
AliGraph: A Comprehensive Graph Neural Network
Platform

Rong Zhu, Kun Zhao, Hongxia Yang
∗

, Wei Lin, Chang Zhou, Baole Ai, Yong Li, Jingren Zhou
Alibaba Group{red.zr, kun.zhao, yang.yhx, weilin.lw, ericzhou.zc, jiufeng.ly, jingren.zhou}@alibaba-inc.com

ABSTRACT
An increasing number of machine learning tasks require dealing
with large graph datasets, which capture rich and complex relation-
ship among potentially billions of elements. Graph Neural Network
(GNN) becomes an effective way to address the graph learning
problem by converting the graph data into a low dimensional space
while keeping both the structural and property information to the
maximum extent and constructing a neural network for training
and referencing. However, it is challenging to provide an efficient
graph storage and computation capabilities to facilitate GNN train-
ing and enable development of new GNN algorithms. In this paper,
we present a comprehensive graph neural network system, namely
AliGraph, which consists of distributed graph storage, optimized
sampling operators and runtime to efficiently support not only exist-
ing popular GNNs but also a series of in-house developed ones for
different scenarios. The system is currently deployed at Alibaba to
support a variety of business scenarios, including product recommen-
dation and personalized search at Alibaba’s E-Commerce platform.
By conducting extensive experiments on a real-world dataset with
492.90 million vertices, 6.82 billion edges and rich attributes, Ali-
Graph performs an order of magnitude faster in terms of graph
building (5 minutes vs hours reported from the state-of-the-art Pow-
erGraph platform). At training, AliGraph runs 40%-50% faster with
the novel caching strategy and demonstrates around 12 times speed
up with the improved runtime. In addition, our in-house developed
GNN models all showcase their statistically significant superiorities
in terms of both effectiveness and efficiency (e.g., 4.12%–17.19%
lift by F1 scores).

PVLDB Reference Format:
Zhu, R., Zhao, K., Yang, H., Lin, W., Zhou, C., Ai, B. and Zhou, J., AliGraph:
A Comprehensive Graph Neural Network Platform. PVLDB, 12 (12): 2094 -
2105, 2019.
DOI: http://doi.org/10.14778/3352063.3352127

1. INTRODUCTION

∗Corresponding author.

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 12, No. 12
ISSN 2150-8097.
DOI: http://doi.org/10.14778/3352063.3352127

As a sophisticated model, graph has been widely used to model
and manage data in a wide variety of real-world applications. Typ-
ical examples include social networks [24], physical systems [1],
biological networks [18], knowledge graphs [23]. Graph analyt-
ics, which explore underlying insights hidden in graph data, have
drawn significant research attention in the last decade. They have
been witnessed to play important roles in numerous areas, i.e., node
classification [2], link prediction [38], graph clustering [4], recom-
mendation [54], among many others.

As conventional graph analytic tasks often suffer from high com-
putation and space costs [13, 24], a new paradigm, called graph
embedding (GE), paves an efficient yet effective way to address
such problems. Specifically, GE converts the graph data into a low-
dimensional space such that the structural and content information
in the graph can be preserved to the maximum extent. After that,
the generated embeddings are fed as features into the downstream
machine learning tasks. Furthermore, by incorporating with deep
learning techniques, graph neural networks (GNN) are proposed
by integrating GE with convolutional neural network (CNN) [32,
11, 27, 25]. In CNN, shared weights and multi-layered structure are
applied to enhance its learning power [33]. And graphs are the most
typical locally connected structures, with shared weights to reduce
the computational cost and the multi-layer structure being the key to
deal with hierarchical patterns while capturing features of various
sizes. GNNs find such generalizations of CNNs to graphs. Thus,
GNN not only embraces the flexibility of GE but also showcases
its superiority in terms of both effectiveness and robustness with
generalizations of CNNs.

Challenges. In the literature, considerable research efforts have
been devoted in developing GE and GNN algorithms. These works
mainly concentrate on simple graphs with no or little auxiliary in-
formation. However, the rising of big data and complex systems
reveal new insights in graph data. As a consensus [13, 24, 5, 21],
the vast majority of graph data related to real-world commercial
scenarios exhibits four properties, namely large-scale, heteroge-
neous, attributed and dynamic. For example, nowadays e-commerce
graphs often contain billions of vertices and edges with various types
and rich attributes, and quickly evolve over time. These properties
bring great challenges for embedding and representing graph data
as follows:

• The core steps in GNN are particularly optimized for grid struc-
tures, such as images, but not feasible for graphs in irregular
Euclidean space. Thus, existing GNN methods can not scale on
real-world graphs with exceedingly large sizes. The first prob-
lem is how to improve the time and space efficiencies of GNN
on large-scale graphs?
• Different types of objects characterize the data from multiple

perspectives. They provide richer information but increase the

2094



difficulty to map the graph information into a singleton space.
Thus, the second problem is how to elegantly integrate the het-
erogeneous information to be an unified embedding result?
• The attribute information can further enhance the power of the

embedding results and make inductive GE possible [13, 24, 5,
21]. Without considering attribute information, the algorithms
can only consider the transductive settings and ignore the need for
predicting unseen instances. However, the topological structure
information and unstructured attribute information are usually
presented in two different spaces. Thus, the third problem is how
to unify them to define the information to be preserved?
• As GNN suffers from low efficiency, recomputing the embedding

results from scratch with respect to structural and contextual up-
dates are expensive. Thus, the fourth problem is how to design
efficient incremental GNN methods on dynamic graphs?

Contributions. To tackle with the above challenges, considerable
research efforts have been devoted to design efficient yet effective
GNN methods. In Table 1, we categorize a series of popular GE
and GNN models according to the aspects that they focus on, as
well as our in-house developed models shaded in yellow. As shown,
most existing methods concentrate on one or two properties at the
same time. However, real-world commercial data usually faces
more challenges. To mitigate this situation, in this paper, we present
a comprehensive and systemic solution to GNN. We design and
implement a platform, called AliGraph, which provides both system
and algorithms to tackle more practical problems that exhibit the
four summarized arising problems, to well support a variety of GNN
methods and applications. The main contributions are summarized
as follows.

System. In the underlying components of AliGraph, we build a
system to support GNN algorithms and applications. The system
architecture is abstracted from general GNN methods, which con-
sists of a storage layer, a sampling layer and an operator layer.
Specifically, the storage layer applies three novel techniques, namely
structural and attributed specific storage, graph partition and caching
neighbors of some important vertices, to store large-scale raw data
to fulfill the fast data access requirements of high-level operations
and algorithms. The sampling layer optimizes the key sampling
operation in GNN methods. We categorize sampling methods into
three classes, namely TRAVERSE, NEIGHBORHOOD and NEGATIVE
sampling, and propose lock-free methods to perform sampling op-
erations in distributed environment. The operator layer provides
optimized implementation of two common applied operators in
GNN algorithms, namely AGGREGATE and COMBINE. We apply
a cache strategy to store some intermediate results to accelerate
the computation process. These components are co-designed and
co-optimized to make the whole system effective and scalable.

Algorithms. The system provides a flexible interface to design GNN
algorithms. We show that all existing GNN methods can be easily
implemented upon our system. Besides, we also in-house developed
several new GNNs for practical requirement and detail six here. As
illustrated in Table 1, our in-house developed methods are shaded in
yellow and each of them are more flexible and practical to deal with
real-world problems.

Evaluation. Our AliGraph platform is practically deployed in the
Alibaba company. The experimental results verify its effectiveness
and efficiency from both the system and algorithm aspects. As
shown in Figure 1, our in-house developed GNN models on the
AliGraph platform improves the normalized evaluation metrics by
4.12%–17.19%. The data are collected from Alibaba’s e-commerce

Table 1: The property of different methods.
HeterogeneousCategory Method Node Edge Attributed Dynamic Large-Scale

Classic
Graph

Embedding

DeepWalk $ $ $ $ $

Node2Vec $ $ $ $ $

LINE $ $ $ $ $

NetMF $ $ $ $ $

TADW $ $ " $ $

LANE $ $ " $ $

ASNE $ $ " $ $

DANE $ $ " $ $

ANRL $ $ " $ $

PTE $ " $ $ $

Methpath2Vec $ " $ $ $

HERec $ " $ $ $

HNE $ $ $ $ $

PMNE $ " " $ $

MVE $ " " $ $

MNE $ " " $ $

Mvn2Vec $ " " $ $

GNN

Structural2Vec $ $ " $ $

GCN $ $ " $ $

FastGCN $ $ " $ $

AS-GCN $ $ " $ $

GraphSAGE $ $ " $ $

HEP " " " $ $

AHEP " " " $ "

GATNE " " " $ "

Mixture GNN " " " $ $

Hierarchical GNN " " " $ $

Bayesian GNN $ " " $ $

Evolving GNN $ " " " $

platform Taobao and we contribute this dataset to the community to
nourish further development1.

N
or
m
al
iz
ed
	E
va
lu
at
io
n	
M
et
ri
c

0.8

0.85

0.9

0.95

1

1.05

GATNE Mixture	GNN Hierarchical	GNN Evolving	GNN Bayesian	GNN

	AliGraph	(Our	Method)					 	 	 	 	Other	Competitors

+4.12%~16.43%

+8.73%~15.58%

+13.99% +5.72%~17.19% +15.48%

Figure 1: Comparison of normalized evaluation metric on the
effectiveness of different methods. The red text indicates the
lifting range of each in-house developed method w.r.t. its com-
petitors.
2. PRELIMINARIES

In this section, we introduce the basic concepts and formalize the
graph embedding problem. The symbols and notations frequently
used throughout this paper are summarized in Table 2. We start with
the acyclic, simple graph G = (V, E ,W) where V and E represent
the set of vertices and edges, respectively; and W : E → R+

is a function assigning each edge (u, v) ∈ E a weight W(u, v)
indicating the strength of relationships between vertex u and v. Let
n = |V| and m = |E| denote the number of vertices and edges
in G, respectively. Notice that, the graph G can be either directed
or undirected. If G is directed, (u, v) and (v, u) represent two
different edges and may have different weights; otherwise, (u, v)
and (v, u) are the same edge and we haveW(u, v) =W(v, u). For
each vertex u, we use Nb(u) to denote the set of its (in and out)
neighbors.
Attributed Heterogeneous Graph. To comprehensively character-
ize the real-world commercial data, the practical graphs often con-
tain rich content information, e.g., multiple types of vertices, mul-
tiple types of edges, attributes and etc. Thus, we further define
1https://tianchi.aliyun.com/dataset/
dataDetail?dataId=9716.

2095

https://tianchi.aliyun.com/dataset/dataDetail?dataId=9716.
https://tianchi.aliyun.com/dataset/dataDetail?dataId=9716.


Table 2: Summarization of symbols and notations.
Symbols or Notations Description

G graph or attributed heterogeneous graph
G(t) the graph at the timestamp t

V (V(t)) vertex set (at timestamp t)
E (E(t)) edge set (at timestamp t)
n,m number of vertices and edges

W (W(t)) edge weight assigning function (at timestamp t)
TV vertex type mapping function
TE edge type mapping function
AV vertex attributes mapping function
AE edge attributes mapping function
xv,i the i-th feature vector of vertex v
we,i the i-th feature vector of edge e
d the embedding dimension

Nb(v) neighbors set of vertex v
hv the embedding vector of vertex v
hv,c the embedding vector of vertex v w.r.t. type c

D
(t)
i (v) number of t-hop in-neighbors of v

D
(t)
o (v) number of t-hop out-neighbors of v

Imp(t)(v) importance of vertex v

the Attributed Heterogeneous Graph (AHG). An AHG G is a tu-
ple (V, E ,W, TV , TE ,AV ,AE) where V , E andW have the same
meaning as the simple graphs. TV : V → FV and TE : E → FE
represent the vertex type and edge type mapping functions, where
FV and FE are the set of vertex types and edge types, respectively.
To ensure the heterogeneity, we request |FV | ≥ 2 and/or |FE | ≥ 2.
AV and AE are two functions assigning each vertex v ∈ V and
each edge e ∈ E some feature vectors representing its attributes.
We denote the i-th feature vector of vertex v and edge e as xv,i and
we,i, respectively. An example of AHG is shown in Figure 2, which
contains two types of vertices, namely users and items, and four
types of edges connecting them.

users items

click
collect

cart
buy*HQGHU��PDOH

$JH����
/RFDWLRQ��%HLMLQJ

ŏ

Price: $1000
Brand: Lenovo

…

*HQGHU��PDOH
$JH����

/RFDWLRQ��%RVWRQ
ŏ

*HQGHU��IHPDOH
$JH����

/RFDWLRQ��%DQJDORUH
ŏ

Price: $800
Brand:Apple

…

Price: $50
Brand: Nike

…

Figure 2: Illustrative example of AHG with multiple types of
edges, nodes and rich attributes.

Dynamic Graph. Real-world graphs usually evolve with time. Given
a time interval [1, T ], a dynamic graph is a series of graphs G(1),G(2),
. . . ,G(T ). For each 1 ≤ t ≤ T , G(t) can be a simple graph or an
AHG. For ease of notation, we add a superscript (t) to represent
the corresponding state of the objects at timestamp t. For example,
V(t) and E(t) represent the vertex set and edge set of graph G(t),
respectively.
Problem Definition. Given an input graph G, which is a simple
graph or an AHG, and a predefined number d ∈ N on the dimension
of embedding where d << |V|, the embedding problem is to con-
vert the graph G into the d-dimensional space such that the graph
property is preserved as much as possible. GNN is a special kind of
graph embedding method, which learns the embedding results by
applying neural networks on graphs. Notice that, in this paper, we
concentrate on the vertex-level embedding. That is, the embedding
output is a d-dimensional vector hv ∈ Rd for each vertex v ∈ V . In
our future work as discussed in Section 7, we will also consider the
embedding on edges, subgraphs or even the whole graph.

Algorithm 1: GNN Framework
Input: network G, embedding dimension d ∈ N, a vertex feature xv for each

vertex v ∈ V and the maximum hops of neighbors kmax ∈ N.
Output: embedding result hv of each vertex v ∈ V

1 h(0)
v ← xv

2 for k ← 1 to kmax do
3 for each vertex v ∈ V do
4 Sv ← SAMPLE(Nb(v))

5 h′v ← AGGREGATE(h(k−1)
u , ∀u ∈ S)

6 h(k)
v ← COMBINE(h(k−1)

v ,h′v)

7 normalize all embedding vectors h(k)
v for all v ∈ V

8 hv ← h(kmax)
v for all v ∈ V return hv as the embedding result for all

v ∈ V

3. SYSTEM
In our AliGraph platform, whose architecture is shown in Figure 3,

we design and implement an underlying system (marked in blue
square) to well support high-level GNN algorithms and applications.
The details of this system will be described in this section. To start
with, in Section 3.1, we abstract a general framework of GNNs to
explain why our system is designed in this way. Sections 3.2 to
3.5 introduce the design and implementation details of each key
component in the system.

Figure 3: Architecture of the AliGraph system.

3.1 Framework of GNN Algorithms
In this subsection, we abstract a general framework to GNN

algorithms. A series of classic GNNs such as Structure2Vec [46],
GCN [32], FastGCN [11], AS-GCN [27] and GraphSAGE [24]
can be characterized by instantiating the operators in the framework.
The input of the GNN framework includes a graph G, the embedding
dimension d ∈ N, a vertex feature xv for each vertex v ∈ V and the
maximum hops of neighbors kmax ∈ N. The output of the GNN is
an embedding vector hv ∈ Rd for each vertex v ∈ V and will be fed
into the downstream machine learning tasks, such as classification,
link prediction and etc.

The GNN framework is described in Algorithm 1. At the very
beginning, the vertex embedding h

(0)
v of vertex v is initialized to

be equal to the input attribute vector xv . Then, at each k, each
vertex v aggregates the embeddings of its neighbors to update the
embedding of itself. Specifically, we apply the SAMPLE function
to fetch a subset S of vertices based on the neighbor set Nb(v) of
vertex v, aggregate the embeddings of all vertices u ∈ S by the
AGGREGATE function to obtain a vector h′v , and combine h′v with
h
(k−1)
v to generate the embedding vector h

(k)
v by the COMBINE

function. After processing all vertices, the embedding vectors are
normalized. Finally, after kmax hops, h

(kmax)
v is returned as the

embedding result hv of vertex v.

2096



System Architecture. Based on the GNN framework described
above, we naturally construct the system architecture of the Ali-
Graph platform, as shown in Figure 3. Notice that, the platform
consists of five layers on the whole, where the three underlying
layers form the system to support the algorithm layer and the ap-
plication layer. Inside the system, the storage layer organizes and
stores different kinds of raw data to fulfill the fast data access re-
quirements of high-level operations and algorithms. Upon this, by
Algorithm 1, we find that three main operators, namely SAMPLE,
AGGREGATE and COMBINE, play important roles in various GNN
algorithms. Among them, the SAMPLE operator lays foundation for
AGGREGATE and COMBINE since it directly controls the scope of
information to be processed by them. Therefore, we design the sam-
pling layer to access the storage for fast and accurate generation of
training samples. Above it, the operator layer specifically optimizes
the AGGREGATE and COMBINE functions. On top of the system,
the GNN algorithms can be constructed in the algorithm layer to
serve real-world tasks in the application layer.

3.2 Storage
In this subsection, we discuss how to store and organize the raw

data. Notice that, the space cost to store the real-world graphs is very
large. Common e-commerce graphs can contain tens of billions of
nodes and hundreds of billions of edges with storage cost over 10TB
easily. The large graph size brings great challenges for efficient
graph access, especially in a distributed environment of clusters. To
well support the high-level operators and algorithms, we apply the
following three strategies in the storage layer of AliGraph.
Graph Partition. Our AliGraph platform is build on a distributed
environment, thus the whole graph is divided and separately stored
in different workers. The goal of graph partition is to minimize the
number of crossing edges whose endpoints are in different workers.
To this end, literature work has proposed a series of algorithms. In
our system, as recommended in [17], we implement four built-in
graph partition algorithms: 1) METIS [30]; 2) Vertex cut and edge
cut partitions [20]; 3) 2-D partition [3]; and 4) Streaming-style par-
tition strategy [48]. These four algorithms are suitable to different
circumstances. In short, the METIS method is specialized in pro-
cessing sparse graphs; the vertex and edge cut method performs
much better on dense graphs; 2-D partition is often used when the
number of workers is fixed; and streaming-style partition method
are often applied on graphs with frequently edge updates. Users
can choose the best partition strategy based on their own needs,
moreover, they can also implement other graph partition algorithms
as plugins in the system.

In Algorithm 2, lines 1–4 present the interface of graph parti-
tion. For each edge e ∈ E , the general function ASSIGN in line 4
computes which worker e will be in based on its endpoints.
Separate Storage of Attributes. Notice that, for AHGs, we need
to store both the structural and attributes of the partitioned graphs
in each worker. The structural information of graph can be simply
stored by an adjacency table. That is, for each vertex v, we store
its neighbor set Nb(v). Whereas, for the attributes on both vertices
and edges, it is inadvisable to store them together in the adjacency
table. The reasons are two-fold: 1) Attributes often cost more
spaces. For example, the space cost to store a vertex id is at most
8 bytes while the attributes on a vertex may range from 0.1KB to
1KB. 2) Attributes among different vertices or edges have largely
overlaps. For example, many vertices may have the same tag “man”
indicating its gender. Therefore, it is more reasonable to separately
store attributes.

In our system, we do so by building two indices IV and IE to
store the attributes on vertices and edges, respectively. Each entry in

Figure 4: Index structure of graph storage.
IV (IE resp.) is a unique attribute associated on vertex (edge resp.).
As illustrated in Figure 4, in the adjacency table, for each vertex
u, we store the index of attribute AV(u) in IV , and for each edge
(u, v), we also store the index of attribute AE(u, v) in IE . Let ND
and NL be the average number of neighbors and average length of
attributes. Let NA be the number of distinct attributes on vertices
and edges. Obviously, our separate storage strategy decreases the
space cost from O(nNDNL) to O(nND +NANL).

Undoubtedly, separate storage of the attributes will increase the
access time for retrieving the attributes. On average, each vertex
will need to access the index IE at most ND times to collects the
attributes of all of its neighbors. To mitigate this, we add two cache
components to reside the frequently accessed items in IV and IE ,
respectively. We adopt the least recently used (LRU) replacing
strategy [12] in each cache.

Caching Neighbors of Important Vertices. In each worker, we fur-
ther propose a method to locally cache the neighbors of some impor-
tant vertices to reduce the communication cost. The intuitive idea
is that if a vertex v is frequently accessed by other vertices, we can
store v’s out-neighbors in each partition it occurs. By doing this,
the visiting cost of other vertices to their neighbors via v can be
greatly reduced. However, if the number of neighbors of v is large,
storing multiple copies of v’s neighbors will also incur huge storage
cost. To make a better trade-off, we define a metric to evaluate the
importance of each vertex, which decides whether a vertex is worth
to cache or not.

Let D(k)
i (v) and D(k)

o (v) denote the number of k-hop in and
out-neighbors of the vertex v, respectively. Certainly, D(k)

i (v)

and D(k)
o (v) can measure the benefit and cost of caching the out-

neighbors of v, respectively. Thus, the k-th importance of v, denoted
as Imp(k)(v), is defined as

Imp(k)(v) =
D

(k)
i (v)

D
(k)
o (v)

. (1)

We only cache the out-neighbors of a vertex v if its importance value
Imp(k)(v) is sufficiently large. In Algorithm 2, lines 5–9 present
the process of caching neighbors of important vertices. Let h denote
the maximum depth of neighbors we consider. For each vertex v, we
cache the 1 to k-hop out-neighbors of v if Imp(k)(v) ≥ τk, where
τk is a user-specified threshold. Notice that, setting h to a small
number, usually 2, is enough to support a series of practical GNN
algorithms. Practically, we find that τk is not a sensitive parameter.
By experimental evaluation, setting τk to a small value around 0.2
can make the best trade-off between cache cost and benefit.

Interestingly, we find that the vertices to be cached is only a very
small part of the whole graph. As analyzed in [51], the direct in

2097



and out-degree of vertices in real-world graphs, i.e., D(1)
i (v) and

D
(1)
o (v), often obey the power-law distribution. That is, only a very

few vertices in the graph have large in and out-degree. Based on
this, we derive the following two theorems. The proof can be found
in the appendix.

THEOREM 1. If the in and out-degree distribution of the graph
obey the power-law distribution, for any k ≥ 1, the number of
k-hop in and out-neighbors of the vertices in the graph also obey
the power-law distribution.

THEOREM 2. If the in and out-degree distribution of the graph
obey the power-law distribution, the importance value of the vertices
in the graph also obey the power-law distribution.

Theorem 2 indicates that only a very few vertices in the graph
have large importance values. That means, we only need to cache
a small number of important vertices to achieve a significant cost
decrease of graph traversals.

Algorithm 2: Partition and Caching
Input: graph G, partition number p, cache depth h, threshold τ1, τ2, . . . , τh
Output: p subgraphs

1 Initialize p graph servers
2 for each edge e = (u, v) ∈ E do
3 j = ASSIGN(u)
4 Send edge e to the j-th partition

5 for each vertex v ∈ V do
6 for k ← 1 to h do
7 ComputeD(k)

i (v) andD(k)
o (v)

8 if
D

(k)
i

(v)

D
(k)
o (v)

≥ τk then

9 Cache the 1 to k-hop out-neighbors of v on each partition where
v exists

3.3 Sampling
Recall that, GNN algorithms rely on aggregating neighborhood

information to generate embeddings of each vertex. However, the
degree distribution of real-world graphs is often skewed [51], which
makes the convolution operation hard to operate. To tackle this,
existing GNNs usually adopt various sampling strategies to sample
a subset of neighbors with aligned sizes. Due to its importance, in
our system, we abstract a sampling layer specified to optimize the
sampling strategies.
Abstraction. Formally, the sampling function takes input a vertex
subset VT and extracts a small subset VS ⊆ VT such that |VS | <<
|VT |. By taking a thorough overview of current GNN models,
we abstract three kinds of different samplers, namely TRAVERSE,
NEIGHBORHOOD and NEGATIVE.

• TRAVERSE: is used to sampling a batch of vertices or edges
from the whole partitioned subgraphs.
• NEIGHBORHOOD: will generate the context for a vertex. The

context of this vertex may be one or multi hop neighbors,
which are used to encode this vertex.
• NEGATIVE: is used to generate negative samples to accelerate

the convergence of the training process.

Implementation. In the literature, the sampling method plays an
important role to enhance the efficiency and accuracy of the GNN
algorithms [25, 24, 5, 21]. In our system, we treat all samplers as
plugins. Each of them can be implemented independently. The three
types of samplers can be implemented as follows.

For TRAVERSE samplers, they get data from the local subgraphs.
For NEIGHBORHOOD samplers, they can get one-hop neighbors
from local storage as well as multi-hop neighbors from local cache.
If the neighbors of a vertex are not cached, a call to remote graph
server is needed. When getting the context of a batch of vertices, we
first partition the vertices into sub-batches, and the context of each
sub-batch will be stitched together after being returned from the
corresponding graph server. NEGATIVE samplers usually generate
samples from local graph server. For some special cases, negative
sampling from other graph server may be needed. Negative sampling
is flexible in algorithm, and we do not need to call all graph servers
in a batch. In summary, a typical sampling stage can be achieved as
illustrated in Figure 5.

Define a TRAVERSE sampler as s1
Define a NEIGHBORHOOD sampler as s2
Define a NEGATIVE sampler as s3
...
def sampling(s1, s2, s3, batch_size):

vertex = s1.sample(edge_type, batch_size)
# hop_nums contains neighbor count at each hop
context = s2.sample(edge_type, vertex, hop_nums)
neg = s3.sample(edge_type, vertex, neg_num)
return vertex, context, neg

Figure 5: Sampling stage using three kinds of samplers

We can accelerate training by adopting several efficient sampling
strategies with dynamic weights. We implement the update opera-
tion in a sampler’s backward computation, just like gradient back
propagation [29] of an operator. So when updating needed, what
we should do is to register a gradient function for the sampler. The
updating mode, synchronous or asynchronous, is due to the training
algorithm.

Till now, both reading and updating will be operated on the graph
storage in memory, which may lead to weak performance. Accord-
ing to the neighborhood requirement, the graph is partitioned by
source vertices. Based on this, we split the vertices on a graph server
into groups. Each group will be related with a request-flow bucket,
in which the operations, including reading and updating, are all
about the vertices in this group. The bucket is a lock-free queue.
As shown in Figure 6, we bind each bucket to a CPU core and then
each operation in the bucket will be processed sequentially without
locking, which will further enhance the efficiency of the system.

Figure 6: Lock-free graph operations

3.4 Operator

2098



Abstraction. After sampling, the output data is aligned, and we can
process it easily. Upon samplers, we need some GNN-like operators
to consume them. In our system, we abstract two kinds of operators,
namely AGGREGATE and COMBINE [32, 11, 27, 25]. Their roles
are as follows.

• AGGREGATE: collects the information of each vertex’s neigh-
bors to produce a unified result. For example, the AGGRE-
GATE function in Algorithm 1 maps a series of vectors hu ∈
Rd to a single vector h′v ∈ Rd, where u belongs to sampled
neighborhood nodes of v. h′v is an intermediate result to
further generate h

(k)
v . The AGGREGATE function acts as the

convolution operation since it collects the information from
its surrounding neighborhoods. In different GNN methods, a
variety of aggregating methods are applied, such as element-
wise mean, max-pooling neural network and long short-term
memory (LSTMs) [25, 24].
• COMBINE: takes care of how to use neighbors of a vertex to

describe the vertex. In Algorithm 1, the COMBINE function
maps the two vectors h

(k−1)
v and h′v ∈ Rd into a single

vector h
(k)
v ∈ Rd. The COMBINE function can integrate the

information of the previous hop and the neighborhoods into an
unified space. Usually, in existing GNN methods, h

(k−1)
v and

h′v are summed together to fed into a deep neural network.

Implementation. Notice that, both samplers and GNN-like oper-
ators not only do computations forward, but also take charge of
parameters updating backward if needed. So that we can make the
whole model as a network for an end-to-end training. Considering
the characteristics of graph data, a lot of optimization can be taken
into account to achieve better performances. Similar to SAMPLE,
AGGREGATE and COMBINE are plugins of AliGraph, which can be
implemented independently. A typical operator is made up of for-
ward and backward computations to be easy to be involved in a deep
network. Based on operators, users can set up a GNN algorithm
quickly.

To further accelerate the computation of the two operators, we
apply strategies by materialization of intermediate vectors h

(k)
v .

Notice that, as shown in [11], in each mini-batch during the training
process, we can share the set of sampled neighbors for all vertices
in the mini-batch. As well, we can also share the vectors h

(k)
v

for all 1 ≤ k ≤ kmax among vertices in the same mini-batch.
To this end, we store kmax vectors ĥ

(1)
v , ĥ

(2)
v , . . . , ĥ

(kmax)
v to be

the newest vectors of all vertices in the mini-batch. Then, in the
AGGREGATE function, we apply vectors in ĥ

(1)
v , ĥ

(2)
v , . . . , ĥ

(kmax)
v

to obtain ĥ′v . After that, we apply ĥ′v and h
(k−1)
v to compute ĥ

(k)
v

by the COMBINE function. Finally, the stored vector ĥ(k) is updated
by ĥ

(k)
v . By this strategy, the computation cost on the operators can

be greatly reduced.

4. METHODOLOGY
On top of the system, we discuss the design of algorithms in

this section. We show that existing GNNs can be easily built on
AliGraph. Besides, we also propose a bunch of new GNN algorithms
to tackle the four newly arisen challenges of embedding real-world
graph data as summarized in Section 1. All of them are plugins in
the algorithm layer of the AliGraph platform.

4.1 State-of-the-Art GNNs
As our AliGraph platform is abstracted from upon the general

GNN algorithms, existing GNNs can be easily implemented on this
platform. Specifically, the GNNs listed in Table 1 can all be built in

AliGraph by following the framework in Algorithm 1. Here we take
the GraphSAGE as an example. Other GNNs can be implemented
in a similar way. We omit them due to space limitations. Notice
that, for GraphSAGE, it applies a simple node-wise sampling to
extract a small subset from the neighbor set of each vertex. Obvi-
ously, its sampling strategy can be easily implemented by using our
SAMPLING operator. Then, we need to instantiate the AGGREGATE
and COMBINE functions in Algorithm 1. The GraphSAGE can
apply the weighted element-wise mean in the AGGREGATE function
in line 4. Besides, other more complex functions such as the max-
pooling neural network and LSTM can also be used. In other GNN
methods such as GCN, FastGCN and AS-GCN, we can replace
different strategies on SAMPLING, AGGREGATE and COMBINE.

4.2 In-House Developed GNNs
Our in-house developed GNNs focus on various aspects, e.g.,

sampling (AHEP), multiplex (GATNE[7]), multimode (Mixture
GNN[41]), hierarchy (Hierarchical GNN[35]), dynamic (Evolving
GNN[61]) and multi-sourced information (Bayesian GNN).

AHEP Algorithm. This algorithm is designed to mitigate the heavy
computation and storage costs of the traditional embedding propa-
gation (EP) algorithm [16] on heterogeneous networks, HEP [59].
HEP follows the general framework of GNN with minor modifica-
tions adapted to AHG. Specifically, in HEP, the embeddings of all
vertices are generated in an iterative manner. In the k-th hop, for
each vertex v and each node-type c, all neighbors u of v in type
c propagate its embedding hu,c to v to reconstruct an embedding
h′v,c. The embedding of v is then updated by concatenating h′v,c
across all node types. Whereas, in AHEP (HEP with adaptive sam-
pling), we sample important neighbors instead of considering the
whole set of neighbors. During this process, we design a metric to
evaluate the importance of each vertex by incorporating its structural
information and features. After that, all neighbors in different types
are separately sampled according to their corresponding probability
distributions. We carefully design the probability distributions to
minimize the sampling variance. In a specific task, to optimize the
AHEP algorithm, the loss function can be generally described as

L = LSL + αLEP + βΩ(Θ), (2)

where LSL is the loss from supervised learning in the batch, LEP is
the embedding propagation loss with sampling in the batch, Ω(Θ)
is the regularizer of all trainable parameters, and α, β are two hyper-
parameters. As verified by experimental results in Section 5, AHEP
runs much faster than HEP while achieving comparable accuracies.

GATNE Algorithm. This algorithm is designed to cope with graphs
with heterogeneous and attribute information on both vertices and
edges. To address the above challenges, we propose a novel ap-
proach to capture both rich attributed information and to utilize
multiplex topological structures from different node types, namely
General Attributed Multiplex HeTerogeneous Network Embedding,
or abbreviated as GATNE. The overall embedding result of each
vertex consists of three parts: the general embedding, the specific
embedding and the attribute embedding, which correspondingly
characterize the structural information, the heterogeneous informa-
tion and the attribute information, respectively. For each vertex v
and any node type c, the general embedding bv and the attribute
embedding fv keep the same. Let t be an adjustable hyper-parameter
and gv,t′ where 1 ≤ t′ ≤ t be meta-specific embeddings. The spe-
cific embedding gv is obtained by concatenating all gv,t′ . Then, for
each type c, the overall embedding of hv,c w.r.t. c can be written as

hv,c = bv + αcM
T
c gvac + βcD

Txv, (3)

2099



where αc and βc are two adjustable coefficients reflecting the im-
portance of the specific embedding and the attribute embedding;
the matrix ac ∈ Rm of coefficients are computed by using the
self-attention mechanism in [39]; and Mc and D are two trainable
transformation matrices. The final embedding result hv can then be
obtained by concatenating all hv,c.

The embeddings can be learned by applying the random walk
based methods similar to [43, 22]. Specifically, given a vertex v in
type c in a random walk and the window size p, let v−p, v−p+1, . . . ,
v, v1, . . . , vp denote its context. We need to minimize the negative
log-likelihood as

− logPθc
(
v−p, . . . , vp|v

)
=
∑

1≤|p′|≤p

− logPθc(vp′ |v), (4)

where θc denotes all the parameters w.r.t. type c andPθc(vp′ |v) is de-
fined by the softmax function. The objective function− logPθc(u|v)
for each pair of vertices u and v can be easily approximated by the
negative sampling method.

Mixture GNN. This model is a mixture GNN model to tackle with
the heterogeneous graphs with multi-modes. In this model, we
extend the skip-gram model on homogeneous graphs [43] to fit the
polysemous situation on heterogeneous graphs. In the traditional
skip-gram model, we try to find the embedding of graphs with
parameters θ through maximizing the likelihood as

Lθ = log Prθ(Nb(v)|v) =
∑

u∈Nb(v)

log Prθ(u|v), (5)

where Nb(v) denotes the neighbors of v and Prθ(u|v) is a soft-
max function. In our setting on heterogeneous graphs, each node
owns multiple senses. To differentiate them, let P be the known
distribution of node senses. We can rewrite the objective function as

Lpoly,θ = log PrP,θ(Nb(v)|v) =
∑

u∈Nb(v)

log PrP,θ(u|v). (6)

At this time, it is hard to incorporate the negative sampling metod
to directly optimize Equation (6). Alternatively, we derive a novel
lower bound Llow of Equation (6) and try to maximize Llow. We
find that the terms in the lower bound Llow can be approximated by
the negative sampling. As a result, the training process can be easily
implemented by slightly modifying the sampling process in existing
work such as Deepwalk [43] and node2vec [22].

Hierarchical GNN. Current GNN methods are inherently flat and
do not learn hierarchical representations of graphs: a limitation that
is especially problematic to explicitly investigate such similarities
of various types of user behaviors. This model combines the hier-
archical structure to strengthen the expression power of GNN. Let
H(k) ∈ R|V |×d denote the matrix of node embeddings computed
after k steps of the GNN and A be the adjacency matrix of the
graph G. In Algorithm 1, traditional GNN iteratively learns H(k) by
combining H(k−1),A and some trainable parameters θ(k). Initially,
we have H(0) = X, where X represent matrix of the node features.

In our hierarchical GNN, we learn the embedding result in a layer-
to-layer fashion. Specifically, letA(l) and X(l) denote the adjacency
matrix and the node feature matrix in the l-th layer, respectively.
The vertex embedding result matrix Z(l) in the l-th layer is learned
by feeding A(l) and X(l) into the single-layer GNN method. After
that, we cluster some vertices in the graph and update the adjacency
matrix Al to Al+1. Let S(l) denote the learned assignment matrix
in the l-th layer. Each row and column in S(l) corresponds to a
cluster in the l-th and (l + 1)-th layer, respectively. S(l) can be

obtained by a softmax function applied on another pooling GNN
upon A(l) and X(l). Taking Z(l) and S(l) in hand, we can obtain
the new coarsened adjacency matrix A(l+1) = S(l)TA(l)S(l) and
the new feature matrix X(l+1) = S(l)TZ(l) for the next (l + 1)-th
layer. As verified in Section 5, the multi-layer hierarchical GNN is
more effective than the single-layer traditional GNNs.

Evolving GNN. This model is proposed to embedding vertices in
the dynamic network setting. Our goal is to learn the representations
of vertices in a sequential of graphs G(1),G(2), ...,G(T ). To capture
the evolving nature of dynamic graphs, we divide the evolving links
into two types: 1) the normal evolution representing the majority
of reasonable changes of edges; and 2) burst links representing
rare and abnormal evolving edges. Based on them, the embedding
of all vertices in the dynamic graphs are learned in an interleave
manner. Specifically, at timestamp t, the normal and burst links
found on graph G(t) are integrated with the GraphSAGE model [25]
to generate embedding results hv of each vertex v in G(t). Then,
we apply a method to predict the normal and burst information
on the graph G(t+1) by using Variational Autoencoder and RNN
model [31]. This process is executed in iterations to output the
embedding results of each vertex v at each timestamp t.

Bayesian GNN. This model integrates two sources of information,
knowledge graph embedding (e.g., symbolic) or behavior graph
embedding (e.g., relations), through the Bayesian framework. To
be more specific, it mimics the human understanding process in the
cognitive science, in which each cognition is driven by adjusting
the prior knowledge under a specific task. Specifically, given a
knowledge graph G and an entity (vertex) v in G, its basic embedding
hv is learned by purely considering G itself, which characterizes
the prior knowledge in G. Then, a task-specific embedding zv is
generated according to hv and a correction term δv respect to the
task. That is,

zv ≈ f(hv + δv), (7)

where f is a non-linear function that projects hv + δv as zv .
Notice that, learning exact δv and f seems infeasible since each

entity v has a different δv and the f function is very complex. To
address this problem, we apply a generation model from hv to
zv by considering the second-order information. Specifically, for
each entity v, we sample its correction variable δv from a Guassian
distribution N(0, s2v), where sv is determined by the coefficients of
hv . Then, for each pair of entities v1 and v2, we sample zv1 − zv2
according to another Guassian distribution

N
(
fφ(hv1 + δv1)− fφ(hv2 + δv2), diag(σ2

v1 + σ2
v2)
)
,

where φ representing the trainable parameters for the function f . Let
the posterior mean of δv be µ̂v and φ̂ be the resulting parameters, we
finally apply hv + µ̂v as the corrected embedding for the knowledge
graph, and fφ̂(hv + µ̂v) as the corrected task-specific embedding.

5. EXPERIMENTS
We conducted extensive experiments to evaluate our AliGraph

platform, including both system and algorithms.

5.1 System Evaluation
In this subsection, we evaluate the performance of the underlying

system in the AliGraph platform from the perspectives of storage
(graph building and caching neighbors), sampling and operator. All
experiments are carried on two datasets Taobao-small and Taobao-
large described in Table 3, where the storage size of the latter is
six times larger. Both of them represent the subgraphs of users and
items extracted from the Taobao e-commerce Platform.

2100



Table 3: Datasets used in system experiments. Taobao-large is
six times large than Taobao-small.

Dataset # user
vertices

# item
vertices

# user-item
edges

# item-item
edges

# attributes
of user

# attributes
of item

Taobao-small 147,970,118 9,017,903 442,068,516 224,129,155 27 32
Taobao-large 483,214,916 9,683,310 6,587,662,098 231,085,487 27 32

Graph Building. The performance of graph building plays a central
role in a graph computation platform. AliGraph supports various
kinds of raw data from different file systems, partitioned or not.
Figure 7 presents the time cost of graph building w.r.t. the number
of workers on the two datasets. We have the following two obser-
vations: 1) the graph building time explicitly decreases w.r.t. the
number of workers; 2) AliGraph can build large-scale graphs in
minutes, e.g. 5 minutes for Taobao-large. This is much more effi-
cient than most state-of-the-arts (e.g., PowerGraph [20]) that usually
takes several hours).

	

Ti
m
e	
C
os
t	(
Se
c)

10

100

1,000

Number	of	Workers
0 50 100 150 200 250 300 350 400 450

	Taobao-large
	Taobao-small

Figure 7: Graph building time w.r.t. number of workers. The
graph could be built in several minutes on two datasets.

Effects of Caching Neighbors. We examine the effects of caching
k-hop neighbors of important vertices. In our caching algorithm, we
need to set threshold for Imp(v) as defined in Equation (1) with the
analysis of D(k)

i and D(k)
o . In the experiments, we locally cache the

1-hop (direct) neighbors of all vertices and vary the threshold con-
trolling for caching the 2-hop neighbors. We gradually increase the
threshold from 0.05 to 0.45 to test its sensitivity and effectiveness.
Figure 8 illustrates the percentage of vertices being cached w.r.t. the
threshold. We observe that the percentage of cached vertices de-
creases w.r.t. the threshold. When the threshold is smaller than 0.2,
it decreases drastically and becomes relatively stable after that. This
is because the importance of vertices obey the power-law distribu-
tion as we prove in Theorem 2. To make a good trade-off between
the cache cost and the benefit, we set the threshold as 0.2 based on
Figure 9 and only need to cache around 20% of extra vertices. We
also compare our importance-based caching strategy w.r.t. two other
strategies, namely the random strategy which caches the neighbors
of a fraction of vertices selected at random and the LRU replacing
strategy [12]. Figure 9 illustrates the cost time w.r.t. the percentage
of cached vertices. We find that our method saves about 40%–50%
time w.r.t. the random strategy and about 50%–60% time w.r.t. the
LRU strategy, respectively. This is simply due to: 1) the randomly
selected vertices are less likely to be accessed; and 2) the LRU
strategy incurs additional cost since it frequently replaces cached
vertices. Whereas, our importance-based cached vertices are more
likely to be accessed by others.
Effects of Sampling. We test the effects of our optimized imple-
mentation on sampling with the batch size of 512 and cache rate
20%. Table 4 shows the time cost of the three types of sampling
methods. We find that: 1) Sampling methods are very efficient
which finish between a few milliseconds to no more than 60ms; 2)
The sampling time grows slowly w.r.t. the graph size. Although
the storage size of Taobao-large is six times larger compared to
Taobao-small, the sampling time on the two datasets is quite close.
These observations verify that our implementations of the sampling
methods are efficient and scalable.

	

Pe
rc
en
ta
ge
	o
f	C
ac
he
d	
V
er
ti
ce
s	
(%
)

0

10

20

30

40

50

0

10

20

30

40

50

Threshold
0 0.1 0.2 0.3 0.4 0.5

	AliGraph

Figure 8: Cache rate w.r.t. threshold. Setting the threshold near
0.15 makes the best trade-off.

Ti
m
e	
C
os
t	(
m
s)

0

20

40

60

80

100

Percentage	of	Caches	Vertices
0 0.1 0.2 0.3 0.4 0.5

	AliGraph
	Random	Cache
	LRU	Cache

Figure 9: Cost time w.r.t. percentage of cached vertices. Our
method saves much time than other cache strategies.

Effects of Operators. We further examine the effects of our imple-
mentation on the operators AGGREGATE and COMBINE. Table 5
shows the time cost of the two operators and the time costs can
speed up by an order of magnitude with our proposed implemen-
tations. This is simply because we apply the caching strategy to
eliminate the redundant computation of intermediate embedding
vectors. Once again, this verifies the superiority of our AliGraph
platform.

5.2 Algorithm Evaluations
In this subsection, we evaluate the performance of our proposed

GNNs compared to state-of-the-arts. We first describe the experi-
mental settings including the datasets, competitors and evaluation
metrics. Then, we examine the efficiency and effectiveness of each
proposed GNN.

5.2.1 Experimental Settings
Datasets. We employ two datasets in our experiments, including a
public dataset from Amazon and Taobao-small. We choose Taobao-
small due to the reason of the scalability of several competitors.

The statistics of the datasets are summarized in Table 6. Both of
them are AHGs. The public dataset Amazon extracted from [42,
26] is the product metadata under the electronics category of the
Amazon company. In this graph, each vertex represents a product
with its attributes and each edge connects two products co-viewed
or co-bought by the same user. It has two types of vertices, namely
user and item, and four types of edges between users and items,
namely click, add-to-preference, add-to-cart and buy.

Algorithms. We implement all of our proposed algorithms in this
paper. For comparison, we also implement some representative
graph embedding algorithms in different categories as follows:
C1: Homogeneous GE Methods. The compared methods include
DeepWalk [43], LINE [50], and Node2Vec [22]. These methods
can only be applied on plain graphs with purely structural informa-
tion.
C2: Attributed GE Methods. The compared method includes

2101



Table 4: Effects of optimized Sampling. All sampling methods
can finish in no more than 60ms.

Setting Time (ms)Dataset
# of workers Cache Rate TRAVERSE NEIGHBORHOOD NEGATIVE

Taobao-small 25 18.46% 2.59 45.31 6.22
Taobao-large 100 17.68% 2.62 52.53 7.52

Table 5: Effects of optimized Operators with an order of mag-
nitude of time speed up.

Dataset W/O Our Implementation (ms) Our Implementation (ms) Speedup Ratio
Taobao-small 7.33 0.57 12.9
Taobao-large 17.21 1.26 13.7

ANRL [58], which can generate embeddings capturing both struc-
tural and attributed information.
C3: Heterogeneous GE Methods. The compared methods include
Methpath2Vec [14], PMNE [40], MVE [45] and MNE [57]. Meth-
path2Vec can only process graphs with multiple types of vertices
while the other three methods can only process graphs with mul-
tiple types of edges. The PMNE involves three different kinds of
approaches to extend the Node2Vec method, which are denoted as
PMNE-n, PMNE-r and PMNE-c, respectively.
C4: GNN Based Methods. The comparison methods include Struc-
tural2Vec [46], GCN [32], Fast-GCN [11], AS-GCN [27], Graph-
SAGE [25] and HEP [59].

For fairness, all algorithms are implemented by applying the
optimized operators on our system. If a method cannot process
attributes and/or multiple types of vertices, we simply ignore these
information in the embedding. We generate the embedding for each
subgraph with the same type of edges and concatenate them together
to be the final result for homogeneous based GNN. Notice that, in
our examination, we do not compare each of our proposed GNN
algorithms w.r.t. all competitors. This is because each algorithm
is designed with different focus. We will detail the competitors of
each GNN algorithm in reporting its experimental results.
Metrics. We evaluate both the efficiency and effectiveness of the
proposed methods. The efficiency can be simply measured by the
execution time of the algorithm. To measure effectiveness, follow-
ing previous work [5, 13, 24], we apply the algorithm on the widely
adopted link prediction task, which plays important roles in real-
world scenarios such as recommendation. We randomly extract a
portion of the data as the training data and reserve the remaining
part as test data. To measure the quality of the results, four com-
monly used metrics are applied, namely the area under ROC curve
(ROC-AUC), the PR curve (PR-AUC), the F1-score and the hit
recall rate (HR Rate). Notably, each metric is averaged among
different types of edges.
Parameters. We set d, the dimension of embedding vectors, to be
200 for all algorithms.

5.2.2 Experimental Results
AHEP Algorithm. The goal of the AHEP algorithm is to fast obtain
the embedding result while does not sacrifice too much accuracy. In
Table 7, we show the comparison results on result quality of AHEP
w.r.t. its competitors on the Taobao-small dataset. In Figure 10, we
illustrate time and space cost of different algorithms. Obviously,
we have the following observations: 1) On the large Taobao-small
dataset, HEP and AHEP are the only two algorithms that can pro-
duce results in reasonable time and space limits. However, AHEP is
about 2–3 faster than HEP and uses much less memory than HEP.
2) In terms of the result quality, the ROC-AUC and F1-score of
AHEP is comparable to HEP. These verify that AHEP can produce
similar results of HEP by using much less time and space.
GATNE Algorithm. The goal of GATNE is designed to process
graphs with heterogeneous and attributed information on both ver-

Table 6: Statistics of datasets used in experiments.
Dataset # of

vertices
# of

edges
# of

vertex type
# of

edge type
Amazon 10,166 148,865 1 2

Taobao-small 156,988,021 666,197,671 2 4

Figure 10: Average memory cost and running time of per batch.
× indicates the algorithm can not terminate in reasonable time.
AHEP is 2–3 faster than HEP and uses much less memory on
Taobao-small.

tices and edges. We show the comparison results of the GATNE
algorithm w.r.t. its competitors in Table 8. Obviously we find that
GATNE outperforms all existing methods in terms of all metrics.
For example, on the Taobao-small dataset, GATNE improves the
ROC-AUC, PR-AUC and F1-score by 4.6%, 1.84% and 5.08%,
respectively. This is simply due to that GATNE simultaneously
captures both the heterogenous information of vertices and edges
and the attributes information. Meanwhile, we find that training
time of GATNE decreases almost linearly w.r.t. the number of work-
ers. The GATNE model converges in less than 2 hours with 150
distributed workers. The verifies the high efficiency and scalability
of the GATNE method.

Mixture GNN. We compare our Mixture GNN method w.r.t. DAE
[52] and β∗-VAE [36] methods. The hit recall rate of applying the
embedding results into the recommendation task is shown in Table 9.
Notice that, by applying our model, the hit recall rates have been
improved by around 2%. Similarly, this improvement also makes
significant contributions in a large network.

Hierarchical GNN. We compare our Hierarchical GNN method
w.r.t. GraphSAGE. The results is shown in Table 10. TheF1-score
is significantly improved by around 7.5%. This indicates that our
Hierarchical GNN can generate more promising embedding results.

Evolving GNN. We compare our Evolving GNN method w.r.t.
other methods on the multi-class link prediction task. The com-
petitors include the representative algorithms DeepWalk, DANE,
DNE, TNE and GraphSAGE. These competitor algorithms can not
handle dynamic graphs, thus we run the algorithm on each snapshot
of the dynamic graphs and report the average performance over all
timestamps. The comparison results on the Taobao-small dataset are
shown in Table 11. We easily find that, Evolving GNN outperforms
all other methods in terms of all metrics. For example, with burst
change, Evolving GNN improves the micro and macro F1-score
by 4.2% and 3.6%. This is simply because our proposed method
can better capture the dynamic changes of real-world networks, thus
can produce more promising results.

Bayesian GNN. The goal of this model is to combine Bayesian
method with the traditional GNN model. We use GraphSAGE as
the baseline and compare the results with and without incorporating
the proposed Bayesian model. We present the hit recall rate of the
recommendation result in Table 12. Notice that, we considerthe
granularity of both item brands and categories. Obviously, when
applying our Bayesian model, the hit recall rates have been increased
by 1% to 3% respectively. Notice that, this improvement can bring
significant benefits on our network containing 9 million items.

2102



Table 7: Effectiveness comparison of AHEP w.r.t. its competi-
tors. AHEP is close to HEP on Taobao-small.

Method ROC-AUC(%) F1-score(%)
Structural2Vec N.A. N.A.

GCN N.A. N.A.
FastGCN N.A. N.A.

GraphSAGE N.A. N.A.
AS-GCN O.O.M O.O.M

HEP 77.77 57.93
AHEP 75.51 50.97

“N.A.” indicates the algorithm can not terminate in reasonable time.
“O.O.M.” indicates that the algorithm terminates due to out of memory.

6. RELATED WORK
In this section, we briefly review the state-of-the-arts on GE

and GNN methods. Based on the four challenges summarized in
Section 1, we categorize existing methods as follows.

Homogeneous. DeepWalk [43] first generates a corpus on graphs
by random walk and then trains a skip-gram model on the cor-
pus. LINE [50] learns node presentations by preserving both first-
order and second-order proximities. NetMF [44] is a unified matrix
factorization framework for theoretically understanding and im-
proving DeepWalk and LINE. Node2Vec [22] adds two parameters
to control the random walk process while SDNE [53] proposes a
structure-preserving embedding method. GCN [32] incorporates
neighbors’ feature representations using convolutional operations.
GraphSAGE [25] provides an inductive approach to combine struc-
tural information with node features.

Heterogeneous. For graph with multiple types of vertices and/or
edges, PMNE [40] proposes three methods to project a multiplex
network into a continuous vector space. MVE [45] embeds net-
works with multiple views in a single collaborated embedding using
the attention mechanism. MNE [57] uses one common embedding
and several additional embeddings of each edge-type for each node,
which are jointly learned by a unified network embedding model.
Mvn2Vec [55] explores the embedding results by simultaneously
modeling preservation and collaboration. HNE [6] jointly considers
the contents and topological structures to be unified vector rep-
resentations. PTE [49] constructs large-scale heterogeneous text
network from labeled information, which is then embedded into a
low-dimensional space. Metapath2Vec [14] and HERec [47] formal-
ize meta-path based random-walks to construct the heterogeneous
neighborhood of a node and then leverage skip-gram models to
perform node embeddings.

Attributed. Attributed network embedding aims to seek for low-
dimensional vector representations to preserve both topological
and attribute information. TADW [56] incorporates text features
of vertices into network representation learning by matrix factor-
ization. LANE [28] smoothly incorporates label information into
the attributed network embedding while preserving their correla-
tions. AANE [27] enables joint learning process to be done in a
distributed manner for accelerated attributed network embedding.
SNE [37] proposes a generic framework for embedding social net-
works by capturing both the structural proximity and attribute prox-
imity. DANE [19] can capture the high nonlinearity and preserve
various proximities in both topological structure and node attributes.
ANRL [58] uses a neighbor enhancement autoencoder to model the
node attribute information and a skip-gram model to capture the
network structure.

Dynamic. Actually, some static methods [43, 50] can also handle
dynamic network by updating the new vertices based on static em-
bedding. Considering the new vertices’ influence on the original
networks, [15] extends the skip-gram methods to update the original

vertices’ embedding. [60] focuses on capturing the triadic structure
properties for learning network embedding. Considering both the
network structure and node attributes, [34] focuses on updating the
top eigenvectors and eigenvalues for the streaming network.

7. CONCLUSIONS AND FUTURE WORK
We summarize four challenges from the current practical graph

data problems, namely large-scale, heterogeneous, attributed and
dynamic. Based on these challenges, we design and implement a
platform, AliGraph, which provides both system and algorithms to
tackle more practical problems. In the future, we will focus on but
not limited to the following directions: 1) GNN for edge-level and
subgraph-level embeddings; 2) More execution optimizations, such
as co-location of computation variables in GNN with graph data
to reduce the cross network traffic, introduction of new gradient
optimization to leverage the trait of GNN to speed up the distributed
training without accuracy loss, and better assignment of the workers
in multi-GPU architectures; 3) Early-stop mechanism, which can
help to terminate training tasks earlier when no promising results
can generate.

8. REFERENCES
[1] P. Battaglia, R. Pascanu, M. Lai, and D. J. Rezende.

Interaction networks for learning about objects, relations and
physics. In NIPS, pages 4502—-4510, 2016.

[2] S. Bhagat, G. Cormode, and S. Muthukrishnan. Node
classification in social networks. Computer Science,
16(3):115–148, 2011.

[3] E. G. Boman, K. D. Devine, and S. Rajamanickam. Scalable
matrix computations on large scale-free graphs using 2d graph
partitioning. 2013.

[4] U. Brandes, M. Gaertler, and D. Wagner. Experiments on
graph clustering algorithms. LNCS, 2832:568–579, 2003.

[5] H. Cai, V. W. Zheng, C. C. Chang, H. Cai, V. W. Zheng, and
C. C. Chang. A comprehensive survey of graph embedding:
Problems, techniques and applications. TKDE,
30(9):1616–1637, 2017.

[6] S. Chang, W. Han, J. Tang, G.-J. Qi, C. C. Aggarwal, and T. S.
Huang. Heterogeneous network embedding via deep
architectures. In KDD, pages 119–128, 2015.

[7] Cen, Y., Zou,X., Zhang, J., Yang, H., Zhou, J., Tang, J.
Representation Learning for Attributed Multiplex
Heterogeneous Network. In KDD, 2019.

[8] Liu, N., Tan, Q., Li, Y., Yang, H., Zhou, J., Hu, X. Is a Single
Vector Enough? Exploring Node Polysemy for Network
Embedding. In KDD, 2019.

[9] Li, C., Shen, D., Jia, K., Yang, H. Hierarchical Representation
Learning for Bipartite Graphs. In IJCAI, 2019.

[10] Zhao, Y., Wang, X., Yang, H., Song, L. and Tang, J. Large
Scale Evolving Graphs with Burst Detection. In IJCAI, 2019.

[11] J. Chen, T. Ma, and C. Xiao. Fastgcn: fast learning with graph
convolutional networks via importance sampling.
arXiv:1801.10247, 2018.

[12] M. Chrobak and J. Noga. Lru is better than fifo. In Acm-siam
Symposium on Discrete Algorithms, 1998.

[13] P. Cui, X. Wang, J. Pei, and W. Zhu. A survey on network
embedding. TKDE, 2018.

[14] Y. Dong, N. V. Chawla, and A. Swami. metapath2vec:
Scalable representation learning for heterogeneous networks.
In KDD, pages 135–144, 2017.

[15] L. Du, Y. Wang, G. Song, Z. Lu, and J. Wang. Dynamic
network embedding: An extended approach for skip-gram
based network embedding. In IJCAI, pages 2086–2092, 2018.

2103



Table 8: Effectiveness comparison of GATNE w.r.t. its competitors. GATNE outperforms all competitors in terms of all metrics on
both Amazon and Taobao-small. GATNE lifts the F1-score by 16.43% on the Amazon dataset.

Amazon Taobao-smallMethod
ROC-AUC(%) PR-AUC(%) F1-score(%) ROC-AUC(%) PR-AUC(%) F1-score(%)

DeepWalk 94.20 94.03 87.38 65.58 78.13 70.14
Node2Vec 94.47 94.30 87.88 N.A. N.A. N.A.

LINE 81.45 74.97 76.35 N.A. N.A. N.A.
ANRL 95.41 94.19 89.60 N.A. N.A. N.A.

Metapath2Vec 94.15 94.01 87.48 N.A. N.A. N.A.
PMNE-n 95.59 95.48 89.37 N.A. N.A. N.A.
PMNE-r 88.38 88.56 79.67 N.A. N.A. N.A.
PMNE-c 93.55 93.46 86.42 N.A. N.A. N.A.

MVE 92.98 93.05 87.80 66.32 80.12 72.14
MNE 91.62 92.46 84.44 79.60 93.01 84.86

GATNE 96.25 94.77 91.36 84.20 95.04 89.94

Table 9: Effectiveness comparison of Mixture GNN w.r.t. its
competitors. Mixture GNN improves the hit recall rate by
around 2% on Taobao-small.

Method HR Rate@20 HR Rate@50
DAE 0.12622 0.21619

β∗-VAE 0.11767 0.19997
Mixture GNN 0.14317 0.23680

Table 10: Effectiveness comparison of Hierarchical GNN
w.r.t. its competitors. Hierarchical GNN improves the hit re-
call rate by 7.5% on Taobao-small.

Method ROC-AUC(%) PR-AUC(%) F1-score(%)
GraphSAGE 82.89 44.45 45.76

Hierarchical GNN 87.34 54.87 53.20

[16] A. G. Duran and M. Niepert. Learning graph representations
with embedding propagation. In Advances in Neural
Information Processing Systems, pages 5119–5130, 2017.

[17] W. Fan, J. Xu, Y. Wu, W. Yu, J. Jiang, Z. Zheng, B. Zhang,
Y. Cao, and C. Tian. Parallelizing sequential graph
computations. In SIGMOD, pages 495–510, 2017.

[18] A. Fout, J. Byrd, B. Shariat, and A. Ben-Hur. Protein interface
prediction using graph convolutional networks. In NIPS,
pages 6530—-6539, 2017.

[19] H. Gao and H. Huang. Deep attributed network embedding. In
IJCAI, pages 3364–3370, 2018.

[20] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin.
Powergraph: Distributed graph-parallel computation on
natural graphs. In OSDI, 2012.

[21] P. Goyal and E. Ferrara. Graph embedding techniques,
applications, and performance: A survey. Knowledge-Based
Systems, 2018.

[22] A. Grover and J. Leskovec. node2vec: Scalable feature
learning for networks. In KDD, pages 855–864, 2016.

[23] T. Hamaguchi, H. Oiwa, M. Shimbo, and Y. Matsumoto.
Knowledge transfer for out-of-knowledge-base entities : A
graph neural network approach. In IJCAI, 2017.

[24] W. L. Hamilton, R. Ying, and J. Leskovec. Representation
learning on graphs: Methods and applications. 2017.

[25] W. L. Hamilton, Z. Ying, and J. Leskovec. Inductive
representation learning on large graphs. In NIPS, pages
1025–1035, 2017.

[26] R. He and J. McAuley. Ups and downs: Modeling the visual
evolution of fashion trends with one-class collaborative
filtering. In WWW, pages 507–517.

[27] X. Huang, J. Li, and X. Hu. Accelerated attributed network
embedding. In SDM, pages 633–641. SIAM, 2017.

[28] X. Huang, J. Li, and X. Hu. Label informed attributed
network embedding. In WSDM, pages 731–739, 2017.

[29] D. R. Hush and J. M. Salas. Improving the learning rate of
back-propagation with the gradient reuse algorithm. In IEEE
International Conference on Neural Networks, 1988.

[30] G. Karypis and V. Kumar. Metis–unstructured graph
partitioning and sparse matrix ordering system. Technical
Report.

[31] D. P. Kingma and M. Welling. Auto-encoding variational
bayes. arXiv:1312.6114, 2013.

[32] T. N. Kipf and M. Welling. Semi-supervised classification
with graph convolutional networks. In ICLR, 2017.

[33] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. In
Nature, pages 521–436. 2015.

[34] J. Li, H. Dani, X. Hu, J. Tang, Y. Chang, and H. Liu.
Attributed network embedding for learning in a dynamic
environment. In CIKM, pages 387–396. ACM, 2017.

[35] Li, C., Shen, D., Jia, K., Yang, H. Hierarchical Representation
Learning for Bipartite Graphs. In IJCAI, 2019.

[36] D. Liang, R. G. Krishnan, M. D. Hoffman, and T. Jebara.
Variational autoencoders for collaborative filtering. 2018.

[37] L. Liao, X. He, H. Zhang, and T.-S. Chua. Attributed social
network embedding. TKDE, 30(12):2257–2270, 2018.

[38] D. Liben-Nowell and J. Kleinberg. The link prediction
problem for social networks. 2003.

[39] Z. Lin, M. Feng, C. N. d. Santos, M. Yu, B. Xiang, B. Zhou,
and Y. Bengio. A structured self-attentive sentence embedding.
arXiv:1703.03130, 2017.

[40] W. Liu, P.-Y. Chen, S. Yeung, T. Suzumura, and L. Chen.
Principled multilayer network embedding. In ICDM, pages
134–141. IEEE, 2017.

[41] Liu, N., Tan, Q., Li, Y., Yang, H., Zhou, J., Hu, X. Is a Single
Vector Enough? Exploring Node Polysemy for Network
Embedding. In KDD, 2019.

[42] J. McAuley, C. Targett, Q. Shi, and A. Van Den Hengel.
Image-based recommendations on styles and substitutes. In
SIGIR, pages 43–52. ACM, 2015.

[43] B. Perozzi, R. Al-Rfou, and S. Skiena. Deepwalk: Online
learning of social representations. In KDD, pages 701–710.
ACM, 2014.

[44] J. Qiu, Y. Dong, H. Ma, J. Li, K. Wang, and J. Tang. Network
embedding as matrix factorization: Unifying deepwalk, line,
pte, and node2vec. In WSDM, pages 459–467, 2018.

[45] M. Qu, J. Tang, J. Shang, X. Ren, M. Zhang, and J. Han. An
attention-based collaboration framework for multi-view
network representation learning. In CIKM, pages 1767–1776.
ACM, 2017.

[46] L. F. R. Ribeiro, P. H. P. Saverese, and D. R. Figueiredo.
struc2vec : Learning node representations from structural
identity. 2017.

2104



Table 11: Effectiveness comparison of Evolving GNN w.r.t. its competitors. Evolving GNN improves the F1-score by about 4%
on Taobao-small.

Normal Evolution burst ChangeMethod Micro F1-score(%) Macro F1-score(%) Micro F1-score(%) Macro F1-score(%)
DeepWalk N.A. N.A. N.A. N.A.

DANE N.A. N.A. N.A. N.A.
TNE 79.9 71.9 69.1 67.2

GraphSAGE 71.4 70.4 60.7 60.5
Evolving GNN 81.4 77.7 73.3 70.8

Table 12: Effectiveness comparison of Bayesian GNN w.r.t. its competitors. Bayasian GNN improves the hit recall rate by 1%–3%
on Taobao-small.

Click BuyGranularity HR Rate@ GraphSAGE GraphSAGE + Bayesian GraphSAGE GraphSAGE + Bayesian
10 15.97 16.14 24.87 25.10

Brand 30 16.65 17.12 25.70 26.57
50 17.26 17.90 26.39 27.33
10 27.46 27.49 27.85 27.91

Category 30 28.43 29.99 28.50 29.45
50 29.58 32.88 26.26 31.47

[47] C. Shi, B. Hu, X. Zhao, and P. Yu. Heterogeneous information
network embedding for recommendation. TKDE, 2018.

[48] I. Stanton and G. Kliot. Streaming graph partitioning for large
distributed graphs. In KDD, 2013.

[49] J. Tang, M. Qu, and Q. Mei. Pte: Predictive text embedding
through large-scale heterogeneous text networks. In KDD,
pages 1165–1174. ACM, 2015.

[50] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei.
Line: Large-scale information network embedding. In WWW,
pages 1067–1077, 2015.

[51] S. Tanimoto. Power laws of the in-degree and out-degree
distributions of complex networks. Physics, 2009.

[52] P. Vincent, H. Larochelle, Y. Bengio, and P. A. Manzagol.
Extracting and composing robust features with denoising
autoencoders. In ICML, 2008.

[53] D. Wang, P. Cui, and W. Zhu. Structural deep network
embedding. In KDD, pages 1225–1234, 2016.

[54] Z. Wang, Y. Tan, and Z. Ming. Graph-based recommendation
on social networks. In APWeb, 2010.

[55] W. Xiong, M. Yu, S. Chang, X. Guo, and W. Y. Wang.
One-shot relational learning for knowledge graphs. In
EMNLP, pages 1980–1990, 2018.

[56] C. Yang, Z. Liu, D. Zhao, M. Sun, and E. Y. Chang. Network
representation learning with rich text information. In IJCAI,
2015.

[57] H. Zhang, L. Qiu, L. Yi, and Y. Song. Scalable multiplex
network embedding. In IJCAI, pages 3082–3088, 2018.

[58] Z. Zhang, H. Yang, J. Bu, S. Zhou, P. Yu, J. Zhang, M. Ester,
and C. Wang. Anrl: Attributed network representation
learning via deep neural networks. In IJCAI, pages
3155–3161, 2018.

[59] V. W. Zheng, M. Sha, Y. Li, H. Yang, Z. Zhang, and K.-L. Tan.
Heterogeneous embedding propagation for large-scale
e-commerce user alignment. In ICDM, 2018.

[60] L. Zhou, Y. Yang, X. Ren, F. Wu, and Y. Zhuang. Dynamic
network embedding by modeling triadic closure process. In
AAAI,2018.

[61] Zhao, Y., Wang, X., Yang, H., Song, L. and Tang, J. Large
Scale Evolving Graphs with Burst Detection. In IJCAI, 2019.

Appendix
Proof of Theorem 1 Let D(k)

i and D(k)
o be two random variables

representing the number of k-hop in and out-neighbors of a ran-
domly chosen vertex from the graph, respectively. We derive the

probability distribution of D(k)
i and D(k)

o for each k ≥ 1 by induc-
tion.

1. Following previous work [51], when k = 1, the in-degreeD(1)
i

and out-degree D(t)
o both obey the power-law distribution. Specif-

ically, let γ(1)
o and γ(1)

i denote the exponent, we have Pr(D
(1)
i =

q) ∝ q−γ
(1)
i and Pr(D

(1)
o = q) ∝ q−γ

(1)
o .

2. Then, we consider the probability distribution of D(k)
i and

D
(k)
o where k ≥ 2. Assume that D(k−1)

i and D(k−1)
o obey the

power-law distribution with exponent γ(k−1)
i and γ(k−1)

o , respec-
tively. Let u be a randomly chosen vertex from the graph. If we
randomly chose a (k − 1)-hop in-neighbor s of u and a one-hop
out-neighbor v of u, v is obviously a k-hop out-neighbor of s. Since
s is chosen randomly, we have

Pr(D(k)
o = q) =

n∑
j=1

Pr(D(1)
o = j) · Pr(D

(k)
i =

q

j
)

∝
n∑
j=1

j−γ
(1)
o (

q

j
)
−γ(k−1)

i ∝ q−γ
(k−1)
i

n∑
j=1

jγ
(k−1)
i −γ(1)o .

Since n, γ(t−1)
i and γ(1)

o are all fixed, the last term is a constant

value. As a result, we have Pr(D
(k)
o = q) ∝ q−γ

(k)
o , where γ(k)

o is
a term determined by γ(k−1)

i and the last term. In similar, we also

have Pr(D
(k)
i = q) ∝ q−γ

(k)
i . This indicates both D(k)

o and D(k)
i

obey the power-law distribution.
By summarizing 1 and 2, we find that both D(k)

i and D(k)
o obey

the power-law distribution for each k ≥ 1.
Proof of Theorem 2 Let Imp(k) = D

(k)
i /D

(k)
o be a random

variable denoting the importance of a randomly chosen vertex. We
have

Pr(Imp(k) = `) =

n∑
j=1

Pr(D(k)
o = j) Pr(D

(k)
i = `j)

=

n∑
j=1

j−γ
(k)
o (`j)−γ

(k)
i = `−γ

(k)
i

n∑
j=1

j−(γ
(k)
i +γ

(k)
o ).

Since the last term is also a constant value, we find that Imp(k) also
obeys the power-law distribution. This analysis result indicates that
the importance Imp(k) of most vertices is very small. Thus, we
only need to cache a small number of vertices with large importance
values. Intuitively, for any vertex whose importance is large, it has a
large number of in-neighbors and a small number of out-neighbors.

2105


	Introduction
	Preliminaries
	System
	Framework of GNN Algorithms
	Storage
	Sampling
	Operator

	Methodology
	State-of-the-Art GNNs
	In-House Developed GNNs

	Experiments
	System Evaluation
	Algorithm Evaluations
	Experimental Settings
	Experimental Results


	Related Work
	Conclusions and Future Work
	References

