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ABSTRACT
Graph processing systems are important in the big data do-
main. However, processing graphs in parallel often intro-
duces redundant computations in existing algorithms and
models. Prior work has proposed techniques to optimize
redundancies for out-of-core graph systems, rather than dis-
tributed graph systems. In this paper, we study various
state-of-the-art distributed graph systems and observe root
causes for these pervasively existing redundancies. To re-
duce redundancies without sacrificing parallelism, we further
propose SLFE, a distributed graph processing system, de-
signed with the principle of “start late or finish early”. SLFE
employs a novel preprocessing stage to obtain a graph’s
topological knowledge with negligible overhead. SLFE ’s
redundancy-aware vertex-centric computation model can then
utilize such knowledge to reduce the redundant computa-
tions at runtime. SLFE also provides a set of APIs to im-
prove programmability. Our experiments on an 8-machine
high-performance cluster show that SLFE outperforms all
well-known distributed graph processing systems with the
inputs of real-world graphs, yielding up to 75× speedup.
Moreover, SLFE outperforms two state-of-the-art shared
memory graph systems on a high-end machine with up to
1644× speedup. SLFE ’s redundancy-reduction schemes are
generally applicable to other vertex-centric graph processing
systems.
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1. INTRODUCTION
The amount of data generated every day is growing ex-

ponentially in the big data era. By 2020, the digital data vol-
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ume stored in the world is expected to reach 44 zettabytes [53,
10]. A significant portion of this data is stored as graphs in
various domains, such as online retail, social networks, and
bio-informatics [8]. Hence, developing distributed systems
to efficiently analyze large-scale graphs has received exten-
sive attentions in recent years.

To achieve high performance, existing graph systems ex-
ploit massive parallelism using either distributed [42, 38, 23,
65, 48, 17, 46, 24, 43, 61] or shared memory models [35, 47,
44, 52]. Such systems process graphs in a repeated-relaxing
manner (e.g., using Bellman-Ford algorithm variants [12] to
iteratively process a vertex with its active neighbors) rather
than in a sequential but work-optimal order [7, 65, 41, 40].
This introduces a fundamental trade-off between available
parallelism and redundant computations [41, 40]. We study
several popular graph processing systems [65, 23, 18] and
find that redundant computations pervasively exist, which
we elaborate on in Section 2.

The root causes of computational redundancies in graph
analytics vary across applications, which is due to the na-
ture (i.e., the core aggregation function) of different graph
algorithms. For example, applications such as Single Source
Shortest Path (SSSP) employ min() as their core aggrega-
tion function. In each iteration, the values of active neigh-
boring vertices are fed into the min() aggregation function,
and the result is assigned to the destination vertex. Typi-
cally, a vertex needs multiple value updates in different it-
erations because the value updates in any source vertices
require recomputing the destination vertex’s property. How-
ever, only one minimum or maximum value is needed in the
end. Therefore, we define the redundancies in these applica-
tions as the computations triggered by the updates with in-
termediate (not final min/max) values. We propose a “start
late” approach to bypass such redundant updates.

In contrast, some other graph applications (e.g., PageR-
ank (PR)) utilize the arithmetic operations (e.g., sum()) to
accumulate the values of neighboring vertices iteratively un-
til no vertex has further changes (a.k.a final convergence).
For algorithms of this kind, there are no computational re-
dundancies caused by intermediate updates. However, our
analysis shows that most vertices are early converged (the
vertex’s value is stabilized) before a graph’s final conver-
gence. Hence, following computations on the early-converged
vertices are redundant. We propose a “finish early” ap-
proach to terminate the subsequent computations on these
vertices to eliminate such redundancies.
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We develop SLFE (pronounced as “Selfie”), a distributed
graph processing system that reduces redundancies to
achieve high-performance graph analytics. SLFE employs
a novel preprocessing technique that produces a graph’s
topological information to guide redundancy reductions in
the execution phase via the principal of “start late or fin-
ish early”. In contrast to the prior work that leverages
dynamic re-sharding/partitioning [59] or multi-round parti-
tioning [34] to reduce redundancy in out-of-core graph sys-
tems, our strategy has the following benefits: 1) it does not
incur any extra partitioning effort 1; 2) it does not rely on
any specific ingress methodology, so it can be easily adopted
by other systems; 3) it has extremely low preprocessing over-
head, which is suitable for online optimization; and 4) it pro-
duces guidance that is reusable by various graph algorithms
for the redundancy optimizations.

To balance the communication and computation on the
fly, SLFE uses the state-of-the-art push/pull computation
model. The push operation sends the update of source ver-
tices to their successors, while the pull operation extracts
information from predecessors for a given destination ver-
tex. To the best of our knowledge, SLFE is the first graph
system with a set of redundancy-reduction aware push/pull
functions to make use of guidance produced in preprocess-
ing. Moreover, SLFE also provides a set of system APIs
to enable redundancy reductions as well as programming
simplicity/flexibility for different graph applications. We
summarize the contributions of this paper as follows:

• We perform a thorough study on state-of-the-art graph
processing systems and observe the pervasive existence
of large amounts of computational redundancies. We
further identify the provenance of these redundancies.

• We design a novel and lightweight preprocessing tech-
nique to extract a graph’s topological information (i.e.,
propagation level). This technique enables both “start
late” and “finish early” redundancy reduction princi-
ples for many graph applications.

• We develop SLFE, a distributed graph processing sys-
tem that employs various techniques to demonstrate
the benefit from optimizing redundancies in graph ap-
plications.

• We evaluate SLFE with extensive experiments and
compare it with three state-of-the-art distributed and
two shared-memory graph processing systems. Exper-
iments with five popular applications on seven real-
world graphs show that SLFE significantly outper-
forms these systems, yielding speedups up to 74.8×
(16.3× on average) and 1644× (56× on average) over
existing distributed and shared memory systems, re-
spectively.

The rest of this paper is organized as follows. Section 2
presents our observations on state-of-the-art graph systems
and motivates the SLFE design. Section 3 discusses SLFE ’s
redundancy reduction approach and elaborates system de-
tails. The experimental setup and evaluation results are
presented in Section 4. In Section 5, we discuss the limita-
tions of SLFE. We review the related work in Section 6 and
present some conclusions in Section 7.
1The partitioning phase in distributed graph systems is ex-
pensive [58, 55, 39, 65].

Table 1: A list of graph analytical applications with two
different aggregation functions [59].

Graph Analytical Applications Aggregation Function

PageRank, NumPaths, SpMV,

TriangleCounting, BeliefPropagation, Arithmetic

HeatSimulation, TunkRank (sum or product)

SingleSourceSP, MinimalSpanningTree,

ConnectedComponents, WidestPath, Comparsion

ApproximateDiameter, Clique (min or max)

2. OBSERVATIONS AND MOTIVATION
In this section, we review the graph applications that can

benefit from SLFE and present observations of computa-
tional redundancies to motivate SLFE.

2.1 Graph Applications
Most popular graph applications can be classified into

two categories based on their aggregation functions of ei-
ther arithmetic operations or min/max comparisons. We
analyze graph applications implemented atop several sys-
tems [35, 38, 47, 52, 24, 23, 18, 42] and summarize our
findings in Table 1. For applications from both categories,
SLFE aims to provide a unified solution to reduce their
existing computational redundancies. It is worth noting
that some graph applications do not employ any aggregation
function, e.g., BFS visits each vertex only once. This kind
of graph applications seldom introduces redundant compu-
tations, which is not the focus of SLFE. To explain the mo-
tivation behind SLFE, we choose SSSP (comparison) and
PR (arithmetic) to show that redundant computations per-
vasively exist, and then discuss the provenance of such re-
dundancy.

2.2 Computational Redundancy
We observe that state-of-the-art graph systems prefer to

execute graph applications in a Bellman-Ford [12] way to
utilize the massive parallelism available in hardware. Such
implementations often introduce computational redundan-
cies to graph applications with heavyweight min/max or
arithmetic operations.

Figure 1 shows an example of SSSP execution (using
min() as the core computing operation) in modern graph
systems. To simplify the explanation, we denote vertex 0
as V0, and an edge from vertex 0 to 1 as E01. We lever-
age updates on V4 and V5 to demonstrate the provenance
of computational redundancy. The vertex property dist[v]
is initialized to 0 for V0 and ∞ for other vertices. During
Iter1, the dist of V1 and V3 are synchronously updated to
1 and 2, respectively (updates are marked in gray). In the
next iteration, the updates of V1 and V3 are propagated via
the edges (E12 and E34). Hence, the dist of V2 and V4 are
computed to 2 and 4 correspondingly. Similarly, V4’s prop-
erty is replaced by 3 (i.e., minimum dist) in Iter3 and the
dist of V5 updates to 5. Due to the fact that V4’s dist is up-
dated in Iter3, its successor—V5’s dist has to be recomputed
in Iter4 and updated to its minimum distance 4.

From this example, we can see that multiple rounds of
computations are needed to calculate the shortest path for
V4 and its successor, V5. Such computations include mul-
tiple additions, min comparisons, and synchronous updates
- all of which are time consuming in modern distributed
graph systems. Similar behaviors are observed in other
graph algorithms aggregated with min()/max() operations

155



0

1

2
4

3

0 ∞ ∞ ∞ ∞ ∞dist
V0 V5

1

2

2

1
1 5

1

(a) An example graph

Iter1 Iter2 Iter3 Iter4
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(b) SSSP’s iteration plot

Figure 1: Example of SSSP computations.

as well. Such redundancies are due to the repeated-relaxing
manner [7, 41, 40], where vertices are involved in compu-
tations at multiple propagation levels (e.g., V4 resides in
levels 2 and 3). Table 2 summarizes the number of up-
dates/computations per vertex of SSSP in PowerLyra [18]
and Gemini [65]. Both systems have a high number of per-
vertex computations, 9.1 and 7.5 on average for PowerLyra
and Gemini respectively. Note that this number is 1 if no
redundant computation exists.

Some other applications such as PR use arithmetic sum()
function for an aggregation process. Iteratively, the values
of all immediate source vertices need to be fetched for every
destination vertex’s computation in PR. The convergence
for this kind of algorithms is defined as the property of all
vertices with no further change. There are two reasons that
a vertex’s value becomes stable:

• All the source vertices provide the same inputs as those
in the past iteration.

• The precision supported by the underlying hardware
cannot reveal the changes, as float can support 7 deci-
mal digits of precision and double has 15 decimal digits
of precision [2].

For instance, due to the limited hardware precision, even
though the

∑
PR(vsrc) of two iterations are different, being

divided by the same denominator (number of links of vdst)
can produce the same result. Generally, dozens to hundreds
of iterations are needed to converge an entire graph. How-
ever, we find that many vertices reach a converged/stable
state earlier than other vertices. To quantify the percent-
age of these early-converged vertices, we record every ver-
tex’s computations of seven graphs. Figure 2 shows that
a large amount of vertices have their properties stabilized
when the program reaches 90% of the execution time. For
instance, in orkut and delicious graphs, 99% vertices are
early-converged. The average percentage of such vertices is
83% across all the investigated graphs, indicating a room of
redundancy reduction for graph applications based on arith-
metic operations.

Even though the provenance of redundancies varies across
applications, SLFE proposes a unified preprocessing method

Table 2: Updates per vertex of SSSP in PowerLyra [18]
and Gemini [65] on a single machine. Details of the graphs
(orkut-friendster) are shown in Table 4. “-” indicates failed
execution due to exceeding memory capacity.

orkut liveJournal wiki delicious pokec s-twitter friendster

PowerL 12.4 8.75 10.3 6.75 9.25 7.57 -

Gemini 9.91 7.66 7.28 5.6 9.42 4.51 8.18
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Figure 2: Percentage of seven real-world graphs’ early-
converged vertices in PR.

to generate optimization guidance for both types of redun-
dancies. For min/max-based applications, SLFE provides
a vertex’s propagation sequences. Thus, computation in all
but the last iteration can be avoided (“start late”). For
applications with arithmetic aggregation functions, SLFE
leverages the vertex’s propagation sequences to justify the
status of each vertex. Once a vertex’s property has not been
updated for x iterations (x ≥ its maximum/latest propaga-
tion level), the following computations on it will be avoided
(“finish early”).

3. SLFE SYSTEM DESIGN
To reduce redundancies for better performance, we de-

velop SLFE, a topology-guided distributed graph processing
system, which employs the concept of “start late or finish
early”. In this section, we first overview SLFE ’s approach
and then discuss its key system designs in detail.

3.1 Methodology and System Overview

Methodology Overview. SLFE aims to optimize the re-
dundancy in various graph applications written with mod-
ern distributed graph processing systems. SLFE employs
a novel preprocessing step that generates reusable graph
topological information to guide redundancy optimization
on the fly. Such information, known as Redundancy Reduc-
tion Guidance (RRG), captures the maximum propagation
level of each vertex in a given graph. Due to the fact that the
same vertex can exist at different propagation levels, each
vertex will hold a RRG value—its maximum propagation
level. At runtime, SLFE utilizes RRG to schedule the graph
operations for redundancy reductions. SLFE adopts a sys-
tem approach to minimize programming efforts and achieve
high performance.

System Overview. Modern distributed graph processing
systems [23, 38, 42, 65] typically consist of two phases: pre-
processing and execution; SLFE follows the same design
principle. As Figure 3 shows, SLFE loads, partitions, for-
mats the entire graph in the preprocessing phase, and then
generates the RRG for redundancy optimization. The sub-
sequent execution phase accepts the preprocessing outputs
(i.e., formatted graph and RRG). Section 3.2 and 3.3 elab-
orate on SELF’s partitioner and RRG generation, respec-
tively.

SLFE’s execution phase consists of three components as
shown in Figure 3: Redundancy Reduction (RR)-aware
runtime functions, Redundancy Reduction (RR) APIs,
and graph applications. RR-aware runtime functions are
an iterative-relaxing procedure to implement the hybrid
push/pull computation model. Meanwhile, these functions
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Figure 3: System overview of SLFE.

also apply RRG to optimize redundant operations at run-
time. SLFE ’s RR APIs bridge such computation model
with various user-defined graph applications. From the
user perspective, one can program various applications via
SLFE ’s RR APIs to transparently benefit from redundancy
optimization. Sections 3.4-3.6 discuss each component of
SLFE’s execution phase.

Section 3.7 further elaborates the work stealing technique
used in SLFE to minimize work imbalance caused by re-
dundancy elimination. Section 3.8 discusses the correctness
of SLFE ’s redundancy optimization. Section 3.9 provides a
discussion of the technique generalization.

3.2 Chunking Partitioner
At the beginning of SLFE ’s preprocessing phase, SLFE

loads a graph’s raw edgelist file as input. Since many large-
scale real-world graphs often possess natural locality, storing
adjacent vertices close to each other can preserve such local-
ity [14, 57] with a minimal partitioning cost. We employ an
efficient chunking partitioning scheme [65] to evenly parti-
tion a large-scale graph into contiguous chunks and assign a
chunk to each machine in a cluster. Figure 4 shows an exam-
ple of partitioning a graph G = (V,E) for a 2-machine clus-
ter. The vertex set V is divided into 2 contiguous subsets.
To balance the workload across machines, the chunk-based
partitioner allocates an equal amount of edges in each ma-
chine. Like existing approaches [42, 23, 18], some vertices
are duplicated across different machines (e.g., V1 and V2)
to reduce remote accesses. After partitioning, V0-V1 are in
“Machine 1”, while the rest are in “Machine 2”. Partition-
ing graphs according to either incoming or outgoing edges
yields the same results in this example.

After the partitioning, SLFE yields the desired formats:
compressed sparse row (CSR) for the push operation and
compressed sparse column (CSC) for the pull operation.
SLFE’s graph partitioning and formatting schemes are not
particularly designed for redundancy optimization. Actu-
ally, these schemes are commonly available in many other
graph systems [23, 18, 38, 35, 56, 24, 9, 52, 65]. Thus, it dra-
matically enhances the applicability of SLFE ’s techniques
to other graph systems. The next step of the preprocessing
phase is to generate RRG.

3.3 Redundancy Reduction Guidance

3

Example Graph

Machine 1

Machine 2

10

2

2

1
3

Master

Mirror

10

2

Figure 4: Example of the chunking partitioning.

Iter1 Iter2 Iter3

V0 0 0 0

V1 1 1 3

V2 1 1 1

V3 0 2 2

RRG

0

3

1

2

Figure 5: RRG for the example graph shown in Figure 4.

To guide the redundancy reduction in the graph execution
phase, SLFE proposes a novel metric — Redundancy Re-
duction Guidance (RRG). Generating RRG follows a propa-
gation manner (e.g., breadth-first search [16]) to record the
iteration number of a vertex’s update. We show the RRG
generation with an example graph in Figure 5. In Iter1, V1

and V2 receive an update from root V0; their RRG values
are updated to 1 (i.e., Iter1). V3 is the vertex updated in
Iter2. Later in Iter3, due to the activeness of V3, V1 is re-
visited and its RRG value gets updated to 3 (i.e., Iter3).
The last column in Figure 5 illustrates the final RRG values
of vertices in the example graph. Such RRG information
represents a graph’s topology, which can be reused by many
graph applications for the redundancy reduction purpose.

Algorithm 1 shows the pseudo-code of our proposed pre-
processing technique to generate the RRG. The declarations
and initializations of the data structures are declared in line
1-3. The fill source function in line 4 initializes all roots
to 0 and other vertices to ∞. Starting from line 6, this pro-
cedure iterates through all the destination vertices to check
whether it has an update in the current iteration. For all
vdst’s neighbors with incoming edges, if a neighbor’s dist is
computed in the past round, it notifies vdst to update its
RRG (line 9-10). This update indicates that vdst resides
in a new propagation sequence, which occurs later than the
cached one. For an acyclic graph, a RRG update will acti-
vate vdst. Finally, line 11-14 calculates vdst. The weights of
all edges are treated as 1 (line 12), as we only need to obtain
the topological knowledge of the graph. Moreover, we use
visited to only allow one computation per vertex. This is
due to the fact that the first “visit” updates vdst by its short-
est distance, when all the edge weights are identical. This
further minimizes the preprocessing overhead. Once vdst’s
dist is updated, it becomes active to propagate its value to
the succeeding vertices.

After Algorithm 1, each vertex maintains a RRG value.
Such value indicates the last propagation level that the ver-
tex receives at least one update from the active source ver-
tices. Any computation/update to the vertex happens be-
fore this point can be safely ignored for the redundancy re-
ductions (“start late”). In the execution phase, such infor-
mation can schedule the beginning of vertex computation for
an application with min()/max() aggregation function. For
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Algorithm 1 Preprocessing to Generate RRG.

1: bool * visited = new bool[NumV erts];
2: uint32 t * RRG = new uint32 t[NumV erts];
3: int Iter = 1; int dist[NumV erts];
4: graph→fill source(dist); //initialize vertices
5: for (int Iter=1; active vertex exists; Iter++)
6: for vdst ∈ V
7: for vsrc ∈ vdst.incomingNeighbors
8: if vsrc.active
9: if RRG[vdst]] < Iter

10: RRG[vdst] = Iter;
11: if ! visited[vdst]
12: dist[vdst] = dist[vsrc] + 1;
13: visited[vdst] = true;
14: vdst.active = true;
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Figure 6: SSSP and CC execution time breakdown of pull
and push mode, which are measured in 1-machine and
8-machine setup with pokec (PK), liveJournal (LJ), and
friendster (FS) graphs.

instance, the V1’s RRG in Figure 5 is 3, all the computations
happen before this iteration can be safely bypassed.

Even though applications with arithmetic operations can
leverage the same RRG data to remove computational re-
dundancies, the intuition behind is different. Considering
the fact that most vertices converge earlier than graph’s
global convergence, RRG is used to justify the status of
a vertex’s stability. SLFE treats a vertex’s RRG as the
number of iterations needed to receive any new values from
source vertices. If no change occurs on a vertex’s property
(e.g., rank in PR) for x rounds (x ≥ RRG), it is considered
as a stabilized/converged vertex. Thus, its further computa-
tions, known as redundancies, are bypassed (“finish early”).

Overall, we can see that the proposed preprocessing tech-
nique is an extra step after finalizing graph partitions, which
is generally applicable to any partitioning schemes and data
formats. Thus, other state-of-the-art graph systems [65, 42,
23, 18, 61, 35, 24, 7] can easily adopt it. The overhead of
our scheme is low and is thoroughly evaluated in Section 4.
In the next section, we discuss how SLFE applies RRG in
the execution phase.

3.4 RR-aware Runtime Functions
During graph execution, the number of outgo-

ing/incoming edges of active vertices in each iteration
varies dramatically. Thus, modern graph processing sys-
tems [65, 44, 52, 11] leverage direction-aware propagation
model—push and pull to dynamically balance the commu-
nication and computation. This model optimizes the graph
processing procedure on the fly. However, such a model
increases the difficulty in applying redundancy reduction
schemes at runtime. For instance, where do the redundant
computations happen and how to incorporate the generated
RRG in the model? To answer these questions, we first
analyze the push/pull propagation model.

Algorithm 2 Pull Mode Computation.

1: def pullEdge singleRuler(pullFunc, Ruler){
2: pull = true;
3: for vdst ∈ V do
4: if Ruler ≥ RRG[vdst]
5: pullFunc(vdst, vdst.incomingNeighbors);
6: }
7: def pullEdge multiRuler(pullFunc, RulerS){
8: pull = true;
9: for vdst ∈ V do

10: if RulerS[vdst] < RRG[vdst]
11: pullFunc(vdst, vdst.incomingNeighbors);
12: }

Algorithm 3 Push Mode Computation.

1: def pushEdge(pushFunc){
2: if pull do
3: activateAllVertices();
4: pull = false;
5: for vsrc ∈ V do
6: if vsrc.hasOutgoing & vsrc.active do
7: pushFunc(vsrc, vsrc.outgoingNeighbors);
8: }

We measure the execution time of pull/push mode in
SSSP and CC 2 with three natural graphs. The same mea-
surements are performed on a single machine as well as a
distributed cluster of eight machines to demonstrate the in-
creasing effect of communications. As Figure 6 shows, SSSP
and CC on a single machine spend more than 92.8% and
94% of their execution time in the pull mode. When we
run them on 8 machines, the runtime in pull mode still
consumes more than 78% and 73% in SSSP and CC, re-
spectively. The small decrement in pull is due to the com-
munication overhead (most communications happen in push

rather than pull) caused by the increased cluster size. The
advanced InfiniBand network minimizes such communica-
tion overhead. Thus, pull still contains most of the compu-
tations in the distributed setup. SLFE mainly optimizes re-
dundancies in pull, while maintains sufficient parallelism to
efficiently utilize all hardware threads [30]. We also attempt
to eliminate redundancies in push. However, as the number
of push operations is significantly less than the number of
pull operations, the overhead of checking and removing re-
dundancies surpasses the performance benefit. This insight
is also reported in previous work [4]. Hence, rather than
redundancy reductions, SLFE leverages the push to ensure
the application’s correctness.

The computations in pull mode extract the values of
source vertices via incoming edges, and then apply a
user defined pullFunc on the destination vertex. Al-
gorithm 2 demonstrates the pull runtime design, which
consists of two functions — pullEdge singleRuler and
pullEdge multiRuler. At the beginning, the variable pull
is set to true (we will explain the usage of this variable with
push). In pullEdge singleRuler function, for all vdst’s, a
single Ruler is used to control their executions (line 4). As
aforementioned, the RRG of each vertex is used to optimize
the redundancies. For instance, min/max-based algorithm
uses the current iteration number as the single Ruler. If a

2We exclude applications with arithmetic aggregation func-
tions, as they always execute in the pull mode to iteratively
compute all vertices [4].
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Table 3: RR APIs provided by SLFE.

min/max: void edgeProc(pushFunc, pullFunc,

activeVerts, Ruler);

arith: void edgeProc(pushFunc, pullFunc);

void vertexUpdate(vertexFunc);

vertex vx’s RRG is 4, the beginning of its iterations will be
delayed after iteration 3. The pullEdge multiRuler receives
a RulerS array that is transparent to users. Each vertex has
its own “Ruler” to follow. For iterative applications with
heavy arithmetic operations, RulerS records each vertex’s
number of iterations that its property is continuously stable.
Once Rulers[vx] passes its RRG, any further computation
is eliminated.

In contrast, the push operation propagates a source ver-
tex’s value to all its neighbors via outgoing edges. Moreover,
only one push function is shared by all applications (Algo-
rithm 3), since push does not employ redundancy optimiza-
tion, but only guarantees the result correctness. The details
of Algorithm 3 are described as follows: In line 2-4, it checks
whether the last iteration is in pull or not. If yes, this func-
tion activates all the vertices and sets the pull back to false.
The “active list” technique [42] is commonly deployed by
modern distributed systems [43, 65, 23, 38, 18, 61] to im-
prove the communication efficiency. Thus, it only sends the
property of active source vertices (line 6-7). However, due
to the redundancy optimization, some “active” vertices may
have been deactivated before reaching the push mode. Their
successors may lose opportunities to check the properties of
these predecessors. Such coincidences can potentially result
in correctness issues. Therefore, we need to reactivate all
the vertices in the transition phase (i.e., pull→push). Then,
the active vsrc vertices with outgoing edges use user-defined
pushFunc to propagate its information. The next section
presents the APIs that are used to bridge these RR-aware
push/pull computation models with graph applications.

3.5 RR APIs
SLFE defines a set of application programming interfaces

(APIs) to transparently optimize redundancy, as shown in
Table 3. The edgeProc interface functions traverse a graph
along the edges, while vertexUpdate applies application-
specific operations to a vertex’s property.

In the min/max API, activeV erts records the number of
active vertices in each iteration and terminates the execution
early once no active vertex exists. Ruler compares with
each vertex’s RRG to schedule the computations. This API
will be utilized for applications with min/max aggregation
functions such as SSSP. In contrast, edgeProc for the arith
API does not need any redundancy reduction inputs from
the user side. In both edgeProc APIs, the number of active
outgoing edges in the current iteration dynamically drives
the decision of using either the push or pull computation
model. The vertexUpdate applies user-defined vertexFunc
to each vertex at the end of each iteration.

3.6 Programming with SLFE
This section presents SSSP and PR applications imple-

mented atop SLFE as examples to show the programma-
bility of SLFE. These examples show that with SLFE ’s RR

Algorithm 4 Single Source Shortest Path.

1: float * dist = new float[numV ];
2: vroot.active = true; dist[vroot] = 0.0;
3: uint32 t activeV erts = 1; uint32 t iter = 0;
4: pushFunc(vsrc, vsrc.outgoingNeighbors)
5: for vdst ∈ vsrc.outgoingNeighbors
6: float newDist = dist[vsrc] + vdst.edgeData;
7: if newDist < dist[vdst]
8: dist[vdst] = newDist; vdst.active = true;
9: pullFunc(vdst, vdst.incomingNeighbors)

10: float miniDist = MAX;
11: for vsrc ∈ vdst.incomingNeighbors
12: float newDist = dist[vsrc] + vsrc.edgeData;
13: if newDist < miniDist
14: miniDist = newDist;
15: if dist[vdst] > miniDist
16: dist[vdst] = miniDist; vdst.active = true;
17: while (activeV erts)
18: slfe.edgeProc(pushFunc, pullFunc,
19: activeV erts, iter++ ); // iter is Ruler

Algorithm 5 PageRank.

1: float* rank = new float[numV ];
2: //graph traverse is similar to SSSP shown in Algorithm 4
3: //use the edgeProc(pushFunc, pullFunc)
4: float vOp(vx)
5: rank[vx] = 0.15 + 0.85∗rank[vx];
6: if vx.hasOutgoing > 0
7: rank[vx] /= vx.outEdges;
8: return rank[vx];
9: slfe.vertexUpdate(vOp);

10: //vertexUpdate is a system API to iterate through all V s
11: uint32 t* stableCnt = new uint32 t[numV ]; //RulerS
12: float* stableV alue = new float[numV ];
13: vertexUpdate(vOp)
14: for vx ∈ V
15: if stableCnt[vx] < RRG[vx]
16: float rank = vOp(vx);
17: if rank = stableV alue[vx] stableCnt[vx]++;
18: else stableCnt[vx] = 0; stableV alue[vx] = rank[vx];

APIs, optimizing redundant computation requires minimum
programming efforts.

3.6.1 Single Source Shortest Path
SSSP follows a relaxation-based algorithm to iteratively

compute the shortest distance from a given root to other
vertices. SSSP requires user-defined pushFunc, pullFunc,
activeVerts, and iteration counter (singleRuler for redun-
dancy reduction) for SLFE to process the active vertices
along with the connected edges. Algorithm 4 shows the
pseudo-code of SSSP, where a property dist of each vertex
stores its shortest distance. In push mode (line 4-8), each
vdst of vsrc will receive a newDist composed by dist[vsrc]
and the weight of a connected edge. To trigger such a com-
putation, vsrc needs to be active in this iteration. If the
newDist is smaller than the current dist of vdst, vdst will
be updated with this smaller value. Similarly, pull mode
(line 9-16) iterates through a vdst’s source vertices locally,
and summarizes to get a local miniDist. If miniDist is
smaller than dist[vdst], then it will be sent to the machine
owning vdst via message passing interface (MPI) [22]. Ver-
tices with dist updates will be activated for the next round.
Once there is no active vertex anymore, the process will ter-
minate. Clearly, compared to the SSSP implementations on
other systems, our SSSP does not incur any extra effort from
the programming perspective.
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3.6.2 PageRank
PageRank algorithm iteratively increases the relative rat-

ing of a vertex based on the weights of all connected ver-
tices to rank the importance of each vertex in the graph.
The propagation process (i.e., pushFunc and pullFunc) in
PageRank is similar to the SSSP example shown above,
hence, we only demonstrate the difference here. Algorithm 5
shows the implementation of PR application in SLFE. The
rank array stores the properties of all vertices. Differing
from SSSP, PR has to apply an extra user-defined func-
tion (line 4-8) on vertices’ aggregated properties (rank) af-
ter each iterative propagation process. PR provides such
function to SLFE ’s vertexUpdate API. The pseudo-code of
vertexUpdate is also shown in Algorithm 5 (line 11-18) to
help understand how SLFE achieves redundancy minimiza-
tions for PR like applications. The vertex’s status monitor-
ing process happens in this function with the idea of tracking
the number of continuous iterations that a vertex’s rank has
not been changed. Such a stable iteration will increase the
stableCnt by 1 (line 17). If vx has a new rank, its stableCnt
will be erased and stableV alue will cache this new value (line
18). Once vx’s total number of stabilized iterations exceeds
its RRG, we consider it as a early-converged vertex (line 15).
Any further computation on it will be replaced by loading
the cached rank from stableV alue.

These two examples show that the implementation of
graph applications on SLFE is very straightforward. Addi-
tionally, SLFE ’s redundancy reduction philosophy does not
incur any heavy modification on the manner that the graph
application used to be coded.

3.7 Work Stealing
The workload balance of graph processing depends on

many factors such as the initial partitioning quality, the den-
sity of active vertices on-the-fly, and so on. To overcome the
load imbalances arising from the uneven redundancy reduc-
tions, we follow the idea of [13, 21, 20, 65] to implement a
fine-grained work stealing mechanism in SLFE. In execution,
each graph is split into mini-chunks, and each mini-chunk
contains 256 vertices. Such design can enhance the hard-
ware (i.e., core and memory systems) utilization and take
advantages of hardware prefetching. To minimize the over-
head of stealing work, each thread memorizes the starting
point of the assigned mini-chunk, and simply uses a for loop
to iterate vertices in the mini-chunk.

During the execution, all threads first try to finish up
their originally assigned graph chunks before starting to
steal remaining tasks from the “busy” threads. The start-
ing offsets and other metadata shared by threads are pre-
served via the atomic accesses such as sync fetch and ∗.
Although redundancy reduction may impact the workload
balance across computation units, this explicit work stealing
strategy can indeed solve the problem. The inter-machine
balance is guaranteed by the chunking-based partitioning as
described in [65]. We examine the quality of inter-machine
workload balance in SLFE. Results in Section 4.3 show that
SLFE ’s redundancy-aware computation does not break the
load balance achieved by the partitioning.

3.8 Correctness

Start Late. Most graph processing algorithms consist of
many iterations of evaluating certain nodal function fv ap-

plied at each individual vertex v. Such function fv : V(t) →
V(t+1) takes the current value of all source vertices V(t)

stored at iteration t and produces the next state value
V(t+1) for vertex v. For example, in the case of SSSP,
the function fv corresponds to the function min(), the in-

put state V(t) is reduced to only the set of current mini-

mal distances {d(t)n1 , . . . , d
(t)
nk} from the source to all immedi-

ate neighbors of vertex v, and the output produced is the
current minimal distance from the source to vertex v (i.e

min(d
(t)
n1+en1v, . . . , d

(t)
nk+enkv), where eij denotes the weight

of the edge from i and j).

Theorem 1. SSSP produced from the delayed vertex
computation converges to the original output.

Proof. The nodal/aggregation function fv at each ver-
tex in the SSSP algorithm is the min() function, which is
a monotonically decreasing function. The number of edges
and all the edge weights are finite, therefore the value of

d
(t)
nk is bounded by below as t → ∞. Thus, by the mono-

tone convergence theorem [28], the bypassed/delayed update
procedure converges for SSSP. Moreover, since the initial
graph state is the same for the original and the bypassed up-
date procedure, these two procedures converge to the same
value.

If the output sequence {fv(V(0)), . . . , fv(V(t))} produced
by the function fv converges as t → ∞ for all v ∈ V, then
the output produced from the delayed update procedure
converges to the original output fv(V(t)) as t → ∞. Simi-
lar proofs can be applied on other graph applications with
monotonic behaviors.

Finish Early. For graph applications with heavyweight
arithmetic operations, SLFE monitors the value of each ver-
tex, and determines each vertex’s convergence accordingly.
The value of a vertex V depends on its source vertices. V ’s
RRG approximately measures the maximum propagation
steps for V to receive an update. Thus, if V ’s value has been
stable for a certain number of iterations larger than its RRG,
it means no further change will be propagated to this ver-
tex. SLFE bypasses the subsequent computations on such
early-converged vertices. We experimentally verify SLFE ’s
accuracy by comparing SLFE ’s results (e.g., vertices’ prop-
erties) with the ones produced by other systems [65, 23, 18].

3.9 SLFE’s Generality
The idea of redundancy reduction in SLFE is applica-

ble to other graph frameworks. The reason we propose a
new framework SLFE for our experiments is that SLFE em-
ploys a set of state-of-the-art optimizations, which exposes
the performance bottlenecks in the redundant computation,
rather than other components. This section describes how
other graph frameworks can utilize our RR optimization.

The Gather-Apply-Scatter (GAS) computation model [23]
has been widely adopted by many popular graph sys-
tems [23, 64, 58, 24, 56, 45]. The RRG provided by SLFE ’s
unique preprocessing stage can be used to schedule the
vertex-centric GAS operations. For example, if the RRG
reveals that an active vertex in the worklist has a certain
amount of redundant computations, this vertex is removed
from the worklist to avoid redundant computation on it.
Take PowerGraph [23] as an example, one can adapt SLFE ’s
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Table 4: The graph datasets [37, 33, 32] used in experiments.

Real graph —V— —E— AvgDegree Type

pokec (PK) 1.6M 30.6M 18.8 Social

orkut (OK) 3.1M 117.2M 38.1 Social

livejournal (LJ) 4.8M 69M 14.23 Social

wiki (WK) 12.1M 378.1M 31.1 Hyperlink

delicious (DI) 33.8M 301.2M 8.9 Folksonomy

s-twitter (ST) 11.3M 85.3M 7.5 Social

friendster (FS) 65.6M 1.8B 27.5 Social

Synthetic graph —V— —E— AvgDegree Type

RMAT1 100M 2B 20 RMAT

RMAT2 300M 6B 20 RMAT

RMAT3 500M 10B 20 RMAT

methodology in the receive message stage to avoid perform-
ing redundant computation on vertices in each super-step.
This optimization can save the network costs incurred in
redundant gather and scatter operations, and eliminate the
redundant computation in the user-defined apply operations.

4. EVALUATION
We evaluate SLFE on a 8-machine cluster with 2nd gen-

eration of Xeon Phi 7250 processor (Knights Landing) and
InfiniBand network switch (up to 100Gb/s). Each machine
has 68 physical cores; each core has a 32KB L1 I/D cache
and a pair of cores share a 1MB L2 cache. The main mem-
ory system consists of 96GB DDR4 DRAM and 16GB MC-
DRAM; MCDRAM, configured as the last level cache shared
by all the cores, has 5× bandwidth of DDR4.

We compare SLFE with three distributed graph pro-
cessing systems—PowerGraph [23], PowerLyra [18], and
Gemini [65]. In addition, we compare SLFE ’s perfor-
mance in a single machine with two shared-memory sys-
tems, GraphChi [35] and Ligra [52]. All the experiments
include five popular graph applications from the two cate-
gories according to Table 1 (min/max: Single Source Short-
est Path (SSSP), ConnectedComponents(CC), WidestPath
(WP); arithmetic: PageRank (PR) and TunkRank(TR)).
We report the average results of five repeated executions
(standard deviation < 5%). The input for these applica-
tions include seven real-world graphs and three large syn-
thetic RMAT graphs [32] with the number of vertices and
edges ranging from 1.6 to 500 millions and from 30 million
to 10 billion, respectively, as shown in Table 4.

Experiment Outline. Section 4.1 compares SLFE ’s end-to-
end performance (preprocessing and execution time) with
other three distributed systems running with the largest
scale: 8 machines and 68 cores per machine. In this ex-
periment, we use the real-world graphs as the input to show
the performance in practical usage. Section 4.2.1 evaluates
SLFE ’s intra-machine scalability (scale-up), with the com-
parison with the two shared-memory systems. As limited to
the memory size, we only use the real-world graphs as the
input. Section 4.2.2 evaluates SLFE ’s inter-machine scala-
bility (scale-out). We use the RMAT graphs as the input to
make sure each machine and each core has enough computa-
tion under large scale. Section 4.3 shows some micro metrics
(e.g., number of computations and network traffic) to verify
that our performance gains are due to the optimization of
redundant computation.

Table 5: 8-machine end-to-end runtime and improvement
over the state-of-the-art distributed systems. The end-to-
end runtime includes both preprocessing time and an ap-
plication’s execution time. Gemini [65] and SLFE use the
same preprocessing methodology.

Preprocessing time (loading + partitioning + formatting)

PK OK LJ WK DI ST FS

PowerG [s] 74.2 277 168 891 736 210 4497

PowerL [s] 84.4 312 191 982 811 239 5052

SLFE [s] 3.46 10.5 7.9 35.2 45.3 14.1 295

RRG generation time

PK OK LJ WK DI ST FS

SLFE [s] 0.05 0.08 0.13 0.6 0.68 0.3 1.62

Application execution time

PK OK LJ WK DI ST FS

S
S
S
P

PowerG [s] 12.9 34.2 27.5 69.9 78.4 24.5 511

PowerL [s] 10.3 23.0 18.8 34.5 18.9 17.3 243

SLFE [s] 0.58 2.5 4.0 2.8 3.1 2.3 6.25

Speedup(×) 19.8 11.2 5.7 17.4 12.4 8.9 56.4

C
C

PowerG [s] 7.1 19.4 15.1 26.7 47.6 14.3 236

PowerL [s] 5.7 10.4 10.8 15.6 14.2 3.0 112

SLFE [s] 0.39 0.19 0.45 0.52 0.8 0.46 3.06

Speedup(×) 16.2 74.8 28.4 39.2 32.5 14.2 53.2
W

P

PowerG [s] 7.0 15.5 19.8 47.8 29.4 7.0 299

PowerL [s] 6.1 10.2 16.0 33.1 11.1 5.3 164

SLFE [s] 0.33 0.87 0.65 0.84 2.4 0.69 3.8

Speedup(×) 19.8 14.5 27.4 47.3 7.5 8.8 58.3

P
R

PowerG [s] 210 227 524 810 511 430 2874

PowerL [s] 129 84.2 193 321 67.5 90.9 1415

SLFE [s] 5.8 2.5 6.1 12.1 4.6 6.8 37.8

Speedup(×) 28.4 55.3 52.1 42.1 40.4 29.1 53.3

T
R

PowerG [s] 37.1 92.8 179 243 234 80.6 676

PowerL [s] 14.3 34.7 80.4 137 57.7 15.5 304

SLFE [s] 2.7 1.2 4.5 4.5 5.0 1.4 17.1

Speedup(×) 8.5 47.3 26.7 40.5 23.2 25.2 26.5

GMEAN 25.1×

Thorough Evaluation. We perform additional experi-
ments, such as scale-out evaluation on real-world graphs and
trend-line analysis on real-world graphs, and memory foot-
print analysis. Due to the space limitation, we upload these
data to https://github.com/songshuangVLDB19/VLDB19_

Appendix.

4.1 End-to-end Performance Evaluation
As SLFE aims to reduce computational redundancies

for distributed graph processing systems, comparing to
other state-of-the-art distributed systems can help quantify
SLFE ’s computational efficiency and high performance im-
provement. Table 5 reports the 8-machine performance of
PowerGraph, PowerLyra and SLFE, running five popular
applications on seven real graphs. The first part of Ta-
ble 5 reports the preprocessing time of the three systems,
which includes the graph loading, partitioning, and format-
ting steps. Since SLFE extends the general preprocessing
phase to generate RRG information, such time cost is re-
ported as well. For applications’ execution time, the results
show that SLFE outperforms these two systems in all cases
significantly (25.1× on average), with up to 74.8× for CC on
the OK graph. For the FS graph with more than 1 billion
edges, SLFE achieves the highest average speedup (47.9×)
among all input graphs. Thus, in contrast to these in-
memory distributed systems, SLFE can handle large graphs
more efficiently.
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Figure 7: SLFE ’s time of execution phase and RRG genera-
tion time normalized to Gemini [65] on a 8-machine cluster.

While PowerGraph and PowerLyra are the general dis-
tributed graph platforms that provide many options for
designers to test their ideas, Gemini is a dedicated
computation-centric system that utilizes most of the state-
of-the-art optimization techniques. In [65], Gemini is re-
ported to outperform PowerGraph, GraphX [24], and Pow-
erLyra by 19.1× on average. We compare SLFE ’s perfor-
mance with Gemini in Figure 7. Since SLFE and Gemini
utilize the same preprocessing method (preprocessing time
is already reported in Table 5), this end-to-end comparison
between SLFE and Gemini only includes the time in the exe-
cution phase and RRG generation. Regarding to the time in
the execution phase, SLFE outperforms Gemini by 34.2%,
43.1%, 42.7%, 47.5% and 41.6% on SSSP, CC, WP, PR,
and TR, respectively. When including the RRG generation
overhead, SLFE still yields an average of 25.1% (across the
seven real graphs) end-to-end performance boost on SSSP,
the one with the smallest performance improvement of the
five applications. Additionally, such preprocessing overhead
can be amortized, because it can be repeatedly utilized by
execution with different inputs or even different graph ap-
plications. These performance gains show the effectiveness
of SLFE ’s unique redundancy optimization.

For the distributed graph processing, the update on a
vertex triggers either a local atomic operation or a remote
synchronization via the network. In contrast to other dis-
tributed platforms, SLFE reduces the number of computa-
tions, resulting in fewer updates, and thus less communica-
tion across distributed machines. In Figure 7, such benefits
can be observed on relatively smaller graphs such as OK,
LJ, and WK, where communication effect is amplified (up
to 71% improvement). For the large FS graph, SLFE out-
performs Gemini in all applications by 33.2% on average.
Such improvement is mainly from the optimization of re-
dundant computation, which dominates the execution time.

4.2 Scalability Evaluation

4.2.1 Intra-machine Scalability
Next, we evaluate the intra-machine scalability of SLFE

by using 1 to 68 cores to run five applications with all
real graphs that fit in a single machine’s memory. Over-
all, Figure 8 shows that SLFE achieves nearly linear scale-
up in all cases. For instance, compared to 1-core and
16-core cases, running on 68 cores achieves an average
speedup of 44.7× and 3.5×, respectively. Although the
pressure on shared hardware resources becomes more in-
tensive as core count goes up, SLFE still maintains a de-
cent speedup curve. Moreover, we compare SLFE ’s scal-
ability with two state-of-the-art single-machine systems—
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Figure 8: Intra-machine scalability (1-68 cores) of SLFE,
GraphChi [35], and Ligra [52] on a single-machine setup (av-
erage of seven real world graphs).
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Figure 9: Inter-machine scalability of the preprocessing
phase of PowerGraph [23], PowerLyra [18], and SLFE on
three synthetic graphs. SLFE and Gemini [65] use the same
preprocessing methodology except for the RRG generation.
PowerGraph and PowerLyra can only execute the smallest
RMAT1 graph in a 8-machine setup because of their inef-
ficient memory usage [50, 27, 63, 65], while SLFE fails to
process RMAT3 in a single machine. For all the cases, RRG
generation is invisible because it incurs very small overhead.

GraphChi and Ligra. GraphChi uses cost-efficiency to trade-
off performance, where its bottleneck is the intensive I/O
accesses. Therefore, as shown in Figure 8, it does not pro-
vides an outstanding intra-machine scalability. In contrast,
Ligra takes the advantages of processing entire graph loaded
in memory. Thus, compared to SLFE, Ligra has a very
competitive scale-up trend. However, due to its excessive
amount of computations and memory accesses, Ligra reaches
the sub-optimal performance in most cases. SLFE reduces
the computational redundancies, which results in less CPU
usage and memory accesses in the shared-memory platform.
Such optimization helps SLFE achieve up to 1644× and
7.5× speedups over GraphChi and Ligra when using the
maximum of 68 cores. The absolute runtime data of this
experiment have been uploaded to [1].

4.2.2 Inter-machine Scalability
To demonstrate SLFE ’s inter-machine scalability, we use

PaRMAT [32] to generate three large-scale synthetic RMAT
graphs. Due to the inefficient memory usage [50, 27, 65, 63],
PowerGraph and PowerLyra can only handle the smallest
RMAT1 graph in our 8-machine cluster. However, Gemini
and SLFE can operate these RMAT graphs in most cases.
Figure 9 summarizes these four systems’ preprocessing time.
For RMAT1 graph on a 8-machine setup, SLFE finishes the
preprocessing procedure much faster than the PowerGraph
and PowerLyra. Moreover, as shown in Figure 9, SLFE ’s
preprocessing phase also provides a good scale-out scalabil-
ity for all the three RMAT graphs. Compared to the original
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Figure 10: Inter-machine scalability of the execution phase of Gemini [65], PowerGraph [23], PowerLyra [18], and SLFE (1-8
machines) on three synthetic RMAT graphs. Note: missing points are due to the failure of exceeding memory capacity.
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Figure 11: Trend-line analysis of SLFE ’s execution phase (1-8 machines with 16, 32, 64, and 68 cores per machine) on three
synthetic RMAT graphs. Note: missing points are due to the failure of exceeding memory capacity.

preprocessing steps (e.g., loading, partitioning, and format-
ting), the proposed RRG generation overhead is negligible.

After comparing the preprocessing cost, we demonstrate
the inter-machine scalability of the execution phase of the
four systems in Figure 10. We also include the sum of
SLFE ’s execution time and RRG generation time to fur-
ther verify the feasibility of our proposed approach in vari-
ous scale-out configurations. As shown in Figure 10a, SLFE
can achieve a significant speedup (up to 108× and 51.5×)
over PowerGraph and PowerLyra for all the five applications
with the RMAT1 graph on our 8-machine cluster. Gem-
ini has an inflection point at 2-machine or 4-machine in all
the five applications. Such behavior is due to the fact that
the communication overhead surpasses the benefits obtained
from adding more computation resources. However, with
optimizing redundant computations, SLFE incurs less com-
munication overhead so that it still scales down as the clus-
ter size increases. On average, compared to the 1-machine
setup, SLFE running 8-machine provides an average of 2.9×
execution time speedup across the five applications with the
three RMAT graphs. Among all the configurations (1 to 8
machines), SLFE outperforms Gemini by up to 7.2× (1.9×
on average). This clearly indicates the feasibility and prac-
ticability of SLFE ’s design principle.

In addition to the intra/inter-machine scalability exper-
iments, we also report SLFE ’s trend-lines by varying the
number of cores per server as well as the number of server
machines in the cluster. Figure 11 shows such analysis on
the three synthetic graphs. We observe that when running
PageRank (PR) with RMAT1 with 4 and 8 machines, the
growing communication imposed by scaling out surpasses
the benefit of additional computing resource. Even though
TunkRank (TR) algorithm is similar to the PageRank, it
does not face to such performance inflection. We further

investigate this issue and find that compared to TunkRank,
the redundancy reduction process in PageRank starts much
earlier, which removing a larger amount of work. Insuffi-
cient computation with more communication overhead leads
to the scaling loss. Overall, we can see that a larger cluster
with more cores per machine can always speed up SLFE ’s
execution. On average, SLFE running with 68 cores can
vertically (i.e., with the same number of machines) achieve
3.4×, 1.8×, and 1.1× speedup over 16-core, 32-core, and 64-
core, respectively. Horizontally (i.e., with same amount of
cores per machine), SLFE running with 8 machines achieve
3.6×, 2.6×, and 1.5× speedups over running on 1, 2, 4 ma-
chines, respectively.

4.3 Further Discussions
To further understand SLFE ’s gain from the redundancy

optimization, we measure several micro metrics.

4.3.1 Number of Computations
The computation here is defined as an update on a ver-

tex, which includes a min/max or arithmetic operation and
the corresponding synchronization operations. We study the
number of computations during execution phase of SSSP,
CC, and PR in Figure 12. The reason for choosing these
three applications is that they represent converging trends
among the five applications: WP and SSSP have a similar
converging trend; PageRank and TunkRank have a similar
converging trend. In Figure 12, the “w/o RR” curves rep-
resent SLFE without RR enabled, and the same trends are
observed in Gemini, PowerGraph, and PowerLyra systems
(not shown). The “w/ RR” curves are obtained from SLFE
with RR.

The SSSP initiates from a given root, and its number of
computation dramatically increases when more vertices are
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Figure 12: SLFE ’s no. of computations per iteration.
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Figure 13: SLFE ’s reductions on the number of instructions.

involved in the computation (Figure 12a and 12b). Redun-
dant computations are reduced in the pull mode. Hence,
compared to the original SSSP execution, SLFE ’s ramping-
up curves reach a much lower amount of computation. This
phenomenon is caused by the “start late” approach, where
intermediate updates are bypassed. Moreover, both curves
(“w/RR” and “w/o RR”) converge to the same point in
the end, showing that the redundancy reduction leads to
the correct results. As aforementioned in Section 3.4, the
push function activates all vertices to deliver “unseen” up-
dates of inactive vertices in the pull→push transition phase.
We observe one such event (circled) in Figure 12a), which
only incurs a small amount of immediate computations to
guarantee the correctness. Figure 12c and 12d show that
CC’s number of computations is reduced along the converg-
ing. Like SSSP, CC’s curves are finally merged in the end.
In contrast, PR [35, 23, 18, 65] keeps updating each ver-
tex in the execution. As more early-converged vertices are
detected on-the-fly, the “finish early” principle on these ver-
tices dramatically reduces the total amount of computations
(Figure 12e and 12f).

4.3.2 Hardware and System Metrics
Instructions and Memory Accesses. We quantify the
instruction reduction when SLFE enables redundancy re-
duction (RR) via counting the retired instructions using per-
formance monitoring units [3, 6]. Such results are gathered
from 8 machines. RR saves up to 64.3% (31.3% on average)
instructions across all applications on all graphs. Moreover,

Table 6: SLFE ’s reductions in terms of memory accesses.

Graph —SSSP— —CC— —WP— —PR— —TR—

OK 20.4% 29.6% 25.6% 59.6% 32.2%

LJ 36.2% 48.9% 24.4% 45.8% 55.3%

WK 26.4% 35.7% 22.2% 62.1% 51.2%

DI 29.6% 30.2% 29% 22.7% 55.4%

PK 30.2% 45.2% 32.7% 39.9% 22.4%

ST 35.7% 31.3% 43.3% 25.4% 21.5%

FS 29.2% 45.7% 21.6% 33.2% 27.6%

GMEAN 29.2% 37.3% 27.6% 38.7% 35.2%
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Figure 14: SLFE ’s network traffic reduction on a 8-machine
cluster.

we quantify the number of memory accesses via counting
hardware load and store events. As shown in Table 6, SLFE
reduces up to 62.1% memory accesses (33.3% on average).

Network Traffic. The network traffic arises when synchro-
nizing a vertex’s master data and its mirror/remote data.
Graph frameworks with different implementations have sim-
ilar network traffic patterns. One important factor that im-
pacts the traffic pattern is the partitioning strategy, which
distributes vertices across machines in the cluster [36, 53,
54]. For simplicity, we compare SLFE to Gemini with the
same partitioning strategy and traffic format (4-byte vertex
ID and 8-byte data for each update). It is worth noting
that, with this configuration, SLFE without RR generates
the same amount of network traffic as Gemini. Figure 14
shows the improvement on network traffic via RR. Overall,
RR yields up to 42.5% (19.3% on average) traffic reduction
for five applications across all graphs.

Memory Footprint. Compared to PowerLyra and Pow-
erGraph, SLFE reduces footprint by 80.3% and 72.6% on a
8-machine cluster. Compared to Gemini, SLFE ’s footprint
is 7.3% larger due to the storage of RRG.

4.3.3 Workload Balance
In the end, we analyze SLFE ’s intra/inter-machine bal-

ance of the five applications with all real-world graphs run-
ning on 8 machines. Figure 15a shows the intra-machine
case, where the baseline is the runtime achieved without
work stealing support. From the figure, we can see that work
stealing yields an average of 21% speedup for arithmetic-
based PR and TR, while the work stealing speeds up the
min/max-based applications by 15%.

In the inter-machine case, workload balance is mainly en-
sured by the quality of the initial graph partitioning. Fig-
ure 15b shows, without RR, the average time difference be-
tween the earliest and latest finished machines is less than
7% across all applications, thanks to the chunking-based
partitioning approach [65]. With RR, min/max-based algo-
rithms have a slightly higher inter-machine imbalance com-
pared to others. This is due to the imbalanced message
passing in the push mode after redundancy optimization.
In contrast, PR and TR have much less on-the-fly commu-
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Figure 15: SLFE ’s RR effects on balance.

nication messages, because they mostly execute in the pull

mode. Overall, SLFE ’s RR only increases an average of 2%
inter-machine imbalance for all applications.

5. LIMITATIONS
SLFE has two limitations. First, redundancy reduction

guidance needs to be generated in the preprocessing phase.
Even though generating this re-usable topological informa-
tion for the redundancy reduction purpose incurs extremely
low cost, it is considered as overhead atop the original graph
processing flow. Our future work is to further minimize
the preprocessing overhead. Second, although not observed
in our experiments, SLFE ’s efficient redundancy reduction
could potentially incur workload imbalance across compu-
tation units when the amount of eliminated redundancies
varies. For the intra-machine case, we use work stealing to
address this issue. However, it is challenging to address the
potential inter-machine load imbalance due to costly com-
munication via network. In the future, we will investigate
various inter-machine work balancing schemes [31, 62] and
integrate them into SLFE.

6. RELATED WORK
There are many distributed graph processing systems.

Pregel [42] is the first one that proposes a vertex-centric pro-
gramming model and Bulk Synchronous Processing (BSP)
computation model, which have been widely adopted by
other graph systems [38, 35, 23, 18, 61, 65, 48]. Some exist-
ing works like X-Stream [47] and Chaos [46] developed the
edge-centric graph processing engine that sequence memory
and I/O accesses. Other than the innovations on computa-
tion model, Powerlyra [18] and PowerSwitch [61] leveraged
hybrid partitioning (vertex/edge cut) schemes and hybrid
processing engines (sync/async) to accelerate graph analyt-
ics. Trinity [51] combined graph processing and databases
into a single system. Apache Giraph [26] provided the abil-
ity to run on existing Hadoop [5] infrastructure and was
highly optimized in terms of scalability by Facebook [19].
However, none of these existing distributed frameworks aim
to improve graph processing performance by optimizing the
redundant computations. Unlike these approaches, SLFE is
the first one to optimize distributed graph processing with
a novel redundancy-reduction design.

Other than the distributed solution, GraphChi [35] is a
leading graph engine that analyzes large-scale graphs in a
single PC; its parallel sharding window (PSW) technique
efficiently utilizes the secondary storage. Based on this
scheme, Vora et al. [59] optimized GraphChi to only load
edges with new values. This optimization relies on the par-
ticular re-sharding technique of disk-based systems, which

is not applicable to systems with entire graphs stored in dis-
tributed memories. Kusum et al. [34] proposed a graph re-
duction method to improve computational efficiency of Ga-
lois [43]. Such method performs iterative graph algorithms
in a two-phase manner, which incurs an extra round of graph
partitioning. This cannot be applied to the distributed sys-
tems, because the preprocessing is the most expensive pro-
cess in the distributed systems [58, 55, 39, 65]. By contrast,
SLFE ’s solution is suitable for the distributed systems, as
it does not rely on any specific partitioning strategies, and
does not need any extra partitioning effort.

Orthogonal to the system optimizations, graph library,
algorithm, and language designs are another related ap-
proaches. CombBLAS [15] offers an extensible parallel
graph library with a set of linear algebra primitives. Paral-
lel Boost Graph Library (PBGL) [25] provides graph data
structures and message passing mechanisms (MPI) to par-
allelize applications. These libraries can employ SLFE ’s re-
dundancy reduction schemes. Wang et al. [60] leveraged ar-
ticulation points to identify common sub-graphs, and reused
the sub-graphs’ results to remove redundancies in the be-
tweenness centrality algorithm. Maleki et al. [41] proposed
the Dijkstra Strip Mined Relaxation to reduce the commu-
nication overhead in SSSP. These algorithm optimizations
speedup specific graph algorithms. In contrast, SLFE pro-
vides a system solution that is widely applicable to mul-
tiple graph applications. As for the graph domain-specific
languages (DSL), Green-Marl [29] allows developers to de-
scribe graph algorithms intuitively and expose the data-level
parallelism inherent in the algorithms. Sevenich et al. [49]
adopt two DSLs to enable high-level optimizations from the
compiler and skip the API invocation overheads. Our redun-
dancy reduction optimization is orthogonal to these works.

7. CONCLUSIONS
In this paper, we propose SLFE, a novel topology-guided

distributed graph processing system. With the design prin-
ciple of “start late or finish early”, SLFE reduces redun-
dant computations to achieve better performance. SLFE,
as a general framework, combines lightweight preprocess-
ing techniques, system APIs, and runtime libraries to en-
able efficient redundancy optimization. Experimental re-
sults on an 8-machine high-end distributed cluster show that
SLFE significantly outperforms state-of-the-art distributed
and shared memory graph processing systems, yielding up to
75× and 1644× speedups, respectively. Moreover, SLFE ’s
redundancy detection and optimization schemes can be eas-
ily adopted in other graph processing systems.
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