DPSAaS: Multi-Dimensional Data Sharing and Analytics as
Services under Local Differential Privacy

Min Xuz~ Tianhao Wang3T Bolin Ding* Jingren Zhou' Cheng Hong* Zhicong Huang!

' Alibaba Group

2University of Chicago

3Purdue University

{bolin.ding, jingren.zhou, vince.hc, zhicong.hzcy@alibaba-inc.com,

xum@cs.uchicago.edu,

ABSTRACT

Differential privacy has emerged as the de facto standard for pri-
vacy definitions, and been used by, e.g., Apple, Google, Uber, and
Microsoft, to collect sensitive information about users and to build
privacy-preserving analytics engines. However, most of such ad-
vanced privacy-protection techniques are not accessible to mid-
size companies and app developers in the cloud. We demonstrate
a lightweight middleware DPSAaS, which provides differentially
private data-sharing-and-analytics functionality as cloud services.

~ We focus on multi-dimensional analytical (MDA) queries under
local differential privacy (LDP) in this demo. MDA queries against
a fact table have predicates on (categorical or ordinal) dimensions
and aggregate one or more measures. In the absence of a trusted
agent, sensitive dimensions and measures are encoded in a privacy-
preserving way locally using our LDP data sharing service, before
being sent to the data collector. The data collector estimates the
answers to MDA queries from the encoded data, using our data an-
alytics service. We will highlight the design decisions of DPSAaS
and twists made to LDA algorithms to fit the design, in order to
smoothly connect DPSAaS to the data processing platform and an-
alytics engines, and to facilitate efficient large-scale processing.

PVLDB Reference Format:

M. Xu, T. Wang, B. Ding, J. Zhou, C. Hong, and Z. Huang. DPSAaS: Multi-
Dimensional Data Sharing and Analytics as Services under Local Differen-
tial Privacy. PVLDB, 12(12): 1862-1865, 2019.

DOI: https://doi.org/10.14778/3352063.3352085

1. INTRODUCTION

Informed business decisions can be made from large volumes
of data about user profiles and activities. In order to meet users’
expectation of their privacy, rigorous privacy guarantees need to be
provided to them on how their sensitive data is collected, shared,
and analyzed. To this end, the de facto privacy standard, differential
privacy (DP) [4],, is being used by, e.g., Apple [1]], Google [5]], Uber
[6], and Microsoft [2]. Informally, differential privacy requires that

*Work done at Alibaba Group.
TWork done at Alibaba Group.

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 12, No. 12

ISSN 2150-8097.

DOIL: https://doi.org/10.14778/3352063.3352085

i

1862

anhaowang@purdue.edu

the output of a data sharing or analytics process varies little with
any change in an arbitrary individual’s sensitive value.

The centralized DP model assumes that a trusted data collector
maintains exact data from users, and injects noise in the analytical
process to guarantee DP. For example, the solution by Uber [6]], as
well as PINQ and wPINQ [} 9], and PrivSQL [7]], to answer SQL
queries under DP is built on a SQL engine which is trustable, e.g.,
internally in Uber, and injects DP noise into query results.

In the absence of a trusted party, users prefer not to have their
sensitive data leave their devices or workspaces in an unprotected
form, and thus, the centralized DP model is no longer applicable. In
such scenarios, one (e.g., enterprises [|1, |5} |2]]) can adopt the local
differential privacy model (LDP) [3]]. Each user’s sensitive data is
encoded by a randomized algorithm before being sent to the data
collector. LDP guarantees that the likelihood of any specific output
of the algorithm varies little with input, i.e., the sensitive data. In
this way, users do not need to trust the data collector.

An application scenario. LDP fits the class of analytical applica-
tions in this demo well. Suppose a number of individuals use an
online shopping app. Users are anonymous. Each generates multi-
dimensional data as in Table[I] Age, Salary, and State are sensitive
attributes, and the rest are non-sensitive. Some attributes are mea-
sures to be aggregated in analytics, e.g., Salary, ActiveTime (how
much time a user spent in the app) and Purchase. Data owners
(users in this example) prefer to have their sensitive data shared
with a data collector (the app server) in a privacy-preserving way,
e.g., under LDP. Note that the data collector is not trusted, and thus
the privacy has to be preserved before data leaves each owner’s de-
vice or workspace. On the other side, the data collector wants to
analyze how the app performs by issuing analytical queries, e.g.,

Q_SUM = SELECT SUM(Purchase) FROM T’ (1)
WHERE Age € [30,40] AND Salary € [50K, 150K],

which aggregates Purchase under constraints on sensitive attributes.
To this end, our paper that appears in SIGMOD 2019 [10]] studies
how to (approximately) answer a class of multi-dimensional ana-
Iytical (MDA) queries, while each data owner shares the data un-
der LDP. An MDA query is a SQL query with aggregation (e.g.,
COUNT, SUM, or AVG) on measure attributes and a predicate with
multiple equality and range constraints on other attributes.

Demo overview. We propose and demonstrate a middleware solu-
tion DPSAaS, which enables differentially private data sharing and
analytics as cloud services. Our vision with DPSAaS is to make
differential privacy accessible to more “cloud users”, who can be
categorized into data owners and data collectors in DPSAaS.

A data owner holds one or multiple rows of multi-dimensional
data that are sensitive but to be shared with a data collector. S/he

Age | Salary | State | OS | ActiveTime | Purchase

Dy | Dy (M) | D3 Dy Ds (M3) De (M3)
t1 30 50K NY Win 1.6h $120
to 60 80K WA i0S 1.2h $100
t3 40 70K NY Win 1.0h $100
ta 40 70K NY i0S 1.8h $100

Table 1: A relational table T" with sensitive attributes

uses our LDP data sharing service in DPSAaS to encode the sensi-
tive data into an LDP version (with the privacy budget s/he desires),
which does not leak much information about each row (see Defini-
tion [T). The encoding algorithm (e.g., via open source) and the
encoding results are transparent to data owners. The LDP version
of data can be submitted to the data collector for analytical tasks.

A data collector receives LDP version of data from a number of
data owners (with the same data schema) and would like to conduct
analytical study against them. Indeed, the normal query-processing
engine gives meaningless output on the LDP-encoded data. Thus,
the data collector uses our LDP data analytics service in DPSAaS,
which is able to estimate answers to online MDA queries for the
purpose of, e.g., data exploration and trend analysis. An arbitrary
number of MDA queries can be issued as the privacy is guaranteed
before each data owner submits LDP-encoded data.

The audience for our demo can play both roles of data owners
and data collectors. For those with little background in differential
privacy, they can have better intuitions on why (L)DP is a reason-
able privacy notation by observing the LDP-encoded data gener-
ated by our data sharing service from a data owner’s perspective.
For experts on private data analysis, they can check whether the
query class supported and the accuracy satisfy their needs. For
both, we would demonstrate the usability of DPSAaS services.

We will also highlight the design decisions of DPSAaS. Please
refer to [[10] for more related work and algorithmic details.

2. PRELIMINARIES

We introduce the data model, MDA queries supported by our
DPSAaS, the privacy guarantee, and the algorithmic framework.

2.1 Data Model and MDA Queries

Suppose there are a set of data owners, each holding one or more
tuples with the same set of attributes. Attributes are called dimen-
sions when appearing in predicates of an analytical question, and
are called measures when being aggregated to answer the question.
We use t to denote a tuple, D to denote an attribute, M to denote a
measure, and ¢[D] or ¢[M] to denote the attribute value in a tuple.

Conceptually, all tuples from all data owners can be collected by
a data collector and form a fact table T'. The data collector wants
to ask analytical questions against 7. We focus on the following
class of multi-dimensional analytical (MDA) queries:

SELECT F(M) FROM T WHERE C 2)

where the aggregation F is COUNT (x), SUM(M), or AVG(M);
the predicate C consists of point constraints “D; = v;” for categor-
ical dimensions, and range constraints “D; € [l;,1;]” for ordinal
dimensions — we can support AND-OR expressions of constraints
as predicates in this demo (e.g., query Q_SUM in Section[T).

2.2 Local Differential Privacy (LDP)

All or some of the dimensions and measures are sensitive. Data
owners do not trust the data collector and thus require formal pri-
vacy guarantees before they are willing to send their tuples. We
adopt the local model of differential privacy (LDP) [3]. Under LDP,

1863

sensitive attributes in a tuple ¢ are encoded with a randomized al-
gorithm A by the data owner, and the output .A(¢) can be sent to
the data collector. Intuitively, LDP guarantees that, no matter what
A(t) is, it is approximately equally as likely to have come from ¢
as any other t’ differing from ¢ in one or more sensitive attributes.
Hence, as A(t), instead of ¢, is collected, ¢’s information on sensi-
tive attributes is protected (to some degree measured by the privacy
budget ¢€), even if the data collector is malicious. Formally,

DEFINITION 1 (e-LDP [3]]). Suppose D1, ..., Dqy are sensi-
tive attributes. A randomized algorithm A is e-locally differen-
tially private or e-LDP, if for any pair of different tuples t and
t', with t|D;] # t'[D;] for at least one i € {1,...,d}, and any
O C Range(A) (the domain of A’s outputs),

Pr[A(t) € O] <e - Pr[A(') € O].

2.3 Task and Algorithmic Framework

We demonstrate the task of answering MDA queries under LDP
in DPSAaS. There are two components (services).

LDP data sharing service A (used by data owners). Each data
owner runs an e-LDP algorithm .4 on each of her/his tuples, ¢, and
sends the output A(t), i.e., the LDP encoded tuple, to the collector.
The execution of A is independent of other tuples/data owners.

LDP data analytics service P (used by data collectors). Sup-
pose there are a total of n tuples from all data owners, forming a
fact table T' = {¢1, ..., tn}. The data collector receives A(T")
{A(t1), ..., A(tn)}. An MDA query g, in the form of Equa-
tion (2)), can be approximately answered on the LDP encoded fact
table A(T) using an estimation algorithm P. Let P(q,.A(T)) be
the estimate. An arbitrary number of queries can be issued, since
LDP is preserved for each tuple ¢ on the encoded tuple .A(¢) and the
service P (-, A(T)) can be regarded as “post-processing” of them.

Error metric. Let P(q,T) denote the exact answer to an MDA
query q against the fact table 7. Let

E[(P(q, A(T)) — P(q,T))"]

be the expected (over randomness in A) squared error. The goal in

[10] is to bound Err(P(gq,.A(T"))) for the supported MDA queries.

Err(P(g, A(T)))

3. ARCHITECTURE OF DPSAaS

We first introduce some design decisions of DPSAaS, in order
to smoothly connect DPSAaS to the data processing platform and
analytics engines, and to facilitate efficient large-scale processing.

Overview of system design. DPSAaS is built as a middleware
(Figure[T) on top of a(ny) data processing platform, e.g., Spark.

The first question is where we implement and deploy our LDP al-
gorithms, i.e., LDP encoding algorithm A and estimation algorithm
P. We have at least three alternatives: i) independent libraries, ii)
inside of data processing engine, and iii) UDFs (user-defined func-
tions). We eventually choose iii), i.e., LDP_Sharing UDF for A
and LDP_Analytics_UDAF for P in Figure[l] as it dominates the
other two options in terms of both usability and efficiency. We only
need to twist LDP algorithms to fit the UDF interfaces in the data
processing platform. We will give more details in Section[3.1}

The second question is how these UDFs or UDAFs (user-defined
aggregation functions) serve our users, i.e., data owners and data
collectors. Writing SQL statements with these UDFs and UDAFs
for the purposes of data sharing and analytics, respectively, would
be convenient for experts; however, there is a steep learning curve
for non-expert data owners and collectors. Therefore, a component
called “Sharing Query Generator” in the LDP data sharing service

LDP Data Sharing Service Data Owner ; Da:a Collector LDP Data Analytics Service
Sharing Query Generator —|[<— [] E r_ﬂ [] MDA Query Rewriter l—1
(invoke LDP_Sharing_ UDF) Se.;::;ve P o (invoke LDP_Analytics UDAF)
: . preserved 1
feeneen . dataset
‘ LDP_Sharing UDF ﬁ [L] | (LDP_Analytics UDAF Q
. . & enLclgged HD;::> N R o
‘ Data Processing Engine : Data Processing Engine

: LDP-encoded

. Fact Table
Figure 1: DPSAaS architecture

takes meta-information, e.g., data schema and privacy budget, from
the data owner, and generates a SQL statement automatically that
invokes LDP_Sharing_UDF to encode each tuple under LDP. For a
data collector, a component called “MDA Query Rewriter” in the
LDP data analytics service takes an online MDA query (in the form
of either a SQL statement or drag-and-drop in GUI), rewrites it to
invoke LDP_Analytics_UDAF, and executes the rewritten query in
the processing engine to estimate the answer to the original MDA
query. We will give some examples in Section@

We will discuss error bars associated with the query answers and
how to interpret privacy budget in DPSAaS, in Sections[3.3|3.4]

3.1 Deploying LDP Algorithms via UDFs

We have considered three options to deploy LDP encoding al-
gorithm A and estimation algorithm P, in our data sharing and
data analytics services, respectively: i) implementing A and P as
independent libraries, ii) implementing them inside the data pro-
cessing engine, and iii) implement them as user-defined functions
(UDF) and user-defined aggregation functions (UDAF). We even-
tually choose iii), and implement LDP_Sharing UDF for .4 and
LDP_Analytics_UDAF for P. There are two major reasons.

The first reason is about usability and extensibility. If we im-
plement A and P as stand-alone libraries, we need to import these
external libraries in the data processing platform and/or take care of
data movement, which increases the complexity of our middleware.
If we change the data processing engine to incorporate LDP, DP-
SAaS has to be tightly hooked up with a particular data platform,
and is not easy to extended for others, not to mention the significant
engineering efforts we have to spend for such deep integration.

The second one is about efficiency. More efforts have to be spent
to make options i) and ii) able to process (including both sharing
and analytics) large-scale datasets in a distributed way. The UDF
and UDAF-based ways of deployment directly borrow the ability
of distributed processing from the data platform itself.

Thus, we modify LDP algorithms to fit the following typical
UDF and UDAF interfaces in the data processing platform.

class
def

LDP_Sharing_ UDF (BaseUDF) :
evaluate (self, epsilon, data_tuple):

4

Implement the epsilon-LDP al A
Output the LDP-encoded ver: ta_tuple
class LDP_Analytics_UDAF (BaseUDAF) :

def new_buffer (self):

Create a buffer to store partial sum of (3)
def iterate(self, buf, ldp_tuple, query):

Prc ss one LDP-encoded tuple as in RHS of

Upc e partial sum of (3)
def merge(self, buf, pbuf):

Merge intermediate results (partial sums)
def terminate(self, buf):

Final output (estimated answer)

It is straightforward to implement the LDP encoding algorithm
A in the method evaluate as the input to .4 is also one tuple.

(-

For the estimation algorithm P (g, .A(T)), which takes the query
q and the LDP-encoded fact table .4 (T) as inputs, we need to de-
compose it as follows to fit interface of LDP_Analytics_UDAF:

Z P(q, tap)-

tiap €A(T)

P(q, A(T))

©))

Many LDP estimation algorithms have such decomposability, in-
cluding ours [[10]. P(q, tiap) is implemented in iterate with par-
tial sums of (3) being computed in parallel. Partial sums are merged
in merge, and terminate gives the final estimated answer to q.

3.2 Query Generating and Rewriting
Per our early discussion, following is an example generated by
“Sharing Query Generator” for sharing sensitive data in Table[T](the
first three attributes are sensitive and are encoded under 2-LDP):
INSERT OVERWRITE TABLE ldp_T
SELECT LDP_Sharing_ UDF (2.0,
ldp_tuple, OS,
Now, “MDA Query Rewriter” rewrites Q_SUM, (T)) in Section[T]
to invoke the analytics UDAF and estimate its answer from 1dp_T:

Age,
ActiveTime,

Salary, State) as
Purchase FROM T;

SELECT LDP_Analytics_UDAF (1ldp_tuple,
Q_SUM_Str) FROM 1ldp_T;

Purchase,

where Q_SUM_Str is a string representation of Q_SUM (input g to
P) and will be parsed inside LDP_Analytics_UDAF; 1dp_tuple
are the LDP version of attributes collected from data owners.

A(t) and P(q, tiap) as UDF/UDAF are efficient, with costs lin-
ear in the size of a tuple [10]]. Via query generating and rewriting,
the efficiency of the two services in DPSAaS is further boosted by
the ability of distributed processing of data platforms, e.g., Spark.

3.3 Estimating Error Bars

Recall that our LDP data analytics service gives an “estimated
answer” to an MDA query. We have theoretical bounds [[10] of the
error metric introduced in Section @ However, the big-O nota-
tions in [[10] hide some constants in the errors. When it comes to
showing error bars on the estimated answers to users, confidence
intervals or variances could be more intuitive and accurate.

Specifically, given a query and its estimated answer, we highlight
an error bar which means that the true answer lies within this range
with probability over, e.g., 90%. This is easy for COUNTqueries,
for which error bars can be calculated from variance or (a, 8)-
accuracy; for SUM queries, we can rely on our variance analysis
to derive approximate confidence intervals; and for an AVG query,
whose answer is derived by dividing SUM with COUNT, we can
divide the error bars of the two to obtain a confidence interval.

3.4 Privacy Budget and Implications

DPSAaS guarantees e-LDP for each tuple during the data shar-
ing service against the data collector. There are two important notes
about this guarantee. First, it is dangerous to run the e-LDP algo-
rithm A on the same tuple multiple times; no matter which out-
put(s) of these runs is (are) submitted to the data collector, the pri-
vacy guarantee would be weakened — for example, if outputs of k

1864

Age Salary State OS ActiveTime Purchase

30 50K NY Win 1.6h $120

80K WA i0S 1.2h $100

40 70K NY Win 1.0h $100

40 70K NY i0S 1.8h $100

Set epsilon value (default is 2 - ‘

Figure 2:

SQL Query: SELECT SUM(Purchase) FROM T WHERE 30<=Age<=40 and
50K<=Salary<=150K.

Estimated Answer: $276,523.
90% Confidence Interval: [$270,497, $282,549].

LDP Encoded Fact Table

LDP Encoded Tuple Contribution (Purchase)

Level=001:Seed=0x4a78:Report=1:Eps=2 [}
Level=010:Seed=0xec38:Report=0:Eps=2 [}
Level=021:Seed=0xe583:Report=2:Eps=2

Level=110:Seed=0x51d2:Report=7:Eps=2

Level=120:Seed=0x3412:Report=2:Eps=1

SELECT SUN chase) FRON

A(P

I T WHERE 30<=Age<=40 and 5
Figure 3: Interface for data collectors/analysts

runs of e-LDP A are released, we can only guarantee ke-LDP over-
all. Secondly, if there are multiple tuples about the same individual
in the fact table, e.g., a tuple is about an individual’s daily activity
(one tuple per day), DPSAaS guarantees e-LDP per tuple, but not
per individual (not protecting one’s long-term behavior).

Meanwhile, an arbitrary number of MDA queries can be issued
without using up the privacy budget, because LDP is preserved for
each tuple in the data sharing service, and the analytics service can
be regarded as “post-processing” of the LDP encoded fact table.

4. DEMO OVERVIEW

We demonstrate DPSAaS for two different scenarios. Namely,
data sharing, where the audience role plays as a data owner who
uses the LDP data sharing service in DPSAaS to share sensitive
data under LDP; and data analytics, where the audience pretends
to be a data analyst who has collected LDP encoded data and wish
to analyze them by issuing MDA queries via our LDP data analytics
service. We use Spark as the underlying data processing platform
here (DPSAaS can be easily plugged into other platforms, too).

4.1 Sharing Sensitive Data

The goals of our demo for this scenario are to (a) illustrate how
easy it is to use our service to enforce LDP in the data to be col-
lected/shared; and (b) show the LDP-encoded data to their owners
to give intuitions on why (L)DP is a reasonable privacy notation.

Figure [2] shows a simple GUI used by the each data owner to
share her/his sensitive data. Data owners can browse their original
data. After specifying the privacy budget e (different owners can
specify different values of €) and click the “Encode Data” button,
the e-LDP encoding algorithm A is run on each tuple to enforce
LDP. The data owner can view the encoded results on the right side,
and choose to “Submit” the LDP encoded data to the data collector.

Figure2]gives some samples for “LDP encoded tuples” based on
our techniques in [10]. Note that in general, all attributes can be
sensitive in DPSAaS. In this example, we assume that Age, Salary,
and State are sensitive. Even when two tuples have the same values
on all the three attributes (e.g., #3 and #4), the corresponding LDP

Level=001:Seed=0x4a78:Report=1:Eps=2

Level=010:Seed=0xec38:Report=0:Eps=2 [l

Level=021:Seed=0xe583:Report=2:Eps=2

Level=110:Seed=0x51d2:Report=7:Eps=2 [l

1865

LDP Encoded Tuple

0OS ActiveTime Purchase

1.6h $120
1.2h $100
1.0h $100

1.8h $100

Submit Data

Interface for data owners (T — 1dp_T)

encoded versions could be different (due to randomness in algo-
rithm A), which by itself is a good property for privacy protection.
Attendees will be able to choose different datasets, and try dif-
ferent settings such as different values of ¢ and different sets of
sensitive attributes to see how they affect the query results.

4.2 Private Data Analytics

After receiving LDP encoded tuples from data owners, the data
collector/analyst can issue MDA queries. Here, our goals are to (a)
illustrate how to issue MDA queries against LDP encoded data; (b)
give intuitions on how to process them; and (c) show how privacy
budget € affects errors in the estimated answers.

Figure [3] shows a GUI for data analysts. A data analyst can
browse all the LDP encoded tuples received, which do not leak
any per-tuple information about sensitive attributes. S/he can write
an MDA query as a SQL statement (against the original data), and
click the “Issue Query” button; DPSAaS will then rewrite this query
to invoke “LDP_Analytics_-UDAF”, execute it in the processing en-
gine, and display the estimated answer. A drag-and-drop query
builder and visualization of estimated answers can also be sup-
ported for analysts who are not familiar with SQL.

During the processing of the MDA query, the column “Contri-
bution” in the “Fact Table” is updated. It shows the contribution of
each LDP encoded tuple towards the final estimated answer on the
measure (Purchase in this example). More precisely, it is the RHS
of (@), and is query-dependent. It can be seen that even when two
tuples have the same values on sensitive attributes and measures
(e.g., #3 and #4), they may contribute differently to the estimation,
which, again, is a good property for privacy protection.

We will have the exact answer to the same query on the side
for attendees to compare and find out how the error is affected by
€. The attendees are allowed to issue as many different queries as
possible without further concerns about privacy.

S. , REFERENCES

[1] Learning with privacy at scale. Apple Machine Learning Journal,
2017.

B. Ding, J. Kulkarni, and S. Yekhanin. Collecting telemetry data
privately. In NIPS, pages 3574-3583, 2017.

J. C. Duchi, M. I. Jordan, and M. J. Wainwright. Local privacy and
statistical minimax rates. In FOCS, pages 429-438, 2013.

C. Dwork, F. McSherry, K. Nissim, and A. Smith. Calibrating noise
to sensitivity in private data analysis. In TCC, pages 265-284, 2006.
U. Erlingsson, V. Pihur, and A. Korolova. RAPPOR: randomized
aggregatable privacy-preserving ordinal response. In CCS, pages
1054-1067, 2014.

N. M. Johnson, J. P. Near, and D. Song. Towards practical differential
privacy for SQL queries. PVLDB, 11(5):526-539, 2018.

I. Kotsogiannis, Y. Tao, A. Machanavajjhala, G. Miklau, and M. Hay.
Architecting a differentially private SQL engine. In CIDR, 2019.

F. McSherry. Privacy integrated queries: an extensible platform for
privacy-preserving data analysis. In SIGMOD, pages 19-30, 2009.
D. Proserpio, S. Goldberg, and F. McSherry. Calibrating data to
sensitivity in private data analysis. PVLDB, 7(8):637-648, 2014.

T. Wang, B. Ding, J. Zhou, C. Hong, Z. Huang, N. Li, and S. Jha.
Answering multi-dimensional analytical queries under local
differential privacy. In SIGMOD, pages 159-176, 2019.

[2]
[3]
[4]

[51

[6]
[71
[8]
[9]

[10]

	Introduction
	Preliminaries
	Data Model and MDA Queries
	Local Differential Privacy (LDP)
	Task and Algorithmic Framework

	Architecture of DPSAaS
	Deploying LDP Algorithms via UDFs
	Query Generating and Rewriting
	Estimating Error Bars
	Privacy Budget and Implications

	Demo Overview
	Sharing Sensitive Data
	Private Data Analytics

	References

