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ABSTRACT
The proliferation in amounts of generated data has propelled
the rise of scalable machine learning solutions to efficiently
analyze and extract useful insights from such data. Mean-
while, spatial data has become ubiquitous, e.g., GPS data,
with increasingly sheer sizes in recent years. The applica-
tions of big spatial data span a wide spectrum of interests
including tracking infectious disease, climate change simu-
lation, drug addiction, among others. Consequently, ma-
jor research efforts are exerted to support efficient analysis
and intelligence inside these applications by either providing
spatial extensions to existing machine learning solutions or
building new solutions from scratch. In this 90-minutes tu-
torial, we comprehensively review the state-of-the-art work
in the intersection of machine learning and big spatial data.
We cover existing research efforts and challenges in three
major areas of machine learning, namely, data analysis, deep
learning and statistical inference, as well as two advanced
spatial machine learning tasks, namely, spatial features ex-
traction and spatial sampling. We also highlight open prob-
lems and challenges for future research in this area.
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1. INTRODUCTION
There has been a recent wide deployment of machine

learning (ML) solutions, with their different areas (e.g., data
analysis, deep learning), in various big data applications,
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including public health [19], information extraction [47],
data cleaning [37], among others. Meanwhile, spatial
applications have witnessed unprecedented explosion in the
amounts of generated and collected data. For example,
space telescopes generate up to 150 GB weekly spatial data,
medical devices produce spatial images (X-rays) at a rate
of 50 PB per year, while a NASA archive of satellite earth
images has more than 500 TB. To efficiently process such
tremendous amounts of spatial data, researchers and devel-
opers worldwide have proposed either spatial extensions to
existing machine learning systems (e.g., Azure Geo AI [3])
or new end-to-end solutions (e.g., ESRI ArcGIS [11]). Such
extensions and new solutions have motivated a wide variety
of applications in biology [50], environmental science [51],
climatology [14], among others.

In this tutorial, we aim to provide a comprehensive re-
view of existing machine learning systems and approaches
that efficiently support big spatial data. In particular, we
focus on explaining the main ideas, architectures, strengths
and weaknesses of existing systems and approaches. We also
highlight the strong bond between spatial data management
and spatial machine learning workflows, discuss the related
technical challenges, and outline the open research oppor-
tunities. Previous SIGMOD tutorials have focused on the
techniques and challenges in machine learning for big data
in general [7, 25]. Another previous VLDB tutorial focused
on big spatial data management [10]. Unlike these tutorials,
our tutorial aims to combine the two worlds of scalable ma-
chine learning and big spatial data together, which is beyond
just applying techniques from one area to another.

2. TUTORIAL OUTLINE
Figure 1 gives the 90-minutes tutorial outline, composed

of six parts. The first part motivates the need for machine
learning systems to support big spatial data, and provides
the basic background on these two worlds (Section 2.1).
The second, third, and fourth parts delve into the ongoing
efforts and challenges of supporting big spatial data in
three major areas of machine learning, namely, data anal-
ysis, deep learning, and statistical inference, respectively
(Sections 2.2-2.4). The fifth part reviews advanced spatial
machine learning pipeline in terms of two common tasks,
namely, spatial features extraction, and spatial sampling
(Section 2.5). The sixth part concludes the tutorial by
discussing several open research problems (Section 2.6).
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2.1 Part 1: Spatial Data and ML Synergy
This part advocates for the need to develop machine learn-

ing systems and techniques for big spatial data that go be-
yond simple extensions of existing work for general data.
We start by describing some motivating applications, intro-
ducing the world of big spatial data, and discussing its ma-
chine learning related concepts. We then quickly review the
landscape of spatial machine learning systems, algorithms,
applications, and needs. Then, we give a brief introduction
about three major machine learning areas, namely, spatial
data analysis, spatial deep learning, and spatial statistical
inference, which will be heavily discussed in the next parts.

2.2 Part 2: Data Analysis Solutions
This part covers the big spatial data analysis systems

and approaches from three aspects: (1) The research ef-
forts of adding spatial support in existing big data analysis
systems and tools, which are either: (a) in the form of add-
ons libraries and tools that enable processing spatial data
with classical operations (e.g., clustering, classification).
Examples include spatial extensions to Spark core (e.g.,
Simba [57], Magellan [29], GeoSpark [60], GeoMesa [20], Ul-
TraMan [9]) to enable using Spark MLib [30] with spatial
data, ESRI spatial data analysis extensions for Hive [12],
and PostGIS [34] that can be used along with MADLib [19]
to support spatial analytics for PostgreSQL [35], or (b) in
the form of built-in native support of spatial analysis op-
erations (e.g., hot spot detection, spatial co-location) in-
side existing data analysis engines. (2) The research efforts
of providing full-fledged big spatial data analysis systems
and tools. In such systems, all execution steps in any data
analysis operation are optimized for efficient and scalable
processing of spatial data. We will classify existing work
based on the underlying architecture, which could be either
(a) in-memory systems (e.g., CrimeStat [27], GDAL [55],
GeoDa [2], PySAL [38]), (b) RDBMS-based systems (e.g.,
ESRI ArcGIS [11]), or (c) cloud-based services (e.g., IBM
PAIRS [23]). For all these systems and services, we will give
motivational case studies, and a brief on their supported spa-
tial analysis operations and running time efficiency. (3) The
research efforts for the scalability of five stand alone (with-
out much of system support) common big spatial analysis
operations, namely, spatial outlier detection [46, 63], spatial
classification [8, 16, 22], spatial clustering [13, 31, 54, 53,
61], hotspot detection [4], and spatial co-location [36].

2.3 Part 3: Deep Learning Solutions
This part covers the interplay between spatial data man-

agement and analysis techniques and deep learning ap-
proaches. We start by highlighting the role of spatial data
management techniques in improving the performance of
various deep learning tasks when applying on big spatial
data. For example, Quad-tree partitioning [15] is used
for: (a) balancing the convolution computation in Convolu-
tional Neural Networks (CNN) for object detection applica-
tions [21] and (b) efficient automatic features extraction and
matrix factorization operations inside deep learning mod-
els [59]. Meanwhile, k-nearest neighbor operations are used
to efficiently build specific neural network architectures from
big spatial datasets [6, 33]. Then, we discuss the role of deep
learning in efficiently supporting numerous large-scale spa-
tial prediction queries (e.g., aggregate prediction [56], fore-

• Part 1: Spatial Data and ML Synergy (10 minutes)

– Importance of ML with big spatial data

– Quick review of spatial ML landscape

• Part 2: Data Analysis (DA) Solutions (25 minutes)

– Spatial support in big data analysis systems
– End-to-end big spatial data analysis systems

– Scalability of common spatial analysis operations

• Part 3: Deep Learning (DL) Solutions (20 minutes)

– Spatial DB techniques to improve DL approaches
– DL approaches to improve spatial prediction queries

• Part 4: Statistical Inference Solutions (15 minutes)

– Review of spatial Bayesian inference concepts

– Approaches for supporting scalable spatial inference

• Part 5: Advanced ML Pipeline Tasks (10 minutes)

– Spatial features extraction techniques
– Spatial sampling techniques

• Part 6: Future Opportunities (10 minutes)

– Inference model maintenance

– Spatial ML models optimizer
– Spatially-optimized deep learning frameworks

Figure 1: Tutorial Outline (90 minutes)

casting queries [28]), and other spatial analysis tasks (e.g.,
geospatial object detection [58], outdoors localization [48]).

2.4 Part 4: Statistical Inference Solutions
This part covers the scalable Bayesian inference solutions

that are designed to analyze big spatial data. We will start
by a brief review for the basic statistical concepts of spa-
tial Bayesian modeling and their big data applications. We
will then discuss existing spatial inference systems and ap-
proaches, categorized into: (a) in-memory solutions, where
the input dataset of the inference model is first spatially
partitioned into a grid. Then, each partition is analyzed us-
ing a Bayesian spatial process model (e.g., [17]). Finally,
an approximate posterior inference for the entire dataset is
obtained by optimally combining the individual posterior
distributions from each partition [17, 44, 49]. (b) RDBMS-
based solutions, where the assumption of fitting the whole
model data in memory is no longer valid. Hence, RDBMSs
are exploited to support scalable spatial inference compu-
tation. Although, there are many RDBMS-based inference
systems (e.g., [5, 32, 47]), they do not provide specialized
support for spatial data and operations. As a result, re-
cent research efforts started to support the spatial inference
in these systems through either implementing on-top user-
defined functions, e.g., TurboReg [40] and Flash [42, 39] on
top of DeepDive [47], and [43] on top of Alchemy [1], or pro-
viding built-in modules, e.g., Sya [41] inside DeepDive [47].

2.5 Part 5: Advanced ML Pipeline Tasks
This part covers more advanced spatial machine learn-

ing tasks. In particular, we focus on two main tasks that
are used extensively in different spatial machine learning
pipelines: (1) Spatial features extraction. Many spatial ma-
chine learning algorithms require the features extraction
from raw spatial data as a pre-processing step, which is very
time-consuming [26]. In response, the database community
has offered system solutions to scale up the performance of
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such task. For example, SkewReduce [26] is a Hadoop-based
system that expresses and executes the spatial features ex-
traction task in a scalable manner while avoiding skewness
issues, TELEIOS [24] is a scalable data exploration system
that provides a built-in support for spatial features extrac-
tion, while DeepDive [47] is an RDBMS-based information
extraction system that can be exploited to extract spatial
features through user-defined functions as shown in a recent
work [40]. (2) Spatial sampling. Due to the massive amounts
of spatial data that are available for training any spatial ma-
chine learning algorithm, spatial sampling becomes a critical
task to efficiently select a set of representative data objects
while taking the spatial distribution into account. Exist-
ing sampling techniques over big spatial data can be either
incremental (i.e., generated samples are refined over many
iterations) [52] or satisfying certain locality constraints (e.g.,
zooming level) [18, 45].

2.6 Part 6: Future Opportunities
This part discusses several future opportunities and open

research challenges in the intersection of machine learning
with big spatial data and applications. In particular, we
will focus on the following three points: (1) Inference model
maintenance: Materialized views have been heavily used
to support incremental maintenance over inference mod-
els and their predictions [47]. However, typical material-
ization techniques are not efficient to handle spatial data.
A promising direction is to exploit recent materialization
techniques for multi-dimensional data [62] to support incre-
mental spatial inference. (2) Spatial ML models optimizer :
There is a major opportunity in borrowing ideas from spatial
database query optimizers (e.g., cost models, and operations
re-ordering) to efficiently select among different spatial ma-
chine learning models. (3) Spatially-optimized deep learn-
ing frameworks: Unlike spatial data analysis frameworks
(e.g., [11, 23]), all current deep learning approaches for big
spatial data applications are stand alone efforts, without
any system support. A future direction is to distill the com-
monalities from all these approaches and bring them into
end-to-end full-fledged system frameworks.

3. TARGET AUDIENCE
This tutorial targets researchers, developers, and practi-

tioners, who are interested in large-scale machine learning
and big spatial data. No prior knowledge is required to un-
derstand the systems and approaches in the tutorial. The
tutorial will also be very beneficial for graduate students as
it will help in identifying various topics and challenges for
PhD topics. Practitioners will get to know the state-of-the-
art systems for enriching their machine learning systems and
tools with spatial data support. This tutorial will act as an
invitation to the database community to join arms for sat-
isfying the emerging needs of big spatial data analysis and
machine learning applications.

4. RELEVANCE TO VLDB
Research in the areas of spatial data and scalable ma-

chine learning has been always active in the database com-
munity in general, and in the VLDB community in partic-
ular. With the proliferation of proposed systems and ap-
proaches in these areas, it becomes inevitable to present a
tutorial that surveys the current state-of-the-art techniques

and suggests future research directions for the community.
Many of the research efforts covered in this tutorial were
recently published in major database conferences including
ICDE, VLDB, and SIGMOD [4, 5, 9, 18, 19, 24, 31, 32, 41,
42, 45, 47, 52, 53, 54, 57, 61, 62].
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Holistic Data Repairs with Probabilistic Inference. PVLDB,
10(11):1190–1201, 2017.

[38] S. Rey et al. PySAL: A Python Library of Spatial Analytical
Methods, pages 175–193. Springer, 2010.

[39] I. Sabek. Adopting Markov Logic Networks for Big Spatial
Data and Applications. In VLDB PhD Workshop, 2019.

[40] I. Sabek, M. Musleh, and M. Mokbel. TurboReg: A Framework
for Scaling Up Spatial Logistic Regression Models. In
SIGSPATIAL, pages 129–138, 2018.

[41] I. Sabek, M. Musleh, and M. F. Mokbel. A Demonstration of
Sya: A Spatial Probabilistic Knowledge Base Construction
System. In SIGMOD, pages 1689–1692, 2018.

[42] I. Sabek, M. Musleh, and M. F. Mokbel. Flash in Action:
Scalable Spatial Data Analysis Using Markov Logic Networks.
PVLDB, 12(12):1834–1837, 2019.

[43] N. A. Sakhanenko and D. J. Galas. Markov Logic Networks in
the Analysis of Genetic Data. Journal of Computational
Biology, 17(11):1491–1508, Nov. 2010.

[44] Y.-L. K. Samo and S. Roberts. Scalable Nonparametric
Bayesian Inference on Point Processes with Gaussian Processes.
In ICML, pages 2227–2236, 2015.

[45] A. D. Sarma, H. Lee, H. Gonzalez, J. Madhavan, and
A. Halevy. Efficient Spatial Sampling of Large Geographical
Tables. In SIGMOD, pages 193–204, 2012.

[46] S. Shekhar, C.-T. Lu, and P. Zhang. Detecting Graph-based
Spatial Outliers: Algorithms and Applications (a Summary of
Results). In SIGKDD, pages 371–376, 2001.

[47] J. Shin, S. Wu, F. Wang, C. D. Sa, C. Zhang, and C. Ré.
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