
DISPERS: Securing Highly Distributed Queries on Personal
Data Management Systems

Julien Loudet 1,2,3

1 Cozy Cloud, France

julien@cozycloud.cc

Iulian Sandu-Popa 3,2

2 INRIA Saclay, France

<fname.lname>@inria.fr

Luc Bouganim 2,3

3 University of Versailles,
France

<fname.lname>@uvsq.fr

ABSTRACT
Personal Data Management Systems (PDMS) advance at a
rapid pace allowing us to integrate all our personal data in
a single place and use it for our benefit and for the benefit
of the community. This leads to a significant paradigm shift
since personal data become massively distributed and opens
an important question: how to query this massively dis-
tributed data in an efficient, pertinent and privacy preserv-
ing way? This demonstration proposes a fully-distributed
PDMS called DISPERS, built on top of SEP2P, allowing
users to securely and efficiently share and query their per-
sonal data. The demonstration platform graphically illus-
trates the query execution in details, showing that DISPERS
leads to maximal system security with low and scalable over-
head. Attendees are welcome to challenge the security pro-
vided by DISPERS using the proposed hacking tools.

PVLDB Reference Format:
Julien Loudet, Iulian Sandu-Popa, and Luc Bouganim. DIS-
PERS: Securing Highly Distributed Queries on Personal Data
Management Systems. PVLDB, 12(12): 1886-1889, 2019.
DOI: https://doi.org/10.14778/3352063.3352091

1. INTRODUCTION
Thanks to smart disclosure initiatives[5] and new regula-

tions[8], we can access our personal data from the companies
or government agencies that collected them. Concurrently,
Personal Data Management System (PDMS) solutions arise
both in academia[1] and industry[6]. The goal is to offer
a data platform allowing users to easily store into a sin-
gle place any personal data: (i) directly generated by user
devices (e.g., quantified-self data) and (ii) user interactions
(e.g., health or banking data). Users can then leverage their
PDMS to use the data for their own good and in the ben-
efit of the community. Thus, the PDMS paradigm holds
the promise of unlocking new innovative usages developed
around personal data. A prominent example of novel us-
ages is related to the computations between a large number
of PDMSs (e.g., participative studies).

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 12, No. 12
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3352063.3352091

Yet, these exciting perspectives should not eclipse the se-
curity issues raised by this novel paradigm: storing an en-
tire digital life proportionally increases the impact of a leak.
Hence, it is risky to centralize all user data on powerful
servers as these servers become highly desirable targets [9].
Besides, centralization makes little sense in the PDMS con-
text where data is naturally distributed at the users’ side.

Fortunately, Trusted Execution Environments (TEE)[2,
12] are also rising and their use in the PDMS context leads to
trustworthy computational data platforms. However, since
no security measure (software or hardware) can be consid-
ered as unbreakable, we cannot exclude having some collud-
ing corrupted nodes in the system and, worse, even undis-
tinguishable (covert adversaries[3]). In this work, we assume
that a PDMS is secured thanks to a TEE, but might act as
a covert adversary; it offers high connectivity and availabil-
ity and can establish peer-to-peer (P2P) connections with
other PDMSs. Hence, we envision a fully distributed ar-
chitecture of PDMSs in which participants can create large
communities, contribute with their personal data and issue
queries over the globally contributed data. In this context,
an important issue needs to be addressed: how to query
this massively distributed data in a pertinent, efficient and
privacy-preserving way?

DISPERS leverages three design principles to query the
users’ data securely: knowledge dispersion to protect data-
at-rest, task compartmentalization to protect data-in-use,
and imposed randomness to assign data processing tasks to
PDMS nodes in a verifiable random way, based on SEP2P[11].
This previous work focuses on the imposed randomness prin-
ciple proposing a generic solution, analyzing its security and
showing its efficiency and scalability even with a large num-
ber of colluding nodes.

To the best of our knowledge, DISPERS is the first proto-
col dealing with pertinent, efficient, secure and fully dis-
tributed query processing over personal data. DISPERS
goes beyond classical solutions (see [11]) that have been
proposed in areas such as secure DHT[17] (which mainly fo-
cus on routing attacks), secure multi-party computation[13]
(which lack genericity and scalability) or distributed data
aggregation using secure hardware[16] (which do not con-
sider a large number of corrupted nodes). Note also that
consensus protocols and Byzantine fault tolerant systems
address a different problem and generally improve availabil-
ity and integrity using replication which hurts data confi-
dentiality[18].

Sections 2 and 3 give an overview of the of the data, query
and threat models, and of the proposed solution respectively

1886

(see [11] for additional details). Section 4 present the demon-
stration platform and scenario, also explained in a video [10].

2. QUERY AND THREAT MODELS
User Profile. To achieve pertinence, each query only

targets the subset of PDMSs exposing a given user profile:
a structured description indicating the user’s attributes (e.g.
location, age, interests). Besides pertinence, a second bene-
fit of user profiles is to increase efficiency by not flooding the
entire network with each query. A profile pi extracted by
PDMSi is a set of concepts pi = {co1i , co2i , . . . , coki }. Each
concept co is the concatenation of one or more metadata
terms describing its semantics and a value, e.g., location —
Versailles, age — 37, occupation — researcher.

Query Model. We consider classical aggregate queries
(e.g., top-k) over the data supplied by the nodes targeted
by the query. Such queries allow users to compute generic
statistics (e.g., recommendations). In DISPERS, a query is
a triplet: (i) target profile – a logical expression of concepts
indicating which nodes, called targets, qualify to answer;
(ii) local query – the expression of the query to be com-
puted locally by each target; and (iii) aggregate query – an
aggregative expression applied over the local query results.

Let us consider three examples of DISPERS query types:
(i) closed item list : given a set of movies find their average
grade as given by researchers living in Lisbon; (ii) open item
list : get the top-10 ranked movies by researchers living in
New York; (iii) statistics: what is the average number of
sick leave days in 2017 of researchers living in Paris.

While the data and query model definitions and expressiv-
ity are significant issues, the system security is paramount
for gaining users’ trust and encouraging them to contribute
with their data, justifying our focus on privacy preservation.

Threat Model. We make the following assumptions:
(1) Each PDMS device is supplied with a trustworthy certifi-
cate attesting that it is genuine. Otherwise, an attacker can
emulate nodes (Sybil attack) and master a large proportion
of nodes, thus defeating any countermeasure. With the TEE
protection, we already offer a certain level of security at the
node and system levels. Yet, no hardware security can be
described as unbreakable.
(2) Some nodes may be corrupted by a lab attack. A lab
attack is the most advanced, comprehensive and invasive
hardware attack where the attacker has access to laboratory
equipment and performs reverse engineering of a device.
(3)Corrupted nodes are covert adversaries. They only derive
from the protocol if they cannot be detected[3], as detected
malicious behaviors lead to exclusion.

The main objective of DISPERS is to offer protection be-
yond the TEE security. Therefore, our threat model con-
siders colluding attackers, conducting lab attacks on their
PDMS, thus mastering a set of corrupted nodes, called col-
luding nodes. We assume that the maximum number of col-
luding nodes mastered by a single or colluding attackers can
be (over)estimated and will be used to calibrate DISPERS.

3. PROPOSED SOLUTION
Relying on a fully-distributed system requires a commu-

nication overlay allowing for efficient node discovery, data
indexing and search. A distributed hash table (DHT)[15] of-
fers an optimized means to locate the node(s) storing a spe-
cific data item. It provides an interface allowing any node

to store or search for an item. Hence, DISPERS leverages
the classical DHT techniques as a basis for communication
efficiency and scalability.

To query our system in a secure and efficient manner, we
build a distributed protocol on top of this P2P overlay rely-
ing exclusively on PDMS nodes. This implies some unavoid-
able data disclosure risk whenever a colluding node (covert
adversary) is selected as a query actor. Therefore, to maxi-
mize the system security, we need to minimize the benefit of
corrupting a node. This translates into two requirements:
R1: Minimize the private information any node could have
access to whenever it is assigned with a data related task.
R2: Ensure that an attacker controlling several colluding
nodes cannot influence the selection of the processing nodes.

Our query protocol relies on three design principles de-
scribed below, which, combined, answer both requirements.

Knowledge dispersion. No single (or few) node(s) should
store a significant amount of sensitive data, unless it owns
that data.

To efficiently evaluate a query in DISPERS, we first need
to obtain the list of node addresses that match the target
profile. This requires the maintenance of a profile index that
associates profile concepts to node addresses. The knowledge
dispersion design principle aims at protecting the data-at-
rest which is thus composed of: (i) the profile index; and
(ii) the personal data of each PDMS owner (already secured
by the TEE). We distributively store the index in the DHT:
each node is responsible for a set of concepts and indexes
all the node addresses matching one of them. A node that
stores a concept index is called a Concept Indexer (CI).
Even though the DHT uniformly distributes the knowledge
among the nodes, if one were to be corrupted, it could ac-
cess the entire list of IP addresses it indexes. We reinforce
the knowledge dispersion by splitting each IP address into
s shares using Shamir’s Secret Sharing scheme[14]. Then,
at least p (p ≤ s) shares are required to reconstruct the
secret. Disclosing a single concept index (i.e., the list of
IP addresses sharing this concept) now requires p colluding
nodes which are randomly selected (using the DHT). Based
on this distributed profile indexing, a naive query protocol
can be easily designed:

T CI Q
5

4

1

2 3

6

Figure 1: Naive protocol

Naive protocol (see Figure 1):

1. The querier (Q) searches the CIs using the DHT;
2. The CIs reply with the shares of IP address lists;
3. Q selects the final Targets (Ts) using the target profile;
4. Q sends the local query to the Ts;
5. The Ts answer with their local results;
6. Q computes the aggregate query result.

However, this protocol exposes two major shortcomings
both resulting from the querier’s central position. First,
a corrupted querier may have access to the list of targets,
their local query results and the association between targets
and local results, i.e., all the sensitive data! Second, this
protocol is not efficient as the querier acts as a bottleneck.
Thus, thanks to the first design principle, the data-at-rest is
protected, but the data-in-use – used to compute the query
result – is still open to attacks.

1887

MDA

DADADA

TTTTT

TFTF

CICICI

Q

CI Concept
Indexer

DA Data
Aggregator

Q Querier Q's legitimate
node

ES Execution
Setter T Target

ESL ES's legitimate
node

MDA Main Data
Aggregator

TF Target Finder Corrupted
nodes

IP comm.
DHT comm.

Anonymous
comm.

QL

Q QL

QL

QL

ES ESL

ESL

ESL

VRND

VTFL

VDAL

PLAY STOP PREV NEXT

SYSTEM PARAMETERS

PERFORMANCE

RUN ATTACK

DISPERS Demonstration Platform QUERY PARAMETERS Closed item list: "given a set of 10 movies, find their average grade as given by researchers or professors living in Lisbon"

NAIVE COMPART.

Corrupted querier

Choose actors

Choose QLs/ESLs

DISPERS

Node 791

Data in use

{ "movies":
 {
 'A': 3.7, 'B': 4.1,
 'C': 2.5, 'D': 3.2,
 'E': 4.5, 'F': 3.0,
 'G': 1.9, 'H': 1.0,
 'I': 3.9, 'J': 5.0,
 }
}

Data at rest

OWN DATA

CONCEPT INDEX

demonstration-cli http://localhost:8080/

1 sur 1 30/11/2018 à 16:12

Region 1

Region 2

Region 3

Figure 2: Demonstration platform screenshot

Task compartmentalization. The execution must be split
into atomic tasks assigned to distinct actors who must have
access to the minimum information to perform their task.

Analyzing the naive protocol leads to identifying three
different roles cumulated by the querier: (1) contacting the
CIs (step 1), (2) finding the targets (steps 3 and 4), and
(3) computing the aggregate query (step 6).

Applying task compartmentalization leads to new actors
definition: the Target Finders (TF) determining the rele-
vant nodes based on the target profile, and the Data Aggre-
gators (DA) aggregating the individual results to obtain the
query result. To further reduce the potential data disclosure
(and avoid bottlenecks), we consider having several TFs and
DAs. Considering several DAs requires defining the Main
Data Aggregator (MDA) which performs the final aggrega-
tion of the partially aggregated results. We can propose a
second, more robust, protocol:

Compartmentalized protocol (see Figure 2, top-left corner)

1. Q selects the actors and searches (DHT) for the CIs;
2. The CIs distribute their shares of IP addresses to the TFs;
3. The TFs apply the target profile and contact the targets (Ts)

using anonymous communications (e.g., TOR like[7])1;
4. The Ts send their local results to a randomly chosen DA, still

using anonymous communications;
5. The DAs compute and send partial aggregates to the MDA;
6. The MDA computes the final result.

Distributing the query processing on distinct actors in-
creases parallelism and thus efficiency. More importantly,
it offers a maximum degree of task compartmentalization:,
i.e., inter-task, involving distinct dedicated actors for both
target computation and data aggregation tasks; and intra-
task, since several actors are chosen for each query task.

1The goal of the anonymous communications (steps 2 and 3)
is to prevent an attacker spying the communications of the
TFs or DAs from learning the targets’ IP addresses w.r.t. a
given query.

Moreover, the metadata is also compartmentalized as only
the required information is given to the query actors and,
when possible, even pseudonymized. Nevertheless, an at-
tacker controlling several nodes may influence the choice of
query actors to control some TFs and DAs and obtain con-
fidential data. We thus need to enforce a random selection.

Imposed randomness. Actors must be randomly selected,
and that selection cannot be influenced by an attacker [11].

This principle is applied by (1) imposing the location of
nodes in the DHT (based on their public key); (2) selecting
k nodes in a small region “around” the querier (Region 1
in Figure 2); k and the region size are computed based on
the maximum number of colluding nodes in the system such
that the region “never” includes k or more colluding nodes
(probabilistic guarantees), i.e., at least one is honest – these
nodes are called legitimate nodes; (3) using these nodes to
generate a verifiable random number in a distributed fashion
following an algorithm based on CSAR[4]; (4) using this
random number to designate a location in the DHT overlay,
around which the actors will be selected randomly, by k
legitimate actors list builders located in Region 2 of Figure
2. Actors must be located in a region (Region 3 in Figure
2) which size is computed based on the number of needed
actors, still using probabilistic guarantees.

Thus, our protocol answers the requirement R1 by apply-
ing the knowledge dispersion and task compartmentalization
principles to protect, respectively, the data-at-rest and the
data-in-use during the query evaluation process. Require-
ment R2 is addressed by applying the imposed randomness
principle in the selection of the nodes processing a query.

This guarantees that an attacker cannot obtain more pri-
vate information than she can get by observing the data ran-
domly reaching her corrupted nodes. Thus, the impact of
an attack remains proportional to the number of colluding
nodes, which is the best situation in our context. While, in
theory, our protocol is agnostic to the proportion of collud-
ing nodes, a large proportion of colluding nodes mastered

1888

by a single individual would inexorably lead to large disclo-
sure. Given the covert adversaries assumption, this is true
whatever the protocol with a reasonable overhead, but un-
realistic as TEEs provide strong defenses against attackers,
preventing large-scale corruption.

4. DEMONSTRATION
The purpose of this demonstration is to illustrate the DIS-

PERS system thanks to a simulator and a graphical front-
end; and to demonstrate the rationale of our three design
principles. Attendees may optionally try to hack the system,
their goal being to disclose some confidential data.

4.1 Demonstration Platform and Scenario
We introduce our approach using the graphical interface

as depicted in Figure 2. Attendees can select or configure
a query (top) and use the command panel (middle-right) to
execute one of the query protocols, change the system pa-
rameters (e.g., number of colluding nodes), or run the pro-
tocol step by step. The last button allows exhibiting figures
on the security and scalability of the DISPERS protocol.

After explaining the demonstration platform, we focus on
a given query and run protocols of increasing complexity and
resistance to attacks, thus explaining the rationale of each
design principle. We can consider different queries such as:
“given a set of movies find their average grade as given by
researchers or professors living in Lisbon”, which can be de-
composed in: (1) a target profile: (city = Lisbon) ∧ ((job
= researcher) ∨ (job = professor)); (2) a local query: select
grades for movies in {item list}; and (3) an aggregate query
computing the grades average. Then, we present the query
execution with the three frames detailing the DISPERS pro-
tocol, which is executed in two steps - the query setup phase
and the query processing phase. The video in [10] explains
the demonstration platform and scenario in detail.

4.2 Hacking Game
The goal of this game is to achieve a deeper understand-

ing of DISPERS by trying to defeat its security, e.g., ex-
hibiting some confidential data of a given node (let’s call it
Bob). Players will use a laptop, equipped with the same en-
vironment and will be assisted by one of the demonstration
authors. We expect them to defeat easily the naive proto-
col. Playing with the queries, the parameters and inspect-
ing the content of colluding nodes, the attendee may obtain
Bob’s data with the compartmentalized protocol but, based
on [11], we are confident that this will be unfeasible with
DISPERS. Attendees proposing some interesting means to
try defeating DISPERS will win some goodies.

4.3 Lessons Learned
Privacy protection. The main expected outcome is

to convince the audience that building a secure fully dis-
tributed PDMS system is within reach. DISPERS protects
the private data of its participants even in the presence of
colluding nodes, pushing the security level offered by TEEs
much further thanks to (1) imposed randomness ensured by
the SEP2P protocol[11] – guaranteeing that an attacker can-
not influence the choice of processing nodes and get more
private information than by passively observing the data
manipulated by corrupted nodes; and (2) knowledge disper-
sion and task compartmentalization which reduce the data
leakage to a minimum when covert adversaries are (ran-
domly) involved in the query processing.

Efficiency and scalability. The cost of the security mech-
anisms remains very low even with a large number of collud-
ing nodes. To this end, our platform provides the detailed
query execution cost (i.e., both cryptographic and commu-
nication latency) with different system parameter settings.

5. REFERENCES
[1] S. Abiteboul, B. André, and D. Kaplan. Managing

your digital life. Comm. of the ACM, 58(5), 2015.

[2] N. Anciaux, P. Bonnet, L. Bouganim, B. Nguyen,
P. Pucheral, I. S. Popa, and G. Scerri. Personal data
management systems: The security and functionality
standpoint. Information Systems, 80, 2019.

[3] Y. Aumann and Y. Lindell. Security against covert
adversaries: Efficient protocols for realistic
adversaries. In Theory of Cryptography, 2007.

[4] M. Backes, P. Druschel, A. Haeberlen, and D. Unruh.
Csar: A practical and provable technique to make
randomized systems accountable. In Network and
Distributed System Security Symp., volume 9, 2009.

[5] Blue Button. Find your health data
https://www.healthit.gov/topic/

health-it-initiatives/blue-button, 2017.

[6] Cozy Cloud. Your digital home. https://cozy.io/en,
2018.

[7] R. Dingledine, N. Mathewson, and P. F. Syverson.
Tor: The second-generation onion router. In USENIX
Security Symposium, 2004.

[8] European Parliament. General data protection
regulation. Law, 2016.

[9] T. Hunt. ’;–have i been pwned? largest and recent
breaches. https://haveibeenpwned.com/, 2018.

[10] J. Loudet, I. Sandu-Popa, and L. Bouganim.
DISPERS demonstration video :
http://petrus.inria.fr/~bouganim/DISPERS.mp4.

[11] J. Loudet, I. Sandu-Popa, and L. Bouganim. SEP2P:
Secure and efficient P2P personal data processing. In
EDBT, 2019.

[12] C. Priebe, K. Vaswani, and M. Costa. Enclavedb: A
secure database using SGX. In IEEE Symposium on
Security and Privacy, 2018.

[13] E. Saleh, A. Alsa’deh, A. Kayed, and C. Meinel.
Processing over encrypted data: between theory and
practice. ACM SIGMOD Record, 45(3):5–16, 2016.

[14] A. Shamir. How to share a secret. Communications of
the ACM, 22(11), 1979.

[15] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and
H. Balakrishnan. Chord: A scalable peer-to-peer
lookup service for internet applications. ACM
SIGCOMM Computer Comm. Review, 31(4), 2001.

[16] Q.-C. To, B. Nguyen, and P. Pucheral. Private and
scalable execution of sql aggregates on a secure
decentralized architecture. ACM Transactions on
Database Systems (TODS), 41(3):16, 2016.

[17] Q. Wang and N. Borisov. Octopus: A secure and
anonymous dht lookup. In Distributed Computing
Systems (ICDCS), 2012.

[18] J. Yin, J.-P. Martin, A. Venkataramani, L. Alvisi, and
M. Dahlin. Separating agreement from execution for
byzantine fault tolerant services. In ACM Symposium
on Operating Systems Principles (SOSP), 2003.

1889

https://www.healthit.gov/topic/health-it-initiatives/blue-button
https://www.healthit.gov/topic/health-it-initiatives/blue-button
https://cozy.io/en
https://haveibeenpwned.com/
http://petrus.inria.fr/~bouganim/DISPERS.mp4

	Introduction
	Query and Threat Models
	Proposed Solution
	Demonstration
	Demonstration Platform and Scenario
	Hacking Game
	Lessons Learned

	References

