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ABSTRACT
Large organizations like YouTube are dealing with exploding
data volume and increasing demand for data driven applica-
tions. Broadly, these can be categorized as: reporting and
dashboarding, embedded statistics in pages, time-series mon-
itoring, and ad-hoc analysis. Typically, organizations build
specialized infrastructure for each of these use cases. This,
however, creates silos of data and processing, and results in
a complex, expensive, and harder to maintain infrastructure.

At YouTube, we solved this problem by building a new
SQL query engine – Procella. Procella implements a super-
set of capabilities required to address all of the four use cases
above, with high scale and performance, in a single product.
Today, Procella serves hundreds of billions of queries per
day across all four workloads at YouTube and several other
Google product areas.
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1. INTRODUCTION
YouTube, as one of the world’s most popular websites,

generates trillions of new data items per day, based on billions
of videos, hundreds of millions of creators and fans, billions
of views, and billions of watch time hours. This data is used
for generating reports for content creators, for monitoring
our services health, serving embedded statistics such as video
view counts on YouTube pages, and for ad-hoc analysis.

These workloads have different set of requirements:
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• Reporting and dashboarding: Video creators, con-
tent owners, and various internal stakeholders at
YouTube need access to detailed real time dashboards
to understand how their videos and channels are per-
forming. This requires an engine that supports exe-
cuting tens of thousands of canned queries per second
with low latency (tens of milliseconds), while queries
may be using filters, aggregations, set operations and
joins. The unique challenge here is that while our data
volume is high (each data source often contains hun-
dreds of billions of new rows per day), we require near
real-time response time and access to fresh data.

• Embedded statistics: YouTube exposes many real-
time statistics to users, such as likes or views of a video,
resulting in simple but very high cardinality queries.
These values are constantly changing, so the system
must support millions of real-time updates concurrently
with millions of low latency queries per second.

• Monitoring: Monitoring workloads share many prop-
erties with the dashboarding workload, such as rela-
tively simple canned queries and need for fresh data.
The query volume is often lower since monitoring is typ-
ically used internally by engineers. However, there is a
need for additional data management functions, such
as automatic downsampling and expiry of old data, and
additional query features (for example, efficient approx-
imation functions and additional time-series functions).

• Ad-hoc analysis: Various YouTube teams (data sci-
entists, business analysts, product managers, engineers)
need to perform complex ad-hoc analysis to understand
usage trends and to determine how to improve the prod-
uct. This requires low volume of queries (at most tens
per second) and moderate latency (seconds to minutes)
of complex queries (multiple levels of aggregations, set
operations, analytic functions, joins, unpredictable pat-
terns, manipulating nested / repeated data, etc.) over
enormous volumes (trillions of rows) of data. Query pat-
terns are highly unpredictable, although some standard
data modeling techniques, such as star and snowflake
schemas, can be used.

Historically, YouTube (and other similar products at
Google and elsewhere) have relied on different storage and
query backends for each of these needs: Dremel [33] for ad-hoc
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analysis and internal dashboards, Mesa [27] and Bigtable [11]
for external-facing high volume dashboards, Monarch [32]
for monitoring site health, and Vitess [25] for embedded
statistics in pages. But with exponential data growth and
product enhancements came the need for more features, bet-
ter performance, larger scale and improved efficiency, making
meeting these needs increasingly challenging with existing
infrastructures. Some specific problems we were facing were:

• Data needed to be loaded into multiple systems us-
ing different Extract, Transform, and Load (ETL)
processes, leading to significant additional resource
consumption, data quality issues, data inconsistencies,
slower loading times, high development and mainte-
nance cost, and slower time-to-market.

• Since each internal system uses different languages
and API’s, migrating data across these systems, to
enable the utilization of existing tools, resulted in re-
duced usability and high learning costs. In particular,
since many of these systems do not support full SQL,
some applications could not be built by using some
backends, leading to data duplication and accessibility
issues across the organization.

• Several of the underlying components had performance,
scalability and efficiency issues when dealing with data
at YouTube scale.

To solve these problem, we built Procella, a new distributed
query engine. Procella implements a superset of features
required for the diverse workloads described above:

• Rich API: Procella supports an almost complete im-
plementation of standard SQL, including complex multi-
stage joins, analytic functions and set operations, with
several useful extensions such as approximate aggrega-
tions, handling complex nested and repeated schemas,
user defined functions, and more.

• High Scalability: Procella separates compute (run-
ning on Borg [42]) and storage (on Colossus [24]), en-
abling high scalability (thousands of servers, hundreds
of petabytes of data) in a cost efficient way.

• High Performance: Procella uses state-of-the-art
query execution techniques to enable efficient execution
of high volume (millions of QPS) of queries with very
low latency (milliseconds).

• Data Freshness: Procella supports high volume, low
latency data ingestion in both batch and streaming
modes, the ability to work directly on existing data,
and native support for lambda architecture [35].

2. ARCHITECTURE

2.1 Google Infrastructure
Procella is designed to run on Google infrastructure.

Google has one of world’s most advanced distributed systems
infrastructure, with several notable features, which have had
a large impact on Procella’s design:

• Disaggregated storage: All durable data must be
stored in Colossus. No local storage is available to the
system. Colossus, while being almost infinitely scalable,
differs from local storage in a few important ways:
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Figure 1: Procella System Architecture.

– Data is immutable. A file can be opened and
appended to, but cannot be modified. Further,
once finalized, the file cannot be altered at all.

– Common metadata operations such as listing and
opening files can have significantly higher latency
(especially at the tail) than local file systems, be-
cause they involve one or more RPCs to the Colos-
sus metadata servers.

– All durable data is remote; thus, any read or write
operation can only be performed via RPC. As
with metadata, this results in higher cost and
latency when performing many small operations,
especially at the tail.

• Shared compute: All servers must run on Borg, our
distributed job scheduling and container infrastructure.
This has several important implications:

– Vertical scaling is challenging. Each server runs
many tasks, each potentially with different re-
source needs. To improve overall fleet utilization,
it is better to run many small tasks than a small
number of large tasks.

– Borg master can often bring down machines for
maintenance, upgrades, etc. Well behaved tasks
thus must learn to recover quickly from being
evicted from one machine and brought up in a
different machine. This, along with the absence
of local storage, makes keeping large local state
impractical, adding to the reasons for having a
large number of smaller tasks.

– A typical Borg cluster will have thousands of inex-
pensive machines, often of varying hardware con-
figuration, each with a potentially different mix of
tasks with imperfect isolation. Performance of a
task, thus, can be unpredictable. This, combined
with the factors above, means that any distributed
system running on Borg must deploy sophisticated
strategies for handling badly behaving tasks, ran-
dom task failures, and periodic unavailability due
to evictions.

Figure 1 illustrates the overall Procella architecture. Our
architecture is structured from multiple components, each
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executes in a distributed manner. When a component does
not have any executing instance, the functionality it provides
is unavailable (for example, even when data servers are down,
ingestion and registration can function).

2.2 Procella’s Data

2.2.1 Data Storage
Like most databases, Procella data is logically organized

into tables. Each table’s data is stored across multiple files
(also referred to as tablets or partitions). Procella uses its
own columnar format, Artus (Section 3.2) for most data, but
also supports querying data stored in other formats such
as Capacitor [34]. All durable data is stored in Colossus,
allowing Procella to decouple storage from compute; i.e,
the servers processing the data can be scaled to handle
higher traffic independently of the size of the underlying
data. Additionally, the same data can be served by multiple
instances of Procella.

2.2.2 Metadata Storage
Like many modern analytical engines [18, 20], Procella

does not use the conventional BTree style secondary indexes,
opting instead for light weight secondary structures such as
zone maps, bitmaps, bloom filters, partition and sort keys [1].
The metadata server serves this information during query
planning time. These secondary structures are collected
partly from the file headers during file registration, by the
registration server, and partly lazily at query evaluation time
by the data server. Schemas, table to file mapping, stats,
zone maps and other metadata are mostly stored in the
metadata store (in Bigtable [11] and Spanner [12]).

2.2.3 Table management
Table management is through standard DDL commands

(CREATE, ALTER, DROP, etc.) sent to the registration
server (RgS), which stores them in the metadata store. The
user can specify column names, data types, partitioning
and sorting information, constraints, data ingestion method
(batch or realtime) and other options to ensure optimal table
layout. For real-time tables, the user can also specify how to
age-out, down-sample or compact the data; this is important
for monitoring applications and for supporting a lambda
architecture where batch data replaces real time data at a
regular cadence.

Once a table object is created in the system, the table data
can be populated, or ingested, in batch mode or realtime
mode. Both of the ingestion modes differ in the optimizations
they use.

2.2.4 Batch ingestion
Users generate data using offline batch processes (such as

a MapReduce [15]) and register the data by making a DDL
RPC to the RgS. This is the most common method employed
by automated pipelines that refresh data at a regular cadence,
such as hourly or daily. During the data registration step,
the RgS extracts mapping of table to files and secondary
structures (described in section 2.2.2 above) from file headers.
We avoid scanning data during the registration step to enable
fast data registration. However, we may utilize Procella data
servers to lazily generate expensive secondary structures
if the required indexing information is not present in the
file headers, for example, if bloom filters are missing in

externally generated data. There are no prerequisites on
data organization for registering data with Procella [40]. In
practice, however, for best performance, data should be laid
out optimally using partitioning, sorting, etc.

The RgS is also responsible for sanity checks during the
table and data registration step. It validates backwards
compatibility of schemas, prunes and compacts complex
schemas, ensures that file schemas are compatible with the
table schemas registered by the user, etc.

2.2.5 Realtime ingestion
The ingestion server (IgS) is the entry point for real-time

data into the system. Users can stream data into it using
a supported streaming mechanism such as RPC or PubSub.
The IgS receives the data, optionally transforms it to align
with the table structure and appends it to a write-ahead
log on Colossus. In parallel, it also sends the data to the
data servers according to the data partitioning scheme for
the table. The data is (temporarily) stored in the memory
buffer of the data server for query processing. The buffers are
also regularly checkpointed to Colossus to help in recovery if
and after crash or eviction occurs, but this is best-effort and
does not block query access to the data. The IgS (option-
ally) sends the data to multiple data servers for redundancy.
Queries access all copies of the buffered data and use the
most complete set.

The write-ahead log is compacted in the background by
compaction tasks that provide durable ingestion.

Having the data follow two parallel paths allows it to be
available to queries in a dirty-read fashion in seconds or even
sub-second, while being eventually consistent with slower
durable ingestion. Queries combine data from the in-memory
buffers and the on-disk tablets, taking from the buffers only
data that is not yet durably processed. Serving from the
buffers can be turned off to ensure consistency, at the cost
of additional data latency.

2.2.6 Compaction
The compaction server periodically compacts and re-

partitions the logs written by the IgS into larger partitioned
columnar bundles for efficient serving by the data servers.
During the compaction process, the compaction server can
also apply user defined SQL based logic (specified during
table registration) to reduce the size of the data by filter-
ing, aggregation, aging out old data, keeping only the latest
value, etc. Procella allows a fairly rich SQL based logic to
be applied during the compaction cycle, thus giving more
control to the user to manage their real-time data.

The compaction server updates the metadata store
(through the RgS) after each cycle, removing metadata about
the old files and inserting metadata about the newly gen-
erated files. The old files are subsequently deleted by a
background process.

2.3 Query Lifecycle
Clients connect to the Root Server (RS) to issue SQL

queries. The RS performs query rewrites, parsing, planning
and optimizations to generate the execution plan. To this
end, it uses metadata such as schema, partitioning and index
information from the Metadata Server (MDS) to prune the
files to be read, as detailed in Section 3.4. It then orchestrates
the query execution as it goes through the different stages
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enforcing timing/data dependencies and throttling. To ad-
dress the needs of executing complex distributed query plans
(timing/data dependencies, diverse join strategies, etc.), the
RS builds a tree composed of query blocks as nodes and data
streams as edges (Aggregate, Execute Remotely, Stagger
Execution, etc.) and executes it accordingly. This enables
functionality such as shuffle (that requires timing depen-
dency), uncorrelated subquery, subquery broadcast joins
(data dependency) and multi-level aggregation. This graph
structure allows several optimizations by inserting custom
operations into the tree based on query structure. Once the
RS receives the final results, it sends the response back to
the client, along with statistics, error and warning messages,
and any other information requested by the client.

The Data Server (DS) receives plan fragments from the
RS or another DS and does most of the heavy lifting, such as
reading the required data (from local memory, remote and
distributed files in Colossus, remote memory using RDMA, or
another DS), executing the plan fragment and sending the re-
sults back to the requesting RS or DS. As in most distributed
SQL engines, Procella aggressively pushes compute close to
the data. The plan generator ensures that filters, project ex-
pressions, aggregations (including approximate aggregations
such as TOP, UNIQUE, COUNT DISTINCT and QUAN-
TILE), joins, etc. are pushed down to the DS to the extent
possible. This allows the DS to use the encoding-native
functions for these operators for optimal performance. Data
servers use Stubby [41] to exchange data with other data
servers and RDMA for shuffle (Procella reuses the BigQuery
shuffle library [4]).

3. OPTIMIZATIONS
Procella employs several techniques to achieve high query

performance for various query patterns (lookups, reporting,
ad-hoc queries, and monitoring). This section documents
several of these techniques.

3.1 Caching
Procella achieves high scalability and efficiency by segregat-

ing storage (in Colossus) from compute (on Borg). However,
this imposes significant overheads for reading or even opening
files, since multiple RPCs are involved for each. Procella
employs multiple caches to mitigate this networking penalty:

• Colossus metadata caching: To avoid file open calls
to the Colossus name server, the data servers cache
the file handles. The file handles essentially store the
mapping between the data blocks and the Colossus
servers that contain the data. This eliminates one or
more RPC roundtrips on file opens.

• Header caching: The header (or sometimes, the
footer) of columnar files contain various column meta-
data such as start offset, column size, and minimum
and maximum values. Procella data servers cache the
headers in a separate LRU cache, thus avoiding more
round trips to Colossus.

• Data caching: The DS caches columnar data in a
separate cache. The Procella data format, Artus, is
designed so that data has the same representation in
memory and on disk, making cache population fairly
cheap. In addition, the DS caches derived information
such as output of expensive operations and bloom filters.

Note that since Colossus files are essentially immutable
once closed, cache consistency is simply a matter of
ensuring that file names are not reused.

• Metadata caching: Procella scales metadata stor-
age by using a distributed storage system (Bigtable or
Spanner) to store, and a distributed metadata service
to serve metadata. However, this means that, often,
metadata operations such as fetching table to file name
mappings, schemas, and constraints can become a bot-
tleneck. To avoid this, the metadata servers cache this
information in a local LRU cache.

• Affinity scheduling: Caches are more effective when
each server caches a subset of the data. To ensure this,
Procella implements affinity scheduling to the data
servers and the metadata servers to ensure that opera-
tions on the same data / metadata go to the same server
with high probability. This means that each server is
only responsible for serving a small subset of the data /
metadata, which significantly improves cache hit ratio,
dramatically reducing the time spent fetching remote
data. An important aspect of Procella’s scheduling is
that the affinity is loose, i.e. the request can go to a
different server (for example, if the primary is down or
slow). When this happens, the cache hit probability
is lower, but since the data / metadata itself is stored
in a reliable durable storage (Bigtable, Spanner, or
Colossus), the request still completes successfully. This
property is crucial for high availability in the serving
path in the face of process evictions, overloaded ma-
chines, and other issues associated with running in a
large shared cluster.

The caching schemes are designed such that when there
is sufficient memory, Procella essentially becomes a fully
in-memory database. In practice, for our reporting instance,
only about 2% of the data can fit in memory, but access
patterns and cache affinity ensures that we get 99%+ file
handle cache hit rate and 9̃0% data cache hit rate.

3.2 Data format
The first implementation of Procella used Capacitor as the

data format, which was primarily designed for large scans
typical in ad-hoc analysis workloads. Since Procella aims to
cover several other use cases requiring fast lookups and range
scans (such as serving embedded statistics on high traffic
pages), we built a new columnar file format called Artus,
which is designed for high performance on both lookups and
scans. Specifically, Artus:

• Uses custom encodings, avoiding generic compression
algorithms like LZW. This ensures that it can seek to
single rows efficiently without needing to decompress
blocks of data, making it more suitable for small point
lookups and range scans.

• Does multi-pass adaptive encoding; i.e. it does a first
pass over the data to collect lightweight information
(e.g. number of distinct values, minimum and maxi-
mum, sort order, etc.) and uses this information to
determine the optimal encoding to use for the data.
Artus uses a variety of methods to encode data: dic-
tionary encoding with a wide variety of dictionary and
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indexer types, run-length, delta, etc. to achieve com-
pression within 2x of strong general string compression
(e.g. ZSTD) while still being able to directly operate
on the data. Each encoding has estimation methods
for how small and fast it will be on the data supplied.
Once the user has specified their objective function (rel-
ative value of size versus speed), Artus will use these
methods to automatically choose the optimal encodings
for the provided data.

• Chooses encodings that allow binary search for sorted
columns, allowing fast lookups in O (logN) time.
Columns also support O (1) seeks to a chosen row num-
ber, which means that a row with K columns matching
a given primary key can be found in O (logN + K). For
columns that allow direct indexing, such as packing
integers into a fixed number of bits, providing these
O (1) seeks is trivial, whereas for other columns, such
as run-length-encoded columns, we must maintain addi-
tional ‘skip block’ information that records the internal
state of the column every B rows, allowing us to ‘skip’
into the encoded data as if we had scanned through
it until that point. Note that technically the seeks on
these types of columns are O (B) rather than O (1) as
we must iterate forward from the last skip block. The
values used for B are generally quite small, such as 32
or 128, and represent a tradeoff between compression
size and lookup speed. Fast row lookups are critical
for lookup queries and distributed lookup joins, where
we treat the right side table as a distributed hash map.

• Uses a novel representation for nested and repeated
data types that is different from the method origi-
nally implemented in ColumnIO [33] and subsequently
adopted by Capacitor, Parquet and others. We visu-
alize a table’s schema as a tree of fields. We store a
separate column on disk for each of these fields (unlike
rep/def, which only stores leaf fields). When ingesting
a record, each time a parent field exists, we note the
number of times each of its children occur. For optional
fields, this is either 0 or 1. For repeated fields, this
number is non-negative. Of particular interest here
is that we do not record any information about fields
whose parent does not exist; we are thus able to store
sparse data more efficiently than rep/def, which always
records data in each of its leaf fields. When reconstruct-
ing records, we essentially reverse the ingestion process,
using the occurence information to tell us how many el-
ements we need to copy. An important implementation
detail is that by storing this occurence information in
a cumulative manner separately from the actual values
in the children we are able to still have O (1) seeks even
on nested and repeated data.

• Directly exposes dictionary indices, Run Length En-
coding (RLE) [2] information, and other encoding
information to the evaluation engine. Artus also im-
plements various common filtering operations natively
inside its API. This allows us to aggressively push such
computations down to the data format, resulting in
large performance gains in many common cases.

• Records rich metadata in the file and column header.
Apart from the schema of the data, we also encode sort-
ing, minimum and maximum values, detailed encoding

Table 1: Queries for Artus benchmark
Query Id Query

Q1 SUM(views) where pk = X: pure lookup, 1
matching row

Q2 SUM(views) where fk = X: moderate filter,
5000 matching rows

Q3 SUM(views): full scan, all 250k matching
Q4 SUM(views), fk GROUP BY fk: full scan with

group by

Table 2: Artus Data Size
Format Capacitor ArtusDisk Artusmemory

Size (KB) 2406 2060 2754

information, bloom filters, etc. making many common
pruning operations possible without the need to read
the actual data in the column. In practice we often
range-partition our files on a primary key, allowing us
to use the metadata to prune file access based on the
query filters.

• Supports storing inverted indexes. Inverted indices are
commonly used at Google and elsewhere to speed up
keyword search queries [7,38]. While we could use them
for that purpose here, the main usage in Procella so far
has been in experiment analysis. In experiment analy-
sis, we have a small array of low-cardinality integers in
each record, and we want to know which records contain
a particular integer within their array, i.e. ‘WHERE
123 IN ArrayOfExperiments’, and then do further anal-
ysis on them. Evaluating this filter is normally the
dominant cost in a query, because each array contains
hundreds of elements. We avoid this cost by precom-
puting the inverted indices (the row offsets of records
whose arrays contain each value), storing them on disk
alongside regular columns, and then simply loading
the appropriate indices based on the query. By storing
these indices as Roaring bitmaps [10] we are able to
easily evaluate typical boolean filters (i.e. ‘WHERE
123 in ArrayOfExperiments OR 456 in ArrayOfExperi-
ments’) efficiently, without having to go through the
normal evaluation pathway. In current production use
cases we have found that experiment analysis queries
have end to end latencies reduced by ∼ 500x orders of
magnitude when we apply this technique.

Figure 2 presents results of a simple benchmark comparing
Artus with Capacitor on typical query patterns on a typical
YouTube Analytics dataset. The numbers represent the best
value observed in 5 runs of the test framework. The queries
were run on a single file with ˜250k rows sorted on the video
id and fully loaded into memory. Table 1 lists the queries
used for the benchmark.

Table 2 shows Artus uncompressed in-memory size, as well
as its LZW-compressed on-disk size, compared to Capacitor,
for the data set used for the benchmark.

3.3 Evaluation Engine
High performance evaluation is critical for low latency

queries. Many modern analytical systems today achieve this
by using LLVM to compile the execution plan to native
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Figure 2: Artus vs Capacitor Performance.

Figure 3: Superluminal vs Supersonic.

code at query time. However, Procella needs to serve both
analytical and high QPS serving use cases, and for the latter,
the compilation time can often become the bottleneck. The
Procella evaluation engine, Superluminal, takes a different
approach. Specifically, Superluminal:

• Makes extensive use of C++ template metaprogram-
ming for compile time code generation. This allows
utilizing many optimization techniques, such as partial
application, to be applied to a single function imple-
mentation automatically, while avoiding large virtual
call overheads.

• Processes data in blocks to take advantage of vectorized
computation [37] and cache-aware algorithms. Block
sizes are estimated to fit in the L1 cache memory for
best cache friendliness. The code is carefully written to
enable the compiler to auto-vectorize the execution [8].

• Operates on the underlying data encodings natively,
and preserves them during function application wher-
ever possible. The encodings are either sourced from
the file format or generated during execution as needed.

• Processes structured data in a fully columnar fashion.
No intermediatte representations are materialized.

• Dynamically combines filters and pushes them down the
execution plan, all the way to the scan node, allowing
the system to only scan the exact rows that are required
for each column independently.

We benchmarked the aggregation performance of Super-
luminal against our first genertion row based evaluator and

Figure 4: Superluminal performance on Artus & Ca-
pacitor.

the open source Supersonic engine using TPC-H query #1.
The filter clause was removed to fairly compare only the
aggregation performance, and the data was loaded into in-
memory arrays to eliminate file format bias. The results (per
CPU core) are in Figure 3. We also compared the perfor-
mance on different formats, notably Capacitor, Artus and
raw C++ arrays. The results (per CPU core) are in Figure
4. As evidenced from the numbers:

• Superluminal significantly improves on the legacy row
based engine (almost twice as fast on Capacitor, and
almost five times as fast on Artus, as shown in Figure
4). However, operating on raw C++ arrays is still
significantly faster, albeit at the cost of much higher
memory usage 1.

• On C++ arrays, Superluminal is almost 5 times faster
than Supersonic, as shown in Figure 3; however, a very
carefully hand-optimized native C++ implementation
specific to the problem is about 50% faster. In our
experience, a naive C++ implementation backed by a
standard library hash map is an order of magnitude
slower than Superluminal.

3.4 Partitioning & Indexing
Procella supports multi-level partitioning and clustering.

Typically, most fact tables are date partitioned and within
each date, clustered by multiple dimensions. Dimension
tables would typically be partitioned and sorted by the di-
mension key. This enables Procella to quickly prune tablets
that do not need to be scanned, and to perform co-partitioned
joins, avoiding large shuffles. This is a critical feature, es-
pecially for our external reporting instance which needs to
answer thousands of queries over tens of petabytes of data
with milliseconds latency.

The MDS is responsible for efficient storage and retrieval of
this information. For high scalability, MDS is implemented
as a distributed service, with affinity scheduling for cache
efficiency, as described in Section 3.1. In-memory structures
used for caching the metadata are transformed from their
storage format in Bigtable by using prefix, delta, RLE, and
other encodings. This ensures that Procella can handle a
very large volume of metadata (thousands of tables, billions
of files, trillions of rows) in a memory efficient way.

1Artus files were about an order of magnitude smaller than
the raw data for the TPC-H dataset.
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Table 3: MDS Performance

Percentile Latency (ms)
Tablets
Pruned

Tablets
Scanned

50 6 103745 57
90 11 863975 237
95 15 1009479 307
99 109 32799020 3974
99.9 336 37913412 7185
99.99 5030 38048271 11125

Table 3 illustrates the efficacy of the MDS tablets/partition
pruning for our external reporting instance. The pruning
itself is performed based on the filtering criteria within the
query, e.g. ids based on hashing, date ranges, etc.

Once the MDS has effectively pruned the tablets from
the plan, the individual leaf requests are sent to the data
server. The data server uses bloom filters, min/max values,
inverted indices, and other file level metadata to minimize
disk access based on the query filters. This information is
cached lazily in an LRU cache in each data server. This
allows us to entirely skip evaluation for almost half of the
data server requests in our main reporting instance.

3.5 Distributed operations

3.5.1 Distributed Joins
Joins are often a challenge for distributed query execution

engines [6, 9, 21]. Procella has several join strategies that
can be controlled explicitly using hints or implicitly by the
optimizer based on data layout and size:

• Broadcast: This is the simplest join where one side
is small enough so it can be loaded into the memory of
each DS running the query. Small dimensions such as
Country and Date often use this strategy.

• Co-partitioned: Often, the fact and dimension tables
can be partitioned on the same (join) key. In these
cases, even though the overall size of the RHS is large,
each DS only needs to load a small subset of the data
in order to do the join. This technique is commonly
used for the largest dimension of a star schema (e.g.
the Video dimension table).

• Shuffle: When both sides are large and neither is
partitioned on the join key, data is shuffled on the join
key to a set of intermediate servers.

• Pipelined: When the RHS is a complex query, but
likey to result in a small set, the RHS is executed first
and the result is inlined and sent to the LHS shards,
resulting in a broadcast-like join.

• Remote lookup: In many situations, the dimension
table (build side) may be large but partitioned on the
join key, however the fact table (probe side) is not. In
such cases, the DS sends remote RPCs to the DS serving
the build side tablets to get the required keys and values
for the joins. The RPC cost can often be high, so care
must be taken to apply all possible filters and batch
the keys into as few RPCs as possible. We also push
down the projections and filters to the build side RPC

requests to ensure that only the minimum required data
is fetched. Procella can execute such lookup joins with
high performance and efficiency because the underlying
columnar format, Artus, supports fast lookups, without
the need to first transform the data into in-memory
hash table or similar structure.

3.5.2 Addressing Tail Latency
In modern distributed scale out systems which operate on

cheap shared hardware, individual machines can often behave
unreliably. This makes achieving low tail latency difficult.
Various techniques exist to address this [14]. Procella employs
similar techniques to achieve low tail latencies for its queries,
but adapts them to its architecture. For example:

• Since all Procella data is present in Colossus, any file
is accessible by any data server. The RS employs an
effective backup strategy to exploit this. Specifically,
it maintains quantiles of DS response latency dynam-
ically while executing a query, and if a request takes
significantly longer than the median, sends a backup
RPC to a secondary data server.

• The RS limits the rates of, and batches, requests to the
DS for large queries to avoid overwhelming the same
data server with too many requests.

• The RS attaches a priority to each request it sends
to the DS – typically, this is set to high for smaller
queries and low for larger queries. The DS in turn,
maintains separate threads for high and low priority
requests. This ensures faster response for the smaller
queries, so that one very large query cannot slow down
the entire system.

3.5.3 Intermediate Merging
For queries that perform heavy aggregations, the final

aggregation often becomes the bottleneck as it needs to
process large amounts of data in a single node. To avoid this,
we add an intermediate operator at the input of the final
aggregation which buffers the data and dynamically spins
up additional threads to perform intermediate aggregations,
if the final aggregator cannot keep up with the responses
from the leaf data servers. This significantly improves the
performance of such queries, as can be seen in figure 5.

3.6 Query Optimization

3.6.1 Virtual Tables
A common technique used to maximize performance of low

latency high QPS queries (needed for high volume reporting)
is materialized views [3]. The core idea is to generate multiple
aggregates of the underlying base table and choose the right
aggregate at query time (either manually or automatically).
Procella uses virtual tables to this end, which employs a
similar approach to this problem with some additional fea-
tures to ensure optimal query performance. Specifically, the
Procella virtual table implementation supports:

• Index-aware aggregate selection: choose the right
table(s) based not just on size but also on data organiza-
tion such as clustering, partitioning, etc. by matching
the filter predicates in the query to the table layout,
thus, minimizing data scans.

2028



Figure 5: Intermediate merging performance for dif-
ferent TOP (K) settings with increasing number of
intermediate aggregation threads.

• Stitched queries: stitch together multiple tables to
extract different metrics from each using UNION ALL, if
they all have the dimensions in the query.

• Lambda architecture awareness: stitch together
multiple tables with different time range availabilities
using UNION ALL. This is useful for two purposes. First,
for stitching together batch and realtime data where
batch data is more accurate and complete, but arrives
later than realtime data. Second, for making batch
data consistently available at a specific cutoff point
sooner by differentiating between batch tables that
must be available to cover all dimension combinations
vs. ones that are just useful for further optimization.

• Join awareness: the virtual table layer understands
star joins and can automatically insert joins in the
generated query when a dimensional attribute is chosen
that is not de-normalized into the fact table.

3.6.2 Query Optimizer
Procella has a query optimizer that makes use of static

and adaptive query optimization techniques [16]. At query
compile time we use a rule based optimizer that applies
standard logical rewrites (always beneficial) such as filter
push down, subquery decorrelation, constant folding, etc.
At query execution time we use adaptive techniques to se-
lect/tune physical operators based on statistics (cardinality,
distinct count, quantiles) collected on a sample of the actual
data used in the query.

Adaptive techniques have enabled powerful optimizations
hard to achieve with traditional cost-based optimizers, while
greatly simplifying our system, as we do not have to collect
and maintain statistics on the data (especially hard when
ingesting data at a very high rate) and we do not have to
build complex estimation models that will likely be useful
only for a limited subset of queries [19,31]. We instead get
statistics from the actual data as it flows through the query
plan, our stats are thus equally accurate throughout the plan,
in traditional optimizers estimates are more accurate at the
leaves of the plan than closer to the root.

Our adaptive optimizer adds stats “collection sites” to the
query plan and decides how to transform the un-executed
portion of the plan based on this information. Currently we

insert “collection sites” to all shuffle operations. A shuffle
operation can be explained as a map-reduce. During the
map phase we collect all rows that share a key into the same
shard. During the reduce phase we perform computation
on the shard. For example, for a group by, we map rows
with the same group key to the same shard and then reduce
the shard to compute the aggregates; for a join, we map the
rows from the left and right tables with matching keys to the
same shard and then reduce the shard to produce the joined
rows. A shuffle defines a natural materialization point that
facilitates the collection of stats. The stats are then used
to decide how to partition the data including the number of
reducers and the partition function. Stats are also used to
rewrite the plan for the un-executed portion of the plan.

Adaptive Aggregation In this case we have two query
fragments; a leaf fragment that computes partial aggregation
on each partition of the data, and a root fragment that
aggregates the partial results. We estimate the number of
records that the first fragment will emit by computing the
partial aggregate on a subset of the partitions and deciding
the number of shards to satisfy a target number of rows per
shard (e.g. 1 million).

Adaptive Join. When we encounter a join we estimate
the keys that will participate in the join from the LHS and
RHS. We use a data structure that summarizes the keys for
each partition. The data structure holds the count of keys,
the min and max values per partition, and a bloom filter if
the number of keys is less than a few million. In most cases
this data structure is collected from the entire input, not just
from a sample. We support the following join optimizations:

• Broadcast. When one of the sides is small (build-side)
(e.g. less than 100,000 records) we broadcast it (using
RDMA) to every partition of the probe-side. In this
case the plan is rewritten to avoid the shuffle.

• Pruning. When the keys on one of the sides (filter-
side) can be summarized with a bloom filter of size
O(10MB) with a false positive rate of about 10%; we
use this bloom filter to prune the other side (prune-
side). The map operation only writes records from the
prune-side that pass the filter, we only map records
with a high probability of joining (based on the bloom
filter false positive ratio).

• Pre-shuffled. If one side of the join (partitioned-side)
is already partitioned on the join key, we use the map
operation to partition only the other side map-side to
match the partition-side partition. For example, if the
partition-side has partitions [min,max] = [1,5] [10,50]
[150,200] we map records from the map-side to match
these intervals (we may overpartition if the map-side is
large). The partition-side could initially have hundreds
of partitions, but after applying filters only these three
ranges of values will actually participate in the join.
This optimization is very frequently applicable in fact
to dimension joins as dimension tables are partitioned
on the join key. Note that if both left and right sides
are partitioned on the join key, at compile time, we
select a lookup join strategy (i.e. the shuffle is avoided).

• Full Shuffle. If no other join optimization applies, we
map records from the left and right sides of the join. We
automatically determine the number of shards based
on the sum of records from the left and right sides.
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Adaptive Sorting. When handling an order by state-
ment, we first issue a query to estimate the number of rows
that need to be sorted and use this information to determine
a target number of shards n; We then issue a second query
to estimate n quantiles that are used to range partition the
data during the map operation. During the reduce operation
we locally sort the data in each shard. Adaptive sorting
allows us to reuse our shuffle infrastructure to order large
datasets efficiently.

Limitations of Adaptive optimization. Adaptive op-
timization works well for large queries where we only add
around 10% of overhead for stats collection. But for small
queries (i.e. queries that execute in O(10ms)), the overhead
of adaptive optimization can be large (around 2X penalty).
For low latency queries we allow the user to specify query
hints that fully define the execution strategy without the
adaptive optimizer. We have found that for ad-hoc queries,
users are willing to tolerate a slow down of fast queries (e.g.
10ms to 20ms) in exchange for better performance on large
queries and overall much better worst-case behavior.

Another limitation of our current adaptive framework is
that it is not yet used for join ordering. We are working on
an extension to the framework that uses a standard dynamic
programming algorithm that collects table level statistics
with adaptive queries. This can be a good compromise
between the number of the executed stats queries and the
accuracy of the estimates.

3.7 Data Ingestion
For optimal query processing performance, it is important

to create datasets that are suitably partitioned, clustered,
and sorted. At the same time, integrating loading into the
query engine reduces scalability and flexibility for teams
who want to import large (often petabytes) of existing data
quickly into Procella. To address this, Procella provides
an offline data generation tool. The tool takes the input
and output schemas and data mapping, and executes an
offline MapReduce based pipeline to create data in Procella
optimized format and layout. Since the tool can run on cheap
low priority batch resources on any data center, it vastly
improves the scalability of ingestion of large data sets into
Procella, and ensures that expensive production resources
are only used for serving queries.

The tools can apply several optimizations during data
generation such as uniform and suitably sized partitioning,
aggregation, sorting, placing data for hot tables in SSD,
replicating, encrypting, etc. Note that the use of the tool is
optional; Procella can accept data generated by any tool as
long as it is in a supported format.

3.8 Serving Embedded Statistics
Procella powers various embedded statistical counters, such

as views, likes, and subscriptions, on high traffic pages such
as YouTube’s watch and channel pages. The (logical) query is
simply: SELECT SUM(views) FROM Table WHERE video id

= N, and the data volumes are relatively small: up to a
few billion rows and a small number of columns per row.
However, each Procella instance needs to be able to serve
over a million QPS of such queries with millisecond latency.
Further, the values are being rapidly updated and we need to
be able to apply the updates in near real-time. Procella solves
this problem by running these instances in “stats serving”
mode, with specialized optimizations for such workloads:

• When new data is registered, the registration server
notifies the data servers (both primary and secondary)
that new data is available, so that it can be loaded in
memory immediately, instead of being lazily loaded on
first request. This ensures that there is no remote disk
access in the serving path, even if a few leaf servers are
down. This ends up using more RAM but since we are
dealing with relatively small volumes of data, this is a
reasonable trade-off.

• The MDS module is compiled into the Root Server (RS).
This saves RPC communication overheads between
these sub-systems, allowing the RS to be efficient at
high QPS.

• all metadata are fully preloaded and kept up to date
asynchronously to avoid having to remotely access meta-
data at query time and thus suffer from higher tail
latencies. The system is set up to have slightly stale
metadata still give the right answers. The stats in-
stances have a relatively small number of tables so this
overhead is justifiable.

• Query plans are aggressively cached to eliminate pars-
ing and planning overhead. This is very effective since
the stats query patterns are highly predictable.

• The RS batches all requests for the same key and sends
them to a single pair of primary and secondary data
servers. This minimizes the number of RPCs required
to serve simple queries. This means that single key
queries have exactly 2 outgoing RPCs where we use
the fastest response to minimize tail latencies.

• The root and data server tasks are monitored for un-
usually high error rates and latencies compared to the
other tasks of the same server in the same data cen-
ter. The problematic outlier tasks are automatically
moved to other machines. This is useful because of the
imperfect isolation on Borg.

• Most of the expensive optimizations and operations
such as adaptive joins and shuffles are disabled to avoid
related overheads and production risks.

4. PERFORMANCE
Procella is designed for high performance and scalability on

flexible workloads over shared infrastructure. In this section,
we present benchmarks and production serving numbers
for three most common workloads, namely, ad-hoc analysis,
real-time reporting, and serving stats counters.

4.1 Ad-hoc analysis
For ad-hoc analysis, we chose to use the TPC-H queries.

TPC-H is a widely used and published benchmark for
database systems that represents a typical normalized
database and analytical workload.

We ran the TPC-H 1T (SF: 1000) and 10T (SF: 10000)
queries on an internal Procella instance with 3000 cores and
20 TB RAM, running on Borg. Data was generated to our
file format (Artus), partitioned, and sorted, and stored in
Colossus. Caches were warmed up prior to executing the
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Figure 6: TPC-H Scalability - 1T Expected Execu-
tion Time vs. 10T Execution Times.

max gcu/sec 11500
max rpcs/sec 6000000 6 million

10 streams
stream 1 2 3 4 5 6 7 8 9 10 10 Streams Avg Power Run Power Run X 10
Q1 4.57 10.37 8.168 9.677 10.764 10.558 10.676 10.539 10.56 10.599 9.6481 2.43 24.26
Q2 29.277 22.079 24.296 22.911 22.075 23.063 22.537 22.05 22.145 22.131 23.2564 17.66 176.61
Q3 62.248 66.641 66.469 67.58 68.189 69.607 68.203 69.637 68.172 66.654 67.34 7.47 74.74
Q4 7.216 4.791 2.903 5.535 29.56 62.818 64.085 63.915 29.175 6.385 27.6383 1.68 16.78
Q5 76.949 122.415 119.848 156.849 792.052 771.465 771.689 771.928 162.538 158.019 390.3752 15.96 159.63
Q6 71.062 21.979 27.005 88.184 1.845 36.33 36.301 35.154 81.367 88.249 48.7476 0.90 8.95
Q7 663.457 663.567 663.721 570.714 790.354 839.119 826.699 838.822 554.234 571.393 698.208 16.00 159.95
Q8 47.547 52.467 67.387 70.783 146.814 62.093 67.457 72.366 101.406 78.937 76.7257 11.36 113.58
Q9 874.126 883.497 871.422 863.503 423.542 443.19 442.126 438.486 860.006 866.783 696.6681 64.81 648.05
Q10 453.535 439.016 465.382 466.133 47.34 50.149 29.881 151.871 450.176 459.951 301.3434 3.19 31.92
Q11 176.045 189.546 156.436 163.472 163.389 137.206 161.541 78.718 159.866 157.711 154.393 39.60 396.02
Q12 5.876 18.267 13.549 46.593 48.65 39.644 44.031 110.296 45.258 53.319 42.5483 2.10 20.97
Q13 191.497 171.871 170.595 135.674 126.305 146.512 137.778 389.605 133.224 128.942 173.2003 24.98 249.83
Q14 9.412 23.449 10.931 27.315 28.488 25.084 25.264 356.607 25.644 28.883 56.1077 2.17 21.72
Q15 50.026 44.429 48.868 41.799 36.421 19.807 28.226 29.407 32.497 37.446 36.8926 10.73 107.25
Q16 20.491 12.932 20.553 35.943 22.321 74.952 65.406 83.879 36.107 34.962 40.7546 8.68 86.76
Q17 652.264 668.682 608.547 694.057 661.674 674.863 668.044 126.244 700.043 664.361 611.8779 50.14 501.38
Q18 26.828 74.092 67.15 38.096 69.964 27.591 37.255 29.84 35.215 59.981 46.6012 8.94 89.37
Q19 16.397 23.916 11.616 23.343 24.132 22.884 26.209 6.271 26.399 23.058 20.4225 3.25 32.48
Q20 201.444 131.777 209.735 146.912 130.476 142.401 119.065 212.232 141.989 127.181 156.3212 18.83 188.28
Q21 213.967 222.636 199.243 205.092 224.344 193.673 49.728 76.19 203.184 221.539 180.9596 42.18 421.75
Q22 128.776 122.505 125.325 143.896 116.987 117.337 342.208 54.721 129.566 116.33 139.7651 28.85 288.50
Geomean 66.4663922 72.72874588 68.21994345 83.92527793 74.29340251 82.40078015 82.1180227 88.64690544 89.82867515 85.38232639 92.89258739 9.60 95.96
Sum 3983.01 3990.924 3959.149 4024.061 3985.686 3990.346 4044.409 4028.778 4008.771 3982.814 3999.7948 381.88 3,818.78
arithmetic mean 181.8088545

Figure 7: TPC-H 10T Per Query Throughput Exe-
cution times.

benchmarks. For 10T, we ran a single stream (power run)
as well as ten parallel streams (throughput run) 2.

Figure 6 compares the execution time of individual TPC-H
queries over 1T and 10T of data using the same instance. As
shown, the 1T run had a geomean of about 2 seconds, while
the power run on 10T had a geomean of about 10 seconds.
The system, thus, scales well with data volume. The latency
scaled sub-linearly, mainly because the 10T run was able to
utilize more parallelism.

Figure 7 captures Procella performance for the TPC-H 10T
throughput run with ten parallel streams. As shown, Procella
scales well under load, i.e the performance degrades quite
smoothly as the number of parallel queries increases. There
was a fair amount of variance, however, with some queries (e.g.
Q7) degrading much more than expected, while some queries
(e.g. Q2) performing significantly better than expected. The
main bottleneck we established was inter-node data transfer
overhead (RPC, serialization & deserialization, etc.). This
is somewhat expected of systems that scale horizontally by
using many (hundreds or thousands of) relatively small tasks
instead of a small number (ten or less) of large tasks.

4.2 Real-time reporting
Procella is used to serve many reporting and dashboarding

solutions both internally and externally. Some of the external

2Note that these benchmarks are not fully compliant with
the TPC-H rules, e.g. we hand tuned some queries for best
performance in our environment. Thus, the results are not
directly comparable to published TPC-H data but provide
an insight on the raw query processing speed of the system.

Table 4: YTA Instance Scale

Queries executed 1.5+ billion per day
Queries on realtime data 700+ million per day
Leaf plans executed 250+ billion per day
Rows scanned 80+ quadrillion per day
Rows returned 100+ billion per day
Peak scan rate per query 100+ billion rows per second
Schema size 200+ metrics and dimensions
Tables 300+

Table 5: YTA Instance Performance
Property 50% 99% 99.9%

E2E Latency 25 ms 412 ms 2859 ms
Rows Scanned 16.5M 265M 961M
MDS Latency 6 ms 119 ms 248 ms
DS Latency 0.7 ms 73 ms 220 ms
Query Size 300B 4.7KB 10KB

applications are YouTube Analytics, YouTube Music Insights,
Firebase Performance Analytics and Play Developer Console.

In this section, we present results from the most popular
application, which is youtube.com/analytics, known inter-
nally as YouTube Analytics (YTA). YTA runs more than a
billion queries per day over tens of petabytes of data with
tens of thousands of unique query patterns (dimensional
breakdowns, filters, joins, aggregations, analytical functions,
set operators, approximate functions, etc.). However, be-
cause each creator is restricted to their own data, each query
is typically constrained to a small slice of the overall dataset.
The data needs to be provided in real time; typically end to
end delay is under a minute, but we also need to support
large historical reports covering years of data. There is also
an interface to do bulk extraction of data; the largest of such
reports produce over a hundred gigabytes of output.

For redundancy, we maintain five instances of Procella for
this use-case, with at least three fully serving. Each instance
has about 6000 cores and 20 TB of RAM.

Table 4 provides a glimpse into the scale of the Procella
instance that serves YTA (and a few other smaller applica-
tions). Table 5 captures the distribution of latency vs various
aspects of the system.

As evidenced, Procella performs and scales very well when
handling high volume SQL queries of simple to moderate
complexity, on both real time and batch data, providing sub-
second response for the 99%+ of the requests from creators,
app developers and other external users of the system.

4.3 Embedded Statistics
The stats Procella instances power various embedded statis-

tical counters, such as views, likes, and subscriptions, serving
millions of QPS (hundreds of billions of queries per day) with
millisecond latency from more than ten data centers around
the world. Table 6 captures the latency profile in production
of the statistics serving instances on a typical day.

As evidenced, in this configuration, Procella achieves per-
formance comparable to NoSQL key value stores while sup-
porting SQL based queries on the data.
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Table 6: Statistics Serving Latency
Percentile Latency

50% 1.6 ms
90% 2.3 ms
95% 2.6 ms
99% 3.3 ms

99.9% 14.8 ms
99.99% 21.7 ms

5. RELATED WORK

5.1 Google Technologies

• Dremel is an exa-scale columnar SQL query engine
that is optimized for large complex ad-hoc queries.
Dremel works on many backends such as ColumnIO,
Capacitor, and Bigtable. The Dremel engine powers
Google’s BigQuery. Procella shares many properties
with Dremel such as the RPC protocol, the SQL parser,
low level storage (both use Colossus), compute (both
use Borg), etc. However, there are significant design dif-
ferences, for example, extensive use of stateful caching
(Dremel is mostly stateless), separate instances where
each is optimized for different use cases (Dremel is a
global shared service across all users), use of indexable
columnar formats optimized for lookups (Capacitor,
unlike Artus, does not have indexes), etc. These make
Procella suitable for many additional workloads (e.g
high QPS reporting and lookup queries)

• Mesa is a peta-scale data storage and query system
built at Google. Mesa is designed mainly for storing and
querying aggregated stats tables, with a predominantly
delta based low latency (measured in minutes) data
ingestion model. Mesa does not itself support SQL;
instead, F1 provides a flexible SQL interface on top of
Mesa storage, using the lower level Mesa API.

• F1 [39] includes a federated distributed query engine
(similar to Dremel) that runs on top of many Google
backends (Mesa, ColumnIO, Bigtable, Spanner, etc.)
and provides support for scalable distributed SQL
queries. F1 aims to support OLTP, ad-hoc, and re-
porting use-cases, but takes a fundamentally differ-
ent approach from Procella, namely query federation.
Specifically, F1 aims to decouple the execution en-
gine from storage and instead exploits properties of
the underlying storage subsystem optimally to serve
diverse workloads. For example, OLTP workloads typ-
ically query F1 and Spanner databases. Low latency
reporting applications use queries over F1 and Mesa.
Analytical and ad hoc queries run over data in various
sources, including Mesa, F1, and Capacitor files on
Colossus. Procella, on the other hand, aims to serve
diverse workloads (excluding OLTP) using the same
storage and data format, by tightly coupling storage,
data format, and execution into a single system.

• PowerDrill [28] is a columnar in-memory distributed
SQL query engine optimized primarily for serving a rel-
atively small QPS of large but relatively simple queries

which can be trivially parallelized in a distributed tree
execution architecture. The predominant use-case for
PowerDrill is fast analysis of logs data and powering
internal dashboards.

• Spanner is a distributed SQL database typically used
by OLTP applications. Spanner shares many of the
same underlying design elements (and hence similar
performance characteristics) as Bigtable while provid-
ing better data consistency, atomic transactions, and a
SQL based query interface. Spanner provides external
consistency with realtime data and is often used as
source-of-truth data store; however it does not aim to
serve the ad-hoc or real-time reporting use-cases.

5.2 External Technologies

5.2.1 Ad-hoc analysis
Presto [22] is an open source query engine originally de-

veloped at Facebook that is similar in design to Dremel.
Presto is now also available as a cloud service from Amazon
as Athena. Spark SQL [5], an open source SQL engine
that runs on the Spark framework, has also gained significant
popularity, especially in organizations with large investment
in Spark. Snowflake [13], a popular analytical database,
segregates storage and compute, while adding several other
features such as local caching and centralized metadata man-
agement, similar to Procella. Redshift [26] is a popular
distributed database available from Amazon that tightly cou-
ples storage and compute on the same VMs, though it is
possible to also access external data in S3 through Spec-
trum. These systems excel at low QPS ad-hoc analysis and
dashboarding, but do not offer high QPS low latency serving
solutions, or high bandwidth real time streaming ingestion.

5.2.2 Real time reporting
Both Druid [43] and Pinot [17] share some of Procella’s

characteristics such as columnar storage, mixed streaming
and batch ingestion modes, distributed query execution,
support for tablet and column pruning, etc. that enable
them to support low latency high QPS serving use cases.
ElasticSearch has some structured query capabilities such
as filtering and aggregation using a custom API and has
been used in several places to power low latency real time
dashboards. These engines have limited SQL support and
are overall unsuitable for ad-hoc analysis. Companies like
Amplitude and Mixpanel have built custom backends to
satisfy the performance requirements of high volume low
latency real time reporting. Apache Kylin, attempts to
solve this problem differently by building aggregates from
data cubes and storing them in a key value store such as
HBase for higher performance for pre-defined query patterns
that do not need large scans.

5.2.3 Monitoring
Stackdriver and Cloudwatch are two popular cloud

monitoring services - they have their own custom backends
and expose only a limited API to their users. Facebook has
developed Gorilla [36], a real-time time-series monitoring
database, now open-sourced as Beringei [23]. Beringei
supports a custom time series API. InfluxDB [30] is a
popular open source choice for time series real time analytics
with flexible queries. OpenTSDB is an open source time
series database popular for monitoring purposes that uses
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a key value store such as HBase to store metrics keyed
by time and user specified dimension keys and provides a
custom API to extract time series data for charting and
monitoring purposes. These systems do not offer efficient
execution of complex queries over large data volumes, and
are thus unsuitable for ad-hoc analysis.

5.2.4 Serving Statistics
Key value stores such as HBase are often used as backends

for serving high QPS of updates and lookups simultaneously.
They are often deployed with a caching layer. This method,
however, typically does not provide flexible update modes
such as delta mode for stats or HyperLogLog [29] for uniques,
nor flexible SQL based query APIs that are required for
analytical processing.

6. FUTURE WORK
Procella is a relatively young product, and there are a

number of areas we are actively working on:

• As Procella gains wider adoption inside YouTube and
Google, various usability aspects such as better tooling,
better isolation and quota management for hybrid loads,
better reliability, availability in more data centers, bet-
ter documentation, better monitoring and such are
gaining importance. The team is increasingly spending
more effort to make it easier for users to adopt Procella.

• We continue to spend significant engineering effort on
performance, efficiency, and scale – for example on
data format (Artus), evaluation engine (Superluminal),
structured operators and distributed operators such
as joins. We are actively working on improving the
optimizer, focused mainly on adaptive techniques to
achieve optimal and predictable performance on large
complex queries.

• We continue to work on enhancing SQL support, and on
various extensions such as full text search, time-series,
geo-spatial, and graph queries.

7. CONCLUSIONS
In this paper, we presented Procella, a SQL query en-

gine that successfully addresses YouTube’s need for a single
product to serve a diverse set of use cases, such as real-time
reporting, serving statistical counters, time-series monitoring,
and ad-hoc analysis, all at very high scale and performance.
We presented the key challenges of building such as system
on Google’s infrastructure, described the overall architecture
of the system, and several optimizations we implemented
to achieve these goals. Many Procella components (such
as Artus and Superluminal) and design elements (such as
affinity scheduling and layered caching) are being adopted
by other Google products such as BigQuery, F1, and logs.
Many of these techniques, we believe, are applicable to other
similar distributed platforms such as AWS and Azure.

Procella has been successfully applied at Google to solve
problems belonging to all four categories:

• Reporting: Virtually all of external reporting and in-
ternal dashboards at YouTube are powered by Procella
(billions of queries per day). Procella is also power-
ing similar external facing reporting applications for
Google Play and Firebase, among others.

• Embedded statistics: Several high traffic stats coun-
ters on YouTube such as views, likes, and subscrip-
tions are powered by Procella, totalling over 100 billion
queries per day.

• Ad-hoc analysis: Procella is increasingly being
adopted at YouTube for large complex ad-hoc anal-
ysis use cases over petabyte scale tables.

• Monitoring: Procella powers various real time
anomaly detection, crash analysis, experiment anal-
ysis, and server health related dashboards at Google.

Procella thus enables YouTube to have a unified data stack
that is highly scalable, performant, feature-rich, efficient, and
usable for all types of data driven applications. Procella has
now been in production for multiple years. Today, it is
deployed in over a dozen data centers and serves hundreds
of billions of queries per day over tens of petabytes of data,
covering all four use cases, at YouTube and several other
Google products.
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