeout after 30 minutes, or fail
because they run out of memory. Among the techniques,
they found VJ [39], which uses a prefix filtering based tech-
nique, to be a clear winner since it reported the lowest run-
ning time for a majority of the cases across several datasets.
They also report that the two techniques that use an alter-
native approach, metric-based partitioning [13, 33], did not
perform well for these datasets. As noted previously, these
approaches do not enable the kinds of customization that
we believe are important for many applications.

In the industry several fuzzy matching vertical solutions
exist for important domains such as addresses (e.g. [37, 26])
and products (e.g. [14]). Many data preparation and ETL
platforms (e.g. [23, 35, 24, 36]) also provide generic fuzzy
matching capabilities. Similarly, in the open-source ecosys-
tem, there are Spark packages for fuzzy matching, e.g. [34].
However they lack the flexible customization provided in our
approach, and many of them do not offer a scale-out option.

2115

1

10

100

1000

1X 2X 3X 4X 5X

R
u

n
n

in
g

Ti
m

e
(m

in
)

Dataset Scale

REAL1

REAL2

REAL3

USPS

FEBRL

IMDB

Figure 15: Running time vs. input size

0B

50B

100B

1X 2X 3X 4X 5X

FEBRL
LSH
LSH+Pruning

0B

500B

1000B

1X 2X 3X 4X 5X

USPS
LSH
LSH+Pruning

0B

100B

200B

1X 2X 3X 4X 5X

REAL2
LSH
LSH+Pruning

0B

1000B

2000B

1X 2X 3X 4X 5X

REAL1
LSH
LSH+Pruning

Dataset Scale

Si

gn
at

u
re

 P
ai

rs

0B

1B

2B

1X 2X 3X 4X 5X

IMDB
LSH
LSH+Pruning

0B

1B

2B

1X 2X 3X 4X 5X

REAL3
LSH
LSH+Pruning

Figure 16: #Signature pairs vs input size

4
2

1
7

4 9 3 3

9
6

2
3

4

2
0

6 3

0
20
40
60
80

100
120

REAL1 REAL2 REAL3 USPS FEBRL IMDB

R
u

n
n

in
g

Ti
m

e
(m

in
)

Dataset

Broadcast Shuffle

Figure 17: Broadcast vs Shuffle using LSH+Pruning

7. CONCLUSION
We have developed a scale-out fuzzy join operator for

Spark. This operator is highly customizable while also ex-
hibiting good performance and scalability characteristics.
We have evaluated our fuzzy join operator on Azure Data-
bricks. There are several important avenues of future work.
While the empirical results on datasets we have evaluated

9
6

2
3

4

2
0

6 3

8
4

2
2

4

2
0

5 2

0

20

40

60

80

100

REAL1 REAL2 REAL3 USPS FEBRL IMDB

R
u

n
n

in
g

Ti
m

e
(m

in
)

Dataset

L4s D8_v3

Figure 18: Running time of shuffle fuzzy join with
different VM types.

7
4

1
9

4 9 3 3

2
8

1
3

3 6 3 2

0

20

40

60

80

100

REAL1 REAL2 REAL3 USPS FEBRL IMDB
R

u
n

n
in

g
Ti

m
e

(m
in

)

Dataset

L4s D8_v3

Figure 19: Running time of broadcast fuzzy join
with different VM types.

thus far are very promising, we plan to expand datasets
to more domains. Second, given that it may not be easy
for users to identify whether to use broadcast or shuffle
versions of fuzzy join for a given dataset, we plan to in-
vestigate technique to automatically recommend or choose
the appropriate method. Finally, a closely related oper-
ator is fuzzy group-by, which is an important operation
for de-duplication. Identifying scalable techniques for de-
duplication on Big Data is another important area of future
work.

8. ACKNOWLEDGMENTS
We thank Christian König and Yeye He for their insightful

and detailed comments on the paper.

9. REFERENCES
[1] Azure Data Factory version 2(v2). https://docs.

microsoft.com/en-us/rest/api/datafactory/v2.

[2] Azure ML Data Prep SDK.
https://github.com/Microsoft/AMLDataPrepDocs.

[3] A. Arasu, S. Chaudhuri, Z. Chen, K. Ganjam,
R. Kaushik, and V. Narasayya. Experiences with
using data cleaning technology for bing services. IEEE
Data Eng. Bull., 35(2):14–23, 2012.

[4] A. Arasu, S. Chaudhuri, and R. Kaushik.
Transformation-based framework for record matching.
In Proc. ICDE, pages 40–49, 2008.

2116

https://docs.microsoft.com/en-us/rest/api/datafactory/v2
https://docs.microsoft.com/en-us/rest/api/datafactory/v2
https://github.com/Microsoft/AMLDataPrepDocs

[5] A. Arasu, V. Ganti, and R. Kaushik. Efficient exact
set-similarity joins. In Proc. VLDB, pages 918–929,
2006.

[6] Azure Databricks: Fast, easy, and collaborative
Apache Spark based analytics service. https://
azure.microsoft.com/en-us/services/databricks/.

[7] R. Baeza-Yates and B. Ribeiro-Neto. Modern
information retrieval. Pearson Addison Wesley, 2011.

[8] R. Baraglia, G. D. F. Morales, and C. Lucchese.
Document similarity self-join with mapreduce. In
Proc. ICDM, pages 731–736, 2010.

[9] S. Chaudhuri, K. Ganjam, V. Ganti, and R. Motwani.
Robust and efficient fuzzy match for online data
cleaning. In Proc. SIGMOD, pages 313–324, 2003.

[10] S. Chaudhuri, V. Ganti, and R. Kaushik. A primitive
operator for similarity joins in data cleaning. In Proc.
ICDE, pages 5–5, 2006.

[11] P. Christen. Febrl: an open source data cleaning,
deduplication and record linkage system with a
graphical user interface. In Proc. SIGKDD, pages
1065–1068, 2008.

[12] O. Chum, J. Philbin, and A. Zisserman. Near
duplicate image detection: min-hash and tf-idf
weighting. In BMVC, volume 810, pages 812–815,
2008.

[13] A. Das Sarma, Y. He, and S. Chaudhuri. Clusterjoin:
a similarity joins framework using map-reduce.
PVLDB, 7(12):1059–1070, 2014.

[14] Data Ladder Product Matching.
https://www.dataladder.com.

[15] J. Dean and S. Ghemawat. Mapreduce: simplified
data processing on large clusters. Communications of
the ACM, 51(1):107–113, 2008.

[16] D. Deng, G. Li, S. Hao, J. Wang, and J. Feng.
Massjoin: A mapreduce-based method for scalable
string similarity joins. In Proc. ICDE, pages 340–351,
2014.

[17] D. Deng, G. Li, H. Wen, and J. Feng. An efficient
partition based method for exact set similarity joins.
PVLDB, 9(4):360–371, 2015.

[18] T. Elsayed, J. Lin, and D. W. Oard. Pairwise
document similarity in large collections with
mapreduce. In Proc. ACL, pages 265–268, 2008.

[19] F. Fier, N. Augsten, P. Bouros, U. Leser, and J.-C.
Freytag. Set similarity joins on mapreduce: an
experimental survey. PVLDB, 11(10):1110–1122, 2018.

[20] A. Gionis, P. Indyk, and R. Motwani. Similarity
search in high dimensions via hashing. In PVLDB,
pages 518–529, 1999.

[21] L. Gravano, H. Jagadish, P. G. Ipeirotis,
D. Srivastava, N. Koudas, and S. Muthukrishnan.
Approximate string joins in a database (almost) for
free. In PVLDB, pages 491–500, 2001.

[22] Internet Movie Data Base. http://www.imdb.com.

[23] Informatica Data Quality.
http://help.informatica.com.

[24] Knime. https://www.knime.com/nodeguide/
other-analytics-types/text-processing/

fuzzy-string-matching.

[25] N. Koudas, S. Sarawagi, and D. Srivastava. Record
linkage: similarity measures and algorithms. In Proc.
SIGMOD, pages 802–803, 2006.

[26] Melissa Data Matching.
https://www.melissa.com/data-deduplication.

[27] A. Metwally and C. Faloutsos. V-smart-join: A
scalable mapreduce framework for all-pair similarity
joins of multisets and vectors. PVLDB, 5(8):704–715,
2012.

[28] MurmurHash.
https://en.wikipedia.org/wiki/MurmurHash.

[29] Microsoft Power Query.
https://docs.microsoft.com/en-us/power-query/.

[30] C. Rong, C. Lin, Y. N. Silva, J. Wang, W. Lu, and
X. Du. Fast and scalable distributed set similarity
joins for big data analytics. In Proc. ICDE, pages
1059–1070, 2017.

[31] C. Rong, W. Lu, X. Wang, X. Du, Y. Chen, and A. K.
Tung. Efficient and scalable processing of string
similarity join. IEEE Transactions on Knowledge and
Data Engineering, 25(10):2217–2230, 2013.

[32] S. Sarawagi and A. Kirpal. Efficient set joins on
similarity predicates. In Proc. SIGMOD, pages
743–754, 2004.

[33] Y. N. Silva and J. M. Reed. Exploiting
mapreduce-based similarity joins. In Proc. SIGMOD,
pages 693–696, 2012.

[34] Spark Package for Fuzzy Matching.
https://spark-packages.org/package/

itspawanbhardwaj/spark-fuzzy-matching.

[35] Fuzzy Lookup in SQL Server Integration Services.
https://docs.microsoft.com/en-us/sql/

integration-services/data-flow/

transformations/fuzzy-lookup-transformation.

[36] Talend Fuzzy Matching. https://help.talend.com.

[37] Trillium Global Locator.
https://www.syncsort.com/en/Products/

DataQuality/Trillium-Global-Locator.

[38] USPS Database. https://postalpro.usps.com/.

[39] R. Vernica, M. J. Carey, and C. Li. Efficient parallel
set-similarity joins using mapreduce. In Proc.
SIGMOD, pages 495–506, 2010.

[40] M. Zaharia, M. Chowdhury, M. J. Franklin,
S. Shenker, and I. Stoica. Spark: Cluster computing
with working sets. In Proc. HotCloud, pages 10–10,
2010.

2117

https://azure.microsoft.com/en-us/services/databricks/
https://azure.microsoft.com/en-us/services/databricks/
https://www.dataladder.com
http://www.imdb.com
http://help.informatica.com
https://www.knime.com/nodeguide/other-analytics-types/text-processing/fuzzy-string-matching
https://www.knime.com/nodeguide/other-analytics-types/text-processing/fuzzy-string-matching
https://www.knime.com/nodeguide/other-analytics-types/text-processing/fuzzy-string-matching
https://www.melissa.com/data-deduplication
https://en.wikipedia.org/wiki/MurmurHash
https://docs.microsoft.com/en-us/power-query/
https://spark-packages.org/package/itspawanbhardwaj/spark-fuzzy-matching
https://spark-packages.org/package/itspawanbhardwaj/spark-fuzzy-matching
https://docs.microsoft.com/en-us/sql/integration-services/data-flow/transformations/fuzzy-lookup-transformation
https://docs.microsoft.com/en-us/sql/integration-services/data-flow/transformations/fuzzy-lookup-transformation
https://docs.microsoft.com/en-us/sql/integration-services/data-flow/transformations/fuzzy-lookup-transformation
https://help.talend.com
https://www.syncsort.com/en/Products/DataQuality/Trillium-Global-Locator
https://www.syncsort.com/en/Products/DataQuality/Trillium-Global-Locator
https://postalpro.usps.com/

	Introduction
	Customizing Fuzzy Join
	Core Similarity Function
	Customization Using Transformation Rule
	Multi-column Records

	Signature Generation
	Prefix Filtering
	Locality Sensitive Hashing (LSH)
	Comparison
	Signature Pruning

	Scale-out fuzzy join
	Pre-processing
	Broadcast Fuzzy Join
	Shuffle Fuzzy Join
	Cost Analysis

	Experiments
	Experimental Settings
	Datasets
	Performance of Shuffle Fuzzy Join
	Impact of Signature Pruning
	Scalability of LSH+Pruning
	Broadcast vs. Shuffle

	Related Work
	Conclusion
	Acknowledgments
	References

