
I Can’t Believe It’s Not (Only) Software!
Bionic Distributed Storage for Parquet Files

Lucas Kuhring
IMDEA Software Institute

Madrid, Spain

lucas.kuhring@imdea.org

Zsolt István
IMDEA Software Institute

Madrid, Spain

zsolt.istvan@imdea.org

ABSTRACT
There is a steady increase in the size of data stored and
processed as part of data science applications, leading to
bottlenecks and inefficiencies at various layers of the stack.
One way of reducing such bottlenecks and increasing energy
efficiency is by tailoring the underlying distributed storage
solution to the application domain, using resources more
efficiently. We explore this idea in the context of a popular
column-oriented storage format used in big data workloads,
namely Apache Parquet.

Our prototype uses an FPGA-based storage node that of-
fers high bandwidth data deduplication and a companion
software library that exposes an API for Parquet file ac-
cess. This way the storage node remains general purpose
and could be shared by applications from different domains,
while, at the same time, benefiting from deduplication well
suited to Apache Parquet files and from selective reads of
columns in the file.

In this demonstration we show, on the one hand, that
by relying on the FPGA’s dataflow processing model, it is
possible to implement in-line deduplication without increas-
ing latencies significantly or reducing throughput. On the
other hand, we highlight the benefits of implementing the
application-specific aspects in a software library instead of
FPGA circuits and how this enables, for instance, regular
data science frameworks running in Python to access the
data on the storage node and to offload filtering operations.

PVLDB Reference Format:
Lucas Kuhring, Zsolt István. I Can’t Believe It’s Not (Only)
Software! Bionic Distributed Storage for Parquet Files. PVLDB,
12(12): 1838-1841, 2019.
DOI: https://doi.org/10.14778/3352063.3352079

1. INTRODUCTION
The popularity of data science applications in recent years

has lead to the wide-spread usage of analytics systems that
span several machines and access datasets stored on dis-
tributed storage. This distributed setup introduces data
movement bottlenecks at all levels of the architecture and

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 12, No. 12
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3352063.3352079

motivates the ongoing effort to build solutions that are power-
efficient but, at the same time, offer low latency and high
throughput access to data.

Using specialized hardware, such as Field Programmable
Gate Arrays (FPGAs), shows promising results [11, 15, 20,
10]. One of the advantages of using FPGA-based nodes is
that they can be designed such that the in-storage processing
steps can be guaranteed to be performed without reducing
read or write bandwidths to the nodes. This is done by
structuring computation as pipelines that process input at
a fixed rate [10]. In this work we explore deduplication as
a specific example of in-storage processing that happens on
the “write” side, not the “read” side where such functional-
ity is usually provided.

Building distributed storage using FPGAs is in effect the
specialization of the server hardware but, nonetheless, it is
possible to offer general purpose, software-like services with
such systems [9, 10]. However, if one would specialize the
nodes further to support only specific file-type-based oper-
ations, their deployment might become uneconomical. In-
stead, in this work, we push general purpose functionality,
namely data management and deduplication, to the hard-
ware and add a software library that implements application-
specific operations and interfaces with the FPGAs.

Deduplication is used in a wide variety of systems [3, 6,
21, 17] but we believe that the popularity of column-oriented
file formats, such as Apache Parquet [12], offers new oppor-
tunities for in-storage deduplication. This is because many
users manipulate Parquet files by adding or modifying a sub-
set of the columns, or by adding batches of rows, resulting
in duplicate data. The storage node can improve deduplica-
tion ratios in the knowledge of the file’s internal structure.
Our library breaks up the files into pages and stores these as
separate key-value pairs. This approach achieves good dedu-
plication ratios while also opening up further opportunities
in in-storage processing, including filtering [10] and trans-
formations of columnar data, without requiring the FPGA
to implement Parquet-specific meta-data parsing.

The system we demonstrate, called Multes++, is based
on our earlier work [9, 10] and extends the nodes with dedu-
plication functionality and a software library written in Golang
with bindings to C and Python. In the demonstration we
will focus on the following three aspects of the system:

• Thanks to the library, the FPGA can be seamlessly
integrated with data processing applications written
in Python. We will show an example that retrieves
only the columns of interest of a Parquet file, reducing
this way the data movement across the network.

1838



• Given common scenarios for modifying Parquet files
we show that our proposed method of storing these files
broken up into parts based on their internal structure
delivers as good deduplication ratios as state-of-the-art
methods but requires less computation.

• Even though deduplication adds computation to write
operations inside the storage node, the FPGA main-
tains high throughput and low latency.

2. BACKGROUND AND RELATED WORK

2.1 FPGA Key-Value Stores and Multes
Due to growing power consumption concerns, there is

an increasing interest in offering FPGA-based or FPGA-
accelerated distributed storage in the datacenter [23, 8, 10,
2, 5, 14]. These often offer an order of magnitude im-
provement in energy efficiency when compared to traditional
server CPUs. They are also well suited to provide network-
facing services because the applications they implement can
be designed in ways that ensure network line-rate operation.

Unfortunately, FPGAs also have drawbacks: All “pro-
gram code” occupies chip space, which means that not all
types of applications are a good fit for FPGA-based accel-
eration (e.g., ones with branching logic). Furthermore, in a
cloud setting, it can be challenging to provide multi-tenant
applications on an FPGA with custom functionality per ten-
ant (e.g., file-type-specific operations) because partitioning
the device across tenants leads to smaller available areas for
each [13]. Even though it is possible to dynamically change
the set of operations supported on the FPGA through par-
tial reconfiguration, this can be done only at coarse gran-
ularity. We make the case that it is a better approach to
implement general multi-tenant functionality in hardware
and move application-specific functionality into software.

In this work we extend Multes [9] which is an open source,
replicated, multi-tenant key-value store (KVS). It uses a
high throughput hash table based on the Cuckoo hashing al-
gorithm [19] combined with a slab-based memory allocator.
In addition, Multes implements performance and data iso-
lation for multiple tenants. Replication and multi-tenancy
are orthogonal to our deduplication extension and their be-
havior remains unchanged. However, the ideas presented in
this work are not limited to Multes and could be used in
other FPGA-based key-value stores as well – mostly because
most of the specialization happens not in hardware but in
the software library.

2.2 Deduplication
Deduplication has been studied in extensive related work

and is part of numerous storage and cloud systems and op-
erating systems. One differentiating factor is the way that
files are subdivided (chunked) for their fingerprints to be
computed: this can be done either by using fixed chunk
size [3, 22] that requires no additional compute to deter-
mine the chunk boundaries, or variable chunk size (VSC)
where a hash function, such as Rabin fingerprinting [3, 18]
is used to determine chunk boundaries.

Deduplication can be done either on the client [4, 7] or in
the storage node [6, 21, 16, 7]. In the case of the former, the
network bandwidth is preserved by sending less data, but la-
tency is increased because extra communication is required
to identify duplicate chunks. Performing deduplication en-
tirely in the storage node removes the compute burden from

Figure 1: The client library of Multes++ has been
designed to expose operations of increasing com-
plexity to the clients.

the client but requires that the underlying hardware guar-
antees high throughput for deduplication operations (hence
our interest in FPGA-based solutions).

3. SYSTEM OVERVIEW
When compared to the system it extends, Multes++

brings two improvements: First, it implements line-rate dedu-
plication logic inside the storage node that relies on a modi-
fied hash table data structure to manage duplicates. Second,
it provides a companion software library that exposes sev-
eral layers of abstraction when accessing the FPGA. At the
highest level of abstraction are the Parquet-file operations.

Furthermore, we devise a hybrid chunking scheme for Par-
quet files. The chunk boundaries are determined by the
file’s internal structure, each “page” resulting in an initial
chunk. Since the FPGA has internal limitations on the value
size and a page could be significantly larger than the max-
imum value size, large pages are split once again, resulting
in smaller chunks. This method requires less compute re-
sources (no Rabin fingerprinting) but still results in dedu-
plication ratios as good as VCS.

3.1 Software Library
The client library is organized into layers as shown in Fig-

ure 1, starting with the basic get/put operations over TCP
and increase in level of abstraction until Parquet file opera-
tions (e.g., accessing a specific column).

Since the FPGA has an internal limit on the maximum
size of a value, in the library we split up a large key-value
pair into several parts which are then stored under “helper
keys”. These keys are derived from the initial user-defined
one by appending additional “sequence bytes” to it but the
hardware has no knowledge of the meaning of these bytes,
and treats all of them as independent keys. When writing
large values to the FPGA, the overhead of storing multiple
key-value pairs can be fully hidden by writing them as a
batch. Read operations will require retrieving the user key
first, and if present, additional parts of the value in a batched
manner. This adds one RTT overhead, but for large values
transmission time will dominate anyhow.

We implement array operations similarly to the large val-
ues, by relying on a special “header key-value pair” that
encodes the keys that compose the array. This is opaque
to the clients, that see API functions requiring only a key
and an array data structure. Arrays and large values can be
combined, allowing the software to store 100s of megabytes
under a single logical key, even if the FPGAs internal max-
imum values size is, for instance, 1KB.

1839



Figure 2: Multes++extends the hash table pipeline
of Multes with a value fingerprinting step and the
memory used for storing keys now also stores the fin-
gerprints (all parts of the system that were changed
are shown in green). Each key’s entry contains both
a pointer to the value and its fingerprint.

Parquet files are decomposed into a structure similar to
an array, where each column and page within the column
can be accessed in a random-access manner through the
array header. In our implementation we focus on single-
threaded clients, representative, e.g., of Python-based data
science applications, but for arrays we offer the possibility of
writing and reading multiple entries in parallel on separate
goroutines to increase throughput.

3.2 Hardware Modules
The internal architecture of Multes is pipelined, which

allowed us to introduce additional logic for deduplication-
related computations without slowing down the system. As
Figure 2 shows, most of the changes (marked in green) are
limited to the hash table implementation inside the FPGA.
We introduced a SHA256 [1] hash step before the hash table
that processes the values and we modified the hash table to
manage the “fingerprints” of value chunks. This required
changes to the write and delete operations in the KVS, but
no changes to read operations, resulting in identical “get”
behavior to Multes.

In order to achieve line-rate behavior even in the presence
of the compute intensive hashing step, we use data parallel
execution on the FPGA and deploy 11 SHA256 cores in
parallel. As we demonstrate, this results in increased write
latency (around 3µs added per 512B data chunk to the RTT
when using deduplication) but does not impact write or read
bandwidths. Furthermore, the deduplication functionality
does not impact read latency, since each key’s value pointer
is accessible directly without requiring additional lookups.
Multes++ inherits the multi-tenant behavior of Multes

where each tenant has access only to its own hash table
partition, and as a result, deduplication will only happen
across values belonging to the same tenant. This design
decision can be easily changed, by storing the fingerprints
in a memory area that can be accessed by all tenants –
this, however, might introduce security concerns and break
privacy assumptions across tenants.

Figure 3: The demonstration is controlled and visu-
alized through an interactive Jupyter notebook.

4. DEMONSTRATION OVERVIEW

4.1 Setup
The demonstration is controlled and visualized through a

Jupyter notebook that executes benchmarking scripts and
commands in the background, shown in Figure 3. The note-
book resides on a server at IMDEA Software. Multes++
runs on Xilinx VCU1525 boards with Virtex Ultrascale+
FPGAs and 64GBs of DDR4, from which we use 32GB
(two 16GB SODIMMS) split between the hash table and
the value storage. The FPGAs are in the same cluster as
the server machines and they communicate over a regular
10Gbps switch and TCP/IP sockets.

1840



4.2 Performance
To show that deduplication has no significant impact on

the throughput seen by clients, we will compare Multes++
to Multes (no deduplication), and to memcached, for a soft-
ware baseline. Clients issue set commands with large Par-
quet files to measure the write bandwidth. Visitors can
choose between a set of Parquet files of varying sizes.

To explore the cost of deduplication in terms of latency,
the visitors will have the opportunity to pick various value
sizes for which the CDF of SET response times will be plot-
ted. This allows a more in-depth comparison and discussion
on trade-offs.

4.3 Space Saving
In the second part of the demonstration we show that our

proposed file-type-aware chunking scheme delivers as good
deduplication ratios as state of the art methods. For this,
we store different versions of the Police dataset, either with
additional rows or columns. The experiment is set up such
that the visitors can choose how many times to store the file
and with what modifications. The results are plotted after
the experiment has run as a bar chart showing the total
amount of storage space in use on the node.

4.4 Access from User Applications
The last part of the demonstration comprises of a small

Python application that the visitors can interact with. The
client library of Multes++ exposes bindings to Python and
can be used to read specific columns of a Parquet file with-
out having to retrieve all data (i.e., to perform projection).
In the provided example we access two columns of a Par-
quet file containing the Flight History dataset from DataSF
(https://datasf.org/opendata/). The file resides on the
FPGA, and the Python application loads the columns into
a Pandas DataFrame for analysis to determine which com-
panies had the heaviest cargo landing at SFO.

The additional importance of this integration with Python
is that it enables future in-storage processing of columnar
data formats (e.g., push-down of various filtering expres-
sions), controlled directly from high level applications.

Acknowledgments
We would like to thank Xilinx for their generous donation
of software tools and IP. The VCU1525 boards have been
purchased as part of the Xilinx Accelerator Program.

5. REFERENCES
[1] Fips 180-4 secure hash standard (shs), national

institute of standards and technology (nist).
https://csrc.nist.gov/publications/detail/fips/180/4/final.

[2] M. Blott, L. Liu, K. Karras, and K. A. Vissers.
Scaling out to a single-node 80Gbps memcached server
with 40Terabytes of memory. In HotStorage’15, 2015.

[3] D. R. Bobbarjung, S. Jagannathan, and C. Dubnicki.
Improving duplicate elimination in storage systems.
ACM TOS, 2(4):424–448, 2006.

[4] D. Cannon. Data deduplication and tivoli storage
manager. Tivoli Storage, IBM Software Group
(September 2007), 2009.

[5] S. R. Chalamalasetti, K. Lim, M. Wright,
A. AuYoung, P. Ranganathan, and M. Margala. An
FPGA memcached appliance. In FPGA’13, pages
245–254. ACM, 2013.

[6] B. K. Debnath, S. Sengupta, and J. Li. Chunkstash:
Speeding up inline storage deduplication using flash
memory. In USENIX ATC’10, 2010.

[7] L. DuBois and R. Amatruda. Backup and recovery:
Accelerating efficiency and driving down it costs using
data deduplication. EMC Corporation, 2010.

[8] E. S. Fukuda, H. Inoue, T. Takenaka, D. Kim,
T. Sadahisa, T. Asai, and M. Motomura. Caching
memcached at reconfigurable network interface. In
FPL’14, pages 1–6. IEEE, 2014.

[9] Z. István, G. Alonso, and A. Singla. Providing
multi-tenant services with FPGAs: Case study on a
key-value store. In FPL’18, pages 119–124, 2018.

[10] Z. István, D. Sidler, and G. Alonso. Caribou:
intelligent distributed storage. PVLDB,
10(11):1202–1213, 2017.

[11] S. Jun, M. Liu, S. Lee, J. Hicks, J. Ankcorn, M. King,
and S. X. and. Bluedbm: An appliance for big data
analytics. In ISCA’15, pages 1–13, 2015.

[12] J. Kestelyn. Introducing Parquet: Efficient columnar
storage for Apache Hadoop. Cloudera Blog, 3, 2013.

[13] A. Khawaja, J. Landgraf, R. Prakash, M. Wei,
E. Schkufza, and C. J. Rossbach. Sharing, protection,
and compatibility for reconfigurable fabric with
amorphos. In OSDI’18, pages 107–127, 2018.

[14] M. Lavasani, H. Angepat, and D. Chiou. An
fpga-based in-line accelerator for memcached. IEEE
Computer Architecture Letters, 13(2):57–60, 2014.

[15] B. Li, Z. Ruan, W. Xiao, Y. Lu, Y. Xiong,
A. Putnam, E. Chen, and L. Zhang. Kv-direct:
high-performance in-memory key-value store with
programmable nic. In SOSP’17, pages 137–152, 2017.

[16] M. Lillibridge, K. Eshghi, D. Bhagwat, V. Deolalikar,
G. Trezis, and P. Camble. Sparse indexing: Large
scale, inline deduplication using sampling and locality.
In Fast’09, volume 9, pages 111–123, 2009.

[17] X. Lin, F. Douglis, J. Li, X. Li, R. Ricci, S. Smaldone,
and G. Wallace. Metadata considered harmful. . . to
deduplication. In HotStorage’15, 2015.

[18] A. Muthitacharoen, B. Chen, and D. Mazieres. A
low-bandwidth network file system. In ACM SIGOPS
Operating Systems Review, volume 35. ACM, 2001.

[19] R. Pagh and F. F. Rodler. Cuckoo hashing. Journal of
Algorithms, 51(2), 2004.

[20] B. Salami, G. A. Malazgirt, O. Arcas-Abella,
A. Yurdakul, and N. Sonmez. AxleDB: A novel
programmable query processing platform on FPGA.
Microprocessors and Microsystems, 51:142–164, 2017.

[21] K. Srinivasan, T. Bisson, G. R. Goodson, and
K. Voruganti. idedup: latency-aware, inline data
deduplication for primary storage. In FAST’12,
volume 12, 2012.

[22] N. Tolia, M. Kozuch, M. Satyanarayanan, B. Karp,
T. C. Bressoud, and A. Perrig. Opportunistic use of
content addressable storage for distributed file
systems. In USENIX ATC’03, volume 3, pages
127–140, 2003.

[23] S. Xu, S. Lee, S.-W. Jun, M. Liu, J. Hicks, et al.
BlueCache: A scalable distributed flash-based
key-value store. PVLDB, 10(4):301–312, 2016.

1841


