
HERMIT in Action: Succinct Secondary Indexing
Mechanism via Correlation Exploration

Yingjun Wu Jia Yu∗ Yuanyuan Tian
IBM Research - Almaden Arizona State University IBM Research - Almaden
yingjun.wu@ibm.com jiayu2@asu.edu ytian@us.ibm.com

Richard Sidle Ronald Barber
IBM IBM Research - Almaden

ricsidle@ca.ibm.com rjbarber@us.ibm.com

ABSTRACT
Database administrators construct secondary indexes on data tables
to accelerate query processing in relational database management
systems (RDBMSs). These indexes are built on top of the most
frequently queried columns according to the data statistics. Un-
fortunately, maintaining multiple secondary indexes in the same
database can be extremely space consuming, causing significant
performance degradation due to the potential exhaustion of memory
space. However, we find that there indeed exist many opportunities
to save storage space by exploiting column correlations. We recently
introduced HERMIT, a succinct secondary indexing mechanism for
modern RDBMSs. HERMIT judiciously leverages the rich soft func-
tional dependencies hidden among columns to prune out redundant
structures for indexed key access. Instead of building a complete
index that stores every single entry in the key columns, HERMIT
navigates any incoming key access queries to an existing index built
on the correlated columns. This is achieved through the Tiered
Regression Search Tree (TRS-TREE), a succinct, ML-enhanced
data structure that performs fast curve fitting to adaptively and dy-
namically capture both column correlations and outliers. In this
demonstration, we showcase HERMIT’s appealing characteristics.
we not only demonstrate that HERMIT can significantly reduce space
consumption with limited performance overhead in terms of query
response time and index maintenance time, but also explain in de-
tail the rationale behind HERMIT’s high efficiency using interactive
online query processing examples.

PVLDB Reference Format:
Yingjun Wu, Jia Yu, Yuanyuan Tian, Richard Sidle, Ronald Barber. HER-
MIT in Action: Succinct Secondary Indexing Mechanism via Correlation
Exploration. PVLDB, 12(12): 1882-1885, 2019.
DOI: https://doi.org/10.14778/3352063.3352090

1. INTRODUCTION
Modern relational database management systems (RDBMSs) sup-

port fast secondary indexes that help accelerate query processing
*Work done during an internship at IBM Research - Almaden.

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 12, No. 12
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3352063.3352090

in both transactional and analytical workloads. These indexes, cre-
ated either by database administrators or automatically by query
optimizers, are built on top of the most frequently queried columns,
hence providing an efficient way to retrieve data tuples via these
columns. However, managing multiple secondary indexes in the
database can consume large amounts of storage space, potentially
causing severe performance degradation due to the exhaustion of
memory space. This problem is not uncommon especially in the
context of modern main-memory RDBMSs, where memory space
is a valuable resource in enabling ultra-fast query execution.

Confronting this problem, researchers in the database community
have proposed various practical solutions to limit the space usage
for index maintenance. From the database tuning perspective, some
of the research works have introduced smart performance tuning
advisors that can automatically select the most beneficial secondary
indexes given a fixed space budget [5, 1]. While satisfying the
space constraints, these techniques limit the number of secondary
indexes built on the tables, consequently causing poor performance
for queries that lookup the unindexed columns. From the structure
design perspective, a group of researchers has developed space-
efficient index structures that consume less storage space compared
to conventional indexes. These works either store only a subset of
the column entries [4] or use compression techniques to reduce space
consumption [9]. However, such solutions save limited amount of
space and can cause high overhead for lookup operations.

Given these deficiencies in existing solutions, we introduced
HERMIT [7], a new secondary indexing mechanism that attempts
to address this problem in a third way. The main observation that
sparks HERMIT’s design is that many columns in the data tables
exhibit correlation relations, or soft functional dependencies, where
the values of a column can be estimated by that of another column
with approximation. Exploiting such a relation can greatly reduce
the memory consumption caused by secondary index maintenance.
Specifically, if we want to create an index on a column M that is
highly correlated with another column N where an index has been
built, we can simply construct a succinct data structure to capture
the correlation between M and N . HERMIT uses Tiered Regression
Search Tree, or TRS-TREE, to capture the correlation. TRS-TREE
exploits multiple simple statistical regression processes to fit the
curve of the hidden correlation function. To perform a lookup query
on M , the RDBMS retrieves a lookup range on N from the newly
constructed TRS-TREE and fetches the targeted tuples using N ’s
index. Like several existing index structures [3, 2, 8], TRS-TREE
returns approximate results. HERMIT ensures the correctness by
removing any unqualified tuples via base table validation. Different
from existing machine learning-based indexing solutions, TRS-

1882

mailto:yingjun.wu@ibm.com
mailto:jiayu2@asu.edu
mailto:ytian@us.ibm.com
mailto:ricsidle@ca.ibm.com
mailto:rjbarber@us.ibm.com


TIME DJ SP VOL

INDEX TABLE

(a) Conventional index

TIME DJ SP VOL

INDEX TABLE

(b) HERMIT

Figure 1: A comparison between data retrieval via conventional secondary
indexes and HERMIT. (double triangles -> conventional secondary index;
small single triangle -> the proposed TRS-TREE structure)

TREE efficiently handles inserts, deletes, and updates, and supports
on-demand structure reorganization to re-optimize the index effi-
ciency at system runtime. This ensures that HERMIT can sustain
good performance even if data distribution change occurs.

HERMIT yields competitive performance when supporting range
queries, which are prevalent for secondary key column accesses. It
also presents a tradeoff between computation and space consump-
tion. While avoiding building a complete index structure remarkably
reduces space consumption, HERMIT requires any incoming query
to go through an additional hop before retrieving the targeted tuples.
However, as our demonstration will show, this overhead does not
substantially affect performance in practice, and it also brings in
huge benefits when storage space is valuable and scarce, such as in
main-memory RDBMSs.

2. HERMIT OVERVIEW
HERMIT is a secondary indexing mechanism that leverages col-

umn correlations to accelerate query processing. To index a specified
columnM , HERMIT requires two components: a succinct data struc-
ture called Tiered Regression Search Tree (abbr., TRS-TREE) on
the target column M , and a pre-existing complete index called host
index on the host column N . TRS-TREE models the correlation be-
tween M and N : it leverages a tiered regression method to perform
hierarchical curve fitting over the correlation function Fn from M
to N , and uses a tree structure to index a set of regression functions
each of which represents an approximate linear mapping from a
value range of M to that of N .

To execute a query, HERMIT runs a three-phase searching algo-
rithm: (1) TRS-TREE search; (2) host index search; and (3) base
table validation. Specifically, HERMIT uses the query predicate to
search the TRS-TREE in order to retrieve the range mapping from
M to N . It then leverages the host index to find a set of candidate
tuple identifiers. We note that this candidate set is approximate, and
it contains false positives that fail to satisfy the original predicates.
HERMIT removes those false positives by directly validating the
corresponding values on the base table.

We now use a running example to demonstrate how HERMIT
works. Let us consider a data table STOCK_HISTORY recording U.S.
stock market trading histories with four different columns: TIME
(i.e., trading date), DJ (i.e., Dow Jones), SP (i.e., S&P 500), and
VOL (i.e., total trading volume). The database administrator has
already created an index on column DJ. Now she decides to cre-
ate another index on column SP due to the frequent occurrence of
queries on this column. On receiving the index creation statement,
the RDBMS adopting HERMIT first checks whether any column cor-
relation involving TIME or SP has been detected via any correlation
discovery algorithms. If observing that the values in SP are highly
correlated with those in DJ and that there is an existing index on
DJ, the RDBMS then constructs a TRS-TREE to model the correla-
tion mapping from SP to DJ. Given the query range (Smin, Smax)

A B

C D

FE

LAYER 0

LAYER 1

LAYER 2

LAYER 3

0

A BC D

256 512 768 1024

E F

Figure 2: TRS-TREE data structure on a target column with value range
from 0 to 1024. The node fanout is set to 4. The boxes represent the leaf
nodes and the circles represent the internal nodes. The ruler bar shows how
TRS-TREE partitions the range of the target column.

on column SP, HERMIT first inputs this range to the constructed
TRS-TREE to fetch the corresponding range (Dmin, Dmax) on
DJ. Then it searches the host index on DJ with the generated range
(Dmin, Dmax) to find all the satisfying tuples. To filter out false
positives, the RDBMS reads the SP values from the base table and
validates the correctness of the result. Figure 1 shows how HER-
MIT is different from conventional secondary indexing mechanisms
when retrieving tuples in the example.

3. HERMIT DESIGN
Unlike existing indexing techniques that provide direct accesses

to the tuple identifiers, HERMIT requires two-hop accesses. While
potentially causing higher access overhead for point queries, HER-
MIT can achieve very competitive performance for range queries
that are highly common for secondary indexes (as we will demon-
strate in the experiments). And, of course, HERMIT can significantly
reduce the space consumption for index maintenance. HERMIT sup-
ports both transactional and analytical workloads. The constructed
TRS-TREE processes any insert, delete, and update operation with
correctness guarantees. Due to its approximate characteristics, HER-
MIT works best for range queries, which are quite common for
secondary key columns, especially in data analytics. Furthermore,
HERMIT is extremely beneficial for main-memory RDBMSs, where
memory space is very valuable. We now introduce TRS-TREE, the
key component of HERMIT, and then present how HERMIT works
with TRS-TREE. The detailed description can be found in [7].

3.1 TRS-Tree
TRS-TREE is a k-ary tree structure that maps the values in the

target column M to that in the host column N . It uses leaf nodes
to maintain the detailed data mappings, with its internal nodes
providing fast navigation to these leaf nodes. Figure 2 shows a
TRS-TREE structure constructed on a target column whose value
range is from 0 to 1024.

Leaf node. A leaf node in TRS-TREE is associated with a sub-
range r of the target column M . We define that a range r has two
elements: a lower bound lb and an upper bound ub. Given a set of
column entries Mr from M covered by r (i.e., ∀m ∈ Mr, r.lb ≤
m ≤ r.ub), the leaf node attempts to provide an approximate linear
mapping from Mr to its corresponding set of column entries Nr in
the host column N . Such a mapping is represented using a linear
function n = βm+α± ε, where m and n represent column values
from Mr and Nr , β and α respectively denote the function’s slope
and intercept, and ε denotes the confidence interval. TRS-TREE

1883



computes β and α using the standard linear regression formula:

α = Nr − βMr β =
cov(Mr, Nr)

var(Mr)

where Nr and Mr respectively denote the average values of el-
ements in Nr and Mr , var(Mr) is the variance of elements in
Mr , and cov(Mr, Nr) presents the covariance of the correspond-
ing elements in Mr and Nr . Based on the above equations, both
α and β can be computed with one scan of the data in Mr and Nr .
The confidence interval ε can be computed based on a user-defined
parameter, called error_bound. The function n = βm + α ± ε
captures an approximate linear correlation between columns M and
N under the sub-range r in M . However, not all the entry pairs
(m,n) from Mr and Nr are necessarily covered by the computed
linear function. We call these uncovered entry pairs as outliers. The
leaf node maintains all these outliers in an outlier buffer, which is
implemented as a hash table mapping fromm to the tuple’s identifier
in the form of either a primary key or a tuple location.

Internal node. An internal node in TRS-TREE functions as a
navigator that routes the queries to their targeted leaf nodes. Similar
to the leaf nodes, each internal node is associated with a range in the
target column M . However, instead of maintaining any mapping to
the host column, an internal node only maintains a fixed number of
pointers pointing to its child nodes, each of which can be either a
leaf node or another internal node. To perform a lookup, an internal
node can easily navigate the query to the corresponding child node
whose range covers the input value.

Construction algorithm. The construction algorithm recursively
divides M ’s value range into k uniform sub-ranges until every entry
pair (m,n) from M and N covered by the corresponding sub-range
can be well estimated by a simple linear regression-based data
mapping. The construction algorithm takes as input the base table
T , the target column ID cidM , the host column ID cidN , and the
target column’s full range R. This construction algorithm utilizes a
FIFO queue to build the TRS-TREE in a top-down fashion. Each
element in the FIFO queue is a pair that contains a TRS-TREE node
and the node’s corresponding temporary table. The temporary table
for a TRS-TREE node is a sub-table of T , which selects rows with
target column in the node’s range, and projects only the target and
host columns along with each tuple’s identifier.

Lookup algorithm. The lookup algorithm starts from root and
runs a breadth-first search using a FIFO queue. The TRS-TREE
iterates every single node in the queue and performs a lookup if the
node is a leaf node. On confronting an internal node, TRS-TREE
retrieves its child nodes and checks whether each child’s range
overlaps with the query predicate. Any overlapping child node will
be pushed to the FIFO queue. The lookup algorithm continues
iterating until the queue is empty. When reaching leaf nodes, TRS-
TREE computes an intersection range between the query predicate
and the node’s value range. Using this range, the node can then use
its linear function to compute the estimated range on N that covers
the exact matching.

Maintenance algorithm. At system runtime, TRS-TREE can
dynamically support all of the commonly used database operations,
including insertions, deletions, and updates. Given the to-be-inserted
tuple’s target column value m, host column value n, and tuple
identifier tid, TRS-TREE starts the insertion by locating the leaf
node containing the range covering m. After that, TRS-TREE
checks whether the node’s corresponding range of the host column
can cover n (using the leaf node’s linear function). If not, then
TRS-TREE inserts this tuple’s m and tid into the outlier buffer.
Otherwise, the insertion algorithm directly terminates. For deletion,
TRS-TREE does not perform any computation after locating the

TRS-Tree Host Index Primary Index Base Table
1. Lookup 2. Range lookups 3. Point lookups

(Optional)
4. Validations

Figure 3: The workflow of HERMIT’s lookup mechanism.

leaf node. Instead, it directly checks the outlier buffer and removes
the corresponding entry if exists.

Online reconfiguration. TRS-TREE reorganizes its internal
structure on demand to optimize the index efficiency in terms of
both lookup performance and space utilization. TRS-TREE detects
reorganization opportunities based on two criteria. First, the outlier
buffer size of a certain leaf node reaches a threshold ratio compared
to the total number of tuples covered in the corresponding range;
second, the number of deleted tuples covered by the leaf node’s cor-
responding range reaches a threshold compared to the total number
of tuples. For the first case, TRS-TREE directly splits the leaf node
into multiple equal-range child nodes. For the second case, TRS-
TREE checks the node’s neighbors to determine whether merging
is beneficial. To perform structure reorganization, a background
thread scans the target column to obtain all the tuples that fall into
the affected value range. It then computes the linear functions and
populates the outlier buffers before installing the new node(s) into
the tree structure.

3.2 HERMIT Workflow
TRS-TREE lookup returns only approximate results. To obtain

the real matching for the input queries, HERMIT needs to collaborate
with the underlying RDBMS and remove all the false positive results.
Figure 3 shows the entire workflow of HERMIT’s lookup mechanism.
We list the key steps as follows: (1) TRS-TREE lookup – This step
performs a lookup on TRS-TREE. The results are a set of ranges on
the host column and a set of tuple identifiers. (2) Host index lookup
– This step performs lookups on the host index with the returned
host column ranges as inputs. The result is a set of tuple identifiers,
which is further unioned with the set of identifiers returned from
Step 1. (3) Primary index lookup (optional) – This step occurs only
if the RDBMS adopts logical pointers as tuple identifiers [6]. It
looks up the primary index with the returned set of tuple identifiers
as inputs. The result is a set of tuple locations. (4) Base table
validation – This step fetches the actual tuples using tuple locations
and validates whether each tuple satisfies the input predicates. This
step returns all the qualified results to the input query.

4. DEMONSTRATION PLAN
We have developed a generalized framework to demonstrate HER-

MIT’s high efficiency in terms of both space consumption and query
response/index maintenance time. The framework contains two
parts: (1) a real-time performance monitoring component that con-
tinuously reports HERMIT’s runtime performance numbers; (2) an
interactive query processing interface that allows users to submit
and execute SQL statements. From this demonstration, the audience
is expected to understand that (1) HERMIT can be easily configured;
(2) HERMIT’s TRS-TREE can be constructed within a short period
of time; (3) HERMIT can achieve competitive lookup performance;
(4) HERMIT can significantly reduce storage consumption; (5) HER-
MIT can use online structure reconfiguration to reoptimize perfor-
mance; and (6) how HERMIT works and why HERMIT achieves
high efficiency.

1884



Figure 4: HERMIT demonstration framework.

4.1 Configuration
As shown in Figure 4, the users can configure the workload and

try out different HERMIT parameters before exploring HERMIT’s
features. Our demonstration allows users to run HERMIT in two
different DBMSs: PostgreSQL, a popular disk-based DBMS, and
DBMS-X, an in-memory DBMS prototype built internally in IBM –
Almaden. We provide users with three real-world datasets: Stock,
Sensor, and Ticket. The detailed descriptions of these datasets can
be found in [7]. Besides these datasets, the users may also generate
customized dataset by providing user-defined correlation functions
as well as other necessary parameters such as variable range and
outlier ratio. Given these parameters, our framework can populate
a table with two correlated columns generated using the provided
correlation function. Before executing online queries, our system
needs to populate the table based on the selected dataset and then
construct HERMIT’s TRS-TREE (as well as a standard B+-tree, for
runtime comparison reason) using a number of cores as configured
by the users. Afterwards, the system will run mixed queries contain-
ing both range lookups and insert/update/delete queries. The users
can set the ratio of range lookup operations and the selectivities.

After setting up the workload, the users then need to configure
HERMIT. The users can easily tune HERMIT’s performance using
four parameters: node_fanout, which controls the fanout of TRS-
TREE’s internal nodes; max_height, which limits the maximum
height of TRS-TREE; outlier_ratio, which constrains the maxi-
mum capacity of the outlier buffers in TRS-TREE’s leaf nodes; and
error_bound, which balances the tradeoff between lookup perfor-
mance and storage consumption. The detailed description of these
parameters can be found in [7]. During the demonstration, we plan
to provide default parameter values for new HERMIT users.

4.2 Runtime Performance
Once the configuration is ready, our demonstration framework

will start executing queries. As shown in Figure 4, our framework
can continuously report the lookup throughput and latency num-
bers achieved by HERMIT. For comparison, it also presents the
lookup performance achieved by standard B+-tree and full table
scan. The framework further shows the storage space and index
construction time consumed by HERMIT’s TRS-TREE and standard
B+-tree. To help the users understand HERMIT’s runtime behavior,
the framework can visualize the real-time false positive ratio yielded
by HERMIT (recall that HERMIT’s tree only generates approximate
results). The users can also click “Performance Diagnose” button to
further check the performance breakdown. When using customized
dataset, the users may experience how HERMIT reacts to dataset
changes by clicking the “Online Dataset Update” button to update

the dataset on-the-fly. Once the dataset reconfiguration is ready, our
framework will start populating the two correlated columns with
newly configured correlation function and parameters. The users
are expected to observe how HERMIT’s TRS-TREE performs online
index reorganization (including node merge and split) to reoptimize
its runtime performance.

Our demonstration framework not only showcases HERMIT’s
excellent efficiency, but also explains the rationale behind it. This is
achieved through an interactive query processing interface. Once the
users type in a valid SQL statement, our framework will analyze and
notify the users whether and why the input statement can or cannot
leverage HERMIT to accelerate query processing. The framework
then executes this query and reports the performance achieved by
HERMIT as well as standard B+-tree and full table scan.

5. CONCLUSION
We plan to demonstrate HERMIT, a novel succinct secondary in-

dexing mechanism that leverages column correlation to significantly
reduce space consumption. Our demonstration not only presents
HERMIT’s high efficiency in terms of both space consumption and
lookup performance, but also explains the rationales behind HERMIT
via interactive query processing.

6. REFERENCES
[1] S. Agrawal, S. Chaudhuri, and V. R. Narasayya. Automated Selection

of Materialized Views and Indexes for SQL Databases. In VLDB, 2000.
[2] M. Athanassoulis and A. Ailamaki. BF-Tree: Approximate Tree

Indexing. PVLDB, 7(14):1881–1892, 2014.
[3] H. Kimura, G. Huo, A. Rasin, S. Madden, and S. B. Zdonik.

Correlation Maps: A Compressed Access Method for Exploiting Soft
Functional Dependencies. PVLDB, 2(1):1222–1233, 2009.

[4] M. Stonebraker. The Case for Partial Indexes. SIGMOD Record, 18(4),
1989.

[5] G. Valentin, M. Zuliani, D. C. Zilio, G. Lohman, and A. Skelley. DB2
Advisor: An Optimizer Smart Enough to Recommend Its Own Indexes.
In ICDE, 2000.

[6] Y. Wu, J. Arulraj, J. Lin, R. Xian, and A. Pavlo. An Empirical
Evaluation of In-Memory Multi-Version Concurrency Control. PVLDB,
10(7):781–792, 2017.

[7] Y. Wu, J. Yu, Y. Tian, R. Sidle, and R. Barber. Designing Succinct
Secondary Indexing Mechanism by Exploiting Column Correlations. In
SIGMOD, 2019.

[8] J. Yu and M. Sarwat. Two Birds, One Stone: A Fast, yet Lightweight,
Indexing Scheme for Modern Database Systems. PVLDB,
10(4):385–396, 2016.

[9] H. Zhang, D. G. Andersen, A. Pavlo, M. Kaminsky, L. Ma, and R. Shen.
Reducing the Storage Overhead of Main-Memory OLTP Databases
with Hybrid Indexes. In SIGMOD, 2016.

1885


	Introduction
	HERMIT Overview
	HERMIT Design
	TRS-Tree
	HERMIT Workflow

	Demonstration Plan
	Configuration
	Runtime Performance

	Conclusion
	References

