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ABSTRACT
We present WICLEAN, a Wikipedia plug-in that supports the iden-
tification and cleaning of certain types of errors in Wikipedia inter-
links. The system mines update patterns in Wikipedia revision logs,
identifies the common time frames in which they occur, and em-
ploys them to signal incomplete/inconsistent updates and suggests
corrections. We demonstrate the effectiveness of WICLEAN in
identifying actual errors in a variety of Wikipedia entity types, in-
teractively employing the VLDB’19 audience as editors to correct
the identified errors.
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1. INTRODUCTION
Wikipedia, the free-content web encyclopedia, is one of the most

popular web-sites on the Internet. According to Time magazine,
Wikipedia’s ”open-door policy” of allowing anyone to edit the data,
has made it the largest and possibly the best encyclopedia in the
world. At the same time, the continuously evolving content, con-
stantly updated by a large number of uncoordinated users, makes
the maintenance of a clean, consistent encyclopedia an extremely
challenging task. To understand the volume of updates, the English
Wikipedia, as of the end of 2017, consists of 5.5 million articles,
with an average of 3.4 million edits monthly, by around 31,000
users. The goal of the WICLEAN system presented here is to assist
Wikipedia editors in this challenging task. Specifically, we focus
in this work on the correctness of Wikipedia inter-links that point
from one article to another. Such inter-links form a major compo-
nent of the structured part of Wikipedia (in particular infoboxes and
tables) and their correctness is critical for coherent browsing.

The maintenance of correct and consistent links is challenging
for two main reasons. First, as different Wikipedia pages are of-
ten edited by different people, it could be that not all the updates
performed in one page are properly propagated to other related
pages. For example, consider the Wikipedia page of the soccer
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player Neymar. The links in its infobox point to the page of his
current team - Paris Saint Germain (PSG), to his place of birth, and
so on. Similarly, the squad table at the PSG Wikipedia page points
back to Neymar’s. When Neymar moved to PSG in the summer of
2017, leaving his previous team Barcelona, each of the three related
pages (Neymar’s, PSG, Barcelona) had to be updated to keep the
Wikipedia up to date and consistent. Indeed, even when consider-
ing a single page, many of the small edits done by individual users
are conceptually a part of a larger update which, if not fully exe-
cuted, leaves the article outdated and/or inconsistent. Continuing
with our example, not only the current club link in Neymar’s page
should be updated but also the links list in his career table (to add
his current position), and possibly also his residence link.

A second challenge is that the consistency constraints on Wikipedia
inter-links are often soft, and need not be applied at all times. To
continue with our example, soccer players often switch teams in
the summer and winter, in periods referred to as transfer windows.
Transfers take long time to be officially confirmed, with typically
many rumors in the background. Consequently, in the time period
between the beginning of the transfer window and the official ap-
proval of the transfer, there may be hundreds of Wikipedia edits to
the players Wikipedia pages, adding/removing new/old links to the
expected teams, reverting previous edits and making new ones. It
is often only after the transfer is officially approved that the corre-
sponding Wikipedia team articles (of the old and new teams) are
also updated. The Wikipedia articles thus appear to be inconsistent
within the transfer window, but this in fact is considered a positive
phenomenon as it allows readers to view the most up to date infor-
mation at the given point in time. Figure 1 illustrates a set of edits
taking place within such a transfer window. We see here a por-
tion of the revision history of several Wikipedia articles (of soccer
players and teams), merged together into one timeline. The Sub-
ject column identifies the article where the addition/removal of a
link occurred, the Object column identifies the article to which the
added/deleted links point to, and the Relation column describes the
link type. We can see here that, for Neymar, after several edits and
reverts, the transfer is reflected in both his and the team’s pages.

The thesis underlying WICLEAN is that Wikipedia updates often
follow desirable patterns and lead to consistent states. WICLEAN thus
mines Wikipedia revision logs to identify common update patterns,
along with time windows in which they typically occur. Potential
errors are then identified by signaling updates that deviate from the
mined patterns.

Formally, we model Wikipedia entities (articles) and the links
between them as a graph. Nodes and edges are labeled by type
names. Intuitively, the revision history of each article records the
edits made to the outgoing links of the corresponding graph node.
Given an entity type of interest, our algorithm identifies meaning-
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# +/- Subject Relation Object Time
1 - Neymar current club Barcelona ...1531
2 - Neymar league La Liga ...8711
3 - Barcelona squad Neymar ...2804
4 + Neymar current club PSG ...3321
5 + PSG squad Neymar ...8263
6 + Barcelona squad Neymar ...4040
7 + Neymar league Ligue 1 ...8711
8 + Neymar current club Barcelona ...5861
9 - Kylian Mbappe current club Monaco ...9459

10 - Neymar current club PSG ...3732
11 - Neymar current club Barcelona ...6109
12 + Neymar current club PSG ...7694
13 - Barcelona squad Neymar ...8001
14 + Kylian Mbappe current club PSG ...9589

Figure 1: Actions from revision history of several articles

ful relevant edit patterns across revision histories of entities of the
same or other types, along with time windows in which partial ed-
its are tolerable. An iterative refinement process, of both patterns
and windows, allows WICLEAN to efficiently focus on relevant re-
lated entity types (and their revision histories) and time frames. The
discovered windows and patterns are then used by WICLEAN to as-
sist Wikipedia editors in correcting/updating Wikipedia links. The
WICLEAN system both alerts Wikipedia editors on past edits that
appear to be incomplete as well as provides users with on-line as-
sistance as they update the encyclopedia.

Demonstration Overview. We will demonstrate the opera-
tion of WICLEAN on a real-life snapshot of Wikipedia’s revision
history, and actual errors identified by the system, employing the
VLDB’19 attendees as editors for their correction. We will demon-
strate the mining of update patterns (and their time windows) in a
variety of domains including sports and cinematography, then show
how incomplete/inconsistent updates are identified and corrected.

2. TECHNICAL BACKGROUND
We briefly present the data model and the algorithms underlying

the WICLEAN system.

2.1 Preliminaries
Wikipedia Graph. We model the relationships between Wikipedia
entities at a given point in time using a graph G(V,E). Each node
in V represents a Wikipedia entity and is labeled by a unique name
(e.g. Neymar) and an entity type (e.g. soccer player). Each edge
in E represents a relationships between two entities and is labeled
by the relationship name (e.g. current club).

We use an alignment from Wikipedia entities to DBPedia [1] to
derive the entity types. In general, the types belong to type taxon-
omy - the higher the type is in the taxonomy the more general it
is - and an entity may have multiple types. For two types t, t′ we
use t′ ≤ t to denote the fact that t either equals to t′ or general-
izes it. For example, soccer player ≤ athlete ≤ person. We
assume that each entity e has one most specific type to which it be-
longs1 and use it as its label, denoted type(e). For a type t we use
entities(t) to refer to all entities labeled by a type t′ ≤ t.

Actions and Inverse actions. The revision history of Wikipedia
entities contains edits to the graph edges. We particularly consider
two types of actions: adding new edges and deleting existing ones.
Our model associates each action with a time stamp. We use a
triplet of the form a = (+, (u, l, v), t) (resp. a = (−, (u, l, v), t))

1Otherwise we can add to the taxonomy a new type name which
represents the intersection of the multiple most specific types of
the given entity, which will play the role of this most specific type.

to denote the addition (rep. deletion) of edge from u to v with label
l at time t.

We say that an action a′ is the inverse of a preceding action a,
denoted a′ = Inv(a) if applying a′ after a leaves the graph un-
changed. For instance, in Figure 1, action #6 is an inverse action of
action #3.

(Reduced) set of actions. Given a Wikipedia graph G(V,E),
a set of entities S ⊆ V , and a time frame (called a window), we
consider the set of all actions (denoted as A) that were recorded in
the revision history of the entities in S, within the given window.

In the update processes some edits may naturally be reversed.
To consider only the final effect we focus on reduced actions sets
that do not include an action and its inverse. More formally, given
a graph G, we say that two actions sets are equivalent if, when
the actions are applied on G in the order of their timestamps, they
generate the same result graph. Given an action set it is easy to
derive an equivalent reduced variant by iteratively removing actions
and their inverse. To continue our example, the action set in Figure
1 is equivalent to the set of gray actions (lines) on the same figure.

Note that up to possibly different time stamps, the reduced ver-
sion obtained through this iterative removal process is unique, namely
contains the same set of graph update operations. Furthermore, the
time stamps are no longer important as any permutation of the ac-
tions yields the same output graph. We thus consider from now
on only reduced sets of actions and ignore the time stamps of the
actions in the set, referring to actions as pairs a = (op, (u, l, v))
where op ∈ {+,−}.

Abstract Actions and Patterns. Since we are trying to find
general update patterns across our Wikipedia graph, we want to
generalize a set of actions involving specific entities to general pat-
terns over the corresponding entity types. For that we define the
notion of abstract actions. We associate with each entity type t
an infinite set of variables t1, t2, . . .. Then, an abstract action is
the pair of the form a = (op, (t′, l, t′′)) where op ∈ {+,−} and
t′, t′′ are type variables and l is an edge label, and a pattern is a
set of abstract actions. Finally, given a pattern p we say that a set
A′ of (concrete) actions is a realization of p if A′ may be obtained
from p by replacing each variable of type t by some graph node
in entities(t). To illustrate that, lines number 11,12,13,5,2,7 in
Figure 1 are the realization of the pattern shown in Figure 2.

Given an entity type t, we are interested in entities’ updates that
are related (possibly transitively) to entities of type t. We thus fo-
cus on connected patterns, where the updated edges are related.
Formally,

Definition 2.1. Given an update pattern p, let gp be the directed
graph whose nodes are the type variables in p and where an edge
from node t1, t2 exists in gp iff p includes an abstract action of
the form (op, (t1, l, t2)). Given a type t, we say that a pattern p is
connected (w.r.t t) iff the graph gp is connected, and each node in
it is reachable from some node of type t.

For example, the pattern shown in Figure 2 is connected. But if
we replace the variable player1 in lines 11 and 13 by a new vari-
able player2, then it becomes disconnected (and composed of two
smaller connected patterns - the abstract actions in lines 10, 5, 2, 7
and the abstract actions in lines 11, 13).

As we are only interested in connected patterns, for brevity, un-
less stated otherwise, whenever we use below the term pattern we
mean a connected one.

Frequent Patterns. Given a type t and a set A of actions, the
frequency of a pattern p (w.r.t to t and A), is the fraction of entities
of type t that participate in realizations of p in A. Formally,
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# Edit type Subject Relation Object
10 - player1 current club team1

11 + player1 current club team2

5 - team1 squad player1
13 + team2 squad player1
2 - player1 league league1
7 + player1 league league2

Figure 2: Pattern found from set of action in Figure 1

Definition 2.2. The frequency of a pattern p in a set of actions A,
w.r.t to a an entity type t, is defined as frequency(A, t, p) =

|{e∈entities(t)|e appears in A′⊆A,A′ is a realization of p}|
|entities(t)|

To continue with our running example, consider the actions in Fig-
ure 1 and the pattern in Figure 2, and assume there are overall five
players in Wikipedia. The frequency of this pattern in the given
actions set is 0.2 because there is only one player (Neymar) that
the patterns holds for, out of the five existing players. However the
frequency of the partial pattern displayed in figure 2 in lines 1 and
2 (gray lines), in this actions set is 0.4 because there are 2 players
for which that the patterns holds.

Given a type t, a set A of actions and frequency threshold τ we
will be interested in finding patterns whose frequency inA is above
the threshold. To avoid redundancy, we would like to consider only
the most specific such patterns. Formally, we say that a pattern p is
more specific than a pattern p′ (alternatively, p′ is more general than
p), denoted p ≺ p′, if p′ may be obtained from p by removing some
abstract actions, replacing some type variables in p by variables of
a more general type, or both. To illustrate, for the patterns
p1 = {(−, (player1, current club, team1)),

(+, (player1, current club, team2))}
p2 = {(−, (athlete1, current club, team1)),

(+, (athlete1, current club, team2))}
p3 = {(−, (athlete1, current club, team1))}

we have that p1 ≺ p2 ≺ p3.
Thus, given a type t and a setA of actions our goal will be to find

the most specific patterns with frequency above a given threshold.

2.2 Finding Windows and Frequent Patterns
Intuitively, given an entity type t of interest, we wish to signal

out significant time frames and identify the most specific frequent
patterns in them. Frequent itemset mining is known to be a com-
putationally difficult task [11] and the same hardness bounds hold
for our problem (The proof works by reduction from the general
itemset mining problem). Yet, we manage to derive a scalable,
highly parallelizable solution due to the following implementation
choices.

First, recall that the revision histories are distributed across the
entities and their overall size can be very large. However, as we
shall see below, our focus on connected patterns allows to consider
only those entity types (and their corresponding revision histories)
that may potentially be related to the input type t via frequent edit
patterns, thereby significantly pruning the search space. Moreover,
different types may be processed in parallel. Second, we restrict
our attention to non-overlapping time windows, and split the revi-
sion histories accordingly. This reduces the number of actions to be
considered for each window and allows to parallelize the process-
ing of the action sets in the different windows. Our experiments
with real Wikipedia data indicates that this is a reasonable design
choice as in practice for an input type t there are very few meaning-
ful (update-wise) time frames that overlap, and those can be merged
into a somewhat longer window that includes both update patterns.

Given a type t (e.g. soccer players), a minimal time unit Wmin

(e.g. one day), and a frequency threshold τ (e.g 50%), our algo-
rithm first focuses on windows of sizeWmin, considering only edit

logs of entities of type t. The identified patterns (or lack of) are then
used to iteratively extend the considered entity types, windows, and
patterns. The algorithm is intuitively sketched below.

Initialization. As above, given an entity type, our initial entity
set S contains all entities of the given type. Users not familiar with
the type hierarchy may provide a seed entity e and the system will
use type(e) as an input. As mentioned, to derive type(e) we use
an alignment from Wikipedia entities to DBPedia [1]. Then to find
all entities of type t we employ a corresponding inverse index.

We first split the timeline into consecutive time frames of size
Wmin, considering for each such window w the set of edit ac-
tions AS,w performed on the entities in S within the window w.
For efficiency we first restrict out attention to singleton patterns
(consisting of a single abstract action), and identify those windows
with patterns above the threshold frequency. As noted above, the
processing of the individual windows is independent and may be
parallelized. In the absence of qualifying windows, depending on
the user preferences we extend Wmin and/or reduce τ , and repeat.
Once some qualifying windows are identified, we proceed itera-
tively as follows.

Refinement. We alternate between extending the considered en-
tity types and refining the considered windows/frequency threshold
until optimized result is achieved.

Letw be a window identified in the previous iteration with a cor-
responding set P of frequent patterns (The processing of different
windows is performed in parallel). We first extend the entity set S
to include all entities of the types occurring in P (if not already in
the set), and add their revision history within w to the set of con-
sidered actions. We then mine the extended set of actions AS,w for
frequent patterns (we explain below how this is done). The exten-
sion is repeated as long as the new identified patterns include new
entity types. Next, to optimize the window size and the frequent
threshold, we examine the effect of extending (resp. lowering) the
window boundaries (frequency threshold). The extension granular-
ity (resp. frequency bound reduction) may be determined by the
user. We repeat the above two steps if further patterns are discov-
ered, and otherwise return the most specific identified patterns.

Patterns Mining. We employ here an iterative incremental al-
gorithm. Intuitively, starting from singleton (most specific) fre-
quent actions, we consider for each (previously discovered) pattern
p its graph gp from definition 2.1 and attempt to extend it with a
new edge (generalizing some of its types if needed). The added
edges are abstractions of the actions in A. To determine the fre-
quency of the extended pattern we “join” the realizations of p with
the realizations of the new added abstract action, deriving realiza-
tions for the extended pattern.

Note that the incremental nature of the algorithm matches nicely
the incremental addition of new entity types (and their correspond-
ing revision histories) in the refinement process described above,
allowing the patterns to be gradually refined.

2.3 Using Windows and Patterns
We employ the discovered windows and patterns to correct Wikipedia

entries as well as to assist users in editing.

Cleaning. One immediate application of the discovered patterns
is to alert Wikipedia editors on partial edits performed in past win-
dows. For that we examine the discovered windows and identify
for each window and pattern (using an efficient outer-join based
algorithm) maximal sets of actions that may be extended to a full
pattern occurrence. Here again the different windows/patterns can
be processed in parallel. Our UI, depicted in Figure 4, displays the

1848



Figure 3: Learning a pattern

partial, instantiated pattern, highlighting the missing parts. We fur-
ther present examples of other occurrences of the full pattern, to
assist the editor in determining how (if) the partial edit should be
completed (or alternatively reversed).

Edit assistance. Update patterns often appear periodically in
multiple windows. For example the players transfer window re-
peats each summer with similar edit pattern. Our system automati-
cally identifies such periodic patterns/windows and provides online
edit assistance (through a plug-in) to users that update pattern en-
tities within a given window, suggesting potential update comple-
tions, as explained above.

3. SYSTEM AND DEMONSTRATION
System. WICLEAN’s implemented as a web browser extension,
with backend in Python and frontend in JavaScript. The system
employs three data stores: Wikipedia Graph records all enti-
ties and links, EditsDB records the entity revision histories and
PatternsDB records the generated patterns and windows. The
users interact with the system via browser extension UI that al-
lows users to control the frequency threshold τ and the width of
the time window (in the pattern mining process), and to suggest
edits (in the data cleaning/update process). The UI connects to
the Manager module that runs the two main system components:
PatternGenerator implements the mining algorithm, which takes
the Wikipedia Graph and the EditsDB as input and stores the
identified patterns and windows in the PatternsDB. Inconsisten-
cyDetector uses the patterns to signal updates that do not match the
patterns and suggests possible corrections/completions. (We omit
the architecture figure for space constraints.)

Demonstration. WICLEAN will be demonstrated on two entity
types: Soccer players and Actors, assuming the audience will relate
to at least one of them, then let users choose additional entity types
as they wish. The demonstration will proceed as follows:

First, we will demonstrate how the system mines edit patterns
and time frames, for the domain of choice, from real-life revision
histories. The audience will observe the iterative pattern refinement
process (as described in Section 2.2), and control the window size
and the threshold, if desired, for more complex or relatively rarer
patterns. An example of such interactions is depicted in Figure 3.

Next, we will demonstrate how the learned patterns are used
for identifying incomplete/inconsistent past updates as well as for
suggesting possible corrections (as described in Section 2.3). The
users, playing the role of Wikipedia editors, will be presented with
the suspected errors and correction recommendations. An exam-
ple of such interactions is depicted in Figure 4. After completing
this task (and actually making Wikipedia cleaner by fixing real-
life errors), the users may continue editing other articles, using
WICLEAN’s recommendations for properly completing their edits.

To attract VLDB’19 attendees to our demonstration we will main-
tain a live scoreboard of users who have contributed most to clean-
ing and validating efforts. Furthermore, the contributors will be
able to see how many potential readers their edits may reach.

Figure 4: Cleaning Example

Related Work. Our work is complementary to other Wikipedia
cleaning techniques such as entity resolution, vandalism detection
and others [9]. A closely related work [10] uses edit history of a
knowledge base (Wikidata) to learn how to correct constraint vi-
olations. However they assume that the constraints are given and
do not consider time windows where the constraints need not be
enforced. Our work is complimentary, allowing to derive the con-
strains and the desired enforcement time. Another related work that
focuses on infoboxes [4] predicts, based on past updates, when is
a given infobox likely to be updated and who might be the editors,
but does not consider the global pattern of the update nor related
updates. Inconsistency detection has attracted much interest in the
recent years [2, 3, 6, 8]. The detection often relies on the presence
of integrity constraints, which may be viewed as a certain type of
pattern. Automatic inference of integrity constraints has been ex-
tensively studied (see e.g. [5]). The difference in our setting is that
the Wikipedia graph may be inconsistent at certain periods (incon-
sistency window), and these are precisely the points of interest in
our case. Close to our work is research on pattern mining in se-
quence/temporal data [7], but the particularities of the Wikipedia
settings make existing algorithms inapplicable as is. This includes
the distribution of the revision history over a large number of in-
dividual entity logs (making it impractical to examine all logs in
the mining process), the connected nature of the patterns we are
seeking (rather than general frequent patterns), the frequent update
reverts (which should be ignored), and the context dependent time
windows (that need to be identified).
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