BlockchainDB - A Shared Database on Blockchains

Muhammad El-Hindi
TU Darmstadt

darmstadt.de

Donald Kossmann
Microsoft Research

donaldk@microsoft.com

ABSTRACT

In this paper we present BlockchainDB, which leverages
blockchains as a storage layer and introduces a database
layer on top that extends blockchains by classical data man-
agement techniques (e.g., sharding) as well as a standardized
query interface to facilitate the adoption of blockchains for
data sharing use cases. We show that by introducing the
additional database layer, we are able to improve the per-
formance and scalability when using blockchains for data
sharing and also massively decrease the complexity for or-
ganizations intending to use blockchains for data sharing.
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1. INTRODUCTION

Motivation: Blockchain (BC) technology emerged as the
basis for crypto-currencies, like Bitcoin [20] or Ethereum [8],
allowing parties that do not trust each other to exchange
funds and agree on a common view of their balances. With
the advent of smart contracts, blockchain platforms are be-
ing used for many other use cases beyond crypto-currencies
and include applications in domains such as governmental,
healthcare and IoT scenarios [7, 4, 26].

An important aspect that many scenarios have in com-
mon, is that blockchains are being used to provide shared
data access for parties that do not trust each other. For ex-
ample, one use case is that the blockchain is used for track-
ing goods in a supply chain where independent parties log
the location of individual goods. What makes blockchains
attractive in those scenarios are two main characteristics:
First, blockchains store data in an immutable append-only
ledger that contains the history of all data modifications.
That way, blockchains enable auditability and traceability in
order to detect potential malicious operations on the shared
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data. Second, blockchains can be operated reliably in a de-
centralized manner without the need to involve a central
trusted instance which often does not exist in data shar-
ing. However, while there is a lot of excitement around
blockchains in industry, they are still not being used as a
shared database (DB) in many real-world scenarios. This
has different reasons: First and foremost, a major obstacle
is their limited scalability and performance. Recent bench-
marks [12] have shown that state-of-the-art blockchain sys-
tems such as Ethereum or Hyperledger, that can be used for
building general applications on top, can only achieve 10's
or maximally 100’s of transactions per second, which is often
way below the requirements of modern applications. Second,
blockchains lack easy-to-use abstractions known from data
management systems such as a simple query interface as
well as other guarantees like well-defined consistency levels
that guarantee when/how updates become visible. Instead,
blockchains often come with proprietary programming inter-
faces and require applications to know about the internals
of a blockchain to decide on the visibility of updates.

Contribution: In this paper, we present BlockchainDB
that tackles the before-mentioned issues. The main idea is
that BlockchainDB leverages blockchains as the native stor-
age layer and implements an additional database layer on
top to enable access to data stored in shared tables. That
way, existing blockchain systems can be used (without mod-
ification) as a tamper-proof and de-centralized storage. On
top of the storage layer, BlockchainDB implements a data-
base layer with the following functions:

e Partitioning and Partial Replication: A major per-
formance bottleneck of blockchains today is that all
peers hold a full copy of the state and still only pro-
vide (limited) sharding capabilities. In the database
layer of BlockchainDB, we allow applications to define
how data is replicated and partitioned across all avail-
able peers. Thus, applications can trade performance
and security guarantees in a declarative manner.
Query Interface and Consistency: In the DB layer,
BlockchainDB additionally provides shared tables as
easy-to-use abstractions including different consistency
protocols (e.g., eventual and sequential consistency) as
well as a simple key/value interface to read/write data
without knowing the internals of a blockchain system.
In future, we want to extend the query interface to
shared tables to support SQL with full transactional
semantics.



In addition to these functions, the database layer of Block-
chainDB comes with an off-chain verification procedure in
which peers can easily verify the read- and write-set of their
own clients. The idea of the verification procedure is that
peers can detect other potentially misbehaving peers in the
BlockchainDB network. This is needed since not all Block-
chainDB peers hold the full copy of the database and the
storage layer of a remote peer could potentially drop puts
or return a spurious value for a read operation (i.e., a value
that was not persisted in the database).

By introducing a database layer on top of an existing
blockchain, BlockchainDB is not only able to provide higher
performance, but also to decrease the complexity for or-
ganizations intending to use blockchains for data sharing.
While the concept of moving certain functions out of the
blockchain into additional application layers has been stud-
ied previously (e.g., [14, 13, 19, 9]), to the best of our knowl-
edge, BlockchainDB is the first system to provide a fully
functional DB layer on top of blockchains. Our experiments
show that BlockchainDB allows to increase the performance
significantly to support many real-world applications.

Outline: The remainder of this paper is organized as fol-
lows: First, in Section 2 we give an overview of what func-
tionality and security guarantees BlockchainDB provides for
data sharing. Afterwards, in Section 3 we present the Block-
chainDB architecture and discuss the trust assumptions as
well as potential attacks. Then, in Section 4 and Section 5
we discuss the details of the database layer and how block-
chains are being used as the storage layer. Section 6 after-
wards outlines our off-chain verification protocol. The re-
sults of our evaluations with the YCSB benchmark are then
presented in Section 7. Finally, we conclude with related
work in Section 8 and a summary in Section 9.

2. OVERVIEW AND GUARANTEES

As explained already in the introduction, there are many
different applications where untrusted parties need to have
shared access to the same database. To enable such a shared
access to data, BlockchainDB provides so-called shared ta-
bles. For accessing a shared table, clients can use the put/get
interface of BlockchainDB to access tuples in the shared ta-
ble based on their primary key. In order to understand the
functionality and guarantees that BlockchainDB provides
for untrusted parties to access data via shared tables, we
will introduce a short motivating scenario and use this sce-
nario also to outline the guarantees that applications get
when using BlockchainDB for data sharing.

Scenario: Figure 1 shows an example scenario for data
sharing where three untrusted parties (WholeFoods, FedEx,
and Lindt) share access to the same database. The scenario
describes a typical supplier scenario where WholeFoods acts
as customer, Lindt as supplier, and FedEx as shipping com-
pany. In this scenario, WholeFoods first places a new order
by inserting two new entries into the shared database con-
sisting of two shared tables (D). After the order is placed,
Lindt processes the new order . To keep track of the or-
der, Lindt updates the status from new to ready as shown in
@®). Once the order is ready, FedEx starts its operation @.
After the order has been shipped to the customer, FedEx
updates the status of the order to delivered as shown in ©.

A naive way of implementing such a scenario would be
that one of the parties is hosting the shared database; e.g.,
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Figure 1: A Data Sharing Scenario

say WholeFoods hosts the shared database as a service for all
their suppliers. In this setup, however, WholeFoods could
easily leverage the fact that it can manipulate the shared
data or return false values to the other parties about the
order status, without any chance for the parties to verify
that WholeFoods was in fact acting in a malicious manner.
For example, WholeFoods could claim that the order was
lost during transit by returning a spurious (i.e., false) order
status to Lindt as shown in ® to trigger that a replacement
is sent (without paying for it). Even worse, WholeFoods
could actually delete the order or not store it in the database
in the first place. In case of a lawsuit, no evidence could thus
be found that WholeFoods (or any other party) was actually
acting maliciously.

Guarantees: In order avoid these problems, a blockchain
network such as Ethereum or Hyperledger could be used to
implement a shared database. The benefit of using a block-
chain is that every party (WholeFoods, Lindt, and FedEx)
keeps a full copy of the database and the majority of par-
ties needs to agree (based on the blockchain-based consensus
protocol) on every update before its effect becomes visible.
As a consequence of using blockchains, we get the following
important guarantees for data sharing: First, the data in
each peer is stored in a tamper-proof log. That way, any
data modification of the log by any potentially malicious
party could be detected since the cryptographic hashes used
in the blockchain would not be valid anymore. Second, all
parties read only state from their local copy of the database.
That way, spurious reads (that are a problem if data needs
to be read form a remote party) can be avoided.

However, as discussed in the introduction, using block-
chains directly for data sharing comes with significant prob-
lems (e.g., w.r.t. performance) and complexities due to miss-
ing abstractions. The idea of BlockchainDB is thus to pro-
vide the same security guarantees as blockchains — (1) a
tamper-proof (auditable) log as well as (2) verifiable reads
and writes. At the same time, BlockchainDB enables high
performance and provides an easy-to-use query interface.

3. SYSTEM ARCHITECTURE

3.1 Architecture Overview

The main idea of BlockchainDB is that it implements a
database layer on top of an existing blockchain. The data-
base layer provides clients with a simple-to-use abstraction
(called a shared table) with a put/get interface and stores
all data in its storage layer that relies on blockchains as
discussed before. Figure 2 shows a possible deployment
of BlockchainDB across four different BlockchainDB peers



ClientBy  Client By

putiget/
verify

Storage Layer

BC Node (Shard 2)

Client A4 Client Ay

putiget/
verify

Client C4 Client C»

putiget/
verify
#

Database Layer Full Peer B Database Layer
Hx e hard | [T | [Vere]
(FedEx)
Storage Layer Storage Layer
[BC Node (Shard 7]
Full Peer A Full Peer C
(WholeFoods) (Lindt)

(SmallMarket)
Thin Peer D
Storage Layer

Shard |- Tx {Verc
o i
Database Layer

put/get/
verify
Client D4 Client D,

Figure 2: A typical BlockchainDB Network

(i.e., untrusted parties) to enable access to shared tables as
discussed in the scenario before.

The key idea of BlockchainDB is that data is not repli-
cated to all peers to avoid the high overhead of blockchain
consensus. Instead, shared tables are partitioned (i.e., shard-
ed), thereby each shard is implemented as a separate block-
chain network. Moreover, shards are only replicated to a
limited number of peers instead of replicating the data to all
peers. For example, in the scenario explained in the previous
section, both shared tables (NewOrders and OrderDetails)
can be partitioned using the OrderKey as partitioning key
and replicated only to a subset of the peers (WholeFoods,
Lindt, and FedEx).

As a direct consequence of sharding to speed-up the per-
formance not all peers store all data locally. When accessing
the shared table, the database layer thus needs to redirect
the request either to the local or a remote storage depend-
ing on the requested key. While storing data in a blockchain
still gives us a tamper-proof log, the remote peer can drop
a put or return a spurious value for a read. To verify all
remote reads/writes an additional verification procedure is
thus provided by BlockchainDB.

In order to participate in a BlockchainDB network and
allow clients of a party to read/write data into a shared
database, a peer in BlockchainDB can be either deployed as
a full peer which hosts a database and a replica of at least
one shard or as a thin peer which only connects to other
remote peers to access data in a shard (i.e., the peer does
not store a copy of a shard). Having thin peers enables
parties with only limited resources to participate in a Block-
chainDB network and access the shared tables (such as a
small supermarket, called SmallMarket in our example).

Finally, similar to permissioned blockchains, Blockchain-
DB assumes that the parties who want to share data are
previously authenticated and known to each other. How-
ever, parties do not need to trust each other (since they
might have contrary goals). More details about our security
assumptions will be provided in Section 3.3.

3.2 System Components

Next, we explain how clients interact with BlockchainDB
as well as the functionality of each component.

Clients: Clients interact with a shared table via their own
BlockchainDB peer (which they trust). Thus, instead of in-
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teracting with a blockchain network directly, in Blockchain-
DB clients interact with their peer (i.e., the database layer)
through a simple put/get interface to read/write shared
data. Furthermore, clients can use the verify method of the
database layer to trigger an off-chain verification procedure
for the online verification of the last read/write-operation of
that client. This allows the client to detect potential mis-
behaving peers in a BlockchainDB network (e.g., to detect
if another BlockchainDB peer — more precisely its storage
layer — returned a spurious value for a get) and is needed
in BlockchainDB since not all peers keep a full copy of the
database state. So, all reads/writes that are being redirected
to a remote storage layer must be additionally verified to
get the same guarantees as local reads/writes. We addition-
ally support (a deferred) offline verification procedure that
is called from the database layer for batches of reads/writes
from all clients. The deferred verification procedure pro-
vides a higher throughput than the online verification, since
it performs the verification while new reads/writes are being
executed. However, clients might work (for a limited amount
of time) on an unverified database state. More details about
the verification procedure(s) are discussed in Section 6.

Database Layer: The database layer in BlockchainDB is
mainly responsible to execute the put/get calls from the
clients. If a put/get call comes in, the database layer uses
the Shard Manager to decide to which shard of a table the
operation should be directed to. The shard can be either
stored in its local storage or remotely in another Blockchain-
DB peer depending on the partitioning scheme of the shared
table. Currently, BlockchainDB implements a hash-based
sharding approach, in which the user defines the number
of shards and their allocation to BlockchainDB peers when
creating a shared table. Another major difference of Block-
chainDB and a pure blockchain network is that the database
layer of BlockchainDB implements a Transaction Manager
that provides well-known consistency levels (i.e., eventual
consistency and sequential consistency). That way, clients
get a defined behavior for concurrent puts/gets without the
need to know the internals of blockchains. Additionally, the
database layer can re-order/batch puts/gets depending on
the chosen consistency level to optimally leverage the under-
lying blockchain and thus further improve the performance.
Details about the database layer are discussed in Section 4.

Storage Layer: The storage layer serves as a persistent,
auditable storage backend of BlockchainDB and is based
on existing blockchain systems. As depicted in Figure 3,
the storage layer of BlockchainDB is able to parallelize data
processing across different shards whereas each shard is im-
plemented as a separate blockchain network where the data
in a shard is replicated to multiple (but not necessarily all)
peers using the internal blockchain consensus protocols. For
example, in Figure 2 the BlockchainDB network uses in to-
tal three different blockchain networks (one for each shard)
with a replication factor of two. Details about the storage
layer are discussed in Section 4.

3.3 Trust Assumptions and Threat Model

As mentioned previously, we assume a permissioned set-
ting in which the set of participants is known at the begin-
ning. For simplicity, we assume the set of participants is
fixed; extending our techniques to a dynamic set and incor-
porating more complex consortium rules is orthogonal to our
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work. Further, since we use an off-the-shelf blockchain such
as Ethereum for storing data, we inherit several security
characteristics and guarantees of the underlying blockchain
system, e.g., w.r.t. peer authentication using public/private
keys, replay protection, number of tolerable malicious nodes.

Moreover, the need for an off-chain verification procedure
stems from the fact that a BlockchainDB peer might need
to read/write data from/to a remote peer; i.e., the local
peer does not participate in the blockchain network for that
shard. In particular, Thin Peers need to run the verifica-
tion procedure for all read/write operations. For our threat
model we thus make the following assumptions:

e Clients that connect to a BlockchainDB peer trust
their local database and storage layer.

This allows a BlockchainDB peer (i.e., the database
layer) to perform verification on behalf of all locally
connected clients.

Moreover, a BlockchainDB peer can trust the data
that is written to or read from a local shard. Those
operations thus do not need to be verified.

If the majority of the peers that keep a copy of a shard
is not malicious, then a client can trust all puts/gets
once verified. Thereby, the number of peers that can
form a majority depends on the security assumptions
of the used blockchain system. For example, some
blockchains might require % of the nodes to be trusted
while others have different properties.

In consequence, whenever a client accesses data that is
stored on or written to a remote shard on another peer, the
local peer will run an additional verification protocol to ver-
ify the operation and mitigate the following attacks:(1) The
drop of a put operation that needs to write data to a re-
mote peer will be detected. (2) Spurious/fake data returned
for any get operation that needs to read data from a re-
mote peer will also be detected. Details about the off-chain
verification procedure will be explained in Section 6.

4. DATABASE LAYER

In this section, we describe the put/get interface of Block-
chainDB and how these operations are being executed by
the database layer to implement different consistency levels
on top of blockchains as a storage layer.

4.1 Query Interface

As mentioned before, BlockchainDB provides shared ta-
bles as main abstraction. Each table has multiple columns
(attributes), whereas one is the dedicated primary key that
can be used to access the table. More details about the
data model and table creation is discussed in Section 5. The
query interface of BlockchainDB enables clients to execute
the following three operations on shared tables:

e get(t, k) — v: This call returns all attributes of
the row in table ¢ that has the key k.
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e put(t, k, v) — wvoid: This call inserts a new row
in table ¢t with key k. All attribute values are encoded
in v similar to what document stores do. In case a row
with key k is already in table ¢, the row is updated
with the new values in v. For simplicity, we assume
that values for all attributes are given in v.

verify() — bool: This call is for online verifica-
tion; i.e., a client can call verify immediately after
any get/put call and gets back true or false to in-
dicate whether or not the verification was successful.
For a put, it means whether or not the put was actu-
ally committed in the storage layer and for a get it is
checked whether or not the returned value was correct
or a spurious value.

Next, we explain how get/put methods are implemented.
The verification (online/offline) is explained in Section 6.

4.2 Query Execution

In the following we explain the execution process and dis-
cuss the involved components as depicted in Figure 3.

For accessing the table, clients send put/get requests to
their local BlockchainDB peer using the query interface dis-
cussed before. Requests arriving from the client in the data-
base layer are first received by the off-chain verifier @ that
records the unverified reads/writes (i.e., all remote read-
s/writes) of a client. This information is used for the on-
line/offline verification. The verifier then forwards the re-
quest to an internal RequestQueue . Next, the Transac-
tionManager (Tx.Mgr)® polls the requests from the queue
and processes them according to a specified consistency level?
@). Currently, we support sequential and eventual consis-
tency and a version of eventual consistency (called bounded
staleness) that guarantees a limited staleness of the accessed
data as discussed in the next section.

The different consistency levels differ in how quickly the
database layer can process operations. For example, for
eventual consistency a get-operation is immediately pro-
cessed; however, no guarantee is given that a potential out-
standing put-operation has already been committed to the
blockchain. In sequential consistency, the database layer
needs to execute put/get-requests in a global order and thus,
potentially blocks a get-request until an outstanding put-
request has been committed to the blockchain.

Once a put/get-request is ready to be sent to the storage
layer, it is forwarded to the ShardManager @. The Shard-
Manager service has two main purposes: First, it determines
the correct shard for a given key, and second, it is responsi-
ble for sending requests as read/write operations in parallel
to the table shards. To access data in blockchains, different
BackendConnectors can be used ® that allow Blockchain-
DB to read/write data from/into the underlying blockchain
network. The details about the BackendConnectors are dis-
cussed in Section 5.

4.3 Consistency Levels

As mentioned before, BlockchainDB provides well defined
consistency levels on top of blockchains. In order to under-
stand how different consistency levels can be implemented

!We call this component transaction manager since it trans-
lates every put/get of a client into a blockchain transaction.
2The consistency level can be specified for each table indi-
vidually.



on top of blockchains, we first discuss how blockchains make
updates visible to clients. Afterwards, we explain how se-
quential consistency is implemented and how eventual con-
sistency is supported. Moreover, a version of eventual con-
sistency that guarantees a limited staleness is introduced.

Processing Model in Blockchains: In general, blockchain
networks (i.e., in our case all data that is stored in one shard)
agree on a global order of writes (i.e., blockchain transac-
tions) in all replicas in which they are appended to their
log. Thus, a naive way to implement sequential consistency
in the database layer of BlockchainDB on top of a block-
chain network would be to wait after every write (i.e. put)
until the blockchain transaction is committed. However, as
shown in [12] the latency until a blockchain transaction is
committed can take from seconds to minutes and would
severely limit the throughput of write-intensive workloads
significantly. Another challenge of blockchains is that some
transactions might end up in a fork (e.g., if proof-of-work
is used as in Ethereum). These transactions must be re-
executed which further increases latency under the blocking
execution model discussed before.

Sequential Consistency: In BlockchainDB, we thus follow
a different approach. Instead of waiting after each write
(in an eager manner), we monitor all pending writes in the
database layer of BlockchainDB to enable lazy waiting. This
means, only in case a read operation comes in for a pending
write (i.e., read and write share the same key), we wait
for that write, and all other pending writes that have been
issued before, to be committed to the blockchain. Reads
can only be executed once the write is committed to the
blockchain. This enables that clients not only read their
own writes but defines a global order of writes (for all clients)
connected to the same database layer. Moreover, since the
blockchain network (which is used to implement a shard
table in BlockchainDB) orders all writes sequentially, we get
a global order of all writes and thus even clients connected
to different peers in BlockchainDB see the same global order
of write operations.

Eventual Consistency and Bounded Staleness: Providing
eventual consistency on top of the sequential model of block-
chains is simple. Instead of waiting for pending writes,
we execute each incoming read operation of a client (i.e.,
a get) immediately. This, however, could lead to two is-
sues: First, the pending-write queue might grow quickly for
write-intensive workloads. Second, for reads (i.e., get oper-
ations of clients), BlockchainDB might return stale values
(without any bound on the staleness) since the time until a
blockchain transaction is committed can take up to minutes
(as mentioned before). In order to mitigate these issues, a
user can define a maximum staleness-factor in Blockchain-
DB (which defines the maximum number of writes in the
pending-write queue). That way, applications can control
staleness and latency; i.e., with a longer queue the staleness
will increase but the latency of reads decreases (as we will
also show in our experiments). We call this version of even-
tual consistency, bounded staleness which is similar to the
ideas discussed in [25].

S. STORAGE LAYER

The storage layer of BlockchainDB is responsible for all
interactions with the blockchain networks that are used to
store shared tables. In the following, we first explain the
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creation of shared tables as well as their data model. After-
wards, we discuss the interface that is exposed by the stor-
age layer to the database layer for executing reads/writes on
shared tables. Finally, we exemplary discuss how the meth-
ods of the storage interface are implemented in so called
backend connectors that allow BlockchainDB to access the
data in a blockchain. Currently, we provide connectors for
Ethereum, Hyperledger Sawtooth and Hyperleder Fabric.

5.1 Shared Tables

As a first step of a data sharing scenario, a new shared
table has to be created in BlockchainDB. A new table in
BlockchainDB is defined by its schema and its sharding con-
figuration.

In BlockchainDB, the schema of a new table is defined
using a key/value data model where the key is the primary
key and the value represents the payload of a tuple. The
sharding information of a new table contains values for the
parameters such as the number of shards or the replication
factor and the allocation. These parameters not only have
an influence on the overall performance but more impor-
tantly on the trust guarantees a new table provides. For
example, the number of replicas directly dictates how many
malicious peers can be tolerated; e.g., most blockchain net-
works (such as Ethereum) tolerate if less than half of the
peers are malicious.

For creating a new shared table in BlockchainDB, one of
the clients involved in the data sharing application proposes
a new table and submits the information about the table
name and its schema as well as the sharding information to
its local peer. The local peer then coordinates the table cre-
ation process with all other peers on behalf of the initiating
client. The main steps of the process are discussed below.

The first step of the table creation process is implemented
as a smart contract which takes the information about the
new table including the sharding parameters as input and
updates the BlockchainDB catalog (i.e., its metadata). The
metadata of BlockchainDB is stored in a dedicated block-
chain that is replicated to all peers. By storing the metadata
in a dedicated blockchain network that is fully replicated
and governed by a smart contract, we can not only guar-
antee that all peers have the same view on the metadata
but also that no peer can tamper with the metadata. Fully
replicating the metadata is not a performance problem since
metadata is typically small and updated less frequently.

As a second step of the table creation process, and once
the metadata is updated successfully by the smart contract,
the peer which coordinates the table creation process sig-
nals all other peers to deploy the shards for the new table.
For each new shard that should be stored on a peer, a new
blockchain node is started by the peer and connected to the
other blockchain nodes, thus forming a new blockchain net-
work for the shard. For finding out which shards need to be
deployed for a new table and to which other peers the shard
should be connected to, each peer uses its local trusted copy
of the metadata.

One important question of the table creation process is,
why clients of the other peers should trust the new table.
One could think that the table creation process opens up
a possible attack since the client and the local peer who
coordinates the table creation could be already malicious at
the time of table creation and thus could decide to create
a new shared table with low trust guarantees that in the



extreme case has only one shard consisting of one replica
(that might even be assigned to the local peer). In this case,
the new table would not provide any trust guarantees to
clients of other peers since the peer which created the table
stores the only copy and thus could drop puts and return
spurious values for get operations without the possibility for
the other clients or thin peers to verify their operations.

Thus as a last step of the table creation process, all Block-
chainDB peers have to confirm that they agree with the ta-
ble (i.e., in particular the sharding information) proposed
by the coordinating peer. The key for the confirmation
step is that BlockchainDB provides trusted and replicated
metadata across peers. That way, all other peers can check
whether they agree in a trusted manner with the sharding
information before using that table for data sharing. Once
the trust guarantees for the new table are confirmed by all
peers in BlockchainDB, they update the metadata (i.e., by
incrementing a confirmation counter). Only once all peers
confirmed the new table, it can be used by clients of any
peer for actual data sharing by executing put/gets on it.

A last point we want to mention is that BlockchainDB as-
sumes a permissioned setup where only authenticated peers
can participate in a network. The peers can work together
while they do not necessarily need to trust each other.

5.2 Storage Interface

As shown in Figure 3, the database layer uses so called
backend connectors in the storage layer to access data in
a shared table (i.e., a blockchain network). The idea of
the backend connector is to provide a stable interface to
the database layer to access the data independent of which
blockchain is being used as backend. The main methods of
the storage interface are:

e read(s, k) — v: This method allows the database
layer to read a value v (i.e., the tuple) for a given shard
s (which is just a global unique identifier in Blockchain-
DB) and a key k.

write-async(s, k, v) — tx-id: This method al-
lows the database layer to write a value v (representing
a tuple) with a key k into shard s. Important is that
the write is an asynchronous operation and just re-
turns an identifier tx-id of the blockchain transaction
that was created for that write.

check-tx-status(s, tx-id)) — TX-STATUS:

In order to check if a write-async operation has been
successfully committed, this operation can be called.
This method takes a shard identifier s and a trans-
action identifier tx-id, and returns the status of the
blockchain transaction in that shard. The status can
either be COMMITED if the write was successful, ABORTED
if the write failed (e.g., due to failed validation in the
blockchain), or PENDING if the transaction is submitted
but not yet added to a valid block in the blockchain.
get-writeset(s, e)) — ws: Returns all writes that
were executed on shard s in epoch e. This method is
used for offline verification, which verifies the workload
of all clients connected to one BlockchainDB peer in
epochs as discussed in Section 6.

The first three methods of the storage interface are called
by the database layer in order to implement different consis-
tency levels. For example, under sequential consistency, the
write-async method is called when a put(t, k, v) (for a
table t, key k, and value v) from a client is processed by the
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database layer. The returned transaction identifier tx-id
is put together with the table ¢ and key k into a pending-
write queue in the database layer. If a get(t, k, v) op-
eration for the same key is coming in from a client after
the put-call, the database layer has to check the pending-
write queue, and if a pending write is found, it needs to
call check-tx-status(tx-id) to see whether the transac-
tion committed or not. If not, the database layer has to
block until the transaction status changes to COMMITED.

5.3 Backend Connector

The methods discussed before need to be implemented
by each backend connector for different blockchain systems.
In the following, we discuss the implementation of those
methods for Ethereum as an example.

It is important to note that the backend connector stores
the connection information for each shard identifier and uses
a native blockchain client (such as geth for Ethereum) to
access a blockchain network which stores the data of a shard.
The connection information contains the list of IP-addresses
and ports of all BlockchainDB peers which host a copy of
the shard (i.e., the peers which participate in the blockchain
network that store the data of the shard). For executing
operations, the local IP-address is used if it exists in the
connection information (which means that a shard copy is
stored on the local peer). Otherwise, one of the remote IP-
addresses is selected in a random manner to load balance
the execution across different peers.

For accessing shared data in a blockchain network, Block-
chainDB needs to install a minimal smart contract definition
which provides a simple read/write interface for each shard.
These smart contracts are then called by the connector to
implement the interface methods presented before. In the
following, we show an extract of the smart contract code
installed for an Ethereum network.

contract KVContract {
// state variables and constructor omitted

// read method in contract

function read-blockchain(bytes memory key)

public view returns(bytes memory value){
return datalkey];

}

// write method in contract
function write-blockchain(bytes memory key, bytes memory val)
public returns(bool success){
datalkey] = val; return true;
}
}

The first method of the backend connector is the write-
async method. This method takes the incoming tuple (i.e., a
key/value pair) as well as the shard identifier s. Afterwards,
the connection information is looked up for this shard and
the key as well as the value is converted into a byte rep-
resentation before sending it to the blockchain network for
processing (or more precisely to the smart contract of the
blockchain as discussed above). The byte-data is then sent
to the write-blockchain method of the KVContract using
geth as client for Ethereum. We found that representing
the data in a byte-format before storing it in a blockchain
network not only leads to decreased storage cost, but also
allows for more efficient processing of the transaction on
the blockchain. The unique transaction identifier tx-id re-
turned by geth client is returned to the database layer as a
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return value. This identifier can be used to check the status
of the transaction from the database layer.

The second method implemented in a backend connector
is the read method. This method takes a shard s and a key
k as input. For the execution, the connection information
is looked up for this shard and the backend controller then
converts the key into a byte representation and sends the
data to the read-blockchain method of the KVContract.
Different from the write-async method, the backend con-
nector does not use a blockchain transaction to execute the
read-blockchain contract but it uses a call (which is a read-
only operation in Ethereum). The benefit of this method is
that it does not require the heavy-weight processing of a
blockchain transaction and usually only needs a few mil-
liseconds to be executed. The result of the call is the byte
representation of the value (i.e., tuple). Before sending the
value back to the database layer, the byte representation is
converted into the original data type of the table.

Finally, the third method implemented in a backend con-
nector is the check-tx-status method. This method takes
a shard s and a transaction identifier tx-id as input and
returns the transaction status to the database layer. To
check the status of a transaction, Ethereum provides differ-
ent options: First, the storage layer can regularly poll the
blockchain for the latest status of the transaction using geth.
Second, the storage layer can subscribe to events and be no-
tified when, e.g., a new block has been created. When noti-
fied, the storage layer can query the blockchain for details of
the new block and determine the status of the transaction.
However, in order to detect failed/rejected transactions, the
storage layer still has to poll the blockchain regularly for the
transaction status.

6. OFF-CHAIN VERIFICATION

In this section we describe the details of our off-chain ver-
ification protocol. The main goal of the verification proce-
dures is to prevent (1) dropped puts and (2) spurious reads
if a peer needs to read/write data from/to a remote shard.

6.1 Online Verification

Overview: In online verification every operation issued by
a client is subsequently verified if the client calls the verify
operation as shown in Figure 4. While all blockchain sys-
tems internally make use of Merkle-Trees and similar struc-
tures to store data in a verifiable way, only few blockchain
systems expose an interface to clients that allows them to
retrieve data along with a verifiable proof. Hence, in order
to verify the result of an operation, a BlockchainDB peer
needs to contact the majority of the blockchain network to
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Figure 5: Offline Verification

verify that the retrieved result is valid. In the following, we
explain how get- and put-operations can be verified.

Verification Procedure: In order to verify the value v re-
turned by a get-operation, we extend the storage interface
to return the block number from which the value was read
for the given shard. Afterwards, we read that block from
the majority of peers which hold a copy of the shard and
then verify if the value v for key k in those blocks matches
the returned value. If the returned value does not match
with that of the majority, a manipulated read was detected.

Put-Operations are verified differently, since they are exe-
cuted as transactions on the blockchain as discussed before.
Consequently, they are mined as part of blocks. Similar to
get operations, put-operations can be verified by querying
the majority of the blockchain for the latest transaction sta-
tus. If the transaction is not recorded as committed on the
majority of peers, a dropped write was detected. We do not
need to check the validity of the block content, since trans-
actions are signed by clients. Thus, a manipulation of the
transaction content by a remote peer is not possible.

6.2 Offline Verification

Overview: While online verification guarantees the valid-
ity of an operation right away, it has several inefficiencies
and drawbacks. First, online verification is a blocking ac-
tion that prevents any other operation to be executed by a
client. Second, since transactions are grouped into blocks
and thus mined in batches by blockchains, system through-
put can be improved by verifying transactions in batches.

The basic idea of offline verification is shown in Figure
5. Instead of calling the verify-method after every put-
or get-call, offline verification defers verification. Deferring
verification allows us to batch multiple put- and get-calls
together and verify multiple operations at once instead of
separately. In the following, we describe the procedure for
offline verification and its main parameters.

Verification Procedure: The offline verification procedure
is executed per shard in batches (called epochs). An epoch
of a shard in BlockchainDB is defined by a fixed number
of writes (called epoch-size |e|) that can be executed in one
epoch in one shard. Once the maximum number of writes
is executed in one epoch, the epoch of the shard is closed.

The main idea of offline verification is that all operations
that are executed (by one peer) in one epoch are verified
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Figure 6: Epoch-based Offline Verification

together in a batch. To do so, we extend the smart contracts
shown in the previous section to keep a global counter for the
epoch. Moreover, all writes are added in a separate variable
that keeps a separate list per epoch. The epoch counter is
increased automatically by the write-blockchain method
in the smart contract every |e|-th write call.

One additional parameter of offline verification is that an
epoch does not need to be immediately verified by a peer
once it is full (i.e., once it is closed). Instead, a peer can
have a maximal number of closed but not-yet verified epochs
per shard (called number of unverified epochs Ae). In case
that the number of unverified epochs for a peer is growing
larger than Ae, it calls the halt(s) operation implemented
as a method in the smart contract on the storage layer which
blocks all other peers from further writing into the shard s
(i.e., no more new epochs are created) until the peer caught
up with verifying the shard. Once the number of unveri-
fied epochs is smaller than Ae, the peer calls continue(s)
implemented as a smart contract on shard s.

One could argue that the halt(s) method opens up a
backdoor for malicious peers to block other peers. How-
ever, since the blockchain will keep track of those calls other
peers can detect this behavior (as part of a potential au-
dit). Further, both parameters (|e] and Ae) are important
as they allow to optimally tune the verification to the work-
load characteristics of a given application as discussed later.

In Figure 6, we show an example for offline verification.
The example shows the write-sets of all peers over different
epochs of one shard (Shard 2), as well as the read/write-set
of peer C that should be verified. All epochs have an epoch
size of |e] = 2 and we have four epochs in total. The first
epoch e = 0 has been already successfully verified, while
epoch e = 1 and e = 2 are closed but not yet verified (i.e.,
Ae = 2). The current epoch e = 3 is still open since only
one write was executed so far.

For verifying the next epoch in a shard, the database layer
of a peer runs a verifier thread that runs in continuous in-
tervals and keeps track of the last verified epoch for that
peer (e.g., e = 0 in the example). The verifier thread calls
the get-writeset method for a shard using the last unver-
ified (and closed) epoch as a parameter. In our example,
peer C calls get-writeset(s=2, e=1) since e = 1 is the
oldest not-yet verified epoch. The call returns the write-
set (write(y,1)— tx-3, (write(x,3)— tx-4). In order to
make sure we have the correct write-set, peer C needs to read
it from the majority of peers (not shown in the example),
which store that shard. For verifying its own read-/write-
set, peer C' compares its own read- and write-set of the same
epoch ((read(x) — 2) against the write-set of epoch e = 1
and all previous epochs; i.e., the write-set of epoch e = 0 in
our example ( (write(x,1)— tx-1, (write(x,2)— tx-2)).

1604

The verifier thread then checks, if the read-calls in the
read-set of peer C match the value of the last committed
write-operation in the global read-/write-set (to avoid spu-
rious reads) and if all write-calls are found in the global
read-/write-set (to avoid dropped writes). In order to enable
an efficient offline verification, a system peer caches (parts)
of the write-sets that it reads for verification in the past.
What exactly needs to be cached depends on the isolation
level. Under sequential consistency, only the last write to
a key needs to be cached while under eventual consistency
all pending writes for a key plus the latest committed write
to the same key are cached. Older committed writes can be
evicted from the cache.

Finally, if the checks fail, the database layer sets a flag for
that shard to indicate that it is in a corrupted state. The
application on top then has to decide how to react. One
idea is that the client calls the operation halt(s) which
means that all further operations (from all peers) on the
shard are blocked since the database is in a corrupted state
and the tamper-proof log of the shard must be audited to
see what went wrong. A way to restore the shard to a
non-corrupted state is to reset the shard to the last verified
epoch. Restoring the database from a blockchain is possible
since the blockchain keeps all writes. Discussing possible
consequences and other variants for reactions is beyond the
scope of this paper though.

Discussion: In the following we first discuss how to set
the parameters |e| as well as Ae for offline verification and
then discuss what influence the parameters have on the per-
formance that BlockchainDB can provide.

For setting |e|, we found out that the epoch size should
be set at least to the number of transactions that fit into a
block of the underlying blockchain (which allows to verify
all transaction of a block in one epoch). This information
can be retrieved from many blockchain systems and thus be
used to configure |e|. Setting |e| to a smaller value typically
decreases the throughput since new generated blocks can
not be completely filled with transactions.

Setting the second parameter, Ae, has a different effect.
If Ae = 0, a peer will not accept any new write-operation
once an epoch is closed (i.e., all peers must verify the last
epoch first before new writes are accepted). Hence, Ae can
be used to overlap the actual writes and verification. More-
over, Ae can be also used for mitigating issues resulting
from skew between different peers. For example, a strag-
gling peer of one party could block a faster peer of another
party just because it needs more time for executing the of-
fline verification procedure. This is an issue in blockchains
where multiple parties that come with different hardware
characteristics participate in the network. Thus setting Ae



Table 1: Parameters of Evaluation

Parameter Description
shardCount | Number of shards in a table.
repFactor Number of replicas that are stored for each shard,

each replica is stored on a separate (full) peer.
Consistency level configured for a shared table.
Total number of (full) peers that participate in the
BlockchainDB network.

Total number of clients sending put/get operations.
The ratio and distribution of put/get operations.
Total number of operations issued in total.

consistency
numPeers

numClients
workload
opsCount

to higher values helps to mitigate the skeweness of different
peers in the system.

For understanding the performance impacts of these two
parameters, it is important to note that only the verification
procedure itself is batched while the actual operations (i.e.,
the puts/gets of clients) are executed without batching as
described in Section 4. To that end, offline verification does
not increase the latency of individual put/get-operations but
it can have a negative impact on the overall throughput if |e|
and Ae are set to a too low value. However, when setting |e|
and Ae to a too high value clients will operate for a longer
period of time on an unverified state of a shared table and
the time before a problem (i.e., a dropped put-operation or
a spurious get-operation) can be detected increases. Thus,
tuning those parameters is extremely important.

In Section 7.5, we show how to set these parameters in an
optimal manner for a given workload and setup of peers.

7. EXPERIMENTAL EVALUATION

In order to evaluate the different characteristics of Block-
chainDB, we executed multiple experiments with the YCSB
Benchmark [10] that provides workloads with different read-
/write characteristics. The main goal of the experiments is
to study the effects of the different techniques implemented
in BlockchainDB on the performance, and also to show that
BlockchainDB allows applications with its configuration pa-
rameters to trade performance over trust.

7.1 Setup and Workloads

For the evaluation, we implemented a BlockchainDB pro-
totype in Java 8. All experiments used an Ethereum back-
end (with Geth/v1.8.23-stable). Furthermore, we ran all ex-
periments in Azure on virtual machines with 16 vcpus and
32 GB memory, running Ubuntu 16.04 LTS. To configure
the blockchain network for a new shard in BlockchainDB,
we used similar genesis parameters as reported in [12].

In every experiment, we varied different system parame-
ters, which are briefly described in Table 1. We will explain
the parameters values, we have used for each experiment
separately. Furthermore, in our experiments, we first con-
centrate on the performance characteristics of Blockchain-
DB. To isolate the effect of verification, we turned verifica-
tion off in these experiments. In the second set of experi-
ments, we then studied the overhead of verification as well
as the different verification strategies in detail.

7.2 Exp. 1: Scalability with Peers

In this experiment we evaluate the performance of Block-
chainDB when the size of the network is increased (i.e.,
more and more peers join a BlockchainDB network to share
data). In classical blockchains the performance of the sys-
tem heavily degrades, since more peers increase the storage
and consensus overhead of the network as shown in[12]. We
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also made a similar observation in our experiments shown
in Figure 7 as we discuss below.

In order to make a fair comparison between different con-
figurations of BlockchainDB, we use a fixed number of n
peers (i.e., a fixed amount compute and storage resources)
and vary the sharding configuration of one table. For ex-
ample, for a setup with a fixed number of 16 peers (shown
as 16 on the x-axis of Figure 7), we evaluated the different
configurations shown as individual points above the x-tic
16. The configurations used for 16 peers are: (1 shard with
16 replicas), (2 shards, each 8 replicas), (4 shards, each 4
replicas), ..., (16 shards, each 1 replica). We repeated the
experiment for other setups with a lower/higher number of
peers (ranging from 1 — 24). The setups (i.e., number of
peers used) are shown as different x-tics/x-labels in Figure
7 and all throughput resulting from using different shard-
ing configurations for one setup are shown as points on the
vertical line above the corresponding x-tic.

For running the experiment, we created a shared table
with the number of shards and distributed them to the dif-
ferent peers as given in the configurations and inserted into
each shard initially 4,000 tuples. This results in the fact
that in total the same number of tuples has to be stored
in BlockchainDB for the different configurations used for a
given number of peers. For example, for a fixed number of
16 peers, 64,000 tuples are being stored in total in the table
for any sharding configuration — when using 16 shards/1
replica on the one extreme but also when using 1 shard/16
replica the other extreme.

In Figure 7, we show the resulting throughput of Block-
chainDB for the different setups each using a fixed number
of peers (x-axis) and for each setup using different configu-
rations (as indicated by the different points along the y-axis)
as discussed before. The number of clients used in this ex-
periment is equal to the number of peers (i.e. for every new
peer a new client is added; i.e., numPeers=numClients).
Furthermore, we use consistency= sequential and set op-
sCount=1000 - numClients using workload= 100% write/
0% read; i.e., every client sends a total of 1k put-operations
to the database and waits until these put operations have
been committed (e.g. by sending one get at the end to
force that the writes are committed under sequential consis-
tency). As explained above, the replication factor was set
to repFactor = %,

Figure 7 shows the results of the experiment. Since Block-
chainDB allows applications to apply different partitioning
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and replication strategies for shared tables, we can better
trade performance and trust characteristics depending on
the applications requirements. The two extremes high trust
and high performance are highlighted by the green and blue
line, respectively. For the green line, BlockchainDB only
uses one shard to store the data and each newly added peer
stores yet another replica of this shard and participate in its
corresponding blockchain. Hence, this configuration repre-
sents a classical blockchain configuration and shows similarly
worse scalability. In the other extreme, high performance,
every peer that is added also adds a new shard to the net-
work. This configuration is comparable to a classical dis-
tributed database, in which the parallelism and throughput
of the system is increased with every new node. Yet, since
only one replica exists per shard, the application does not
get any trust guarantees.

An interesting aspect that is also shown in Figure 7 is that
BlockchainDB can provide other configurations “in the mid-
dle” that provide a trade-off between trust and performance
(shown as the area shaded in light-blue). For example, when
using a configuration with 4 shards and 4 replicas each for
16 peers (shown as one point in the Figure 7) we can pro-
vide a 7x speedup over the full-replicated baseline and still
provide some trust guarantees.

7.3 Exp. 2: Effect of Sharding

In this experiment, we show the effects of sharding where
we fixed the number of peers in the network to 16 and var-
ied the number of shards per table (with a fixed replication
factor of 4 per shard). Different from the experiment before,
we want to show that sharding provides a speed-up even for
a setup with fixed trust guarantees.

For running the experiment, we created a shared table
and increased the number of shards from 1 to 16 where we
filled each shard initially with 4,000 tuples per shard (i.e.,
64, 000 tuples are in the table in total for 16 shards) to sim-
ulate a setup of BlockchainDB with fixed trust-guarantees.
Furthermore, we used a constant replication factor of 4 (as
mentioned before). The number of clients in this experi-
ment is fixed to numClients=16. We used the same work-
load as in the previous experiment (workload= 100% write/
0% read) but each client sends 2000 operations (i.e. op-
sCount=32,000) using consistency=sequential.

Figure 8 shows the result of this experiment. As we can
see, the throughput of BlockchainDB increases linearly with
the number of shards. This is because the degree of overall
parallelism is increased.
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Figure 9: Effect of Consistency on Latency

7.4 Exp. 3: Effect of Consistency Levels

In this experiment, we show the effect of using different
consistency levels for clients. For this experiment, we used
the parameters shown in table 2.

Table 2: Parameters for Exp. 3

parameter value
shardCount | 2
repFactor 2
numPeers 4
numClients 4
opsCount 8000

Furthermore, in this experiment we are using different
workload mixes: workload G (new mix/not in YCSB) - a
write-intensive workload (95% write/ 5% read), workload A
(same as in YCSB) - a workload with same amount of reads
and writes (50% write/ 50% read), and workload B (same as
in YCSB) - a read-intensive workload (5% write/ 95% read).
In order to show the effect of the two main consistency levels
(eventual and sequential), we measured the read-latency on
a client for the different workloads.

Exp 3a: Sequential vs. Eventual Consistency. Figure
9 shows the resulting latencies for the different workloads.
As we can see, the read latency under eventual consistency
is not affected by the change in workload at all (which we
also expected). For, sequential consistency, however, we can
see that the performance increases with a higher number of
read-operations. This is a direct consequence of the fact that
with a lower number of writes we also have a lower frequency
of blocking read-operations. For a read intensive workload,
we see a decrease in latency for sequential consistency by
two orders of magnitude compared to the write-intensive
workload since there are only a few write-operations that
could potentially block the execution of subsequent read-
operations on the same key.

Exp 3b: Bounded Staleness. While sequential consis-
tency guarantees a client to see fresh values, it has a much
higher latency than eventual consistency since it forces a
client to wait until pending writes for a key are committed.
In contrast, eventual consistency has as significantly lower
latency, but does not provide any guarantee on the staleness
of retrieved values. As described in Section 4, eventual con-
sistency with bounded staleness allows a client to trade off
staleness for improved read latency.

We therefore repeated the experiment above but used
bounded staleness. In this experiment, we set the size of
the write-queue to different values ranging from 0 to 900.
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Table 3: Parameters for Exp. 4

parameter value
shardCount | 2
repFactor 2
numPeers 4
numClients | 4
consistency sequential
opsCount 4000

The resulting effects on latency are shown in Figure 10. We
see that the average read latency decreases as we increase
the staleness. For example, while waiting until all pend-
ing transactions have been committed (i.e., staleness is 0)
causes a maximal delay of about 35s, tolerating around 900
pending puts can improve the latency to around 20s.

In the extreme case, bounded staleness 0 gives us the same
guarantees as sequential consistency. However, we see that
it results in a higher latency as for sequential consistency as
shown in Figure 9 since sequential consistency blocks lazily
if a read for a pending write arrives.

7.5 Exp. 4: Verification Overhead

To measure the overhead of verification, we performed
two experiments. First, we compared the overhead of online
and offline verification. Second, we show the effects of the
different parameters for offline verification.

Exp. 4a: Online vs. Offline Verification. In this exper-
iment we evaluated the performance of the different verifi-
cation strategies supported by BlockchainDB. Table 3 indi-
cates the parameters used in this experiment.

For showing the overhead of verification, we report the
throughput based on the time it takes to commit and verify
all 4,000 operations. As a baseline, we show a configuration
without any verification (called no-verification).

As can be seen in Figure 11, online verification achieves
the lowest throughput, since it directly waits until a put-
operation (i.e., a transaction executing a put) is committed
to verify the operation, which prevents other put requests
from being executed. With the help of offline verification the
throughput can be increased as more transactions are added
into one block. As explained earlier the overall throughput
depends on the two parameters of the offline verification:
epoch-size |e| and number of unverified epochs Ae.

In this experiment we use an optimal configuration and
set |e|] = 100 and Ae = 10 which results in a throughput
of about approx. 40 put operations per second. As can be
seen this value is similar to the throughput of no-verification.
This is because the verification can be performed once a new
block is mined for all operations in the block. This is similar
to the time it takes to commit a transaction to the DB plus
a small overhead for verifying the retrieved read/write-sets
(which is negligible since reading the read /write-sets is fast).

Exp. 4b: Offline Verification Parameters. In the sec-
ond experiment we fixed the verification strategy to offline
verification and varied the two parameters |e| and Ae.

In a first micro-benchmark, we evaluated how |e| effects
the throughput for a client and set Ae = 0, i.e., only one
epoch can be unverified at a time. For running the micro-
benchmark we use a table with a single shard to show the
effects of setting |e| on an isolated shard. Further, we varied
the replication factor (i.e., number of peers a shard is repli-
cated to) to study its influence on the overall throughput.
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As we can see in Figure 12, when using a replication factor
of one (1 Peer, green line) the throughput increases signif-
icantly with increasing epoch size until |e] = 70 is reached,
which corresponds to the maximum number of transactions
that fit into one block (i.e., the block size) of the underlying
blockchain. When increasing |e| further, the throughput in-
creases much slower (and almost stagnates). Furthermore,
if multiple peers participate in a shard the throughput is
higher in total. We can see this effect in Figure 12 by the
second line (2 Peers, blue line). The reason here is that the
verification overhead is distributed across two peers and thus
each peer only needs to verify half of the put-operations of an
epoch on average. This leads to an overall higher through-
put since the total elapsed time for verification is shorter.

In a second micro-benchmark we wanted to show the effect
of the Ae parameter. As explained previously, the Ae pa-
rameter determines the number of unverified epochs a peer
tolerates. In this experiment, we thus execute the same
benchmark as before with two peers but this time one fast
and one slow peer in order to analyze the effect of potential
resource skew (e.g., a slower network or less computational
power for one). A skew = x means that the slower peer is
only able to verify transactions with a lag of x blocks on
average behind the faster peer. In order to show the sensi-
tivity of the overall throughput on Ae, we set |e| = 70 (i.e.,
the optimal |e| of the previous experiment) and vary the Ae
parameter from 1 to 20.

In Figure 13, we show the throughput (including its stan-
dard deviation for 10 runs) for different skew factors where
the slower peer has a lag of 4, 8, and 14 blocks on average.
As we can see, the throughput improves with increasing Ae
whereas for a higher skew a higher Ae is required. As our
experiments show, Ae should be set according to the lag of
the slower peer; e.g., the maximal throughput for a lag of
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14 is achieved with Ae = 14 whereas smaller lags (skew=4
and skew=8) can also tolerate a smaller Ae. In general, we
see that if Ae is set to a value smaller than the lag, then the
faster peer is always slowed down by the slower peer which
decreases the overall throughput.

8. RELATED WORK

Related work spans three major areas, namely, Verifiable
Databases, Scalable Blockchains, and Distributed Databa-
ses. For Distributed Databases, there is a long line of work
that covers relevant topics such as replication, sharding and
peer-to-peer approaches. Due to space constraints, we omit
a detailed discussion and refer to [21] for an overview.

Verifiable Databases. The closest work to BlockchainDB
is work done by Allen et al. in [2]. In [2], the authors pro-
pose the idea of “Databases and tables that can be shared
and verified”. While their work makes use of the same ab-
stractions of shared tables they differ in how they implement
these abstractions. While [2] also uses blockchains to imple-
ment a voting/consensus schema they store the actual data
in a traditional database on every peer and only a digest
in the blockchain. In contrast, in BlockchainDB we store
all data in blockchains, such that BlockchainDB not only
uses the consensus and verification features provided by the
blockchain but also the capability of having all data in a
tamper-proof ledger that allows us to audit all changes to the
database. Another major difference is that BlockchainDB
allows applications to navigate the trade-off between trust
and scalability when using blockchains as a shared database.

BlockchainDB also relates to previous work done on verifi-
able databases in the context of outsourcing [15, 3, 27, 29, 6,
30, 5]. This body of research addresses the question of how
to securely delegate the management of data to untrusted
third parties, such that the third party cannot manipulate
the data or the result of queries on that data. In Blockchain-
DB peers face the same challenges when accessing data on
shards stored at remote peers. However, in BlockchainDB
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we do not aim to modify the underlying blockchain and thus
build our verification protocol on top.

Scalable Blockchains. The second area of related work is
in the context of blockchain systems, where various propos-
als have been made to improve the scalability and perfor-
mance of a blockchain. A good overview of the bottlenecks
and approaches to scale blockchains are discussed in [11]. In
the following, we discuss recent results not covered in [11].

For example, several new protocols have been developed
to make use of sharding as part of the blockchain consen-
sus protocol [17, 1, 22, 16, 28, 23] to address the scalability
challenge. BlockchainDB differs from this line of work as it
does not propose a new consensus protocol, but implements
sharding on top of existing blockchains. Hence, these new
blockchain systems could be also used by BlockchainDB as
a backend and improve the overall performance of the data-
base. A further difference is that BlockchainDB acts as an
abstraction layer for clients, such that normal users do not
need to deal with new interfaces or programming models
that might be introduced by a new blockchain system.

Other proposals to overcome the scalability problem of
blockchains discuss the usage of off-chain computation [14,
13, 19, 9]. While BlockchainDB shares the concepts of mov-
ing certain functions out of the blockchain, it does that on
top of the blockchain layer and not as part of it.

Another direction of work is that systems aim to add
blockchain-like functions to existing distributed and repli-
cated databases. A prominent representative for this line of
work is BigChainDB [18] which builds on MongoDB. While
BigChainDB shows that it can provide a higher performance
than native blockchain systems, it is being constantly under
critique to not provide the same trust guarantees and fault-
tolerance model as native blockchains. Some of the original
shortcomings have been recently addressed in a newer ver-
sion by using Tendermint to achieve Byzantine fault toler-
ance. Different from BigChainDB, BlockchainDB hence has
chosen another route and instead builds directly on top of
blockchain systems and their trusted execution model.

Finally, recent papers [24] also looked into blockchains
with a database angle and add database techniques into the
blockchain (e.g., re-ordering transactions for higher through-
put). Same as before, BlockchainDB does all its optimiza-
tions on top of the blockchain layer and not as part of it.

9. CONCLUSION AND FUTURE WORK

In this paper, we presented BlockchainDB, which intro-
duces a database layer on top of blockchains to partici-
pate in data sharing scenarios. Our experiments show that
BlockchainDB can provide up to two-orders of magnitude
higher throughput than native blockchains and allows to
better scale-out with the number of peers. At the moment,
BlockchainDB only provides a key/value interface on top of
shared tables. In future, we thus want to extend the query
interface to shared tables to full SQL with verifiable trans-
actional semantics.
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