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ABSTRACT
Distributed databases offer high availability but can im-
pose high costs on client applications in order to maintain
strong consistency at all times. MongoDB is a document ori-
ented database whose replication system provides a variety
of consistency levels allowing client applications to select the
trade-offs they want to make when it comes to consistency
and latency, at a per operation level. In this paper we discuss
the tunable consistency models in MongoDB replication and
their utility for application developers. We discuss how the
MongoDB replication system’s speculative execution model
and data rollback protocol help make this spectrum of con-
sistency levels possible. We also present case studies of how
these consistency levels are used in real world applications,
along with a characterization of their performance benefits
and trade-offs.
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1. INTRODUCTION
Distributed databases present a wide variety of implemen-

tation and usability challenges that are not present in single
node database systems. Weak consistency models, partial
failure modes, and network partitions are examples of chal-
lenges that must be understood and addressed by both the
application developers and the system designers. One of the
main goals of the MongoDB replication system is to provide
a highly available distributed data store that lets users ex-
plicitly decide among the trade-offs available in a replicated
database system that are not necessary to consider in single
node systems.

The gold standard of consistency for concurrent and dis-
tributed systems is linearizability [8], which allows clients to
treat their system as if it were a single, highly available node.
In practice, guaranteeing linearizability in a distributed con-
text can be expensive, so there is a need to offer relaxed
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consistency models that allow users to trade correctness for
performance. In many cases, applications can tolerate short
or infrequent periods of inconsistency, so it may not make
sense for them to pay the high cost of ensuring strong con-
sistency at all times. These types of trade-offs have been
partially codified in the PACELC theorem, an extension to
the CAP theorem [1]. For example, in a replicated database,
paying the cost of a full quorum write for all operations
would be unnecessary if the system never experienced fail-
ures. Of course, if a system never experienced failures, there
would be less need to deploy a database in a replicated man-
ner. Understanding the frequency of failures, however, and
how this interacts with the consistency guarantees that a
database offers motivates MongoDB’s approach to tunable
consistency.

To provide users with a set of tunable consistency options,
MongoDB exposes writeConcern and readConcern levels,
which are parameters that can be set on each database op-
eration. writeConcern specifies what durability guarantee a
write must satisfy before being acknowledged to a client.
Higher write concern levels provide a stronger guarantee
that a write will be permanently durable, but incur a higher
latency cost per operation. Lower write concern levels re-
duce latency, but increase the possibility that a write may
not become permanently durable. Similarly, readConcern
determines what durability or consistency guarantees data
returned to a client must satisfy. Stronger read concern lev-
els provide stronger guarantees on returned data, but may
increase the likelihood that returned data is staler than the
newest data. Stronger read concerns may also induce higher
latency to wait for data to become consistent. Weaker read
concerns can provide a better likelihood that returned data
is fresh, but at the risk of that data not yet being durable.

Read and write concern levels can be specified on a per-
operation basis, and the usage of a stronger consistency
guarantee for some operations does not impact the perfor-
mance of other operations running at lower consistency lev-
els. This allows application developers to decide explicitly
on the performance trade-offs they want to make at a fine
level of granularity. Applications that can tolerate rare but
occasional loss of writes can utilize low writeConcern levels
and aren’t forced to continuously pay a high latency cost
for all of their writes. In the absence of failures or net-
work partitions, writes should eventually become durable,
so clients can be confident that most of their writes are not
lost. When failures do occur, they can employ other mech-
anisms to detect and reconcile any window of lost writes. If
failures are relatively rare, these mechanisms can be a small
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cost to pay in return for greatly improved common case ap-
plication performance. For highly sensitive applications that
cannot tolerate such inconsistencies, they can choose to op-
erate at higher write and read concern levels to be always
guaranteed of safety. Furthermore, applications may choose
to categorize some operations as critical and some as non-
critical, and thus set their write and read concern levels
appropriately, per operation.

With the addition of multi-document transactions, Mon-
goDB added a readConcern level which provides transac-
tions with snapshot isolation guarantees. This read concern
level offers speculative behavior, in that the durability guar-
antee of any data read or written is deferred until transaction
commit time. The transaction commit operation accepts
a write concern, which determines the durability guaran-
tees of the transaction and its constituent read and write
operations as a whole. The details of transaction consis-
tency guarantees will be discussed in more detail in later
sections. Furthermore, MongoDB introduced causal consis-
tency in version 3.6 which provides clients with an additional
set of optional consistency guarantees [15]. A full discussion
of causal consistency in MongoDB is out of scope of this pa-
per, but when combined with various read and write concern
levels, it allows users to tune their consistency guarantees to
an even finer degree.

In Section 3, we will discuss the details of write and read
concern levels, and how real world deployments utilize these
options. In Section 4, we will compare MongoDB’s offerings
to those of other commercial databases. In Sections 5, 6, and
7, we will discuss the implementation details of MongoDB’s
replication protocol that allow for these various consistency
levels. In Section 8, we will present performance evaluations
of different consistency levels and how they perform in the
face of failures.

2. BACKGROUND
MongoDB is a NoSQL, document oriented database that

stores data in JSON-like objects. All data in MongoDB
is stored in a binary form of JSON called BSON [3]. A
MongoDB database consists of a set of collections, where
a collection is a set of unique documents. MongoDB uti-
lizes the WiredTiger storage engine, which is a transac-
tional key value data store that manages the interface to
a local, durable storage medium. Throughout this paper,
we will refer to a transaction at this storage engine layer
as a “WiredTiger transaction”. To provide high availabil-
ity, MongoDB provides the ability to run a database as a
replica set, which is a set of MongoDB nodes that act as a
consensus group, where each node maintains a logical copy of
the database state. MongoDB replica sets employ a leader
based consensus protocol that is similar to the Raft pro-
tocol [11]. In a replica set there exists a single primary
and a set of secondary nodes. The primary node accepts
client writes and inserts them into a replication log known
as the oplog. The oplog is a logical log where each entry
contains information about how to apply a single database
operation. Each entry is assigned a timestamp; these times-
tamps are unique and totally ordered within a node’s log.
Oplog entries do not contain enough information to undo
operations. The oplog behaves in almost all regards as an
ordinary collection of documents. Its oldest documents are
automatically deleted when they are no longer needed, and

{

// The oplog entry timestamp.

"ts": Timestamp(1518036537, 2),

// The term of this entry.

"t": NumberLong("1"),

// The operation type.

"op": "i",

// The collection name.

"ns": "test.collection",

// A unique collection identifier.

"ui": UUID("c22f2fe6...")),

// The document to insert.

"o":{

"_id": ObjectId("5a7b6639176928f52231db8d"),

"x": 1

}

}

Figure 1: Example of key oplog entry fields for an
“insert” operation

new documents get appended to the “head” of the log. Sec-
ondary nodes replicate the oplog, and then apply the entries
by executing the included operation to maintain parity with
the primary. In contrast to Raft, replication of log entries
in MongoDB is “pull-based”, which means that secondaries
fetch new entries from any other valid primary or secondary
node. Additionally, nodes apply log entries to the database
“speculatively”, as soon as they receive them, rather than
waiting for the entries to become majority committed. This
has implications for the truncation of oplog entries, which
will be discussed in more detail in Section 6.

Client writes must go to the primary node, while reads can
go to either the primary or secondary nodes. Clients interact
with a replica set through a driver, which is a client library
that implements a standard specification for how to prop-
erly communicate with and monitor the health of a replica
set [10]. Internally, a driver communicates with nodes of a
replica set through an RPC like protocol that sends data in
BSON format. For horizontal scaling, MongoDB also offers
sharding, which allows users to partition their data across
multiple replica sets. The details of sharding will not be
discussed in this paper.

Figure 2: MongoDB Replication Architecture
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3. CONSISTENCY LEVELS IN MONGODB
The consistency levels in MongoDB replica sets are ex-

posed to clients via readConcern and writeConcern levels,
which are parameters of any read or write operation, re-
spectively. Understanding the semantics of read and write
concern requires some understanding of the lifecycle of op-
erations in MongoDB’s replication system. The MongoDB
replication system serializes every write that comes into the
system into the oplog. When an operation is processed by a
replica set primary, the effect of that operation must be writ-
ten to the database, and the description of that operation
must also be written into the oplog. Note that all operations
in MongoDB occur inside WiredTiger transactions. When
an operation’s transaction commits, we call the operation
locally committed. Once it has been written to the database
and the oplog, it can be replicated to secondaries, and once
it has propagated to enough nodes that meet the necessary
conditions, the operation will become majority committed
which means it is permanently durable in the replica set.

3.1 Definitions
writeConcern can be specified either as a numeric value

or as “majority”. A client that executes a write operation
at w:1 will receive acknowledgement as soon as that write
is locally committed on the primary that serviced the write.
Write operations done at w:N will be acknowledged to a
client when at least N nodes of the replica set have re-
ceived and locally committed the write. Clients that issue a
w:“majority” write will not receive acknowledgement until
it is guaranteed that the write operation is majority com-
mitted. This means that the write will be resilient to any
temporary or permanent failure of any set of nodes in the
replica set, assuming there is no data loss at the underlying
OS or hardware layers. For a w:“majority” write to be ac-
knowledged to a client, it must have been locally committed
on at least a majority of nodes in the replica set. Write
concern can also accept a boolean “j” parameter, which de-
termines whether the data must be journaled on replica set
nodes before it is acknowledged to the client. Write concern
can also be specified as a “tag set”, which requires that a
write be replicated to a particular set of nodes, designated
by a pre-configured set of “tagged” nodes. The “j” and tag
set options will not be discussed in detail in this paper.

Client operations that specify a write concern may receive
different types of responses from the server. These write con-
cern responses can be classified into two categories: satisfied
and unsatisfied. A write concern that is satisfied implies
that the necessary (or stronger) conditions must have been
met. For example, in the case of w:2, the client is guaran-
teed that the write was applied on at least 2 servers. For
a write concern that is unsatisfied, this does not necessarily
imply that the write failed. The write may have been repli-
cated to fewer servers than needed for the requested write
concern, or it may have replicated to the proper number of
servers, but the primary was not informed of this fact within
a specified operation time limit.

readConcern determines the durability and, in some cases,
the consistency of data returned from the server. For a
read operation done at readConcern level “local”, the data
returned will reflect the local state of a replica set node
at the time the query is executed. There are no guaran-
tees that the data returned is majority committed in the
replica set, but it will reflect the newest data known to a

particular node, i.e. it reads any locally committed data.
Reads with readConcern level “majority” are guaranteed to
only return data that is majority committed. For major-
ity reads, there is no strict guarantee on the recency of the
returned data. The data may be staler than the newest
majority committed write operation. MongoDB also pro-
vides “linearizable” readConcern, which, when combined
with w:“majority” write operations provides the strongest
consistency guarantees. Reads with readConcern level “lin-
earizable” are guaranteed to return the effect of the most
recent majority write that completed before the read oper-
ation began. More generally, writes done at “majority” and
reads done at “linearizable” will collectively satisfy the lin-
earizability condition, which means the operations should
externally appear as if they took place instantaneously at
some moment between the invocation of the operation and
its response.

Additionally, MongoDB provides “available” and “snap-
shot” read concern levels, and the ability for causally con-
sistent reads. The “snapshot” read concern only applies
to multi-document transactions, and guarantees that clients
see a consistent snapshot of data i.e. snapshot isolation. The
guarantees provided by “available” read concern depend on
some sharding specific details, so will not be discussed here.
Causal consistency provides the ability for clients to get ses-
sion guarantees [14], including read-your-writes behavior in
a given session.

3.2 A Comparison with ANSI SQL Isolation
Levels

In classic, single node database systems, durability of a
particular transaction is determined by whether or not a
transaction has “committed”, which traditionally means the
corresponding write has been written to a journal whose
data has been flushed to disk. This gives rise to the meaning
of the READ COMMITTED and READ UNCOMMITTED
SQL isolation levels [2], which specify whether a transaction
is allowed to read data from other, concurrent transactions
that are not yet committed, i.e. durable. When viewing
single document read or write operations in MongoDB as
transactions that contain only a single operation, the “local”
and “majority” readConcern levels can be seen as analogous
to the READ UNCOMMITTED and READ COMMITTED
SQL isolation levels, respectively. An operation being “ma-
jority committed” in MongoDB replication can be viewed
as similar to an operation being “committed” in the stan-
dard SQL isolation model. The durability guarantee of the
“commit” event, however, is at the replica set level rather
than the disk level. Reads at “majority” readConcern are
only allowed to see majority committed data, and “local”
readConcern reads are allowed to see data that has not yet
majority committed i.e. they can see “uncommitted” data.

3.3 Usage in MongoDB Atlas
To characterize the consistency levels used by MongoDB

application developers, we collected operational data from
14,820 instances running 4.0.6 that are managed by Mon-
goDB Atlas, the fully automated cloud service for Mon-
goDB. The data collected includes the values of readConcern
and writeConcern that had been used for all read and write
operations since the node had started up.1 We found that

1These counts are fairly low, since all nodes had been re-
cently restarted in order to upgrade them to 4.0.6.
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the overwhelming majority of read operations used readCon-
cern level “local” and the majority of write operations used
writeConcern w:1. Our results are shown in Table 1 and
Table 2. It appears that users generally accept the defaults.

Table 1: Read Concern Usage in MongoDB Atlas

Read Concern Count %
available 142 <.01
linearizable 28,082 <.01
local 103,030,820 .27
majority 50,990,496 .13
snapshot 2,029 <.01
none (default local) 38,109,403,854 99.60

Table 2: Write Concern Usage in MongoDB Atlas

Write Concern Count %
{w:1} 912,856,101 4.06
{w:"majority"} 3,565,186,929 15.86
none (default {w:1}) 17,793,179,026 79.17
other 203,962,459 .91

3.4 Use Cases
To understand patterns in how users choose consistency

levels in production applications, we spoke with MongoDB
users, as well as MongoDB consulting engineers and solu-
tions architects, who help customers design solutions us-
ing MongoDB. Their impression was that the decision is
often made more based on latency than on consistency re-
quirements. They explained that users would prefer, of
course, to use readConcern level “majority” and writeCon-
cern w:“majority”, since everyone wants safety. However,
when users find stronger consistency levels to be too slow,
they will switch to using weaker consistency levels. These
decisions are often based on business requirements and SLAs
rather than granular developer needs. As we argue through-
out this paper, the decision to use weaker consistency levels
often works in practice because failovers are infrequent and
data loss from failovers is usually small. When reading from
and writing to the primary, users usually read their own
writes and the system behaves like a single node.

Although consistency levels are often chosen based on la-
tency rather than safety, we did gather some use cases for
various consistency levels based on the application’s consis-
tency requirements, including cases that require the ability
to tune consistency at the operation level. Note that this
is a selection of use cases, and it does not cover all consis-
tency offerings in MongoDB (for example, writeConcern w:2
is also popular with customers).

3.4.1 Majority Reads and Writes
Customers use the combination readConcern level “ma-

jority” and writeConcern w:“majority” in applications for
which safety is more important than latency. One exam-
ple is a student loan financing site. This site receives about
2 writes per minute, so a bit of latency does not create a
bottleneck. However, if writes are lost, a student may need
to restart a long online form from scratch, so durability is
essential in this case.

3.4.2 Local Reads and Writes
Customers use readConcern level “local” and writeCon-

cern w:1 for data that is not considered the “system of
record”. This could include ephemeral state, caches, ag-
gregations, and logs. These consistency levels are also used
when throughput is much more important than durability,
so application infrastructure cannot tolerate high latency
database operations. An example of ephemeral state is a
game site that matches active players. This site has a high
volume of writes, since its popularity means there are many
active players looking to begin games. Durability is not im-
portant in their use case, since if a write is lost, the player
typically retries immediately and is matched into another
game.

3.4.3 Multiple Write Concern Values
A long online form, e.g. to create an account or order a

pizza, might persist its state at several save points before
the user completes it. Such a form is a common use case
for multiple writeConcern values for the same data. Often
a long online form will include multiple save points, where
a partial write of the form is sent to the database. The
writes at save points are performed using w:1, and the final
form submission write is performed using w:“majority”. The
exact timing of the save points is often invisible to end users.
These write concern choices protect against write loss for the
final form submission, while ensuring low latency for the save
points. Here, only the final save is an explicit user action
that users expect to be durable. We observed similar choices
in the shopping cart model, whereby adding and removing
items is done using writeConcern w:1 but the ultimate order
placement is done at writeConcern w:“majority”.

3.4.4 Local Reads and Majority Writes
A popular review site uses readConcern level “local” and

writeConcern w:“majority” for its reviews. Write loss is
painful, since users may spend significant time writing a
review, and using w:“majority” guards against write loss.
Reviews are read with readConcern level “local”, since users
benefit from reading the freshest data, and there is no harm
in displaying an unacknowledged write that might be rolled
back.

3.4.5 Majority Reads with Causal Consistency and
Local Writes

This combination is useful when writes are small, but dou-
ble writes are painful. Consider a social media site with
short posts. Low-latency posts are desirable, and write loss
is acceptable, since a user can rewrite their post, so writes
use w:1. However, double writes are painful, since it is unde-
sirable user behavior to have the same post twice. For this
reason, reads use readConcern level “majority” with causal
consistency so that a user can definitively see whether their
post was successful.

4. TUNABLE CONSISTENCY OFFERINGS
IN OTHER COMMERCIAL DATABASES

Many originally single-node databases that have since ex-
panded to support replication do not offer tunable consis-
tency levels across nodes. For example Oracle’s add-on repli-
cation system, GoldenGate, does not have tunable durabil-
ity or staleness guarantees. A write will be acknowledged as
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successful once it has been committed locally to an Oracle
instance, and then will be asynchronously replicated some-
time thereafter. Further, GoldenGate allows multiple nodes
to accept writes for the same data set [16]. Reads, even if
targeting a single node, may see data that will ultimately
roll back from a yet-to-be-discovered write conflict. Ora-
cle’s Data Guard offers both asynchronous and synchronous
one-way replication. Synchronous replication waits for the
passive node to commit the write before returning success to
the client. Synchronous replication in Data Guard cannot
be specified at the operation level. Additionally, there is no
way to specify the durability requirements of data read in
a query. A query may see data yet to be committed to the
passive node, data that may ultimately be lost.

MySQL’s group replication supports tunable consistency
across nodes at session granularity. It can be configured for
single primary or multi-primary replication. By default, ev-
ery transaction first determines ordering of the transaction
across a majority of nodes then commits the transaction to
a majority before acknowledging success [6]. MySQL group
replication allows for only one notion of durability equiva-
lent to majority committed. Every read only sees the equiv-
alent of majority committed data, no in-progress or locally
committed transactions are visible to outside operations. In
systems of high write volume readers will perpetually see
out-of-date data, since the majority committed data will be
stale as recent writes will not yet be reflected. Multiple
writers attempting to concurrently write to the same row
may continue to see write conflicts. MySQL has recently
introduced tunable consistency levels that mitigate the ef-
fects of seeing stale data [7]. The consistency levels offered
are EVENTUAL, BEFORE, AFTER, and BEFORE AND
AFTER. The EVENTUAL level is the default behavior de-
scribed above where readers only read the equivalent of ma-
jority committed data. BEFORE specifies that the transac-
tion will wait until all preceding transactions are complete
before starting its execution. AFTER specifies that the sys-
tem will wait for the transaction to be committed and vis-
ible on every node before being acknowledged, so that any
reader will see the write regardless of which node it reads
from. BEFORE AND AFTER combines these guarantees.
While these knobs are useful to minimize the staleness of
readers, each consistency level requires coordination across
at least a majority of nodes, introducing a latency cost.

Postgres has both asynchronous (the default) and syn-
chronous replication options, neither of which offers auto-
matic failure detection and failover [12]. The synchronous
replication only waits for durability on one additional node,
regardless of how many nodes exist [13]. Additionally, Post-
gres allows one to tune these durability behaviors at the user
level. When reading from a node, there is no way to specify
the durability or recency of the data read. A query may re-
turn data that is subsequently lost. Additionally, Postgres
does not guarantee clients can read their own writes across
nodes.

Cassandra’s multi-primary replication system offers tun-
able consistency at an operation level. Similar to MongoDB,
Cassandra has two notions of durability equivalent to locally
committed and majority committed. Cassandra has QUO-
RUM writes that ensure the data is committed to a majority
of nodes with the row before acknowledging success, giving
the behavior of MongoDB’s writeConcern level majority [9].
However, Cassandra’s QUORUM reads do not guarantee

that clients only see majority committed data, differing from
MongoDB’s readConcern level “majority”. Instead Cassan-
dra’s QUORUM reads reach out to a majority of nodes with
the row and return the most recent update [4], regardless of
whether that write is durable to the set. Because of Mon-
goDB’s deterministic write ordering, reads at readConcern
level “majority” can be satisfied without cross-node coor-
dination. In order to get causal consistency (or “read your
writes”) guarantees in Cassandra, each read and write oper-
ation must pay the latency cost of coordinating a majority
of nodes.

MongoDB’s consistency model was designed to offer users
the power of granularly tuning consistency, staleness, and
latency tradeoffs. Additionally, MongoDB has a reliable or-
dering of operations, enforced on the primaries of replica sets
and maintained by the data rollback procedure discussed in
later sections. This allows for majority committed reads and
causally consistent reads to be satisfied without requiring
coordination across multiple nodes.

5. SPECULATIVE MAJORITY AND SNAP-
SHOT ISOLATION FOR MULTI STATE-
MENT TRANSACTIONS

In this section, we discuss the behavior and implemen-
tation of consistency levels within multi-statement trans-
actions. We chose an innovative strategy for implementing
readConcern within transactions that greatly reduced aborts
due to write conflicts in back-to-back transactions. When a
user specifies readConcern level “majority” or “snapshot”,
we guarantee that the returned data was committed to a
majority of replica set members. Outside of transactions,
this is accomplished by reading at a timestamp at or earlier
than the majority commit point in WiredTiger. However,
this is problematic for operations that can write, including
transactions. It is useful for write operations to read the
freshest version of a document, since the write will abort if
there is a newer version of the document than the one it read.
This motivated us to implement “speculative” majority and
snapshot isolation for transactions: transactions read the
latest data for both read and write operations, and at com-
mit time, if the writeConcern is w:“majority”, they wait
for all the data they read to become majority committed.
This means that a transaction only satisfies its readConcern
guarantees if the transaction commits with writeConcern
w:“majority”. This is acceptable as long as the client ap-
plication avoids creating side effects outside the database if
transaction commit fails.

Waiting for the data read to become majority commit-
ted at commit time rarely adds latency to the transaction,
since if the transaction did any writes, then to satisfy the
writeConcern guarantees, we must wait for those writes to
be majority committed, which will imply that the data read
was also majority committed. Only read-only transactions
require an explicit wait at commit time for the data read
to become majority committed. Even for read-only transac-
tions, this wait often completes immediately because by the
time the transaction commits, the timestamp at which the
transaction read is often already majority committed.

Our decision to implement speculative majority and snap-
shot isolation was motivated by the high incidence of trans-
action aborts due to write conflict in user beta-testing. Mak-
ing this change drastically improved user experience. Fig-
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ure 3 illustrates this point. In the diagram, time proceeds
from top to bottom. In both examples shown, C1 and C2
both perform a successful update to the same document with
writeConcern w:“majority”. On the left, C2 reads from the
locally committed view of the data on the primary, P, and
makes its update relative to that view. On the right, C2
reads from the majority committed view of the data, and
makes its update relative to that view. For C2’s write to
be successful in the diagram on the right, it must not be-
gin the read phase of its update until C1’s write is majority
committed, leading to increased delay between successful
back-to-back writes to the same document. The red oval
indicates the extra time required between successful back-
to-back writes when reading from the majority committed
view.

Figure 3: Back-to-Back Transactions with and with-
out Speculative Snapshot Isolation

6. SUPPORTING A SPECTRUM OF CON-
SISTENCY LEVELS IN A SINGLE DE-
PLOYMENT

MongoDB’s replication system architecture is specifically
designed to support the spectrum of consistency levels men-
tioned above. The two novel aspects of the system that
enable this are its speculative execution model and its data
rollback algorithms. The former necessitates the latter, so
we will first discuss speculative execution in MongoDB repli-
cation and subsequently discuss how it motivates data roll-
back.

6.1 Speculative Execution Model
The MongoDB replication protocol is similar to the Raft

consensus algorithm, which is based on a replicated state
machine model. A leader node accepts client requests, se-
rializes them into an operation log, and replicates these log
entries to follower nodes. All servers apply these log entries
in a consistent order, producing the same final state. In the
case of MongoDB, the database itself is the state machine,
and entries in the oplog correspond to operations on this
state machine. In Raft, log entries are not applied to the
state machine until they are known to be committed, which
means that they will never be erased from the log. In con-
trast, MongoDB replicas apply log entries to the database
as soon as they are received. This means that a server may
apply an operation in its log even if the operation is un-
committed. This allows MongoDB to provide the “local”

read concern level. As soon as a write operation is applied
on some server, a “local” read is able to see the effects of
that write on that server, even before the write is majority
committed in the replica set.

6.2 Data Rollback
MongoDB’s speculative execution model makes it neces-

sary for the replication system to have a procedure for data
rollback. As discussed above, servers may apply log entries
before they are majority committed. This implies that these
log entries may need to be erased from the log at some later
point. In a protocol like Raft, this rollback procedure con-
sists of truncating the appropriate entries from a log. In
MongoDB, in addition to log truncation, it must undo the
effects of the operations it deletes from a log. This requires
modifying the state of the database itself, and presents sev-
eral engineering challenges.

MongoDB’s rollback protocol engages two separate replica
set nodes, a rollback node and a sync source node. The
process is initiated by the rollback node when it detects
that its log has diverged from the log of the sync source
node, i.e. its log is no longer a prefix of that node’s log.
The precise conditions for rollback can be examined in the
Raft paper and the MongoDB source code, so the full details
will not be described here. Once a node determines that it
needs to begin the rollback procedure, it will determine the
newest log entry that it has in common with the sync source.
The timestamp of this log entry is referred to as tcommon.
The node then needs to truncate all oplog entries with a
timestamp after tcommon, and modify its database state in
such a way that it can become consistent again. A database
state is consistent if it corresponds to a state that could have
been produced by applying log entries up to some particular
point. There are two different algorithms that a node can
use in order to complete the rollback process.

6.2.1 Recover to Timestamp Algorithm
The first algorithm is known as “recover to timestamp”

(RTT). Since MongoDB version 4.0, the WiredTiger stor-
age engine has provided the ability to revert all replicated
database data to some previous point in time. The Mon-
goDB replication system periodically informs the storage
engine of a stable timestamp (tstable), which is the latest
timestamp in the MongoDB oplog that is known to be ma-
jority committed and also represents a consistent database
state. The algorithm works as follows. First, the rollback
node asks the storage engine to revert the database state to
the newest stable timestamp. After this procedure is com-
plete the database state is guaranteed to reflect the times-
tamp, tstable, that storage reverted the data to. Note that
tstable may be a timestamp earlier than the rollback com-
mon point. Then, the node applies oplog entries forward
from tstable up to and including the common point. After
this procedure is finished, the database state is consistent
and reflects the common point timestamp tcommon.

6.2.2 Refetch Based Rollback
The second rollback algorithm, known as “refetch based

rollback”, was the MongoDB replication system’s original
rollback algorithm. It was replaced as the default by RTT
in version 4.0. It still exists in the current system to support
certain scenarios where RTT is not possible. The refetch
based rollback algorithm can be viewed as a type of data
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re-synchronization procedure. While the goal of RTT is to
bring the database back to a consistent state at tcommon,
refetch based rollback will instead bring the database back
to a consistent state at some timestamp newer than tcommon.
This algorithm was designed before the storage engine ex-
posed the ability to revert data to a historical timestamp.
The refetch rollback algorithm steps through each operation
that needs to be rolled back and records information about
how to undo each operation. The particular semantics of
“undo” depend on the operation type, and undoing an op-
eration may be non-trivial since the oplog is not an undo log.
For example, an insert operation can be reverted locally by
simply deleting the associated document. For other opera-
tions, like document deletions, the node does not have all
the data necessary in order to revert the operation. In this
case, it will refetch the necessary data from the sync source
node, and update its local database with the data it fetched.
After refetching all necessary data and undoing any possible
operations, the rollback node transitions into a “recovering”
state, where it will start syncing oplog entries again from its
sync source. Client reads are prohibited during this state,
since the data may not be consistent yet. During this phase
the rollback node will apply oplog entries as if it were a
secondary, until it is guaranteed that its database state is
consistent again at a timestamp known as minValid. min-
Valid is the timestamp of the newest oplog entry on the sync
source node at a time no earlier than when the rollback node
last fetched new data from it. After applying log entries up
to minValid, the node will be consistent and can become a
normal secondary again.

The refetch based rollback algorithm is complex and chal-
lenging to implement correctly. It involves network commu-
nication between two nodes, and it depends on knowledge
about the semantics of all possible operation types that may
be put into the oplog. The RTT algorithm eliminates much
of this complexity by moving the rollback logic to a lower
layer of the system. We feel that MongoDB’s design and
implementation of rollback in a consensus system like this
is novel, and it enables the wide spectrum of consistency
levels.

7. OPERATIONS MINIMIZE THE IMPACT
OF THEIR CONSISTENCY LEVEL ON
THE SYSTEM

Since multiple consistency levels are supported in the same
deployment, it is important that choosing a stronger consis-
tency level has little impact on the performance of the rest of
the system. In this section, we describe how this is achieved
in MongoDB for read and write operations.

7.1 Write Operations
The cost of consistency for a write operation is completely

paid by the latency of that particular write operation. A
write operation with writeConcern w:1 can return as soon
as the operation is durable on the primary. A write op-
eration with writeConcern w:“majority” can return when
the operation is durable on a majority of voting nodes in
the replica set. The server performs the same work in both
cases, and the only difference is how soon the operation re-
turns success.

7.2 Read Operations

batch := ∅;
while !batch.full() & wiredTigerCursor.more() do

if timeToYield() & getReadConcern()
6=“snapshot” then

releaseLocks();
abortWiredTigerTransaction();
beginWiredTigerTransaction();
reacquireLocks();

end
batch.add(wiredTigerCursor.next());

end
return batch;

Algorithm 1: Query Execution in MongoDB

To understand the impact of readConcern on the rest of
the system, it is necessary to discuss some details of reads
in the WiredTiger storage engine. All reads in WiredTiger
are done as transactions with snapshot isolation. While a
transaction is open, all later updates must be kept in mem-
ory 2. Once there are no active readers earlier than a point
in time t, the state of the data files at time t can be per-
sisted to disk, and individual updates earlier than t can be
forgotten. Thus a long-running WiredTiger transaction will
cause memory pressure, so MongoDB reads must avoid per-
forming long-running WiredTiger transactions in order to
limit their impact on the performance of the system.

7.2.1 Local Reads
Reads with readConcern level “local” read the latest data

in WiredTiger. However, local reads in MongoDB can be
arbitrarily long-running. In order to avoid keeping a sin-
gle WiredTiger transaction open for too long, they perform
“query yielding” (Algorithm 1): While a query is running,
it will read in a WiredTiger transaction with snapshot iso-
lation and hold database and collection locks, but at reg-
ular intervals, the read will “yield”, meaning it aborts its
WiredTiger transaction and releases its locks. After yield-
ing, it opens a new WiredTiger transaction from a later
point in time and reacquires locks (the read will fail if the
collection or index it was reading from was dropped). This
process ensures that local reads do not perform long-running
WiredTiger transactions, which avoids memory pressure.
The consequence is that local reads do not see a consistent
cut of data, but this is acceptable for this isolation level.

7.2.2 Majority Reads
Reads with readConcern level “majority” also perform

query yielding, but they read from the majority commit
point of the replica set. Each time a majority read yields,
if the majority commit point has advanced, then the read
will be able to resume from a later point in time. Again,
majority reads may not read a consistent cut of data. A
majority read could return 5 documents, yield and open a
WiredTiger transaction at a later point in time, then return
5 more documents. It is possible that a MongoDB transac-
tion that touched all 10 documents would only be reflected
in the last 5 documents returned, if it committed while the

2This is a simplification. WiredTiger, in fact, has a mech-
anism to overflow these updates to disk in a “lookaside
buffer”, so WiredTiger is not limited by the amount of RAM
on the system. However, there is a performance impact of
utilizing the lookaside buffer.
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read was running. This inconsistent cut is acceptable for this
isolation level. Since the read is performed at the majority
commit point, we guarantee that all of the data returned is
majority committed.

It is worth noting that supporting majority reads impacts
the performance of the system, since all history since the ma-
jority commit point must be kept in memory. When the pri-
mary continues to accept writes but is unable to advance the
majority commit point, this creates memory pressure. Con-
sidering this, one might conclude that it would be desirable
to disable majority reads in order to improve performance.
However, keeping history back to the majority commit point
in memory is necessary for other parts of the system, such
as the “recover-to-timestamp” algorithm (Section 6.2.1), so
we have chosen to architect the system to ensure that the
majority commit point can always advance, which allows us
to support majority reads with no additional cost.

7.2.3 Snapshot Reads
Reads with readConcern level “snapshot” must read a

consistent cut of data. This is achieved by performing the
read in a single WiredTiger transaction, instead of doing
query yielding. In order to avoid long-running WiredTiger
transactions, MongoDB kills snapshot reads that have been
running longer than 1 minute.

8. EXPERIMENTS

8.1 Latency Comparison of Different Write
Concern Levels

In this section, we compare the write latency for dif-
ferent values of writeConcern. Most application develop-
ers would prefer to use stronger durability guarantees, but
choose weaker guarantees when they are unable to pay the
latency cost. This generally works in practice because fail-
ures are infrequent and write loss is small, so the developer
tolerates small write loss in exchange for lower latency on
all operations. These experiments demonstrate the higher
latency of stronger durability guarantees, motivating why
developers choose weaker guarantees. The experiments in
this section were performed by Henrik Ingo, of the server
performance team at MongoDB.

We performed three experiments on 3-node replica sets
using different geographical distributions of replica set mem-
bers. In each experiment, we tested different writeConcern
values and different client locations, where applicable. Each
experiment performed 100 single-document updates. All op-
erations specified that journaling was required in order to
satisfy the given writeConcern.

8.1.1 Local Latency Comparison
In this experiment, all replica set members and the client

were in the same AWS Availability Zone (roughly the same
datacenter) and Placement Group (roughly the same rack).
All replica set members were running MongoDB 4.0.2 with
SSL disabled. The cluster was deployed using sys-perf, the
internal MongoDB performance testing framework. Results
are shown in Table 3 and Figure 4.

8.1.2 Cross-AZ Latency Comparison
In this experiment, all replica set members were in the

same AWS Region (the same geographic area), but they
were in different Availability Zones. Client 1 was in the

Table 3: Local Latency Comparison of Write Con-
cern Values in Milliseconds

Write Concern Avg 99%
{w:1} 1.25 2.05
{w:"majority"} 3.18 4.12

Figure 4: Local Latency Comparison of Write Con-
cern Values in Milliseconds

same Availability Zone as the primary, and Client 2 was in
the same Availability Zone as a secondary. All replica set
members were running MongoDB 4.0.3 with SSL enabled.
The cluster was deployed using MongoDB Atlas on M60
instances with 5280 PIOPS.3 Results are shown in Table 4
and Figure 5. We recognize that it is surprising that Client
2 had lower latency for writeConcern w:“majority”, and we
believe this is just noise.

8.1.3 Cross-Region Latency Comparison
In this experiment, all replica set members were in dif-

ferent AWS Regions. The primary was in US-EAST1, one
secondary was in EU-WEST-1, and the other secondary was
in US-WEST-2. Client 1 was in US-EAST1, and Client 2
was in EU-WEST-1. All replica set members were running
MongoDB 4.0.3 with SSL enabled. The cluster was deployed
using MongoDB Atlas on M60 instances with 5280 PIOPS.
Results are shown in Table 5 and Figure 6.

8.2 Quantifying w:1 Write Loss In a Fail-Stop
Model

As discussed previously, users may choose to trade off
latency for consistency depending on their application re-
quirements. We designed a simple workload simulation to
estimate the degree of w:1 write loss in a replica set under
standard failure modes. We developed an insert-only work-
load that runs against a 3 node replica set deployed on AWS
in the US-EAST-1 Availability Zone. The replica set hosts
were c3.8xlarge instances with 320 GB EBS volumes, with
5500 IOPS, running Amazon Linux 2. All replica set nodes
were running MongoDB v4.0.2-rc0. There is a dedicated
workload client host that runs on the same instance type.

The workload client is written in Python and uses the Py-
Mongo driver to communicate with the replica set. It has 30

3The differences among these test setups (e.g. MongoDB
version, SSL, instance size) are acceptable because our focus
is comparing performance of different write concern levels
within one experiment, rather than performance compar-
isons across experiments.
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Table 4: Cross-AZ Latency Comparison of Write
Concern Values in Milliseconds

Client 1 Client 2
Write Concern Avg 99% Avg 99%
{w:1} 1.83 2.92 2.01 3.02
{w:"majority"} 4.85 5.95 4.32 5.25

Figure 5: Cross-AZ Latency Comparison of Write
Concern Values in Milliseconds

concurrent writer threads that each insert documents into a
test collection, which is initially empty. All writes are done
at w:1 write concern. The workload client inserts as many
documents as possible until exceeding a specified workload
time limit, which was set at 1 hour for our experiments. To
simulate failures, the MongoDB process for each replica set
node is forcefully killed and restarted at periodic intervals.
The processes are shut down with a SIGKILL signal. There
are two time intervals of importance to the failure simu-
lation: (1) the time between a restart and subsequent shut
down and (2) the time between shut down and restart, which
can be viewed as the “time to repair”. The results from [5]
provide an empirical analysis of failure and repair behavior
in cloud environments, specifically in Google Cloud. They
find that a Weibull distribution is a good model for time be-
tween server failures, and we used this model for our work-
load simulation. We scale down the time intervals so that we
can run a single workload in a reasonable amount of time,
but we model time between failure using this distribution.
Thus, we use a Weibull distribution with a shape parameter
k = 1.5 and a scale parameter λ = 60. The shape param-
eter was based on Table 2, Server Architecture 7 from [5].
The scale parameter has units of seconds for our experiment.
This gives a mean time between shutdowns of 54.16 seconds.
The referenced paper also examines the “time to repair” dis-
tribution but for simplicity we do not include those details
in our test. We restart nodes 10 seconds after killing them.
We also kill any nodes in the replica set with equal likeli-
hood. Killing only the primary node would potentially lead
to more lost writes, but uniformly killing nodes models real
world failure more accurately, since failures should be just
as likely to occur on a primary or secondary. The results
of our experiments are shown in Table 6. We carried them
out at several different network latency levels. We induced
artificial network latency by using the Linux traffic control
(“tc”) tool to delay IP traffic between the replica set hosts.
No latency was added between the workload client and the
replica set hosts. At the end of the workload, we compare

Table 5: Cross-Region Latency Comparison of Write
Concern Values in Milliseconds

Client 1 Client 2
Write Concern Avg 99% Avg 99%
{w:1} 2.16 14.9 72 73
{w:"majority"} 185 192 217 480

Figure 6: Cross-Region Latency Comparison of
Write Concern Values in Milliseconds

the set of inserts that were acknowledged to the client versus
the set of inserts that actually appear in the database i.e. the
durable operations. We look at the proportion of acknowl-
edged to durable to quantify how many writes were lost.
This quantity durable/acknowledged is shown as “Durable
%” in Table 6.

At higher latency levels we see higher write loss levels.
This is likely due to the fact that, with higher latency, it is
more probable that many writes have been written on the
primary but not yet replicated to secondaries at the time a
crash occurs.

Table 6: w:1 Write Loss Under Failure, 1 hour work-
load duration

Latency(ms) Ack’d Lost Durable %
0 4,039,799 1,297 99.968

100 3,770,680 4,395 99.883
200 3,687,984 22,174 99.399

8.3 Failover Data from MongoDB Managed
Replica Set Deployments

To further quantify the frequency of replica set failure in
the real world, we collected operational data from 17,720
3-node replica set deployments managed by MongoDB over
the course of 1 week. We were not able to directly measure
the number of node crashes or restarts with the data col-
lected, but we analyzed the number of unique terms seen
by each replica set over this time period. Recall that terms
are monotonically increasing integral values maintained on
each replica set node, and are used as a way to totally or-
der elected replica set leaders. There can be at most one
leader for a given term. Thus, by examining the set of all
unique terms over some period of time, it is possible to get
a sense of how many elections that replica set experienced.
This additionally acts as a rough proxy for measuring failure
frequency, since the failure of nodes may cause an election
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Figure 7: Number of terms seen by 3 node replica
sets over 1 week in MongoDB Managed Deploy-
ments

to occur. It is possible for a term increase to occur across a
replica set without the successful election of a new primary,
but that is expected to be relatively rare. The results are
depicted in Figure 7. 10,668 replica sets experienced 1 term
(60.2 % of total), 6376 experienced 2 terms (35.98 % of to-
tal), and 515 experienced 3 terms (2.9 % of total). Less than
1 percent experienced 4 terms or more. In many of these
managed deployments, it is likely that one of the most com-
mon source of term changes is an election due to a planned
maintenance event, e.g. upgrading a server’s binary version.
In these cases, an election is necessary since the node un-
dergoing maintenance (e.g. the primary) must eventually be
shut down, but a planned stepdown will wait for a majority
of replica set nodes to be caught up to the primary before
the stepdown succeeds. Thus, all writes that were present
on the primary at the start of the stepdown should become
majority committed, reducing the loss of any w:1 writes.

9. CONCLUSIONS AND FUTURE WORK
MongoDB allows users to configure each operation’s con-

sistency level, allowing them to choose the safety and per-
formance requirements of each operation. As a highly avail-
able replicated database, it is important to give operators
the choice of whether to view the system as a single-node
system-of-record or a low-latency distributed system that
permits short periods of inconsistency, and MongoDB al-
lows this flexibility. In MongoDB 3.6 and 4.0, we extended
our consistency offerings with causal consistency and trans-
actions with snapshot isolation, and we intend to continue
improving our consistency features. In upcoming releases,
we plan to reduce the latency of majority writes, which will
allow developers to more readily choose this durability guar-
antee. We also plan to build support for long-running reads
at snapshot isolation that have no impact on the rest of the
system, where any performance cost is entirely paid for by
the operation. As future work, we would like to translate
our matrix of readConcern and writeConcern offerings into
coherent consistency settings, in order to improve the com-
prehensibility of these features.
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