
Embedded Functional Dependencies and
Data-completeness Tailored Database Design

Ziheng Wei
Department of Computer Science

The University of Auckland
Auckland, New Zealand

z.wei@auckland.ac.nz

Sebastian Link
Department of Computer Science

The University of Auckland
Auckland, New Zealand

s.link@auckland.ac.nz

ABSTRACT
We establish a robust schema design framework for data
with missing values. The framework is based on the new
notion of an embedded functional dependency, which is in-
dependent of the interpretation of missing values, able to
express completeness and integrity requirements on applica-
tion data, and capable of capturing many redundant data
value occurrences. We establish axiomatic and algorithmic
foundations for reasoning about embedded functional de-
pendencies. These foundations allow us to establish gener-
alizations of Boyce-Codd and Third normal forms that do
not permit any redundancy in any future application data,
or minimize their redundancy across dependency-preserving
decompositions, respectively. We show how to transform
any given schema into application schemata that meet given
completeness and integrity requirements and the conditions
of the generalized normal forms. Data over those application
schemata are therefore fit for purpose by design. Extensive
experiments with benchmark schemata and data illustrate
our framework, and the effectiveness and efficiency of our al-
gorithms, but also provide quantified insight into database
schema design trade-offs.

PVLDB Reference Format:
Ziheng Wei, Sebastian Link. Embedded Functional Dependen-
cies and Data-completeness Tailored Database Design. PVLDB,
12(11): 1458-1470, 2019.
DOI: https://doi.org/10.14778/3342263.3342626

1. INTRODUCTION
SQL continues to be the de-facto industry standard and

choice for data management. This holds true even after sev-
eral decades of use and even in the light of new application
data such as complex-value data, Web data, big data, or
uncertain data. Nevertheless, even the simplest extensions
to the underlying relational model cause significant issues in
database practice. A prime example is the handling of in-
complete data, which has attracted continuous interest from

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 12, No. 11
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3342263.3342626

academics and practitioners over decades. While many ad-
vances can be celebrated, it is still unclear what a right
notion of a query answer of incomplete data constitutes.
In this research we are interested in the design of database
schemata in the presence of incomplete data. SQL handles
incomplete data by the use of a null marker, denoted by ⊥,
which indicates a missing data value occurrence on an at-
tribute. The null marker is distinguished from actual data
values, and treated differently. Different null marker occur-
rences, however, are treated uniformly in SQL to avoid pro-
cessing overheads. Occurrences of null markers are on the
rise for modern applications such as data integration. In-
deed, in order to accommodate the integration of data from
different schemata, frequent uses of null markers are neces-
sary to conform to the structure of the underlying schema
that integrates the data.

1.1 Desiderata
The primary aim of database design is to find a schema

that facilitates the processing of the future application work-
load as well as possible. The well-known database design
framework for relational databases is centered around the
notion of data redundancy [6, 29, 31]. In practice, most
redundant data value occurrences originate from functional
dependencies (FDs) [8]. These dependencies can capture im-
portant integrity requirements of the underlying application
domain. Informally, an FD X → Y expresses that every pair
of tuples with matching values on all the attributes in X also
has matching values on all the attributes in Y . Relational
database design provides a framework to compute schemata
in which integrity requirements can be enforced efficiently
during updates. However, real-world requirements on the
completeness of data are not accommodated, as no missing
data is permitted to occur at all.

We will now summarize which properties an FD should
exhibit to advance database design in practice. There has
been a plethora of research on finding suitable extensions
for the notion of an FD to accommodate missing data. This
has led to useful notions such as weak and strong FDs [24,
25], no information FDs [4, 16], or possible and certain FDs
[19, 21]. However, all of these notions assume that the same
interpretation applies to all occurrences of the null marker
in the given data set, such as “value does not exist”, “value
exists but is unknown”, or “no information”. This sensitiv-
ity to a fixed null marker interpretation is difficult to justify
in practice. Furthermore, it is not clear why we would want
null marker occurrences to have an impact on the validity of
an FD at all. Instead, it is more sensible to make the seman-

1458



Table 1: Sample r
p(arent) b(enefit) c(hild)
Homer 610 Bart
Homer 610 Lisa
Homer 915 ⊥

Table 2: Lossless redundancy-eliminating decompo-
sition of r from Table 1 for applications that require
complete data values on c, p, and b

p(arent) b(enefit)
Homer 610

p(arent) c(hild)
Homer Bart
Homer Lisa

tics of FDs dependant on actual data value occurrences only.
This would mean the FD X → Y is satisfied whenever for
every pair of records that have no null marker occurrences
in any columns in the set union XY of X and Y , match-
ing values on all attributes in X imply matching values on
all the attributes in Y . This notion is robust under differ-
ent interpretations of null marker occurrences. It is beyond
guesswork around the meaning of missing data in relations.

Hence, firstly we desire a notion of an FD that is igno-
rant of missing data, in contrast to all previous notions that
are sensitive to it. Secondly, for a notion of an FD to be
practically useful for schema design it should capture many
redundant data value occurrences and facilitate lossless de-
compositions to eliminate them. Thirdly, applications for
real-world data have not only integrity requirements but also
completeness requirements. In contrast to previous work,
we require our notion of an FD to accommodate complete-
ness requirements in addition to the integrity requirements.
Fourthly, we expect that the resulting schema design frame-
work coincides with the well-known relational framework for
the fragment of the data that meet the completeness re-
quirements of the applications. In fact, the point of the
framework is to tailor relational schema designs to the com-
pleteness and integrity requirements of applications.

1.2 Motivating example
We illustrate our desiderata on the simple example of Ta-

ble 1. The schema collects information about the benefit
that parents receive for all their children together. As the
benefit changes, updates must be processed efficiently.

Robustness. It is easy to observe that the FD p → b
does not hold, as the second and third tuple have matching
(non-null) values on p but different values on b. Since no
missing data is involved, this is true for any interpretation
of null markers. Instead, for the FD cp → b the situation is
quite different. If the sole occurrence of ⊥ in r is interpreted
as “value does not exist”, then the FD should be true. If its
interpretation is “value exists but unknown”, then there are
possible worlds of r (originating from the replacement of ⊥
by actual values) that satisfy the FD and others that do not.
Hence, under this interpretation, the FD is possible but not
certain to hold in r. If we interpret ⊥ as “no information”,
then the FD holds because there are no tuples with match-
ing (non-null) values on p and c. Hence, if we do not know
which interpretation applies to a given null marker occur-
rence, or if different null marker occurrences have different
interpretations, then the semantics of an FD is not robust.

Data redundancy and their elimination by loss-
less decompositions. Under our robust semantics, the
FD cp → b is satisfied. However, since there are no tu-
ples with matching (non-null) values on c and p, this FD
does not capture any redundant data value occurrences. In
fact, we cannot express that the FD p → b actually holds
on the subset of all tuples that have no missing values on
attribute c. This novel observation leads us to the new no-
tion of an embedded functional dependency (eFD). This is
a statement E ∶ X → Y where E is a set of attributes and
X,Y ⊆ E. Indeed, E defines the subset of tuples rE ⊆ r
that have no missing data on any of the attributes in E.
We require X,Y ⊆ E to make our notion of an FD robust,
as explained before. For convenience, we sometimes simply
write E −XY ∶X → Y , understanding implicitly that all at-
tributes in XY belong to E. We call an eFD E ∶X → Y pure
whenever E −XY is non-empty. In our example, we obtain
the eFD c ∶ p→ b, which clarifies the roles of the attributes c
and p: p functionally determine b whenever c (and p and b)
have no missing values. Now, our example shows that the
eFD c ∶ p → b captures redundant data value occurrences.
Each of the two values is redundant in the classical sense
[35] that every change to one of those values to a different
value will result in a violation of the eFD c ∶ p → b. Our
experiments will show that pure eFDs cause a significant
number of redundant data value occurrences that cannot be
captured by previously studied FDs, that is, eFDs of the
special case ∅ ∶ X → Y . In fact, we will show that pure
eFDs are frequent among those eFDs that cause the most
redundant data value occurrences on real-world benchmark
data. The ability to capture many redundant data values
enables eFDs to facilitate new lossless decompositions that
can eliminate those redundancies.

Data completeness. The need to accommodate data
quality requirements are another driver for our notion of an
eFD. An eFD E ∶ X → Y enables users to declare com-
pleteness as well as integrity requirements, and to care-
fully distinguish between these two data quality dimensions.
In fact, this notion now allows us to separate dependence
from completeness concerns: the attribute subsets X and
Y form the actual FD X → Y which must hold on the
subset rE of all tuples that have no missing data on at-
tributes in X, Y , and E −XY . In fact, as rE satisfies the
FD X → Y over relation schema R, rE is the lossless join
rE = rE[XY ] & rE[X(R − Y )] over its two projections on
XY and X(R − Y ). Hence, we can eliminate all redundant
data values on Y caused by the eFD E ∶ X → Y without a
loss of information for the fragment rE of our application
data that meets the requirement of having complete data
values on all columns in E. This illustrates that eFDs drive
data-completeness tailored database design. Tuples that do
not meet the completeness requirements, that is tuples in
r − rE , could be stored under the original schema R, or be
subject to normalization approaches that are sensitive to the
interpretation of null markers.

In summary, the example shows that eFDs are differ-
ent from previous FDs in three aspects: they are robust
under different interpretations of missing data and accom-
modate completeness requirements, they capture redundant
data values occurrences that could not be captured before,
and they facilitate lossless decompositions that eliminate re-
dundant values for the data that is meeting the completeness
requirements. Table 2 shows a lossless decomposition for the

1459



fragment of our example relation r that meets the require-
ments for tuples to be complete on c, p, and b, and eliminates
the redundant data value occurrences from r. This is not
achievable for previous notions of FDs. Hence, changes to
the benefit b for a parent just require one update on the
decomposed relation. As the data evolves, more tuples may
meet the completeness requirements. For example, if the
occurrence of ⊥ in r is updated to Maggie, then the result-
ing relation violates our eFD c ∶ p → b. In response we may
update both value occurrences of 610 on b to 915 to reflect
the new information that Homer has three children. On the
decomposed schema, this would be represented by an inser-
tion of (Homer, Maggie) and a single update of the value
610 on benefit to 915.

1.3 Contributions
We establish the first fully-fledged framework that brings

forward schema designs tailored to the data completeness re-
quirements of applications. (1) We propose the new notion
of an embedded functional dependency (eFD). We demon-
strate that eFDs provide an intuitive and useful notion for
database schema design in practice. They a) capture an in-
trinsic relationship between completeness and integrity re-
quirements not observed before, b) identify redundant data
values, c) are robust under different interpretations of null
markers, and d) enable users to declare completeness and
integrity requirements under one framework. (2) We de-
velop a full design theory including axiomatic and algorith-
mic characterizations of the implication problem for eFDs.
Just like reasoning about FDs is indispensable for relational
normalization, our design theory for eFDs is essential to
our design framework. (3) We establish a schema design
framework that accommodates completeness and integrity
requirements of applications, based on suitable extensions
of a) the notion of redundant data values, b) Boyce-Codd
normal form, and c) Third normal form. (4) We show how
to embed data completeness requirements into the relational
normalization framework with no additional overheads, in-
cluding BCNF decomposition and 3NF synthesis algorithms.
For data that does not meet the completeness requirements,
previous approaches that are sensitive to the interpretation
of null markers can be applied. (5) We conduct compre-
hensive experiments on real-world benchmark schemata and
data. In particular, we provide insight on how many redun-
dant data values occur in the data, rank the relevance of our
eFDs by how many data redundancies they cause, show how
often schemata satisfy a normal form condition, how much
redundancy 3NF syntheses permit, how many dependencies
BCNF decompositions preserve, and how large decomposed
schemata become. We consider the times of computations,
and suggest by examples how data stewards can use our
ranking of eFDs.

1.4 Organization
We explain our contributions over related work in Sec-

tion 2, fix notation and propose eFDs in Section 3. Schema
design foundations are developed in Section 4, normal forms
are proposed in Section 5, and normalization is discussed in
Section 6. An analysis of our comprehensive experiments
is presented in Section 7. We conclude and outline future
work in Section 8. More details can be found in the technical
report [38] and at https://bit.ly/2AoOis6.

2. RELATED WORK
We review previous work to emphasize our contributions.
Firstly, our core objective is tailoring classical schema

design to data-completeness requirements of applications.
Hence, the achievements of classical schema design are fun-
damental to our work. These achievements are handsomely
summarized in surveys and textbooks [7, 29]. As our article
starts research on data-quality driven database design, we
focus on the most common class of integrity constraints and
source of data redundancy, namely functional dependencies.
More general constraints such as join or inclusion depen-
dencies are left for future work [10, 13, 26, 34]. Hence, we
are interested in Boyce-Codd Normal Form (BCNF) [9, 17]
and Third Normal Form (3NF) [8], with their well-known
tradeoffs [7, 12, 23]: Any relation schema enjoys lossless
BCNF decompositions that eliminate all data redundancy
caused by FDs, but may not be dependency-preserving. On
the other hand, every relation schema enjoys lossless 3NF
syntheses that are guaranteed to be dependency-preserving,
but may not eliminate all data redundancy. Our work sub-
sumes all of these results as the special case where an ap-
plication requires that no data values are missing, that is,
when E = R. Important for these achievements is Vincent’s
classical notion of data redundancy [35], which we general-
ize to a notion of data redundancy under data completeness
requirements. This makes it possible to clearly state and
demonstrate the achievements of our normal forms. Re-
cently, classical FD discovery was combined with classical
BCNF-decomposition to drive schema normalization from
data [30]. They did not consider data quality criteria, and
null markers were handled like any domain value.

Secondly, schema design for data with missing values has
been a long-standing open problem [15, 19, 25]. Almost ex-
clusively, the main focus of the research has been on suitable
extensions of FDs to incorporate null markers. In that area
there is a plethora of research, mostly focusing on founda-
tional aspects such as reasoning. Among those extensions,
there are approaches where null-free sub-schemata have been
considered for reasoning about FDs [4, 16]. That work is
different from our approach, and also focused on reasoning
rather than schema design. In particular, the approach is
more restricted because null-free sub-schemata do not per-
mit any null marker occurrences in the columns of the sub-
schema. Instead, we do permit null marker occurrences in
any columns, but let the application requirements decide
whether such records should be considered for design de-
cisions. An interesting FD extension are weak and strong
FDs that hold in some or all possible worlds of data sets
with missing values [24, 25]. As with other extensions, the
semantics of the extended FDs depends strongly on the in-
terpretation of the null marker occurrences. This makes it
difficult to address modern applications, such as data in-
tegration, where different null marker occurrences may re-
quire different interpretations. A second limitation is that
the complexity of reasoning becomes often prohibitively ex-
pensive to guarantee efficient schema designs [25]. Recently,
the concept of possible and certain FDs was introduced and
shown to provide suitable extensions of schema design for
data with missing values, at least in terms of BCNF [19,
21]. The work contains a review and comparison of FD ex-
tensions to data with missing values. We refer the interested
reader to this survey. In summary, these approaches focus on
the interpretation of null markers, aiming at their inclusion

1460



in decisions about schema design. These approaches can be
criticized in different respects. Firstly, it is doubtful whether
missing information should have an impact on schema de-
sign decisions. Secondly, modern applications such as data
integration accommodate missing data values that require
different interpretations, which makes it difficult to justify
these approaches. Finally, application requirements have
not been considered in these approaches, even though de-
sign decisions should be based on them. In contrast, our
approach bases decisions about the design only on informa-
tion that is available. That is, we design schemata beyond
guesswork by considering complete data fragments. At the
same time, application requirements become the primary fo-
cus point of our approach. In fact, the requirements can be
declared as part of the FDs.

Thirdly, embedded unique constraints (eUCs) and embed-
ded cardinality constraints (eCCs) have been investigated in
previous work [36, 40]. Those articles investigated primarily
their implication problem. In particular, the embedded ver-
sion of a unique or cardinality constraint with embedding E
holds on a data set r whenever the uniqueness or cardinality
constraint holds on the scope rE of the given data set r. Our
results on the implication problem for the combined class of
eUCs and eFDs subsume the results of [40] on the individual
class of eUCs. Neither eFDs nor data-completeness tailored
database design have been considered before.

Finally, an important extension of classical FDs are con-
ditional FDs (cFDs) [14], which encode data quality rules
that target the cleaning of data without missing values but
not schema design for data with missing values. Specifically,
eFDs encode data completeness requirements and are a ma-
jor source of E-data redundancy. This makes them impor-
tant for schema design. Note that the implication problem
of general cFDs is coNP-complete to decide [14], and already
their consistency problem is NP-complete [14]. In contrast,
classical FDs are always consistent and implication is linear-
time decidable. As we show, this is also achieved by eFDs,
which are therefore suited for schema design purposes from
a computational point of view as well.

In summary, our work marks the first approach to tai-
lor classical database schema designs to data-completeness
requirements of applications.

3. EMBEDDED CONSTRAINTS
We introduce the data model and constraints.
We begin with basic terminology. A relation schema is

a finite non-empty set R of attributes. Each attribute A of
a relation schema R is associated with a domain dom(A)
which represents the possible values that can occur in col-
umn A. In order to encompass incomplete information, the
domain of each attribute contains the null marker, denoted
by ⊥. In line with SQL, and to cater for all different types of
missing values, the interpretation of ⊥ is to mean “no infor-
mation” [41]. We stress that the null marker is not a domain
value. In fact, it is a purely syntactic convenience that we
include the null marker in the domain of each attribute.

For attribute sets X and Y we may write XY for their
set union X ∪ Y . If X = {A1, . . . ,Am}, then we may write
A1⋯Am for X. In particular, we may write A to represent
the singleton {A}. A tuple (or record) over R is a function
t ∶ R → ⋃A∈R dom(A) with t(A) ∈ dom(A) for all A ∈ R. For
X ⊆ R let t(X) denote the restriction of the tuple t over R to
X. We say that a tuple t is X-total (X-complete) if t(A) /=⊥

for all A ∈X. A tuple t over R is said to be a total tuple if it
is R-total. A relation r over R is a finite set of tuples over
R. A relation r over R is a total relation if every tuple t ∈ r
is total. The sub-set rX of X-total tuples in r is called the
scope of r with respect to X, or simply the scope of r when
X is fixed. We say that two tuples t, t′ over R have matching
values on an attribute A ∈ R whenever t(A) = t′(A).

A key over R is a subset X ⊆ R. A total relation r over
R satisfies the key X over R whenever there are not any
two distinct tuples in r with matching values on all the at-
tributes in X. A functional dependency (FD) over R is an
expression X → Y with X,Y ⊆ R. A total relation r over
R satisfies the FD X → Y over R whenever every pair of
records in r with matching values on all the attributes in X
has also matching values on all the attributes in Y . The se-
mantics of keys and FDs can be extended to relations with
missing values by adopting uniformly (that is, for all null
marker occurrences) either the ⊥=⊥ or ⊥/=⊥ semantics. Un-
der either of these semantics, ⊥ is considered to be different
from any actual domain value. Other semantics have been
defined, and we refer the interested reader to [19, 21] for
an overview of those. In a nutshell, different semantics lead
to different notions of constraints each of which is useful in
different contexts. However, in classical but even more in
modern applications such as data integration, different null
marker occurrences in a relation may require different in-
terpretations. This makes it difficult, if not impossible, to
justify any uniform interpretation of ⊥.

In this article we take a different approach. Firstly, we
let the application decide which data completeness require-
ments tuples must meet to be fit for use by the application.
That is, we embed the data completeness requirements in
the declaration of constraints. Secondly, the semantics of
our constraints is based exclusively on the complete infor-
mation embedded in the underlying relation. In other words,
we follow the principled approach that missing values must
not impact the decision whether a constraint is satisfied by
the given relation or not. This decision is entirely deter-
mined by the actual data values that are available.

Similar ideas motivated us [40] to introduce embedded
unique constraints (eUCs). Given a relation schema R, an
embedded unique (eUC) is an expression of the form E ∶ U
where U ⊆ E ⊆ R holds. A relation r satisfies the eUC E ∶ U
iff the scope rE = {t ∈ r ∣ ∀A ∈ E(t(A) /=⊥)} of r with respect
to E satisfies the key U . If E = U , the eUC U ∶ U is satisfied
by relation r iff the key U is satisfied by r using the ⊥/=⊥
semantics iff the SQL unique constraint on U is satisfied by
r. Of course, if E contains some attribute that is not in
U , then the semantics of eUCs cannot be captured by any
other notion of a key. The decision to require U ⊆ E ensures
that the semantics of the eUC only depends on the complete
fragments embedded in the given relation. This motivates
the following definition.

Definition 1. Given a relation schema R, an embedded
functional dependency (eFD) is an expression of the form
E ∶ X → Y where XY ⊆ E ⊆ R holds. A relation r satisfies
the eFD E ∶ X → Y if and only if the scope rE of r with
respect to E satisfies the functional dependency X → Y .

Given E ∶ X or E ∶ X → Y , we sometimes simply write
E −X ∶ X or E − (XY ) ∶ X → Y , respectively, to emphasize
which additional attributes apart from those in XY are re-
quired to have no missing values. The choice of E is based

1461



Table 3: Sample snippet r from ncvoter benchmark data set
tuple id f( name) l( name) c(ity) z(ip) p(hone) d(ate register)

t1 sam anderson green level 27217 ⊥ 05/11/1940
t2 ida cheek burlington 27217 226 4848 05/11/1940
t3 effie massey burlington 27217 336 226 8544 05/11/1940
t4 peggy floyd jackson 27845 252 536 2668 06/15/1936
t5 essie warren lasker 27845 252 539 2866 05/10/1940
t6 rodney glockner wilmington 28405 910 509 3864 01/01/1930
t7 sallie blanchard rose hill 28458 910 289 3320 01/01/1930
t8 joseph cox new bern 28562 ⊥ 03/06/1935
t9 joseph cox new bern 28562 252 288 4763 03/06/1935
t10 james smith chinquapin 28521 910 285 3493 01/01/1936
t11 james smith burlington 27215 584 4202 05/06/1940
t12 dorothy faucette mebane 27302 919 563 1285 4/05/1940
t13 dorothy allred mebane 27302 563 1426 05/06/1940
t14 eloise croom kinston 28504 252 569 4436 05/02/1940
t15 ⊥ croom kinston 28504 252 569 9516 05/04/1940

on several factors, such as completeness requirements and
the target of redundant data values.

Consider our running example from Table 3 where the
underlying schema R consists of attributes c, d , f , l, p, and
z. The eFD p ∶ dz → c is satisfied by r because the FD
dz → c holds on the scope rcdpz = r − {t1, t8}. In fact, all
people who provided some phone number and registered on
the same day under the same zip code also used the same
city alias. However, the eFD ∅ ∶ dz → c does not hold on r
because the FD dz → c does not hold on the scope rcdz = r.
In fact, there are people who registered on the same day
under the same zip code, but used different alias for the
city. Similarly, the eUC p ∶ cfl is satisfied by r because the
compound key cfl is satisfied on the scope rcflp = r−{t1, t8}.
In fact, there are no two people who both provided a phone
number and are registered in the same city with the same
first and last name. However, the eUC ∅ ∶ cfl is violated by
r because there are two different registrations in the same
city with the same first and last name.

Every total relation over R satisfies the FD X → R iff it
satisfies the key X. This relationship occurs in our frame-
work as well: A relation over R satisfies the eFD R ∶X → R
iff it satisfies the eUC R ∶X. For arbitrary E ⊆ R, however,
only the following holds: if a relation satisfies E ∶X, then it
also satisfies E ∶ X → E, but not necessarily vice versa. In
fact, the relation in Table 3 satisfies the eFD dpl ∶ dp→ dpl,
but it violates the eUC dpl ∶ dp. It does therefore not suffice
for our targeted schema design framework to consider eFDs
in isolation from eUCs. In particular, eFDs drive data re-
dundancy, while eUCs inhibit data redundancy. Hence, the
combined class of eFDs and eUCs will be studied. This is
different from the special case of total relations where any
key X over R (an eUC of type R ∶ X) can be expressed by
the FD X → R (an eFD of type R ∶X → R).

For our example we regard the eFD p ∶ dz → c as a mean-
ingful constraint of our application domain. That is, for
people that provide some phone number and register on the
same day under the same zip code we will always use the
same city alias. Hence, different city alias may only be asso-
ciated with the same zip code for people on different registra-
tion dates or who prefer not to provide a phone number. In
this case, there are relations that exhibit data redundancy.
Indeed, each of the two bold city occurrences of ‘burling-
ton’ in tuples t2 and t3 in Table 3 is redundant. However,
such redundant values are intrinsically linked to the require-

ment that the tuples must be complete on phone, since the
eFD does not apply otherwise. This link between data re-
dundancy and data completeness requirements is encoded
explicitly in the eFDs. In what follows, we will develop
a full-fledged normalization framework that tailors classical
schema design to data completeness requirements.

4. FOUNDATIONS
This section establishes axiomatic and algorithmic char-

acterizations of the implication problem for eUCs and eFDs.
The linear-time decidability we establish is important for the
schema design framework we will develop subsequently.

Let Σ ∪ {ϕ} denote a set of eUCs and eFDs over relation
schema R. We say that Σ implies ϕ, denoted Σ ⊧ ϕ, iff
every relation over R that satisfies all σ ∈ Σ also satisfies
ϕ. The implication problem for a class C of constraints is
to decide, for arbitrary R and Σ ∪ {ϕ} in C, whether Σ im-
plies ϕ. Strictly speaking, the implication problem we have
just defined is the finite implication problem because we
restrict relations to be finite. Permitting also infinite rela-
tions would lead us to the unrestricted implication problem.
For our class of constraints, however, it is easy to see that
finite and unrestricted implication problems coincide. We
will therefore speak of the implication problem.

4.1 Axiomatic Characterization
Firstly, we would like to obtain an axiomatization for

eUCs and eFDs which extends the well-known Armstrong
axioms [3]. An axiomatization does not only help us under-
stand the interaction of the constraints, but also enables us
to prove that our syntactic normal form proposal captures
precisely the semantic normal form proposal in which no re-
dundant data value can ever occur in any future database
instance. This is an important use case of axiomatizations.
The definitions of inference from a system S (⊢S), as well
as the definitions of sound and complete sets of inference
rules are standard [29, 31].

Table 4 shows three axiomatizations. The top box is one
for eUCs alone [40], the middle box is one for eFDs alone,
and all boxes form the axiomatization E for eUCs and eFDs
together. The following rules

E ∶ X → Y Z

E ∶ X → Y

E ∶ X → Y E ∶ X → Z

E ∶ X → Y Z

E ∶ X → Y

EE′ ∶ X → Y
(eFD decompose) (eFD union) (eFD add-on)

follow from E. Proofs are in [38].

1462



Table 4: Axiomatizations for eUCs and eFDs

R ∶ R

E ∶ U

EE′ ∶ UU ′
(trivial ekey) (eUC extension)

E ∶XY →X

E ∶X → Y

E ∶X →XY

E ∶X → Y E′ ∶ Y → Z

EE′ ∶X → Z
(trivial eFD) (eFD extension) (eFD transitivity)

E ∶X

E ∶X → E

E ∶XY E ∶X → Y

E ∶X
(eUC to eFD) (eUC pullback)

Table 5: 2-tuples for Theorem 1 proof and sample
X+

E,Σ E −X+
E,Σ R −E

0⋯0 0⋯0 0⋯0
0⋯0 1⋯1 ⊥ ⋯ ⊥

d z c p f l
5/11/1940 27217 burlington 226 4848 ida cheek
5/11/1940 27217 green level ⊥ ⊥ ⊥

Theorem 1. E is a sound and complete axiomatization
for the implication of eUCs and eFDs.

The proof of Theorem 1 is based on the closure of an
attribute set X with respect to the data completeness re-
quirement E and the set Σ of eUCs and eFDs: X+

E,Σ = {A ∈
E ∣ Σ ⊢E E ∶ X → A}. Indeed, the completeness proof uses
the two-tuple relation from Table 5 to show that Σ does
not imply ϕ whenever ϕ cannot be inferred from Σ using E.
Hence, the implication problems for eUCs and eFDs coin-
cide, independently of whether we consider infinite relations,
just finite relations, or even just relations with two tuples.

Example 1. Consider our running example where R =
{c, d, f, l, p, z} and Σ = {p ∶ cfl, p ∶ dz → c}. Then Σ implies
the eUC ϕ = c ∶ dflpz as the following inference shows:

cdflpz ∶ dflpz → dz p ∶ dz → c

cdflpz ∶ dflpz → c

cdflpz ∶ cdflpz cdflpz ∶ dflpz → cdflpz

cdflpz ∶ dflpz

.

However, the eFD ∅ ∶ dz → c is not implied by Σ as the
two-tuple example in Table 5 constructed according to the
general two-tuple relation from Table 5 shows.

4.2 Algorithmic Characterization
Reasoning efficiently about eUCs and eFDs will help us

decide if a given schema meets a normal form condition, or
transform the schema into one that meets the condition. In
the relational model, FD implication can be decided in linear
time. We will achieve the same for eUCs and eFDs. Many
other tasks, including data profiling, transaction processing,
and query optimization, benefit from the ability to efficiently
decide implication.

Let E denote an attribute set that represents the com-
pleteness requirements of a given application. The techni-
cal underpinning of our framework translates every set Σ
of eUCs and eFDs into a set Σ[E] of FDs. The transla-
tion makes it possible to utilized any existing algorithms
for deciding FD implication to decide implication of eUCs
and eFDs. The translation is given next by the following
definition.

Definition 2. For a given set Σ of eUCs and eFDs over
relation schema R, and a given attribute set E ⊆ R, let
Σ[E] ∶= {X → R ∣ ∃E′ ⊆ E(E′ ∶ X ∈ Σ)} ∪ {X → Y ∣ ∃E′ ⊆
E(E′ ∶X → Y ∈ Σ)} denote the (E,FD)-reduct of Σ.

We illustrate the notion of an (E,FD)-reduct on our run-
ning example.

Example 2. Recall that R = {c, d, f, l, p, z} and Σ = {p ∶
cfl, p ∶ dz → c}. For E = cdflpz = R, the (E,FD)-reduct of Σ
is Σ[E] = {cfl → dpz, dz → c}.

The significance of the (E,FD)-reduct is embodied in the
following algorithmic characterization of the implication pro-
blem for eUCs and eFDs.

Theorem 2. Let Σ ∪ {E ∶ X,E ∶ X → Y } denote a set of
eUCs and eFDs over relation schema R. Then:

1. Σ ⊧ E ∶X → Y if and only if Σ[E] ⊧X → Y

2. Σ ⊧ E ∶ X if and only if a) E = R = X, or b) there is
some E′ ∶X ′ ∈ Σ such that E′ ⊆ E and X ′ ⊆X+

Σ[E].

Here, 1. says that the eFD E ∶ X → Y is implied by the
eUC/eFD set Σ if and only if the FD X → Y is implied by
the (E,FD)-reduct Σ[E] of Σ. Furthermore, 2. says that
the eUC E ∶X is implied by the eUC/eFD set Σ if and only
if the eUC E ∶X is the trivial eUC R ∶ R, or there is another
eUC E′ ∶ X ′ in Σ such that E′ ⊆ E and the (E,FD)-reduct
Σ[E] implies the FD X →X ′.

An analysis of Theorem 2 results in the proposal of Algo-
rithm 1 for deciding our implication problem. If ϕ = R ∶ R,
we answer yes (lines 3/4). Otherwise, standard algorithms
compute the closure X+

Σ[E] of the attribute set X given Σ[E]
(lines 6/7). If ϕ is an eUC and 2. in Theorem 2 is met, then
we answer yes (lines 8/9). If ϕ is an eFD and 1. in Theo-
rem 2 is met, then we answer yes (lines 11/12). Otherwise,
we answer no (lines 13/14).

Algorithm 1 Deciding Implication

1: Input: Set Σ ∪ {ϕ} of eUCs and eFDs over schema R

2: Output: {
Yes , if Σ ⊧ ϕ
No , otherwise

3: if ϕ = R ∶ R then
4: return(Yes);
5: else
6: if ϕ = E ∶ X or ϕ = E ∶ X → Y then
7: Compute X+

Σ[E]; ▷ FD attribute set closure

8: if ϕ = E ∶ X ∧∃E′
∶ X′

∈ Σ(E′
⊆ E ∧X′

⊆ X+
Σ[E]) then

9: return(Yes);
10: else
11: if ϕ = E ∶ X → Y ∧ Y ⊆ X+

Σ[E] then

12: return(Yes);
13: else
14: return(No);

The soundness of Algorithm 1 follows from Theorem 2,
linear time decidability from that of FD implication [5], and
PTIME-hardness from a reduction of HORN-SAT [11, 18].

Corollary 1. The implication problem for eUCs and
eFDs is complete in PTIME. On input (Σ ∪ {ϕ},R), Al-
gorithm 1 decides implication Σ ⊧ ϕ in time O(∣Σ ∪ {ϕ}∣).

1463



Note that the PTIME-hardness means that deciding impli-
cation for eUCs and eFDs is at least as hard as any other
decision problem for which there is some deterministic Tur-
ing machine that can decide any instance of the problem in
polynomial time.

Example 3. In our running example R = {c, d, f, l, p, z}
and Σ = {p ∶ cfl, p ∶ dz → c}, Σ implies ϕ = c ∶ dflpz
since Σ[cdflpz] = {cfl → dpz, dz → c}, there is some eUC
E′ = cflp ∶ cfl = X ′ ∈ Σ such that E′ ⊆ E, and X ′ ⊆
(dflpz)+Σ[cdflpz] = cdflpz, which means 2. of Theorem 2 is

met. The eFD ∅ ∶ dz → c is not implied by Σ as Σ[E] =
Σ[cdz] = ∅, and dz → c is not implied by Σ[E], which means
1. of Theorem 2 is not met.

As a summary, our axiomatization E will enable us to for-
mally justify the syntactic normal form proposals we will
put forward in the following section, while our algorithmic
characterizations will facilitate our normalization strategy to
apply well-known relational decomposition and synthesis ap-
proaches to the (E,FD)-reduct of an input set of embedded
unique constraints and embedded functional dependencies.

5. NORMAL FORMS
Our goal is to tailor relational schema design to data com-

pleteness requirements of applications. For that purpose, we
stipulate the semantic normal form condition that no redun-
dant data values can ever occur in any E-complete records
on any relations that satisfy a given set of eUCs and eFDs.
We will characterize this condition by generalizing the well-
known Boyce-Codd normal form. Similarly, we are able to
generalize the well-known 3NF to characterize the minimiza-
tion of data redundancy in E-complete records across all
dependency-preserving decompositions.

5.1 E-Redundancy Free Normal Form
Motivated by our examples, we propose notions of data

redundancy that are tailored towards the requirements of
records regarding their completeness. For this, we generalize
the following classical proposal by Vincent [35]. Intuitively,
a data value in a relation that satisfies a constraint set Σ
is redundant if every update to a different value results in
a relation that violates some constraint in Σ. Formally, for
relation schema R, attribute A of R, tuple t over R, and set
Σ of constraints over R, a replacement of t(A) is a tuple t̄
over R such that: i) for all Ā ∈ R−{A} we have t̄(Ā) = t(Ā),
and ii) t̄(A) /= t(A). For a relation r over R that satisfies Σ
and t ∈ r, the data value occurrence t(A) in r is redundant for
Σ if for every replacement t̄ of t(A), r̄ ∶= (r−{t})∪{t̄} violates
some constraint in Σ. A relation schema R is in Redundancy-
Free normal form (RFNF) for a set Σ of constraints if there
are no relation r over R that satisfies Σ, tuple t ∈ r, and
attribute A ∈ R, such that the data value occurrence t(A)
is redundant for Σ [35]. In other words, we guarantee at
design time that there will never be an instance over R that
satisfies Σ and has some redundant data value occurrence.

Definition 3. Let R denote a relation schema, E ⊆ R,
Σ a set of constraints over R, A ∈ E an attribute, r a re-
lation over R that satisfies Σ, and t a tuple in rE. An
E-replacement of t(A) is a replacement of t(A) that is E-
complete. The data value occurrence t(A) is E-redundant
for Σ if and only if for every E-replacement t̄ of t(A), r̄ ∶=

(r − {t}) ∪ {t̄} violates some constraint in Σ. R is in E-
Redundancy-Free normal form (E-RFNF) for Σ if and only
if there are no relation r over R that satisfies Σ, tuple t ∈ rE,
and attribute A ∈ E, such that the data value occurrence t(A)
is E-redundant for Σ.

We illustrate the notion of E-redundancy next.

Example 4. Recall that R = cdflpz and Σ = {p ∶ cfl, p ∶
dz → c}. The relation in Table 3 shows that R is not in
cdpz-RFNF for Σ: every cdpz-replacement for either of the
bold occurrences would violate the eFD p ∶ dz → c.

While E-RFNF is independent of the type of constraints,
we will assume from now on that Σ is a set of eUCs and
eFDs. As our first result we characterize the E-RFNF for Σ
in terms of the RFNF for the (E,FD)-reduct Σ[E].

Theorem 3. For all sets Σ over R and all E ⊆ R, R is
in E-RFNF for Σ if and only if R is in RFNF for Σ[E].

For our example the characterization works as follows.

Example 5. For R = cdflpz, Σ = {p ∶ cfl, p ∶ dz → c} and
E = cdpz, we have Σ[E] = {dz → c}. That is, R is also not
in RFNF for Σ[E].

5.2 E-BCNF
We now characterize the semantic E-RFNF by purely syn-

tactic means. For that purpose, we generalize the BCNF
condition to accommodate completeness requirements. Re-
call that a relation schema R is in BCNF for an FD set Σ
iff for all X → Y ∈ Σ+

A where Y /⊆ X, X → R ∈ Σ+
A. Here, A

denotes the well-known Armstrong’s axioms [3].

Definition 4. For relation schema R and E ⊆ R, R is
in E-BCNF for a set Σ over R if and only if for every eFD
E ∶X → Y ∈ Σ+

E where Y /⊆X, E ∶X ∈ Σ+
E.

Our running example can be further analyzed as follows.

Example 6. For R = cdflpz and Σ = {p ∶ cfl, p ∶ dz → c},
R is not in cdpz-BCNF for Σ, since the eFD p ∶ dz → c ∈
Σ ⊆ Σ+

E, {c} /⊆ {dz}, but dpz ∶ dz ∉ Σ+
E.

Recall that sets Σ and Θ are C-covers of one another if
they imply the same constraints in class C. Being in E-
BCNF for Σ is independent of the representation of Σ. That
is, for any cover Θ of Σ, R is in E-BCNF for Σ iff R is
in E-BCNF for Θ. The E-BCNF condition for Σ can be
characterized by the BCNF condition for Σ[E].

Theorem 4. Relation schema R is in E-BCNF for the
set Σ if and only if R is in BCNF for Σ[E].

Theorem 4 works as follows on our example.

Example 7. For R = cdflpz, Σ = {p ∶ cfl, p ∶ dz → c},
and E = cdpz, R is not in BCNF for Σ[E] = {dz → c}.

5.3 E-RFNF at Application Design Time
We can now characterize the semantic E-RFNF by the

syntactic E-BCNF. Extending the relational case, schemata
in E-BCNF guarantee at application design time that there
will never be an instance that contains any E-redundant
data value occurrence.

1464



Theorem 5. For all relation schemata R, all attribute
subsets E ⊆ R, and all sets Σ over R, R is in E-RFNF for
Σ if and only if R is in E-BCNF for Σ.

We can apply the characterization to our example.

Example 8. For R = cdflpz and Σ = {p ∶ cfl, p ∶ dz → c},
R is in cflp-RFNF for Σ since R is in BCNF for Σ[E] =
{cfl → cflp}.

5.4 Efficient Testing
Due to the cover-insensitivity of the E-BCNF condition,

one may wonder about the efficiency of checking whether a
given schema is in E-BCNF for a given set Σ. As in the
relational case it suffices to check some eFDs in Σ instead
of checking all eFDs in Σ+

E.

Theorem 6. A relation schema R is in E-BCNF for Σ
if and only if for every eFD E′ ∶ X → Y ∈ Σ where E′ ⊆ E
and Y /⊆ X, E ∶ X ∈ Σ+

E. Hence, deciding if a schema is in
E-BCNF for Σ is quadratic in Σ.

We apply the simpler characterization to our example.

Example 9. For R = cdflpz and Σ = {p ∶ cfl, p ∶ dz → c},
R is in cflp-BCNF for Σ since there is no eFD E′ ∶ X →
Y ∈ Σ such that E′ ⊆ E = cflp.

5.5 E-3NF
We now introduce E-Third normal form (E-3NF) which

ensures that all FDs can be enforced locally, without the
need of joining relations to check for consistency of updates.
Recall the 3NF condition [8]: R is in 3NF for an FD set Σ
if for every FD X → Y ∈ Σ+

A where Y /⊆ X, X → R ∈ Σ+
A or

every attribute in Y −X is prime. An attribute A is prime
if it occurs in some minimal key of R for Σ. An attribute
subset X of R is a key of R for Σ if X → R ∈ Σ+

A. A key X
of R is minimal for Σ if every proper subset Y ⊂ X is not
a key of R for Σ. We extend these concepts to handle data
completeness requirements. For E ⊆ R and an eUC/eFD set
Σ, an eUC E ∶ K ∈ Σ+

E is E-minimal for Σ if and only if
there is no E-key E ∶ K′ ∈ Σ+

E for Σ such that K′ ⊂ K. An
attribute A is E-prime for Σ if and only if A ∈ K for some
E-minimal key E′ ∶K ∈ Σ+

E.

Definition 5. A relation schema R is in E-3NF for Σ
if and only if for every non-trivial eFD E ∶X → Y ∈ Σ+

E with
E′ ⊆ E, E ∶X ∈ Σ+

E or every attribute in Y −X is E-prime.

We can check this condition on our running example.

Example 10. For R = cdflpz and Σ = {p ∶ cfl, p ∶ dz →
c}, we have seen that c ∶ dflpz is an R-minimal key for Σ, the
other R-minimal key being dpz ∶ cfl. That is, every attribute
in R is R-prime. Hence, R is in R-3NF. However, R is not
in cdpz-3NF as eFD p ∶ dz → c ∈ Σ, c ∉ {d, z}, cp ∶ dz ∉ Σ+

E,
and c is not cdpz-prime.

Similar to E-BCNF and BCNF, we can check that R is in
E-3NF for Σ by testing that R is in 3NF for Σ[E].

Theorem 7. For all relation schemata R, all E ⊆ R, and
all sets Σ over R, R is in E-3NF for Σ if and only if R is
in 3NF for Σ[E].

Example 11. In our running example R = cdflpz, Σ =
{p ∶ cfl, p ∶ dz → c} and E = R, Σ[E] = {cfl → dpz, dz → c}.
The two minimal keys are cfl and dflpz. As every attribute
is prime, R is in 3NF for Σ[E].

Finally, E-3NF can be validated by checking the relevant
conditions for just the input Σ, rather than its closure Σ+

E.

Theorem 8. R is in E-3NF for a set Σ of eUCs and
eFDs over R if and only if for every eFD E′ ∶ X → Y ∈ Σ
where E′ ⊆ E and Y /⊆ X, E ∶ X ∈ Σ+

E or every attribute in
Y −X is E-prime.

This translates to our running example as follows.

Example 12. For R = cdflpz, Σ = {p ∶ cfl, p ∶ dz → c},
E = R and p ∶ dz → c ∈ Σ, c ∈ R is E-prime. By Theorem 8
this suffices to establish that R is in E-3NF for Σ.

5.6 Hardness of Normal Form Criteria
As relational normalization is the special case where E =

R, checking normal form criteria is hard in general.

Theorem 9. Deciding whether a sub-schema of a given
schema is in E-BCNF for a given set Σ is coNP-complete.
Deciding whether a given schema is in E-3NF for a given
set Σ is NP-complete.

6. TAILORING NORMALIZATION
We now establish algorithms to design relational database

schemata that are tailored to the completeness requirements
of applications. For that purpose, we normalize a given
schema R for the given set Σ of eUCs and eFDs. The
completeness requirements are consolidated in an attribute
subset E ⊆ R, expressing that the application only handles
E-complete records. The choice of E determines the set
Σ[E] of traditional FDs that are used to normalize R. For
each E we pursue i) lossless BCNF decompositions that are
redundancy-free but potentially not dependency-preserving,
and ii) lossless 3NF syntheses that are dependency-preser-
ving but potentially not redundancy-free.

6.1 E-BCNF Decomposition
We recall terminology from relational databases. A de-

composition of relation schema R is a set D = {R1, . . . ,Rn}
of relation schemata such that R1 ∪ ⋯ ∪Rn = R. For Rj ⊆
R and FD set Σ over R, ΣRj = {X → Y ∣ X → Y ∈
Σ+

A and X,Y ⊆ Rj} denotes the projection of Σ onto Rj .
A decomposition D of R with FD set Σ is lossless if every
relation r over R that satisfies Σ is the join of its projec-
tions on the elements of D, that is, r = &Rj∈Dr[Rj]. Here,
r[Rj] = {t(Rj) ∣ t ∈ r}. A BCNF decomposition of R with
FD set Σ is a decomposition D of R where every Rj ∈ D is
in BCNF for ΣRj . Theorem 4 motivates a definition of an
E-lossless BCNF decomposition.

Definition 6. An E-lossless BCNF decomposition of a
schema R for a set Σ of eUCs and eFDs over R is a lossless
BCNF decomposition of R for Σ[E].

Instrumental to Definition 6 is the following decomposi-
tion theorem. It covers the classical decomposition theorem
[32] as the special case where E = R. Data completeness-
tailored normalization does not loose any records by follow-
ing a hybrid decomposition approach. Given E, a relation

1465



is decomposed horizontally into its application-relevant part
rE of E-complete records, and its application-irrelevant part
r − rE of records with missing data on E. Classical vertical
decomposition can then be applied to rE .

Theorem 10. Let E ∶ X → Y be an eFD that satisfies
the relation r over relation schema R. Then the set of E-
complete records of r is the lossless join of its projections on
XY and X(R − Y ), that is, rE = rE[XY ] & rE[X(R − Y )].
Also, r is the disjoint union of the set of E-complete records
of r, and the set of records of r with missing data on some
column in E, that is, r = rE ⊍ (r − rE).

Hence, an E-lossless BCNF decomposition for a set Σ of
eUCs and eFDs can simply be obtained by a classical lossless
BCNF decomposition for the (E,FD)-reduct Σ[E] of Σ.

PROBLEM: E-BCNF Decomposition
INPUT: Relation Schema R

Set Σ of eUCs and eFDs over R
Attribute subset E ⊆ R

OUTPUT: E-lossless BCNF decomposition
of R for Σ

METHOD: Perform a lossless BCNF decomposition
of R for Σ[E]

We illustrate the decomposition on our running example.

Example 13. In our running example R = cdflpz, Σ =
{p ∶ cfl, p ∶ dz → c}, and E = R, R is not in E-BCNF for Σ.
In fact, R is not in BCNF for Σ[E] = {cfl → dpz, dz → c}.
A BCNF decomposition yields R1 = cdz with Σ1 = {dz → c}
and R2 = dflpz with Σ2 = ∅. For the relation r from Table 3,
the projection of rE on the decomposed schema is as follows,
except for the last row in both tables because tuple t15 has a
null marker occurrences on column f name.

c(ity) z(ip) d(ate register)
burlington 27217 05/11/1940

jackson 27845 06/15/1936
lasker 27845 05/10/1940

wilmington 28405 01/01/1930
rose hill 28458 01/01/1930
new bern 28562 03/06/1935

chinquapin 28521 01/01/1936
burlington 27215 05/06/1940

mebane 27302 4/05/1940
mebane 27302 05/06/1940
kinston 28504 05/02/1940
kinston 28504 05/04/1940

f( name) l( name) z(ip) p(hone) d(ate register)
ida cheek 27217 226 4848 05/11/1940
effie massey 27217 336 226 8544 05/11/1940
peggy floyd 27845 252 536 2668 06/15/1936
essie warren 27845 252 539 2866 05/10/1940

rodney glockner 28405 910 509 3864 01/01/1930
sallie blanchard 28458 910 289 3320 01/01/1930
joseph cox 28562 252 288 4763 03/06/1935
james smith 28521 910 285 3493 01/01/1936
james smith 27215 584 4202 05/06/1940

dorothy faucette 27302 919 563 1285 4/05/1940
dorothy allred 27302 563 1426 05/06/1940
eloise croom 28504 252 569 4436 05/02/1940
⊥ croom 28504 252 569 9516 05/04/1940

All E-redundant data value occurrences from r have been
eliminated. However, the eUC p ∶ cfl was not preserved.

Recall that a decomposition D of schema R with FD set
Σ is dependency-preserving whenever Σ+

A = (∪Rj∈DΣ[Rj])+A.

Definition 7. An E-dependency-preserving decomposi-
tion of a schema R for the eUC/eFD set Σ is a dependency-
preserving decomposition of R for Σ[E].

6.2 E-3NF Synthesis
3NF synthesis guarantees dependency-preservation, but

may exhibit data value redundancy caused by FDs. It was
shown recently that 3NF exhibits minimal levels of data
redundancy when achieving dependency-preservation [2, 22].
Hence, we will equip our new framework with an appropriate
3NF synthesis strategy. Recall that a 3NF decomposition of
a relation schema R for an FD set Σ is a decomposition D
of R where every Rj ∈ D is in 3NF for ΣRj . Theorem 7
motivates the following definition.

Definition 8. An E-dependency-preserving, E-lossless
3NF decomposition of a schema R for the set Σ of eUCs
and eFDs is a dependency-preserving, lossless 3NF decom-
position of R for Σ[E].

Following Theorem 10, an E-dependency-preserving, E-
lossless 3NF synthesis for a set Σ of eUCs and eFDs can sim-
ply be obtained by a classical dependency-preserving lossless
3NF synthesis for the (E,FD)-reduct Σ[E] of Σ.

PROBLEM: E-3NF Synthesis
INPUT: Relation schema R

Set Σ of eUCs and eFDs over R
Attribute subset E ⊆ R

OUTPUT: E-dependency-preserving, E-lossless
3NF decomposition of R wrt Σ

METHOD: Perform a dependency-preserving, lossless
3NF synthesis of R for Σ[E]

We illustrate the synthesis on our running example.

Example 14. In our running example R = cdflpz, Σ =
{p ∶ cfl, p ∶ dz → c}, R is indeed in R-3NF for Σ. For E =
cdpz, however, R is not in E-3NF for Σ. In fact, R is not in
3NF for Σ[E] = {dz → c}. A 3NF synthesis yields R1 = cdz
with Σ1 = {dz → c} and to ensure E-losslessness we add the
E-minimal key R2 = dflpz with Σ2 = ∅. For the relation
r from Table 3, the projection of rE onto the decomposed
schema is the same as in Example 13 but inclusive of the last
row in both tables because of the looser data-completeness
requirements.

Summary. We have tailored the entire relational schema
design framework to data-completeness requirements of ap-
plications. We allow data stewards to declare these require-
ments as an extension to the familiar concept of a functional
dependency. The results show that extensions of the famil-
iar BCNF (3NF) normal form achieve an elimination (mini-
mization across dependency-preserving decompositions) of
data values that may occur redundantly in records that
meet the completeness requirements. As an optimal result
for database practice, schemata can be automatically trans-
formed into these normal forms by applying relational nor-
malization algorithms to a set of relational FDs that emerge
from the set of extended FDs and the data-completeness re-
quirements. The next section illustrates what our framework
achieves when applied to real-world schemata and data.

7. EXPERIMENTS
We report on experiments with our framework using real-

world benchmark schemata and data, available for download
at https://bit.ly/2AoOis6. We provide insight on how

1466



Table 6: Redundant data value occurrences in
benchmarks, and the time in seconds to compute
all of them

data set #complete #red %red time (s)
horse 6,795 4,775 70.27 8.075
bridges 1,327 411 30.97 0.002
hepatitis 2,933 1,695 57.79 0.179
breast 7,585 712 9.39 0.005
echo 1,584 489 30.87 0.002
plista 39,431 28,827 73.11 18.415
flight 57,062 48,414 84.84 86.585
ncvoter 16,137 3,170 19.64 0.047
china 4,313,980 2,131,677 49.41 412.867
uniprot 11,600,704 1,413,038 12.18 1,777.245
diabetic 1,017,738 543,935 53.45 3,273.183

many E-redundant data values occur in the data, rank the
relevance of our eFDs by how many data redundancies they
cause, show how often schemata satisfy a normal form condi-
tion, how much redundancy E-3NF permits, how many de-
pendencies E-BCNF preserves, and how large decomposed
schemata become. We consider the times of computations,
and suggest how data stewards can use our ranking of eFDs,
using the example of our two applications from the introduc-
tion. All our experiments are run on an Intel Xeon 3.6 GHz,
256GB RAM, Windows 10 Dell workstation.

7.1 E-redundancy and eFD Ranking
Table 6 lists for each incomplete benchmark data set the

number #complete of data occurrences that are complete,
the number #red of those that are redundant, the percent-
age %red of redundant data value occurrences in the data
set, and the time in seconds to compute all the redundant
occurrences given the data set and given the canonical cover
of the eUCs and eFDs that hold on the data set. The canon-
ical covers can be computed by some algorithms that will
be discussed in a separate article. The sheer number and
percentage of redundant occurrences clearly motivates our
research, and the time taken to compute them shows that
this insightful analysis is efficient on even large data sets
with large numbers of constraints. Of course, if a team of
domain experts selects the meaningful eUCs and eFDs for
an application, then the redundant occurrences will likely
be fewer and can be computed more efficiently.

Guiding data stewards in their selection of meaningful
eFDs from the canonical cover, we can rank the relevance of
an eFD by the number of redundant data value occurrences
it causes. Figure 1 shows the number of eFDs in a canonical
cover that cause not more than a given number of redun-
dant data value occurrences in the data set. The labels on
the x-axis indicate the maximum values for 0, 2.5, 5, 10, 15,
20, 40, 60, 80, and 100 percent of the maximum redundant
occurrences any eFD causes. The figure illustrates clearly
that most eFDs cause few data redundancies, which makes
it possible for data stewards to focus their attention to select
few eFDs of higher rank.

7.2 Pure eFDs
As indicated in our introduction, pure eFDs occur fre-

quently in real-world data, cause many redundant data value
occurrences, and also occur frequently among those eFDs
that cause most redundant data value occurrences. This is
illustrated on our benchmark data sets in Table 7. Here,

Figure 1: Numbers of eFDs in canonical covers (y-
axis) that cause not more than the given number of
redundant occurrences (x-axis)

we list the percentage of pure eFDs among all eFDs in the
canonical covers we computed, the average loss of redundant
data value occurrences in percent when transforming a pure
eFD E ∶ X → Y into a non-pure eFD ∅ ∶ E − Y → Y , and
the percentage of pure eFDs among those eFDs that ranked
within the top-10% according to the number of redundant
data values they cause.

7.3 Quality of Decompositions
For the following experiments we created inputs as out-

lined next. For each fixed size ∣E∣ of the completeness re-
quirements, we created different sets of eUCs and eFDs by
picking up to 1,000 unique attribute sets E of the fixed size,
and then selecting all eUCs and eFDs that hold on the data

Table 7: Statistics on pure eFDs in benchmark data
data set %pure red loss %pure top-10%
breast 0 0 0
bridges 29.58 62.85 69.23
china 18.83 81.32 60.08
diabetic 54.02 57.79 64.68
echo 20.32 65.24 46.67
flight 17.73 44.50 16.46
hepatitis 53.21 77.56 67.62
horse 94.25 20.60 94.38
ncvoter 16.35 66.88 50.00
plista 74.18 8.14 69.92
uniprot 512k 30c 50.73 63.50 92.55
ncvoter128k 34.00 45.80 45.89
ncvoter256k 39.88 50.14 58.86
ncvoter512k 40.30 46.57 44.13
ncvoter1024k 39.46 49.20 48.54

1467



Figure 2: Average percentage of schemata in E-3NF
and E-BCNF, respectively, by given size of E

set and whose embeddings are subsets of E. Figure 2 shows
for each data set and each size of E, the percentage of all
input sets that are in E-BCNF and E-3NF, respectively.

Figure 3 shows average percentages of i) the E-complete
data value occurrences that are redundant (blue line), ii)
those after E-3NF decomposition (orange line) and iii) elim-
inated redundancies after E-3NF synthesis (yellow line) all
plotted against the LHS vertical axis, and iv) dependencies
preserved during E-BCNF decomposition (red dotted line)
plotted against the RHS vertical axis. In general, there is
no control about the number of E-redundant data values
that an E-3NF decomposition must tolerate to preserve all
relevant dependencies. Vice versa, there is no control on
how many relevant dependencies will be lost to eliminate all
E-redundant data values during E-BCNF decomposition.
For instance, E-3NF may duplicate non-trivial eFDs across
schemata, causing a blow-up of the E-redundancies (orange
above blue line), see diabetic and china weather.

7.4 Size and time of decompositions
Figure 4 illustrates the impact of the size of E on the

cardinality of the decompositions, that is, their total num-
ber of attributes (LHS y-axis) and the computation time in
seconds (RHS y-axis). Boldly speaking, the larger the de-
compositions the more updates (less redundancy) and the
less queries (more joins required) will be efficient.

7.5 Qualitative analysis
For qualitative insight, we consider two applications for

the data set ncvoter with 19 columns and 1000 records. The
first application has attribute set E1 with full phone num,

Figure 3: Elimination of E-redundancy by E-3NF
(vertical LHS), and E-preservation by E-BCNF
(vertical RHS)

Figure 4: Average cardinality of decompositions and
time (s) taken to compute them

1468



Figure 5: Applications for ncvoter data set

Figure 6: Ranking of some eFDs for application E1

street address, register date, last name, first name, city, and
zip code, while the second application uses the attribute set
E2 ⊇ E1 plus birthplace, ethnic, race, gender, and age. From
the canonical cover we then selected only those eFDs E ∶
X → Y where E contained E1 or E2, respectively.

Our rankings help identify eFDs relevant for normaliza-
tion and pinpointing dirty data. Figure 5 shows the distri-
bution of eFDs in percentiles of the redundant values they
cause based on E1 and E2, respectively. For growing ∣E∣
typically more eFDs need consideration. Here, our ranking
offers a convenient measure of relevance for data stewards.

A view that might be particularly useful for data stewards
is to fix a column in E, and list the minimal LHSs that
functionally determine that column, ranked by the relevance
of the corresponding eFD. This is illustrated in Figures 6
and 7, where we list all minimal LHSs for the columns city
and zip code based on the two completeness requirements
E1 and E2, respectively.

Finally, a data steward can view the records in which the
redundant data values actually occur. This helps them de-
cide if the eFD is meaningful for the application, holds just
accidentally, or identify records with dirty data. Figure 8
shows some records with E1-redundant data values.

An inspection of these records reveals some dirty data: i)
Hazel and Homer Hargis live at the same street address, and

Figure 7: Ranking of some eFDs for application E2

Figure 8: E1-redundancies caused by the eFD
full phone num ∶ last name,city,register date→ zip code

their phone numbers are different, and ii) Vivian and John
Etheridge share the same phone number, but their street
address is different. For i) the inconsistency can easily be
resolved by giving the full phone number, while for ii) it is
more likely that Vivian indicated the correct street number.
Summary. Our experiments illustrate on benchmark sche-
mata and data that eFDs provide effective declarative means
to capture and reason about redundant data value occur-
rences that are fit for application requirements. Our rank-
ing guides data stewards in their selection of eFDs that are
relevant for normalization purposes given the application
requirements. Our normalization strategies result in a wide
spectrum of schemata with clear achievements in terms of
the elimination of pertinent data redundancies or the preser-
vation of pertinent dependencies, accommodating tradeoffs
between update and query efficiency. More experiments on
perfect decompositions and an analysis of our experiments
on horizontal fragments on ncvoter are also available [38].

8. CONCLUSION AND FUTURE WORK
Schema design for data with missing values has been an

open problem since the 1980s. Previous work has focused
on finding suitable extensions of functional dependencies to
accommodate different interpretations of null markers. In
contrast, we introduced the class of embedded functional
dependencies (eFDs) that is only dependant on complete
data, can express completeness and integrity requirements
of applications, and captures many redundant data values.
This has enabled us to establish a fully-fledged normaliza-
tion framework that is robust under different interpretations
of null markers, tailors relational schema design to data-
completeness requirements, and lifts the achievements of
classical BCNF and 3NF to applications with missing data.
Extensive experiments on real-world benchmark schemata
and data exemplify the effectiveness of our framework, the
efficiency of our algorithms, and the achievements of our
new normal form proposals. In particular, we illustrated
the impact of the completeness requirements on trade-offs
between data redundancy elimination and dependency-pre-
servation. Next steps include an in-depth investigation into
the discovery problem of embedded uniqueness constraints
and functional dependencies from given relations. The dis-
covery is important for data profiling and its applications [1,
39], but can also help identify business rules [37]. For that
purpose, the ranking of eFDs can provide effective guidance.
Furthermore, an extension of our framework to other data
quality dimensions and other classes of data dependencies is
important [27, 28, 33]. The ability to declare data accuracy
or data timeliness requirements as part of functional, mul-
tivalued and inclusion dependencies [13, 20, 26] would lift
important data quality dimensions to first-class citizens that
impact schema design considerations based on rich sources
of data redundancy.

1469



9. REFERENCES
[1] Z. Abedjan, L. Golab, F. Naumann, and

T. Papenbrock. Data Profiling. Synthesis Lectures on
Data Management. Morgan & Claypool Publishers,
2018.

[2] M. Arenas. Normalization theory for XML. SIGMOD
Record, 35(4):57–64, 2006.

[3] W. W. Armstrong. Dependency structures of data
base relationships. In IFIP Congress, pages 580–583,
1974.

[4] P. Atzeni and N. M. Morfuni. Functional dependencies
and constraints on null values in database relations.
Information and Control, 70(1):1–31, 1986.

[5] P. A. Bernstein. Synthesizing third normal form
relations from functional dependencies. ACM Trans.
Database Syst., 1(4):277–298, 1976.

[6] J. Biskup. Achievements of relational database schema
design theory revisited. In Semantics in Databases,
pages 29–54, 1995.

[7] J. Biskup. Achievements of relational database schema
design theory revisited. In L. Libkin and B. Thalheim,
editors, Semantics in Databases, volume 1358 of
Lecture Notes in Computer Science, pages 29–54.
Springer, 1998.

[8] J. Biskup, U. Dayal, and P. A. Bernstein. Synthesizing
independent database schemas. In SIGMOD, pages
143–151, 1979.

[9] E. F. Codd. Further normalization of the database
relational model. In Courant Computer Science
Symposia 6: Data Base Systems, pages 33–64, 1972.

[10] C. J. Date and R. Fagin. Simple conditions for
guaranteeing higher normal forms in relational
databases. ACM Trans. Database Syst., 17(3):465–476,
1992.

[11] W. F. Dowling and J. H. Gallier. Linear-time
algorithms for testing the satisfiability of propositional
horn formulae. J. Log. Program., 1(3):267–284, 1984.

[12] R. Fagin. The decomposition versus synthetic
approach to relational database design. In VLDB
1977, pages 441–446, 1977.

[13] R. Fagin. Multivalued dependencies and a new normal
form for relational databases. ACM Trans. Database
Syst., 2(3):262–278, 1977.

[14] W. Fan, F. Geerts, X. Jia, and A. Kementsietsidis.
Conditional functional dependencies for capturing
data inconsistencies. ACM Trans. Database Syst.,
33(2), 2008.

[15] S. Greco, C. Molinaro, and F. Spezzano. Incomplete
Data and Data Dependencies in Relational Databases.
Synthesis Lectures on Data Management. Morgan &
Claypool Publishers, 2012.

[16] S. Hartmann and S. Link. The implication problem of
data dependencies over SQL table definitions:
Axiomatic, algorithmic and logical characterizations.
ACM Trans. Database Syst., 37(2):13:1–13:40, 2012.

[17] I. J. Heath. Unacceptable file operations in a
relational data base. In SIGFIDET Workshop, pages
19–33, 1971.

[18] N. D. Jones and W. T. Laaser. Complete problems for
deterministic polynomial time. Theor. Comput. Sci.,
3(1):105–117, 1976.

[19] H. Köhler and S. Link. SQL schema design:
Foundations, normal forms, and normalization. In
SIGMOD, pages 267–279, 2016.

[20] H. Köhler and S. Link. Inclusion dependencies and
their interaction with functional dependencies in SQL.
J. Comput. Syst. Sci., 85:104–131, 2017.

[21] H. Köhler and S. Link. SQL schema design:
Foundations, normal forms, and normalization. Inf.
Syst., 76:88–113, 2018.

[22] S. Kolahi. Dependency-preserving normalization of
relational and XML data. J. Comput. Syst. Sci.,
73(4):636–647, 2007.

[23] S. Kolahi and L. Libkin. An information-theoretic
analysis of worst-case redundancy in database design.
ACM Trans. Database Syst., 35(1):5:1–5:32, 2010.

[24] M. Levene and G. Loizou. Axiomatisation of
functional dependencies in incomplete relations.
Theor. Comput. Sci., 206(1-2):283–300, 1998.

[25] M. Levene and G. Loizou. A guided tour of relational
databases and beyond. Springer, 1999.

[26] M. Levene and M. W. Vincent. Justification for
inclusion dependency normal form. IEEE Trans.
Knowl. Data Eng., 12(2):281–291, 2000.

[27] S. Link and H. Prade. Relational database schema
design for uncertain data. In CIKM, pages 1211–1220,
2016.

[28] S. Link and H. Prade. Relational database schema
design for uncertain data. Inf. Syst., 84:88 – 110, 2019.

[29] D. Maier. The Theory of Relational Databases.
Computer Science Press, 1983.

[30] T. Papenbrock and F. Naumann. Data-driven schema
normalization. In EDBT, pages 342–353, 2017.

[31] R. Ramakrishnan and J. Gehrke. Database
management systems. McGraw-Hill, 2003.

[32] J. Rissanen. Independent components of relations.
ACM Trans. Database Syst., 2(4):317–325, 1977.

[33] S. W. Sadiq, T. Dasu, X. L. Dong, J. Freire, I. F.
Ilyas, S. Link, R. J. Miller, F. Naumann, X. Zhou, and
D. Srivastava. Data quality: The role of empiricism.
SIGMOD Record, 46(4):35–43, 2017.

[34] M. W. Vincent. A corrected 5NF definition for
relational database design. Theor. Comput. Sci.,
185(2):379–391, 1997.

[35] M. W. Vincent. Semantic foundations of 4NF in
relational database design. Acta Inf., 36(3):173–213,
1999.

[36] Z. Wei and S. Link. Embedded cardinality constraints.
In CAiSE, pages 523–538, 2018.

[37] Z. Wei and S. Link. DataProf: Semantic profiling for
iterative data cleansing and business rule acquisition.
In SIGMOD, pages 1793–1796, 2018.

[38] Z. Wei and S. Link. Data-completeness tailored
database design. Technical Report CDMTCS-537, The
University of Auckland, 2019.

[39] Z. Wei and S. Link. Discovery and ranking of
functional dependencies. In ICDE, pages 1526–1537,
2019.

[40] Z. Wei, S. Link, and J. Liu. Contextual keys. In ER,
pages 266–279, 2017.

[41] C. Zaniolo. Database relations with null values. J.
Comput. Syst. Sci., 28(1):142–166, 1984.

1470


