BlackMagic: Automatic Inlining of Scalar UDFs into SQL
Queries with Froid

Karthik Ramachandra
Microsoft Research India

karam@microsoft.com

ABSTRACT

Relational DBMSs allow users to extend the standard declar-
ative SQL language surface using User Defined Functions
(UDFs) that implement custom behavior. While UDFs of-
fer many advantages, it is well-known amongst practition-
ers that they can cause severe degradation in query perfor-
mance. This degradation is due to the fact that state-of-
the-art query optimizers treat UDFs as black boxes and do
not reason about them during optimization.

We demonstrate Froid, a framework for optimizing UDF's
by opening up this black box and exposing its underlying op-
erations to the query optimizer. It achieves this by system-
atically translating the entire body of an imperative multi-
statement UDF into a single relational algebraic expression.
Thereby, any query invoking this UDF is transformed into
a query with a nested sub-query that is semantically equiv-
alent to the UDF. We then leverage existing sub-query op-
timization techniques and thereby get efficient, set-oriented,
parallel query plans as opposed to inefficient, iterative, serial
execution of UDFs.

We demonstrate the benefits of Froid including perfor-
mance gains of up to multiple orders of magnitude on real
workloads. Froid is available as a feature of Microsoft SQL
Server 2019 called ‘Scalar UDF Inlining’.

PVLDB Reference Format:

Karthik Ramachandra and Kwanghyun Park. BlackMagic: Au-
tomatic Inlining of Scalar UDFs into SQL Queries with Froid.
PVLDB, 12(12): 1810-1813, 2019.

DOI: https://doi.org/10.14778/3352063.3352072

1. INTRODUCTION

User Defined Functions (UDFs) provide an elegant, pow-
erful abstraction that enables application developers embed
custom business logic inside a database. In fact, UDFs and
views are the primary ways to reuse code in database ap-
plications. UDF's support familiar imperative programming
constructs, and hence are often preferred by non SQL ex-
perts. Complex business rules are often easier to express

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 12, No. 12

ISSN 2150-8097.

DOIL: https://doi.org/10.14778/3352063.3352072

Kwanghyun Park
Microsoft Gray Systems lab

kwpark@microsoft.com

--Query:
SELECT C_NAME, dbo.service_level(c_custkey)
FROM CUSTOMER

-- UDF definition:
create function service_level(@ckey int)
returns char(10) as
begin
declare @total float;
declare @level char(10);

select @total = sum(o_totalprice)
from orders where o_custkey = (@ckey;

if(@total > 1000000)

set @level = 'Platinum’;
else if(@total > 500000)
set @level = 'Gold';

else
set @level = 'Regular’;

return @level;
end
Figure 1: Query invoking a UDF, and the UDF def-

inition. Example taken from Simhadri et. al.[7].

as well as understand when written using imperative UDF's
rather than complex SQL.

Although relational database systems support UDFs, they
are almost always accompanied by a word of caution: The
advantages of UDFs today come with a huge performance
penalty. As a result, users are advised to avoid UDFs when
performance is critical to their use cases, thereby compro-
mising on modularity, reusability and readability of appli-
cation code.

1.1 Illustrative Example

Consider the scalar UDF (UDF's that return a scalar value
are called scalar UDFs) shown in Figure 1. Given a customer
key, the UDF service_level determines the service category
for that customer. It arrives at the category by first comput-
ing the total price of all orders placed by the customer using
a SQL query, and then uses an IF-ELSE logic to decide the
category based on the total price. A simple query that in-
vokes this UDF is given in Figure 1 which lists all customers
and their service level. This UDF is very handy because it
can now be used in multiple queries, and if the threshold
values need to be updated, or a new category needs to be
added, the change must be made only in the UDF.

1810

select c.c_custkey,
case when e.total > 1000000 then 'Platinum’
when e.total > 500000 then 'Gold'
else 'Regular’
end
from customer c¢ left outer join
(select o_custkey, sum(o_totalprice) as total
from orders
group by o_custkey) e
on c.c_custkey=e.o_custkey;
Figure 2: A manually written query (without UDFs)
that is equivalent to the query in Figure 1. Example
taken from Simhadri et. al.[7].

Figure 2 shows an alternate implementation of the same
requirement of computing the service category for all cus-
tomers. This implementation is entirely in declarative SQL
form, and does not invoke any UDFs. From Figure 2, it is
obvious to the reader that (a) it is harder to understand the
behavior, especially for non-expert SQL users, and (b) the
computation of service category is not reusable if the same
behavior is required in another query.

However, if the queries in Figure 1 and Figure 2 are ex-
ecuted even on a moderately large dataset, the difference
in both end-to-end execution time as well as resource uti-
lization would stand out. The query with UDF (Figure 1)
would run observably (orders of magnitude) slower than the
query in Figure 2 on a RDBMS. This forces users to either
give up performance if they need the benefits of UDFs, or
avoid using UDFs if performance is important.

1.2 Challenges in UDF optimization

Some of the key reasons for poor performance of UDFs
are as follows:
Iterative execution: UDFs are invoked in an iterative
manner, once per qualifying tuple. This incurs additional
costs of repeated context switching due to function invoca-
tion. Especially, UDFs that execute SQL queries in their
body (common in real workloads) are severely affected.

One could argue that known compiler techniques could be
used to optimize imperative UDFs by compiling them into
efficient native code. Although native compilation makes
UDFs faster, the benefits are limited as the query still in-
vokes the UDF for each tuple. We show how Froid removes
this fundamental limitation and hence combining Froid with
native compilation leads to more gains [5].
Lack of costing: Query optimizers treat UDFs as inex-
pensive black-box operations. This is a crucial cause of bad
plan choices in cases where scalar operations are arbitrarily
expensive, which is often true for scalar UDF's.
Limitation on parallelism: Currently, SQL Server does
not use intra-query parallelism in queries that invoke UDFs.
Note that it is not trivial to parallelize arbitrary UDF's, es-
pecially those that contain SQL queries in their body. This
is because each query inside the UDF might also use par-
allelism, and it is not straightforward to decide the best
strategy to share threads across these.

1.3 Solution overview

Froid [5] is an extensible framework for optimizing imper-
ative UDF's in a relational DBMS. The purpose of Froid is
to enable developers to use the abstraction of UDFs without
compromising on performance. In the above example, using

1811

| i

Table S
Compute Scalar [ius:omZi?
Cost: 1 %

N Cost: 99 %

=

SELECT
Cost: 0 %

Figure 3: Query execution plan for query in Figure
1 (without Froid)

Froid on Figure 1 would yield the same performance as the
SQL query in Figure 2. Thereby, we get all the benefits of
UDFs, along with the performance of declarative SQL.

Froid introduces a radically different approach to evalu-
ating imperative functions that results in performance im-
provements of up to multiple orders or magnitude over the
existing state of the art. Froid was recently announced as
a feature of Microsoft SQL Server 2019 [8] called “Scalar
UDF Inlining” [2]. The techniques underlying Froid can
be integrated into any RDBMS which has sub-query opti-
mization techniques built into it.

At the core of Froid is a technique that can automatically
transform an entire multi-statement UDF into an equivalent
relational algebraic expression. This form is now amenable
to cost-based optimization and results in highly efficient,
set-oriented, parallelizable execution strategies as opposed
to inefficient, iterative, serial execution of UDFs. The work
of Simhadri et. al [7] describes decorrelation techniques for
UDF invocations. Froid improves upon those ideas to build
a complete industrial-strength optimization framework.

Froid essentially transforms entire UDFs into SQL and
therefore, queries invoking UDF's are transformed into queries
with nested sub-queries. This enables the query optimizer to
use well-known sub-query decorrelation techniques including
Magic decorrelation [6] and others [3, 4]. Since Froid opens
up the “Black box” UDFs to the query optimizer, and en-
ables the use of “Magic” and other optimization techniques,
we name this demonstration as “BlackMagic”.

2. FEATURES OF FROID

Froid offers a comprehensive solution to the performance
problems of UDFs — it overcomes all the current drawbacks
in UDF evaluation described in Section 1.2. The benefits
due to Froid can be demonstrated using two query plans for
the query in Figure 1. The query plan with Froid disabled is
given in Figure 3, and the plan with Froid enabled is given
in Figure 4. We first define the scope of Froid’s applicability
and then describe its features.

Supported UDFs: Froid currently supports the following
imperative constructs in scalar UDFs.

DECLARE, SET: Variable declaration and assignments.
SELECT: SQL query with multiple variable assignments.
IF /ELSE: Branching with arbitrary levels of nesting.
RETURN: Single or multiple return statements.

UDF: Nested/recursive function calls.

Others: Relational operations such as EXISTS, ISNULL.

Froid does not impose restrictions on the size/depths of
UDFs and complexity of queries that invoke them. How-
ever, there are certain cases where we block inlining; they
are discussed in [5]. Froid currently supports T-SQL UDFs,
but the underlying techniques are language-agnostic, and
extensible to other languages.

SELECT

Cost:

0%

4 i e

Table Scan
[customer]
Cost: 2 %

Parallelism Nested Loops
(Gather Streams) (Inner Join)
Cost: 0 % Cost: 0 %

Compute Scalar
Cost: 0 %

- g
E =
- Stream Aggregate

(Aggregate)
Cost: 0 %

Compute Scalar
Cost: 0 %

Compute Scalar

i
e Gl
Table Scan

[orders]
Cost: 15 %

& B2
E b
Stream Aggregate

(Aggregate)
Cost: 1 %

Index Spool
(Eager Spool)
Cost: 81 %

Cost: 0 %

Figure 4: Query execution plan for query in Figure 1 (with Froid)

2.1 Set-oriented evaluation of UDFs

The Compute Scalar operator in Figure 3 represents UDF
execution. From Figure 3, it is clear that the UDF is invoked
and executed iteratively, once per qualifying tuple emitted
by the FROM clause. Iterative plans are more inefficient in
cases where the UDF in turn executes SQL queries. In con-
trast, with Froid, the operations in the UDF are evaluated in
a set-oriented manner as shown in Figure 4. This turns out
to be one of the main reasons for performance improvements
observed in our experiments.

Note that vectorization, JIT compilation, or native compi-
lation cannot yield these benefits for UDFs. This is because
these techniques optimize the UDF definition independent
of the query invoking it and therefore, correlated execution
of UDFs is not eliminated. Froid, on the other hand, per-
forms a combined optimization of the UDF along with the
query invoking it, and therefore is able to decorrelate UDF
invocations and achieve set-oriented execution.

2.2 Inferring implicit relational operations

Imperative programs typically go through a compiler that
performs several optimizations. It can be argued that we
could use well-known compiler optimization techniques to
optimize UDFs as well. However, UDFs executing in a re-
lational database present a different set of challenges and
opportunities. Relational operations such as JOINs and
GROUP BYs could be implicit in a UDF, and a traditional
compiler will not be able to infer such operations.

Database users who are not SQL experts often express
JOINSs and other relational operations implicitly using UDFs.
For instance, in Figure 1 the customer key (c_custkey) passed
in as a parameter to the UDF is used to look up all or-
ders of that customer and compute the sum of their price
(o_totalprice). The observant reader can immediately re-
alize that this is in fact a JOIN between CUSTOMER and
ORDERS which is hidden through function invocation. With-
out inlining, the optimizer has no choice other than an iter-
ative plan with expensive function invocation overheads.

Froid can infer implicit relational operations and make
them explicit, as shown in Figure 4 — which performs a
JOIN between CUSTOMER and ORDERS. This empowers
the optimizer to choose any implementation of these rela-
tional operations based on cardinality and cost estimates.
The optimizer has also inferred a GROUP BY on o_custkey
(indicated by the Stream Aggregate operators in Figure 4)
which was implicit in the UDF. In most cases, the shape of
the plan due to Froid (e.g. Figure 4) would be similar to
that of a manually written equivalent query without UDFs.

2.3 Costing of operations inside UDF's

Query optimizers treat UDFs as inexpensive black-box op-
erations. During optimization, only relational operators are

1812

costed, while scalar operators are not. Prior to the introduc-
tion of scalar UDFs, other scalar operators were generally
cheap and did not require costing. A small CPU cost added
for a scalar operation was enough. This inadvertent simpli-
fication is a crucial cause of bad plan choices in cases where
scalar operations are arbitrarily expensive, which is often
true for scalar UDFs. Thanks to Froid, expensive operations
inside the UDF are now visible to the optimizer (as Figure 4
shows), and are hence costed. This greatly improves plan
quality, and hence performance.

2.4 Exploiting intra-query parallelism

As mentioned earlier, parallelizing arbitrary UDFs is non-
trivial. For instance, consider the UDF in Figure 1 which
internally invokes an SQL query. Each such query may itself
use parallelism, and therefore, the optimizer has no way of
knowing how to share threads across them, unless it looks
into the UDF and decides the degree of parallelism for each
query within (which could potentially change from one in-
vocation to another). With nested and recursive UDFs, this
issue becomes even more complex.

With Froid, this limitation no longer holds since all op-
erations inside the UDF are now exposed to the optimizer,
which can then come up with highly parallel plans. In Fig-
ure 4, we observe the use of parallelism for almost all oper-
ators (the double-arrow symbol superposed on an operator
indicates the use of parallelism for that operator).

2.5 Compiler optimizations

Froid’s approach not only overcomes current drawbacks
in UDF evaluation, but also adds a bonus: with no addi-
tional implementation effort, it brings to UDFs the bene-
fits of several optimizations done by an imperative language
compiler. The currently supported optimizations are (a)
Dynamic Slicing, (b) Constant Folding, (c¢) Constant Prop-
agation, (d) Dead code elimination, and (e) Some forms of
common sub-expression elimination. Depending upon the
UDF definition, these optimizations kick in automatically.
Their effects can be observed/demonstrated in the resulting
query plan. Details and an example can be found in [5].

3. OVERVIEW OF TECHNIQUES

We now give a brief overview of the novel techniques un-
derlying Froid. As described earlier, a commonly used ex-
ecution strategy for UDFs is to evaluate them iteratively,
similar to the correlated evaluation strategy for nested sub-
queries [3]. In query optimization literature, this is con-
sidered to be an inferior strategy in general, as it involves
per-row processing instead of set-oriented processing.

Optimization of sub-queries is well-studied [4, 3, 1], and
database systems employ powerful techniques for evaluation
of queries with nested sub-queries [3]. These techniques are

SQL Query with UDF calls
l -
Query tree ‘

Binding

FROID
UDF Algebrization

| Parse UDF definition |

| Construct UDF Regions |

Regions to relational
expressions

UDF operator
encountered fm—

Combine expressions
— using Apply operator

substituted *
expression " -
L Substitute UDF expression

Bound ‘ (as sub-query) in Query tree
Query tree

Figure 5: Overview of the Froid framework

able to transform correlated sub-queries into joins, thereby
enabling set-oriented plans instead of iterative evaluation of
sub-queries. This has been seen to result in efficient query
plans, leading to significant improvement in performance.
Simhadri et. al. [7] show that the techniques designed
to optimize nested sub-queries can be extended to optimize
UDFs. They show how UDFs can be seen as complex sub-
queries that are defined using a mix of imperative constructs
and SQL, and can be brought into the well-studied frame-
work of optimizing nested sub-queries. Froid borrows its
intuition from [7] and demonstrates how such a technique
can be integrated into an industrial strength database sys-
tem. A discussion on related work can be found in [5].

The UDF Inlining Technique

Figure 5 depicts the high-level approach of Froid, consist-
ing of two phases: UDF algebrization followed by substitu-
tion. As a part of SQL query binding (which includes vali-
dating referenced objects and loading metadata), if a UDF
operator is encountered, the control is transferred to Froid,
and UDF algebrization is initiated.

The goal of UDF algebrization is to build a single re-
lational expression which is semantically equivalent to the
UDF. This involves transforming imperative constructs into
equivalent relational expressions and combining them in a
way that strictly adheres to the procedural intent of the
UDF. Froid achieves this goal by combining expressions for
every program region using the Apply operator [3].

This resulting expression is then substituted, or inlined
in the query tree of the calling query in place of the UDF
operator. This query tree with the substituted UDF expres-
sion is bound using the regular binding process. If references
to other (nested) UDF operators are encountered, the same
process is repeated. This transformation finally results in a
bound query tree, which forms the input to query optimiza-
tion. Details can be found in [5].

We call this semantics-preserving transformation as unnest-
ing or inlining of the UDF into the calling query. Although
we use the term inlining here, note that it is fundamentally
different from inlining in imperative programming languages.

Evaluation: We have conducted a detailed experimental
evaluation of Froid to measure its applicability as well as im-
pact. The details are available in [5]. We have observed that
Froid results in significant performance gains across bench-

1813

marks and real customer workloads, and results in negligible
compile-time overheads. Froid also results in significant re-
source savings, which are highly valuable in cloud scenarios.

4. DEMONSTRATION

Froid will be demonstrated in Microsoft SQL Server 2019 [8].
Our demonstrations will showcase various features of Froid
and dive into the details of the underlying transformations.
We will use the TPC-H benchmark and 3 real customer
workloads (anonymized) to illustrate the benefits. The demo
will be made highly interactive by allowing users to write
their own UDF's and play with Froid’s transformations and
analyze the resulting query execution plans and performance.

The query plans with and without Froid will be visualized
as shown in Figures 3 and 4 using the SQL Server Manage-
ment Studio GUI tool. A detailed comparison of these plans
will highlight the novelty and effectiveness of Froid. We will
also show the intermediate steps that depict the transfor-
mation from Figure 3 to Figure 4. Users will be able to run
these queries and observe the performance gains. We will
also showcase the reduction in CPU time and disk IO.

S. CONCLUSION

We present Froid, a novel framework for optimizing UDF's
in relational database systems. We describe several fea-
tures of Froid and briefly outline the underlying techniques.
To the best of our knowledge, Froid is the first industrial-
strength framework that can optimize imperative multi-state-
ment UDFs in a RDBMS by transforming them into rela-
tional expressions and inlining them into the calling query.
Using real-world workloads, we demonstrate the features of
Froid and the significant performance gains achieved. Read-
ers are encouraged to download and use Froid, which is avail-
able as part of Microsoft SQL Server 2019 [8].

6. REFERENCES

[1] M. Elhemali, C. A. Galindo-Legaria, T. Grabs, and
M. M. Joshi. Execution Strategies for SQL Subqueries.
In ACM SIGMOD, 2007.

[2] Scalar UDF Inlining.
https://docs.microsoft.com/en-us/sql/relational-
databases/user-defined-functions/scalar-udf-inlining.

[3] C. A. Galindo-Legaria and M. Joshi. Orthogonal
optimization of subqueries and aggregation. In
SIGMOD, pages 571-581, 2001.

[4] W. Kim. On Optimizing an SQL-like Nested Query. In
ACM Trans. on Database Systems, Vol 7, No.3, 1982.

[5] K. Ramachandra, K. Park, K. V. Emani, A. Halverson,
C. Galindo-Legaria, and C. Cunningham. Froid:
Optimization of imperative programs in a relational
database. PVLDB, 11(4):432-444, 2017.

[6] P. Seshadri, H. Pirahesh, and T. Y. C. Leung. Complex
query decorrelation. In Proceedings of the Twelfth
International Conference on Data Engineering, ICDE
'96, pages 450-458, Washington, DC, USA, 1996.

[7] V. Simhadri, K. Ramachandra, A. Chaitanya,

R. Guravannavar, and S. Sudarshan. Decorrelation of
user defined function invocations in queries. In ICDE,
pages 532-543, March 2014.

[8] Microsoft SQL Server 2019. https://www.microsoft.-

com/en-us/sql-server/sql-server-2019.

