
SparkCruise: Handsfree Computation Reuse in Spark

Abhishek Roy, Alekh Jindal, Hiren Patel, Ashit Gosalia, Subru Krishnan, Carlo Curino

Microsoft
{abhishek.roy,alekh.jindal,hirenp,ashit.gosalia,subru,carlo.curino}@microsoft.com

ABSTRACT
Interactive data analytics is often inundated with common
computations across multiple queries. These redundancies
result in poor query performance and higher overall cost for
the interactive query sessions. Obviously, reusing these com-
mon computations could lead to cost savings. However, it is
difficult for the users to manually detect and reuse the com-
mon computations in their fast moving interactive sessions.
In the paper, we propose to demonstrate SparkCruise,
a computation reuse system that automatically selects the
most useful common computations to materialize based on
the past query workload. SparkCruise materializes these
computations as part of query processing, so the users can
continue with their query processing just as before and com-
putation reuse is automatically applied in the background
— all without any modifications to the Spark code. We will
invite the audience to play with several scenarios, such as
workload redundancy insights and pay-as-you-go material-
ization, highlighting the utility of SparkCruise.

PVLDB Reference Format:
Abhishek Roy, Alekh Jindal, Hiren Patel, Ashit Gosalia, Subru
Krishnan, Carlo Curino. SparkCruise: Handsfree Computation
Reuse in Spark. PVLDB, 12(12): 1850-1853, 2019.
DOI: https://doi.org/10.14778/3352063.3352082

1. INTRODUCTION
Cluster-as-a-service is emerging as a popular choice for

interactive data analytics in the cloud. It allows an analyst
to quickly spin up a cluster for her interactive session and
then tear it down once she is done. Unfortunately, such an-
alytics often incurs redundancies in the query workload, i.e.,
parts of the computations are unknowingly duplicated across
multiple queries. Our analysis from production Azure HDIn-
sight [1] workloads at Microsoft reveal that more than 50%
of the queries have overlaps, referred to as common subex-
pressions henceforth, with one or more other queries in the
same session. Likewise, an analysis over the publicly avail-
able TPC-DS benchmark shows that more than 90% of the

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 12, No. 12
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3352063.3352082

queries have common subexpressions, even after excluding
the scan operators. Materialized views is a common tech-
nique in database literature for optimizing multiple queries
by storing pre-computations (materialized views) that could
speed up query execution [4]. However, creating, reusing,
and maintaining materialized views has been a major pain
for database users. This is even more challenging in cluster
services where reusing computations within a fast moving
session is very hard. At the same time, reducing the total
operational costs of these interactive sessions is crucial.

In our recent work, we described automatic computation
reuse for a job service environment at Microsoft [6]. In
this demonstration, we extend that to cluster-as-a-service
environments and describe a handsfree computation reuse
infrastructure, coined SparkCruise, for Spark processing
engine in Azure HDInsight clusters. The goal is to create
smarter cluster instances that can self-tune the data pro-
cessing systems for the customers. Our key ideas include:
(i) instrumenting the Spark application log with subexpres-
sion identifiers, called signatures, that could be later used
to identify common subexpressions (ii) analyzing the Spark
query plans to collect the common subexpressions and using
runtime metrics to reason about their utility for reuse, (iii)
generating query annotations and providing them as feed-
back for future Spark queries, and, (iv) additional Spark
optimizer rules for materializing and reusing common subex-
pressions in an online manner. In the rest of the paper, we
first present a detailed description of SparkCruise (Sec-
tion 2), then we show an evaluation of SparkCruise over
the TPC-DS benchmark (Section 3), and finally we describe
several demonstration scenarios (Section 4).

2. SparkCruise OVERVIEW
We consider a recurring query workload [6], denoted as

W = {Q1, Q2, . . . , QN} where Qi is a SparkSQL query.
We consider materializing the logical subexpressions of the
queries in W . Let S(Qi) denote the set of subexpressions
present in query Qi and S = {S1, S2, . . . , SN} be the set of
all subexpressions in W . Then, the common subexpressions
between any two queries Qi and Qj are the set of subexpres-
sions in S(Qi) ∩ S(Qj). For example, queries Q1 and Q2 in
Figure 1 share the subexpression σPrice>100(Order).

The goal of SparkCruise is to detect the most useful
common subexpressions in W to materialize, automatically
materialize them as part of query processing, and subse-
quently reuse them in future queries. Figure 2 shows the
system architecture. It includes components for log inges-
tion, analysis, and feedback deployment. SparkCruise is

1850

σ σ

γ

Figure 1: Common subexpression between two queries.

plug-and-play with Apache Spark using just the configura-
tions, without requiring any code changes in Spark. Below
we describe the key features of SparkCruise.

2.1 Application Log Instrumentation
We implemented an event listener for SparkSQL that logs

the query plans at the end of query execution. We fur-
ther annotated the query plans with identifiers, called signa-
tures for each subexpression. We calculate two signatures,
a recurring and a strict signature for each subexpression.
The recurring signature ignores the time varying informa-
tion such as literal values and dataset version numbers, and
is used to find recurring subexpressions in the workload.
The strict signature includes all plan information to pre-
cisely identify a subexpression instance. We provide the
actual signature implementation as an external library and
could provide different implementations to identify subex-
pressions differently. Signatures help to identify common
subexpressions across a query workload, in contrast to the
semantic hash that is already present in SparkSQL and is
used for matching equivalent subexpressions while planning
a given query. Our custom event listener collects the anno-
tated query plans logs (in JSON format) in the application
logs, which get persisted on the HDInsight cluster. Once we
have the application logs with the annotated query plans,
we analyze them as described below.

2.2 Workload Analysis
SparkCruise periodically analyzes the query workload

from the application logs. We parse the annotated query
plans, namely the parsed, the optimized, and the physi-
cal query plans, in the application log and iterate over the
subexpressions of the optimized (logical) query plans. Con-
sidering the logical subexpressions allows us to cover com-
mon expressions more generally, however, we link the logi-
cal subexpressions with their corresponding runtime metrics
from the physical query plans. Note that attributing run-
time metrics to logical expressions could be hard in many
cases, since the logical and the physical plans may not al-
ways correspond. Still, our best effort linking was able to
link more than 90% of plans in our workloads. We collect
the subexpressions, along with the runtime metrics, into a
subexpressions table. Each row in this table represents a
subexpression and all the compile-time and runtime features
associated with it. We also preserve query metadata, such
as application identifier, with each subexpression. The re-
sulting flat, denormalized subexpressions table turns out to
be very useful to run the subexpression selection algorithms.
We describe these below.

2.3 Subexpression Selection
We now select the subexpressions to materialize from the

subexpressions table generated above. The goal is to select

SQL
Catalyst Optimizer

INGESTIONANALYSISFEEDBACK

OPTIMIZER
RULES

ANNOTATED
QUERY PLANS

Figure 2: SparkCruise Architecture.

the smallest set of common subexpressions that offers the
most utility for reuse. The subexpression selection problem
as well as the more general view selection problem has been
widely studied in the literature [5, 7]. However, since Spark
sessions are interactive in nature, and hence short-running
compared to batch processing, we want to provide heuristics
that are effective and yet run very fast, in order of a few
seconds. These heuristics allow users to make trade offs
such as storage space and runtime savings. Larger workloads
can of course use more sophisticated subexpression selection
algorithms from the literature, e.g., BigSubs [5]. We discuss
two of our heuristics below.

The first heuristic uses the repeat frequency to select the
top-K frequent subexpressions. It also restrict the number
of selected subexpressions from each query. This limits the
overhead of materializing subexpressions in any given query.
The second heuristic weighs the frequency of subexpressions
by their height in the query plan. As a result, this heuristic
selects common subexpressions that are closer to root level.

2.4 Feedback Loop
By default, Spark runs the SparkSQL queries identically

every single time they appear on the same inputs. With
SparkCruise, we add a feedback loop to learn on how
things went in the past and improve the query plans in the
future. Specifically, we identify the common subexpressions
to materialize, from our analysis over the past workload,
and supply it as feedback for future queries to the query
optimizer. We provide this feedback in the form of query
annotations, where each annotation has the recurring signa-
ture of the subexpression and the corresponding materialize
and reuse command. These annotations can be served from
a local file or from a web-service, as also described in the
CloudViews system [6]. Since we are working in a cluster
environment in HDInsight, we use the local file system to
serve feedback. SparkCruise provides additional optimizer
rules for SparkSQL to load the query annotations and ap-
ply the feedback during query optimization. We describe
this mechanism below.

2.5 Optimizer Extensions
SparkCruise provides optimizer extensions for Spark-

SQL to materialize and reuse common subexpressions in an
online fashion. We want to reuse the common subexpres-
sions within a Spark session and so the first queries in the
session that hit each of the selected subexpressions materi-
alize the result of the subexpression. Subsequent queries in
the session can directly read from the materialized subex-
pressions without computing them again. To perform these
operations, we use the Spark extensions points added in
Spark-18127 [3]. These extensions allow SparkCruise to

1851

complement the Spark optimizer with two additional rules
for modifying the logical query plans, as described below.

The first rule, Online Materialization, materializes the
output of a subexpression when: (i) the feedback contains
an annotation with the same recurring signature as that of
the subexpression, and (ii) the subexpression has not been
materialized already. We also synchronize multiple queries
hitting the same rule such that only one of the queries ma-
terializes a given subexpression. The materialize operation
triggers a smaller SparkSQL query for the subexpression,
followed by reusing the materialized subexpression for the
remainder of the same query. Once a subexpression is ma-
terialized, we also preserve its strict signature for matching
future reuse. The second rule, Computation Reuse, replaces
a subexpression with the scan of the materialized subexpres-
sion when: (i) the recurring signature of the subexpression
is present in the feedback, and (ii) the strict signature of
the subexpression matches the strict signature of the mate-
rialized subexpression. Note that the optimizer always tries
to apply the materialize rule before applying the reuse rule.
However, both rules can be applied multiple times in the
same query plan.

2.6 Configurations
SparkCruise provides a few configurations, including set-

ting the frequency to analyze the application log, selecting
the subexpressions to materialize for a given storage bud-
get, policies for evicting the materialized subexpressions,
etc. The materialized subexpressions could be stored either
on the local HDFS in the HDInsight cluster or on a global
blob store like the Windows Azure Storage Blob (WASB).
Azure HDInsight cluster provides the mechanics to use ei-
ther of them. The local HDFS on the cluster offers faster
read and write times by virtue of using local SSDs. How-
ever, the lifetime of the local HDFS is same as that of the
cluster and so materialized subexpressions are not persisted
when the cluster is restarted. Local HDFS also has a limited
storage capacity, depending on the machine configurations,
while WASB offers a permanent and practically unlimited
storage capacity. In our future work, we plan to optimally
place the materialized files in the different storage levels, in-
cluding main-memory, local HDFS, and WASB. Currently,
we support materialization in CSV and the Parquet formats.

3. EVALUATION
We now present an evaluation of SparkCruise on TPC-

DS benchmark using an Azure HDInsight Spark cluster with
the default configuration. The cluster was equipped with
four data nodes of D13v2 instance type. We generated the
TPC-DS dataset for a scale factor of 10, resulting in a total
size of tables of 6.8GB after Parquet compression. We exe-
cuted the SparkSQL implementation of 95 queries from the
TPC-DS benchmark [2], using the command line SparkSQL
interface. We measured the end to end wall clock times of
each query and report the average over three runs. First, we
ran all queries, one after the other, without feedback to mea-
sure the baseline performance. Then, we ran the workload
analysis and provided the feedback using SparkCruise.

Our analysis identified 398 common subexpressions in the
entire workload, appearing with an average frequency of 5.5
times. Scan, of course, are common in general, but our
analysis also showed 103 filter, 58 join, and 19 aggregate
subexpressions to be in common. Using the frequency-based

TPC-DS Queries
0.0

0.5

1.0

1.5

2.0

Ra
tio

 o
f r

un
ni

ng
 ti

m
es

(S
pa

rk
Cr

ui
se

/B
as

el
in

e)

Figure 3: Running time ratio on TPC-DS workload.

heuristic described in Section 2.3, we selected 17 subexpres-
sions to materialize. Note that this is a very conservative set
of subexpressions to materialize. Figure 3 shows the ratio
of the runtime with SparkCruise to that with the baseline.
We observe that the running time of some queries (in red
bars) has increased, because it is the first query that hit a
common subexpression and has to pay the materialization
cost. However, once common subexpressions are materi-
alized, the running times of the majority of the queries (in
green bars) improve as they can read directly from the mate-
rialized file. Overall, we see the total running time reducing
by approximately 30%. These improvements are due to the
fact that the 17 selected subexpressions were materialized
by only 11 queries, while they were reused by 89 queries.

4. DEMONSTRATION
The goal of this demonstration is to provide actionable

insights from a SparkSQL workload and to explore the per-
formance of our system under recurring and changing work-
loads. We will run the demonstration of our system on Azure
HDInsight Spark cluster. The system will be pre-loaded
with TPC-DS dataset. The audience will be provided with
a query console, the ability to tune the system parameters,
and access the performance metrics. We will invite the au-
dience to play with SparkCruise for the following four sce-
narios. (i) analyzing common subexpressions from a Spark-
SQL application log, (ii) seeing the online materialization
and reuse in action, (iii) tweaking the subexpression selec-
tion heuristics for trading between cost and performance,
and (iv) observing how the system behaves with changing
workloads. We have created a graphical user interface, as il-
lustrated in Figure 4(a), to interact in each of the scenarios.
We describe these scenarios in detail below.

4.1 Workload Redundancy Insights
A major challenge in big data analytics is that neither the

data analyst nor the system administrator understand the
query workload very well. Therefore, our first scenario is to
help the audience understand the redundancies (the com-
mon subexpressions) in a query workload. The audience
can analyze the pre-generated TPC-DS application log and
see the overall number of common subexpressions and their

1852

reuse utility. They can further dig into per-operator com-
mon subexpressions to get a sense of which operations are
most common among different queries in the workload. The
audience is free to issue different ad-hoc queries on the TPC-
DS dataset, using the SparkSQL console, and analyze the
correspondingly generated application log. The workload
analysis takes less than 5 seconds for all TPC-DS queries,
so we expect to provide an interactive experience. Workload
redundancy insights helps a user in understanding the cost
and benefits of enabling SparkCruise on her cluster.

4.2 Pay-as-you-go View Materialization
Data analysts want to get started as soon as new data

arrives and not wait for long data preparation steps. As a
result, there is no offline phase available to materialize com-
mon subexpressions and speed up a query workload. There-
fore, in this scenario, we invite the audience to start issuing
a set of queries, that have been already analyzed from the
past application logs, and observe how (i) common subex-
pressions selected by our analysis are materialized as part
of the query processing, and (ii) the materialized common
subexpression automatically gets reused. The audience can
change the arrival times of the queries or even reorder the
queries, and the view materialization happens in a pay-as-
you-go manner when the first query hits a common subex-
pression. The audience can see the overheads of materializ-
ing the subexpressions. Note that a query can both mate-
rialize and reuse subexpressions, and therefore the cost of a
query can be lower even if it materializes a selected subex-
pressions. Throughout this scenario, the workload analysis
is triggered at regular intervals in the background, while
the demonstration attendees keep querying their data with-
out any offline phase to create materialized views. Selected
subexpressions from the analysis are fed back to optimizer
and materialized as part of query processing.

4.3 Trading Materialization Cost and Utility
The goal of SparkCruise is to provide a handsfree expe-

rience in reusing common subexpressions. Still, for expert
users, we allow to trade between materialization costs and
utility via a set of subexpression selection policies. Example
policies include considering subexpressions appearing that
appear at least n times, or subexpressions with at least t
runtime, or consider at most k subexpressions per query,
or consider a total storage budget of B. These individual
polices provide the tradeoffs between storage budget, perfor-
mance improvements, cost per subexpression, and utility per
query. The audience can select one of the provided subex-
pression selection policies and tune its parameters, e.g., the
n, t, k, and B above, using the console in Figure 4(a). They
can also combine multiple policies and discover combinations
that work the best for different sets of queries. As before,
the audience can use our pre-generated TPC-DS application
log or issue new ad-hoc queries using the SparkSQL console.

4.4 Handling Workload Changes
SparkCruise relies on the past workload being a strong

indicator of the future. This works very well for enterprise
workloads that are predictable and recurring in nature, i.e.,
same queries arriving at a fixed frequency over changing
the data. However, each instance of a query comes with
some minor changes. One common pattern is to update
the literal values in the queries, e.g., the user can set the

SparkCruise Control

Log Analysis

Log configuration file

View Analyze

Browse/home/sshuser/demo/admin.properties

Workload Analysis

Queries Users Accounts Subexpressions
Distinct

Subexpressions

300 1 1 4000 3000

Operator Frequency Repeats Repeat Occurrences

Filter 500 200 400

0

1000

2000

3000

4000 Subexpressions

Recurring Subexpressions

Distinct Recurring Subexpressions

Subexpression Summary

Subexpression Selection

Selection Policy

Top-k Frequent

Per workload

30

Per query

1

Identifier
Normalized
Signature Frequency

Operator
Name Parameters

1 f7c57b... 10 Aggregate aggregateExpressions:
[[{num-children:1,...

« 2 3 »

Action

Clear Views Deploy Feedback

1

View Analyze

Clear Views Deploy Feedback

(a) Workload Analysis Console.

SparkCruise Dashboard

Query Performance Monitoring

Query Identifier Runtime (s) Materialized Reused

4 200 1 1

q4 q5 q6
0

1

2

3
Materialize

Reuse

Operations per query

Materialization & Reuse Summary

Materialize
Operations

Reuse
Operations

Materialization Size
(GB)

10 80 2.5

Filter
50%

Project
25%

Aggregate

12.5%

Other
12.5%

Filter

Project

Aggregate

Other

Materialized Operators

0

2k

4k

6k

8k

10k Bytes written (MB)

Bytes read (MB)

IO Cost

(b) SparkCruise Dashboard.

Figure 4: SparkCruise Web Interface

calendar day to increase by one on each day. In this case,
any two instances of the workload will have their selection
expression has changed. SparkCruise can successfully han-
dle this scenario, since we use the recurring signatures for
analysis and strict signatures for materialization and reuse
operations. In the case of more dramatic changes in the
workload, we do not incur any wasted cost for materializa-
tion, since new queries do not contain the previously selected
common subexpressions. SparkCruise adapts the selected
subexpressions to these new changes in the workload simply
by re-running the analysis and deploying the feedback peri-
odically. We will invite the audience to change one or more
queries in the workload, either in the literal values or in the
query structure itself. The audience will be able to see that
SparkCruise handles the former case perfectly while in the
latter case it does not incur any materialization overhead
until the next analysis/feedback is available. The audience
can monitor the performance under changing workloads on
SparkCruise dashboard in Figure 4(b).

5. REFERENCES
[1] Azure HDinsight.

https://azure.microsoft.com/en-us/services/hdinsight/.
Accessed: 2019-03-06.

[2] Spark SQL performance tests.
https://github.com/databricks/spark-sql-perf. Accessed:
2019-03-06.

[3] S. Agarwal. [SPARK-18127] Add hooks and extension points to
spark. https://issues.apache.org/jira/browse/SPARK-18127,
April 2017. Accessed: 2019-03-06.

[4] R. Chirkova, J. Yang, et al. Materialized views. Foundations
and Trends R© in Databases, 4(4):295–405, 2012.

[5] A. Jindal, K. Karanasos, S. Rao, and H. Patel. Selecting
subexpressions to materialize at datacenter scale. PVLDB,
11(7):800–812, 2018.

[6] A. Jindal, S. Qiao, et al. Computation reuse in analytics job
service at Microsoft. SIGMOD, 2018.

[7] P. Michiardi, D. Carra, and S. Migliorini. In-memory caching for
multi-query optimization of data-intensive scalable computing
workloads. DARLI-AP Workshop, 2019.

1853

