
doppioDB 2.0: Hardware Techniques for Improved
Integration of Machine Learning into Databases

Kaan Kara Zeke Wang Ce Zhang Gustavo Alonso
Systems Group, Department of Computer Science

ETH Zurich, Switzerland
firstname.lastname@inf.ethz.ch

ABSTRACT
Database engines are starting to incorporate machine learning (ML)
functionality as part of their repertoire. Machine learning algo-
rithms, however, have very different characteristics than those of
relational operators. In this demonstration, we explore the chal-
lenges that arise when integrating generalized linear models into a
database engine and how to incorporate hardware accelerators into
the execution, a tool now widely used for ML workloads.

The demo explores two complementary alternatives: (1) how to
train models directly on compressed/encrypted column-stores us-
ing a specialized coordinate descent engine, and (2) how to use a
bitwise weaving index for stochastic gradient descent on low pre-
cision input data. We present these techniques as implemented in
our prototype database doppioDB 2.0 and show how the new func-
tionality can be used from SQL.

PVLDB Reference Format:
Kaan Kara, Zeke Wang, Ce Zhang, Gustavo Alonso. doppioDB 2.0: Hard-
ware Techniques for Improved Integration of Machine Learning into Databases.
PVLDB, 12(12): 1818-1821, 2019.
DOI: https://doi.org/10.14778/3352063.3352074

1. INTRODUCTION
Databases are being enhanced with advanced analytics and ma-

chine learning (ML) capabilities, since being able to perform ML
within the database engine, alongside usual declarative data manip-
ulation techniques and without the need to extract the data, is very
attractive. However, this additional functionality does not come for
free, especially when considering the different hardware require-
ments of ML algorithms compared to those of relational query pro-
cessing. On the one hand, ML workloads tend to be more com-
pute intensive compared to relational query processing. This in-
creases the requirement on the compute resources of the underly-
ing hardware, that can be addressed via increased parallelism and
specialization [13]. On the other hand, when integrating ML algo-
rithms into databases, the data management techniques available in
the database engine need to be taken into account for a seamless
and efficient integration. For instance, databases often use indexes

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 12, No. 12
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3352063.3352074

INSERT INTO t1_model
SELECT weights FROM TRAIN('t1', step_size, …);

SELECT prediction FROM INFER('t1_model', 't1_new');

SELECT loss FROM VALIDATE('t1_model', 't1');

- Training:

t1_model

doppioDB 2.0
t1 compressed/

encrypted

t1 bitweaving

Iterative 
Execution

Quantized
SGD

t1_model

Iterative 
Execution

Decryption

Decompression

SCD

Table t1

- Validation:

- Inference:

Figure 1: Overview of an ML workflow in doppioDB 2.0.

and compress data for better memory bandwidth utilization and de-
creased memory footprint.

In our demonstration we explore the design choices and chal-
lenges involved in the integration of ML functionality into a database
engine; from the data format to the memory access patterns, and
from the algorithms to the possibilities offered by hardware accel-
eration. The base for this demonstration is our prototype database
doppioDB [18], enabling the integration of FPGA-based operators
(previously integrated operators include regular expression match-
ing [17], partitioning [8], skyline queries [20], K-means [5]) into
a column-store database (MonetDB). Specifically in this demon-
stration, we focus on integrating generalized linear model (GLM)
training into doppioDB with the two use cases shown in Figure 1:
In the first use case [9], we show how to train GLMs directly on
compressed and encrypted data while accessing the data in its orig-
inal column-store format. In the second use case [19], we show how
an index similar to BitWeaving [11] can be used to train GLMs us-
ing quantized data, where the level of quantization can be changed
during runtime. Besides accelerated GLM training with advanced
integration, we also show an end-to-end ML workflow using user-
defined-functions (UDF) in SQL. This includes storing the in-FPGA
trained models as tables in the database, validating the trained model,
and finally performing inference on new data.

2. USER INTERFACE
The users interact with doppioDB 2.0 via SQL. A typical work-

flow consists of the following steps, included in the demonstration:
1. Loading the data: Creating tables and bulk loading training
data into them using SQL.
2. Transforming the data: The user chooses to create a new table
from the base tables, using all capabilities of SQL such as joins or

1818



UDF (train, validate, infer)

Memory
Manager
malloc()

free()

FThread
Manager

start()
join()

Status

Config FThread
Queues

CPU
Xeon 
Broadwell E5
14 Cores
@ 2.4 GHz

Intel Arria 10

FPGA

Main Memory
(Shared)

64 GB

MonetDB

TLB Data/FThread Arbiter

Column
ML

Column
ML

ML
Weaving

Centaur

DB Tables

SQL

Figure 2: An overview of doppioDB 2.0: The CPU+FPGA plat-
form and the integration of MLWeaving and ColumnML into Mon-
etDB via Centaur.

selections on certain attributes. Furthermore, advanced transforma-
tion techniques can be applied to either base tables or the new table:
compression, encryption, and creation of a weaving index.
3. Running training: The user can initiate the training of a Lasso
or logistic regression model using either stochastic coordinate de-
scent (SCD) or stochastic gradient descent (SGD). This step is per-
formed by calling the training-UDF, which expects some hyperpa-
rameters such as the number of epochs the training should be exe-
cuted for and the strength of regularization. For SCD, compressed
and/or encrypted data can be used during training. For SGD the
weaving index will be used during training, with the quantization
level specified by the user. In both cases, the training can be either
run on a multi-core Xeon CPU or an FPGA.
4. Saving the model: The training-UDF will return the model as
tuples, which then can be inserted into a separate table, as a means
of storing the trained model.
5. Validation and testing: A further validation-UDF is provided,
taking as input a stored model and the table used for training. Either
the training loss or accuracy on the training data will be returned
per epoch.
6. Inference: Finally, the model can be used to perform inference
on new (unlabeled) data using an inference-UDF which will return
the inferred labels in the same order as the input tuples.

3. SYSTEM ARCHITECTURE
Our system (doppioDB 2.0) consists of an open-source column-

store database (MonetDB [6]), a hardware/software interface li-
brary called Centaur [14] used to manage hardware resources, and
two specialized hardware engines: ColumnML [9] and MLWeav-
ing [19]. In the following, we first introduce our target CPU+FPGA
platform and the HW/SW interface enabling the database integra-
tion of FPGA-based accelerators. Then, we briefly go over the in-
dividual accelerator designs.

1. Target platform and database integration. The target
platform is the second generation Intel Xeon+FPGA1, combining a

1 Results in this publication we generated using pre-production hardware
and software donated to us by Intel, and may not reflect the performance of
production of future systems

14-core Intel Broadwell CPU and an Arria 10 FPGA in the same
package. In Figure 2, the components of the system are shown:

MonetDB is a main memory column-store database, highly op-
timized for analytical query processing. An important aspect of
this database is that it allows the implementation of user-defined-
functions (UDFs) in C. The usage of UDFs is highly flexible from
SQL: Entire tables can be passed as arguments by name (in Fig-
ure 1). Data stored in columns can then be accessed efficiently via
base pointers in C functions.

Centaur provides a set of libraries for memory and thread man-
agement to enable easy integration of multiple FPGA-based en-
gines (so-called FThreads) into large-scale software systems. Cen-
taur’s memory manager dynamically allocates and frees chunks in
the shared memory space (pinned by Intel libraries) and exposes
them to MonetDB. On the FPGA, a translation lookaside buffer
(TLB) is maintained with physical page addresses so that FThreads
can access data in the shared memory using virtual addresses. Fur-
thermore, Centaur’s thread manager dynamically schedules soft-
ware triggered FThreads onto available FPGA resources. These are
queued until a corresponding engine becomes available. For each
FThread there is a separate queue in the shared memory along with
regions containing configuration and status information. Centaur
arbitrates memory access requests of FThreads on the FPGA and
distributes bandwidth equally. How many FThreads can fit on an
FPGA depends on available on-chip resources. We put two Colum-
nML instances and one MLWeaving instance (Figure 2), because
either two ColumnML instances or one MLWeaving instance alone
can saturate memory bandwidth.

2. ColumnML. This work explores how to efficiently perform
generalized linear model (GLM) training in column-store databases.
Most prominent optimization algorithms in ML, such as stochastic
gradient descent (SGD), access data in a row-wise fashion. This
tends to be highly inefficient in terms of memory bandwidth uti-
lization when the underlying data is stored in columnar format. In
ColumnML, a known alternative algorithm, stochastic coordinate
descent (SCD), is proposed as a better match on column-stores.

A further challenge for integrating ML into column-store databases
is that these systems usually store columns in a transformed format,
such as compressed or encrypted. Thus, the need for on-the-fly data
transformation arises, dominating runtimes when executed on the
CPU. Specialized hardware can perform both data transformation
and SCD training in a pipeline, eliminating the adverse effects of
performing ML directly on compressed and encrypted data.

In this demonstration we show the methods used in ColumnML
in action. Two ColumnML FThreads are available in doppioDB
2.0, to train Logistic Regression models directly on encrypted and/or
compressed data. Since MonetDB by default uses compression
only on strings, we create a compressed/encrypted copy of a given
table once at startup and use it during the demonstration.

3. MLWeaving. Zhang et al. [21] show that using quantized
data for GLM training to be effective thanks to efficient memory
bandwidth utilization. Kara et al. [7] show how to use this tech-
nique on an FPGA. MLWeaving combines these ideas with an ad-
vanced database indexing strategy, BitWeaving [11]. A weaving
index enables the isolated access to the same-significant-bits of a
value, which is exactly what quantized training methods require.

Unfortunately, it is not so easy to take advantage of a weaving
index when the target application is ML. Unlike efficient predicate
evaluation, for which BitWeaving is designed, ML is more compute
intensive. The increased density of the data access thanks to the
weaving leads to a linear increase in computation density in the

1819



Table 1: Data sets used in the demonstration.

Name # Samples # Features Size Type

IM 83,200 2,048 681 MB classification
AEA 32,769 126 16,5 MB classification
KDD 131,329 2,330 1,224 MB classification

Figure 3: Notebook snippet for the end-to-end ML workflow, in-
cluding training and validation.

processor where the data is consumed. A CPU is not very efficient
in handling this much fine-grained parallelism. This is where the
architectural flexibility of an FPGA helps.

In this demonstration we show the MLWeaving index and the
FPGA engine specifically designed to train linear regression mod-
els using SGD, with dynamically adjustable precision.

4. DEMONSTRATION SCENARIOS
Our demonstration consists of Jupyter notebooks using pymon-

etdb [1] to connect to a doppioDB 2.0 server on the Xeon+FPGA.
Via this front-end, we can submit SQL queries to the database and
obtain the results as Python lists, which can then further be used to
create visualizations such as convergence of the objective function
during training. After introducing the system architecture briefly at
the start of the demonstration, we will show end-to-end ML work-
flows with the ability to use the FPGA-based accelerators.
Data sets. We pre-load three data sets [12] (Table 1) into the
database prior to the demonstration. We select medium sized data
sets, leading to relatively short epoch times, to make the training
process more interactive.

• IM represents a transfer learning scenario. We generate this data

Figure 4: Notebook snippet showing how the trained model can be
used to perform inference.

set by extracting 2048 features using the InceptionV3 neural net-
work from cat and dog images. The task is binary classification.

• AEA [2] contains the winning features from a Kaggle competi-
tion to predict resource access rights for Amazon employees.

• KDD [3] contains the winning features for the KDD Cup 2014
competition to predict excitement about projects.

1. End-to-end ML workflow. In this part of the demo our goal
is to show an end-to-end ML workflow using either CPU resources
or FPGA-based specialized solutions. The interactions in the note-
book are provided via pre-written SQL queries. If chosen, the user
can modify these queries to get a better understanding on the inter-
action with the system; for instance, changing the hyperparameters
or displaying the distribution of model weights after training. A
standard walkthrough of the notebook consists of the following:
(1) Connecting to the database and displaying the table properties,
such as the number of columns and rows.
(2) (Optional) Creating a new table that would contain modified
data from the original table. Then, populating the new table with
data from the original table after some modification, such as selec-
tion on certain features. This step shows the usefulness of SQL for
data preparation before ML.
(3) Initiating training either using the CPU or the FPGA. At this
step the user can choose which table and what storage format to
use (raw, compressed and/or encrypted, and weaving). The training
will return resulting models per epoch and these will be inserted
into a new table. The processing rate in GB/s will be displayed,
as in Figure 3. We highlight how the runtime changes depending
on which hardware resource and which storage format is used, and
discuss the underlying reasons.
(4) Validating the trained model from the previous step by either
calculating the loss or the accuracy on the training data. At this
step the validation curves will be plotted over time to get a clear vi-
sualization of which hardware solution leads to faster convergence,
as shown in Figure 3.
(5) (Optional) Performing inference on new/unlabeled data by us-
ing the trained model. For instance, in the IM data set there are
unlabeled tuples containing a blob, which is either a cat or a dog
image. The user can perform inference on these unlabeled tuples
and see the results as shown in Figure 4.

1820



Figure 5: Notebook snippet for the throughput analysis, showing
the data processing throughput during training, the response times
for the queries and CPU utilization.

2. Throughput analysis and mixed workload. In this part
of the demo we highlight the performance properties of different
hardware resources for GLM training, depending on the storage
format. A standard walkthrough consists of the following steps:
(1) Connecting to the database and displaying the table properties,
such as the number of columns and rows.
(2) Multiple Python threads are started to continuously submit SQL
queries and measure response times. One of these queries is a train-
ing job and the others are join after selection queries, to generate
artificial load on the database. At this step, the user can specify
to use either the CPU or the FPGA, and the storage format (raw,
compressed and/or encrypted, and weaving) for the training. Also,
the number of artificial load queries can be changed to observe how
this affects the system.
(3) While the queries are running, the threads are monitored in con-
stant time intervals. The throughput is calculated for the training
jobs in GB/s, using the data set size and the query runtime. For the
artifical load queries we plot the response time along with the CPU
utilization, as shown in Figure 5. We highlight how the training
throughput changes depending on the hardware resource and the
storage format used, and how training workloads affect the perfor-
mance of other queries in the system. For instance, in Figure 5 we
observe running the training on the FPGA results in higher through-
put than using 14 cores on the CPU and affects other queries less
because of lower overall CPU utilization.

5. INSIGHTS FOR THE VISITORS
We hope to convey the following insights to the visitors of the

demonstration:
(1) How to integrate accelerators based on FPGAs, now a common-
place resource in public clouds [15, 4], via SQL queries showing
where emerging hardware can be useful.
(2) The challenges arising from the underlying data format in databases
when integrating ML algorithms and how specialized hardware so-
lutions can help thanks to pipeline parallelism. Data preparation for
ML in general is a time consuming task and we hope the insights
can generate new ideas.
(3) An in depth look at the differences between relational query
processing and machine learning, and how this affects the require-
ments on the underlying hardware. For instance, we show sharing
even a server grade CPU between ML and OLAP workloads might
result in increased query response time and how specialized hard-
ware can help in solving that problem.
(4) The way we integrate ML into the database is more loose com-
pared to prior work [10, 16] that advocates training over joins.
Our methods for using specialized hardware can be combined with
deeper integration methods, mainly thanks to the shared memory
architecture, leading to exciting future opportunities.

6. REFERENCES
[1] pymonetdb.readthedocs.io/.
[2] https://github.com/owenzhang/

Kaggle-AmazonChallenge2013.
[3] https://www.datarobot.com/blog/

datarobot-the-2014-kdd-cup.
[4] aws.amazon.com/ec2/instance-types/f1/.
[5] Z. He et al. A Flexible K-means Operator for Hybrid Databases. In

FPL, 2018.
[6] S. Idreos et al. MonetDB: Two decades of Research in

Column-oriented Database Architectures. Data Eng., 40, 2012.
[7] K. Kara et al. FPGA-accelerated Dense Linear Machine Learning: A

Precision-Convergence Trade-off. In FCCM, 2017.
[8] K. Kara et al. FPGA-based Data Partitioning. In SIGMOD, 2017.
[9] K. Kara et al. ColumnML: Column-Store Machine Learning with

On-the-Fly Data Transformation. PVLDB, 12(4):348–361, 2018.
[10] A. Kumar et al. Learning Generalized Linear Models over

Normalized Data. In SIGMOD, 2015.
[11] Y. Li et al. BitWeaving: Fast Scans for Main Memory Data

Processing. In SIGMOD, 2013.
[12] Y. Liu et al. MLbench: benchmarking machine learning services

against human experts. PVLDB, 11(10):1220–1232, 2018.
[13] D. Mahajan et al. In-RDBMS Hardware Acceleration of Advanced

Analytics. PVLDB, 11(11):1317–1331, 2018.
[14] M. Owaida et al. Centaur: A Framework for Hybrid CPU-FPGA

Databases. In FCCM, 2017.
[15] A. Putnam. Large-scale Reconfigurable Computing in a Microsoft

Datacenter. In IEEE Hot Chips, 2014.
[16] M. Schleich et al. Learning Linear Regression Models Over

Factorized Joins. In SIGMOD, 2016.
[17] D. Sidler et al. Accelerating Pattern Matching Queries in Hybrid

CPU-FPGA Architectures. In SIGMOD, 2017.
[18] D. Sidler et al. doppioDB: A Hardware Accelerated Database. In

SIGMOD, 2017.
[19] Z. Wang et al. Accelerating Generalized Linear Models with

MLWeaving: A One-Size-Fits-All System for Any-Precision
Learning. PVLDB, 12(7):807–821, 2019.

[20] L. Woods et al. Parallel computation of skyline queries. In FCCM,
2013.

[21] H. Zhang et al. ZipML: Training Linear Models with End-to-end
Low Precision, and a Little Bit of Deep Learning. In ICML, 2017.

1821

pymonetdb.readthedocs.io/
https://github.com/owenzhang/Kaggle-AmazonChallenge2013
https://github.com/owenzhang/Kaggle-AmazonChallenge2013
https://www.datarobot.com/blog/datarobot-the-2014-kdd-cup
https://www.datarobot.com/blog/datarobot-the-2014-kdd-cup
aws.amazon.com/ec2/instance-types/f1/

	Introduction
	User Interface
	System Architecture
	Demonstration Scenarios
	Insights for the visitors
	References

