
Hillview: A trillion-cell spreadsheet for big data

Mihai Budiu
mbudiu@vmware.com

VMware Research

Parikshit Gopalan
pgopalan@vmware.com

VMware Research

Lalith Suresh
lsuresh@vmware.com

VMware Research

Udi Wieder
uwieder@vmware.com

VMware Research

Han Kruiger
University of Groningen

Marcos K. Aguilera
maguilera@vmware.com

VMware Research

ABSTRACT
Hillview is a distributed spreadsheet for browsing very large
datasets that cannot be handled by a single machine. As a spread-
sheet, Hillview provides a high degree of interactivity that permits
data analysts to explore information quickly along many dimen-
sions while switching visualizations on a whim. To provide the re-
quired responsiveness, Hillview introduces visualization sketches,
or vizketches, as a simple idea to produce compact data visualiza-
tions. Vizketches combine algorithmic techniques for data summa-
rization with computer graphics principles for efficient rendering.
While simple, vizketches are effective at scaling the spreadsheet
by parallelizing computation, reducing communication, providing
progressive visualizations, and offering precise accuracy guaran-
tees. Using Hillview running on eight servers, we can navigate and
visualize datasets of tens of billions of rows and trillions of cells,
much beyond the published capabilities of competing systems.

PVLDB Reference Format:
Mihai Budiu, Parikshit Gopalan, Lalith Suresh, Udi Wieder, Han Kruiger,
and Marcos K. Aguilera. Hillview: A trillion-cell spreadsheet for big data.
PVLDB, 12(11): 1442-1457, 2019.
DOI: https://doi.org/10.14778/3342263.3342279

1. INTRODUCTION
Enterprise systems store valuable data about their business. For

example, retailers store data about purchased items; credit card
companies, about transactions; search engines, about queries; and
airlines, about flights and passengers. To understand this data, com-
panies hire data analysts whose job is to extract deep business in-
sights. To do that, analysts like to use spreadsheets such as Ex-
cel, Tableau, or PowerBI, which serve to explore the data inter-
actively, by plotting charts, zooming in, switching charts, inspect-
ing raw data, and repeating. Rapid interaction distinguishes spread-
sheets from other solutions, such as analytics platforms and batch-
based systems. Interaction is desirable, because the analyst does
not know initially where to look, so she must explore data quickly
along many dimensions and change visualizations on a whim.

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 12, No. 11
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3342263.3342279

Unfortunately, enterprise data is growing dramatically, and cur-
rent spreadsheets do not work with big data, because they are lim-
ited in capacity or interactivity. Centralized spreadsheets such as
Excel can handle only millions of rows. More advanced tools such
as Tableau can scale to larger data sets by connecting a visualiza-
tion front-end to a general-purpose analytics engine in the back-
end. Because the engine is general-purpose, this approach is either
slow for a big data spreadsheet or complex to use as it requires
users to carefully choose queries that the system is able to execute
quickly. For example, Tableau can use Amazon Redshift as the an-
alytics back-end but users must understand lengthy documentation
to navigate around bad query types that are too slow to execute [17].

We propose Hillview, a distributed spreadsheet for big data. Hill-
view can navigate and visualize hundreds of columns and tens of
billions of rows, totaling a trillion cells, far beyond the capability
of the best interactive tools today. Hillview uses a distributed sys-
tem with worker servers that provide storage and computation. It
achieves massive data scalability with just a few servers (e.g., with
eight commodity servers it supports a trillion spreadsheet cells).

The main challenge facing Hillview is to provide near real-time
performance despite having to compute over big data.

To address this challenge, Hillview invokes a common idea in
database design: specialize the engine [91]. Rather than using a
general-purpose analytics engine, Hillview introduces a new engine
specialized to render the tabular views and charts of a spreadsheet.
The main technical novelty of the paper is how to accomplish this
specialization: we introduce the notion of visualization sketches or
simply vizketches, and we propose a new distributed engine to ren-
der visualizations quickly using vizketches.

Vizketches combine ideas from the algorithms and computer
graphics communities. In the algorithms community, mergeable
summaries [2] are approximate computations that compute results
over disjoint subsets of the data, that can then be merged to obtain
the final result. Mergeable summaries are useful to distribute the
computation efficiently with fine control over the accuracy and res-
olution of the result. A vizketch combines mergeable summaries
with a basic principle in computer graphics rendering: compute
only what you can display. A vizketch, thus, adjusts its accuracy
and resolution to match the display resolution and compute only
what can be visually discerned. For example, a vizketch for pro-
ducing histograms limits the number of bars to≈100 and computes
the height of each bar only to the nearest pixel; these choices reduce
the network communication and enable computation over big data.
If the user zooms in on the histogram, the vizketch adapts to the
new visualization to adjust the histogram buckets and enhance the
accuracy of the bars while avoiding the computation of bars that
are no longer visible.

1442

root

worker 1

data
cache

aggreg-
ation

leaf

c
o

m
p

u
ta

ti
o

n
c
a

c
h

e

leaf

worker n

data
cache

aggreg-
ation

leaf

c
o

m
p

u
ta

ti
o

n
c
a

c
h

e

leaf...

web
server

log
web

server

client web browser

execution tree

...

data repository

many
responses

execution
tree node

system
component

machine

request

response

Figure 1: Hillview is a spreadsheet for browsing big data. It
introduces a novel database engine based on vizketches to dis-
tribute, parallelize, and optimize the computation of visual-
izations and obtain interactive speeds despite large datasets.
Vizketches are executed in a tree, where leafs process shards
in parallel and merge results toward the root.

Vizketches play a crucial role in Hillview. They parallelize the
computation, reduce communication bandwidth, enhance computa-
tion efficiency, permit a progressive visualization of results, provide
a precise accuracy guarantee, and ensure scalability (§4.4). These
benefits are key for a spreadsheet to be able to browse big data
at interactive speeds. Furthermore, vizketches can always be com-
puted efficiently. This feature differentiates Hillview from tradi-
tional visualization solutions, which let users specify broad declar-
ative queries without exposing their performance to the user, which
is problematic for efficiency or usability. That leads to an important
question about Hillview: are the queries supported by vizketches
rich enough to implement a fully functional spreadsheet? A contri-
bution of this paper is to answer this question positively.

To render visualizations quickly, Hillview introduces a new dis-
tributed engine to compute vizketches (Fig.1). Clients access the
system via a user interface in a web browser (top of figure),
while the dataset is partitioned across a set of worker servers (bot-
tom). The user interface triggers a visualization, such as a his-
togram on a chosen column. To produce the visualization, the sys-
tem executes two phases: preparation and rendering. The prepa-
ration phase computes broad parameters required to produce a
proper visualization—for example, a histogram needs to find the
data range and number of items to determine appropriate bucket
boundaries and sampling rates. Next, the rendering phase com-
putes the values required for the visualization—for example, the
height of each histogram bar. This phase utilizes a vizketch to
compute with the minimum accuracy for a good visualization. The
rendering phase produces partial results that incrementally update
the visualizations, so the client sees an initial visualization quickly
and subsequently sees more precise results. Both preparation and
rendering phases use an execution tree to distribute the computa-
tion across the workers. The engine provides other important func-
tionality that we describe in the paper: caching computations, dis-
tributed garbage-collection, and failure recovery. Furthermore, the
engine has a modular design that allows developers to add visu-
alizations easily using new vizketches without dealing with con-
currency, communication, and without needing to understand the
structure of an existing query optimization engine; in practice sup-

port for a new storage layer or for a new visualization type can be
added in a couple of person-days of work.

The engine of Hillview differs fundamentally from general-
purpose query engines in two important ways. First, due to the
characteristics of vizketches, Hillview queries are scalable by con-
struction: more specifically, queries are guaranteed to run in time
O(n/c), produce results of length O(logn), using memory of size
O(logn) where n is the number of elements in the dataset and c is
the number of worker cores1. In addition, many queries run in time
O(1). Second, Hillview produces compact results designed to be
rendered efficiently on the screen. By contrast, general-purpose en-
gines are not concerned about efficiency renderings; their queries
could produce large results that take longer to visualize than to
compute (e.g., returning billion points to be plotted) [17, 1, 88].

We evaluate Hillview and its vizketches. We find that Hillview
can support tables with 1.4 trillion cells while providing fast re-
sponse. With this scale and data in memory, operations take 1–
15 seconds. Hillview displays an initial partial views even faster,
which is incrementally updated until it converges to the final view.
With cold data read from an SSD, operations take 2–24 seconds,
and an initial view still appears within seconds. For datasets with
hundreds of billions of cells, Hillview computes complete answers
in under a second for most queries. This is faster than the cur-
rent approach of connecting a visualization front-end to a general-
purpose analytics back-end. We also find that Hillview has broad
functionality for answering a wide range of questions. Vizketches
are an order of magnitude faster than a popular commercial in-
memory database system to compute histograms; and their perfor-
mance scales linearly or sometimes super-linearly with the number
of threads and servers.

To demonstrate the usability of Hillview, we provide a short
video and a live demo running on AWS using small EC2 instances
(these links are also available in our github repository):
Video:https://1drv.ms/v/s!AlywK8G1COQ jeRQatBqla3tvgk4FQ
Demo:http://ec2-18-217-136-170.us-east-2.compute.amazonaws.com:8080

In summary, in this paper we propose Hillview, a spreadsheet
for big data. Hillview makes two novel contributions. First, it intro-
duces vizketches, an idea that combines mergeable summaries with
visualization principles; we give vizketches for each chart and tab-
ular view in Hillview, by finding appropriate mergeable summaries
and parameters to render information efficiently yet provably ac-
curately. Second, Hillview demonstrates how to efficiently com-
pute vizketches by introducing a new scalable distributed analyt-
ics engine that caches computations, performs distributed garbage-
collection, and handles failure recovery, while achieving the scala-
bility and speed required for an interactive spreadsheet.

While the above contributions are pragmatic, we believe this
work also contains a fundamental contribution. We raise and
defend two hypotheses: (1) mergeable summaries are powerful
enough to efficiently and accurately visualize massive datasets, and
(2) spreadsheets can significantly benefit from a specialized en-
gine. Hillview demonstrates these hypotheses empirically by giv-
ing vizketches for many visualizations, by building an engine for
vizketches, and by quantifying its benefits. Hillview is an open-
source system with an Apache 2 license, available at https://github.
com/vmware/hillview.

Due to space limitations, we provide an extended version of this
paper [13], with additional details: a formal computational model
that captures vizketches, formal definitions of correctness and effi-
ciency, detailed descriptions of vizketches, and correctness proofs.

1Assuming a balanced partition of the data between workers.

1443

https://1drv.ms/v/s!AlywK8G1COQ_jeRQatBqla3tvgk4FQ
http://ec2-18-217-136-170.us-east-2.compute.amazonaws.com:8080
https://github.com/vmware/hillview
https://github.com/vmware/hillview

2. WHY A NEW ENGINE
In a famous paper, Stonebraker et al. advocate for designing

database systems targeted for specific domains, because doing so
can dramatically improve performance over one-size-fits-all solu-
tions [91]. This approach has worked well for several domains: data
warehousing, stream processing, text, scientific, online transaction
processing, etc. More recently, Fisher [38] and Wu et al [100] point
to the need for collaboration between visualization and data man-
agement systems. Hillview arises from these insights: we apply the
database specialization approach to big data spreadsheets, where
existing solutions fall short in scale and performance.

Hillview raises an important question. Data analysts may want to
apply rich pipelines to data involving different frameworks, tools,
and programming languages. For example, they may use a statisti-
cal package in R, then apply a machine learning algorithm in C++,
followed by some hand-written scripts in python. How can Hillview
integrate in this environment, given Hillview’s specialized engine?

Hillview addresses this concern by adopting a versatile data layer
that can connect to other tools in the pipeline. In particular, Hill-
view can operate directly on data stored in SQL databases, NoSQL
systems, JSON files, CSV files, columnar-oriented files such as Par-
quet or ORC, and other big-data systems (Hadoop+Spark, Impala),
without any data transformation overheads. This is because Hill-
view does not require data ingestion to produce indexes, or repar-
tition data: the efficiency of vizketches permits Hillview to oper-
ate on raw data partitioned horizontally in arbitrary ways across
servers: there are no requirements that partitions contain contigu-
ous intervals or specific hash values. The only requirements of the
data layout is that (1) data be horizontally partitioned ideally with
approximately equal-sized partitions available to each worker, and
(2) data does not change while Hillview is running2. The latter re-
quirement can be met by using a data layer that provides snapshots,
immutable data, or by pausing data modifications while Hillview
runs. If a processing pipeline meets these requirements, then it is
easy to insert Hillview into the pipeline. For example, we can con-
nect the output of a batch-processing system to Hillview for ex-
ploration, and then output Hillview visualizations as data files or
images that are processed by subsequent tools in the pipeline.

3. GOALS AND REQUIREMENTS
Our main goal is to develop a big data spreadsheet. As a data an-

alytics tool, we are interested in functionality to explore and sum-
marize data, such as navigation, selection, and charts. These are
mostly read-only operations—our tool is for analytics exploration
rather than transaction processing, data wrangling, cleaning, etc.
So, we are less interested in providing interactive editing function-
ality, but we wish to provide ways to compute new columns from
existing ones (e.g., compute a ratio of two columns). We now ex-
plain our requirements in more detail.

3.1 Why trillions of cells
Even small and medium companies can generate a trillions cells

of data. These companies collect data over time from their servers,
where each server might produce logs and metrics hundreds of
times per minute, and a data center could have dozens of such
servers. For example, 50 servers logging 100 columns at a rate of
100 rows per minute generate in a month 21.6B cells on 216M
rows, or 1T cells and 10B rows in 46 months.

2This requirement is common in data warehousing and analytics
systems.

3.2 Environment
We target an enterprise computing environment, with tens of

commodity server machines in a rack hosted in a private or public
cloud. We want to use as few servers as possible, as most compa-
nies cannot afford thousands of servers to run a spreadsheet.

3.3 Tabular views functionality
At first thought, it is unclear what a spreadsheet with a billion

rows should do. Clearly, paging through all rows is ineffective, but
analysts may wish to find patterns and then inspect individual rows.

In our experience browsing big data, we found that a spreadsheet
must support at least the following functionality.
• Select data based on rich criteria to produce fewer rows (e.g.,

rows with timestamps in the past hour).
• Select columns to show (e.g., date and server).
• Sort by a set of columns (e.g., date first, server next).
• Aggregate duplicates and show repetition counts (e.g., select-

ing just date and server could create millions of repetitions:
all entries produced by each server on each day).
• Search free-form text (e.g., server Gandalf) by exact match,

substring, regular expressions, case sensitivity, etc.
• Move a page forward or backward.
• Scroll forward and backward using a scroll bar.
• Extract features using tools such as heavy hitters (finds most

frequent elements) and Principal Component Analysis [84].
We consider whether this functionality suffices in §7.5, but we

expect the list will grow over time, much like conventional spread-
sheets have evolved, so we also need a flexible framework that al-
lows us to extend the system.

3.4 Visualization functionality
We are also interested in obtaining various visualizations of

columns we choose. But we face a problem with big data: graphs
with billions of points can produce useless black blobs and other
clutter. We want to support visualizations that can avoid this prob-
lem [86, 33], such as histograms, stacked histograms, and heat
maps (Figure 2). These visualizations generalize charts, such as x-y
plots and bar charts (subsumed by heat maps); and pie charts (sub-
sumed by heavy hitters (§3.3)). We also want to extend the system
with future new visualizations.

For each visualization, we want to inspect the value of individ-
ual points, change parameters (e.g., # buckets in histogram) and,
if applicable, understand trends, correlations, and swap axes. Fur-
thermore, we want to zoom in parts of the data, by regenerating
the visualization for a subset of its data as determined by a mouse
selection.

3.5 Other features
Data types. We want to support integers, floating-point numbers,
dates, free-form text, and strings describing categorical data.

Map functions. We want to produce a new column by combining
existing ones using user-defined map functions (e.g., a ratio of two
columns).

Data sources. We want to read data from a variety of common
sources (comma-separated files, SQL databases, row columnar files
such as ORC, future formats, etc).

4. VIZKETCHES
Key to providing the required performance of Hillview,

vizketches are a simple concept that combine the idea of merge-
able summaries (or sketches) from the algorithms community with

1444

Name What it shows Example
CDF Distribution of variable # events before noon
Histogram Frequency of variable for each bucket # events per hour of day
Stacked histogram Frequency of first variable and frequency of sec-

ond variable grouped by first
events of each type per hour of day

Normalized stacked hist. Ditto but bars normalized % of events of each type per hour of day
Heat map Frequency of two variables # events for each server and hour
Trellis plots Arrays of the other plots grouped by one or two

variables
events for each server and hour, for each datacenter

Histogram and CDF Stacked histogram

Heat map Trellis plot with heat maps

Figure 2: Some clutter-free visualizations for large datasets. Visualizations cover a single variable (column) or multiple variables, up
to four.

the principle of visualization-driven computation from the graphics
community.

4.1 Background
Mergeable summaries. Intuitively, a summarization method com-
putes a compact representation (“summary”) of a large dataset,
which can then answer approximate queries on the dataset. A sum-
marization method is mergeable [2] if the summary can be obtained
by merging many summaries computed independently over parts
of the dataset. More precisely, a mergeable summarization method
consists of two functions summarize(D) and merge(S,S′). The first
takes a dataset D and returns a summary; the second merges two
summaries and returns another summary. A summary is small com-
pared to D—typically by many orders of magnitude—and it can ap-
proximate queries on D (the allowable queries depend on the choice
of summarization method). Summaries of two separate datasets can
be merged via the merge function:

summarize(D1]D2) = merge(summarize(D1),summarize(D2))

where D1 and D2 are mutisets and] is multiset union. There are
summarization methods for many types of queries, such as his-
tograms, heavy hitters, heat maps, and PCA. Many summarization

methods are sketches from the streaming algorithms literature [21],
and so the community sometimes mixes these two concepts. How-
ever, a summarization method can also use sampling, which can be
more efficient because it does not scan all data. The summarization
method has two accuracy parameters: an error ε and an error prob-
ability δ , with the guarantee that an approximation computed from
a summary has error at most ε with probability 1− δ . For a more
formal description of our computational model, we refer the reader
to Appendix A of the extended version of this paper [13].

Visualization-driven computation. In computer graphics, render-
ing is an expensive operation that must be optimized. To do that,
a basic principle is to drive the computation based on what will
be visualized and its resolution, taking into consideration the lim-
its of human perception and the lossy channels of displays. This
principle is behind many graphics techniques, such as ray tracing,
culling, and imposters [48].

4.2 Basic idea
A vizketch is a mergeable summary designed to produce a good

visualization. More precisely, a vizketch method targets a specific
visualization (e.g., a histogram) with a given display dimension
(width and height in pixels). The vizketch method consists of the

1445

two functions of a mergeable summary, summarize and merge, with
parameters carefully chosen to achieve two goals: the summary is
small, and it permits a good rendering of the visualization.

Small summary means that its size depends only on the length
of the description of the visualization, not on the input size. More
precisely, visualizations are inherently limited by the finiteness of
their renderings, so they have a short description (e.g., a histogram
is described by its bucket boundaries and heights). The length of
this description is a lower bound on the size of the summary. We
seek summaries whose size is polynomial in this length, rather than
the data set size. The key hypothesis behind Hillview is that visual-
izations always admit vizketches with such small summaries. This
hypothesis is not obvious; it can be formalized with proper defi-
nitions of the computational model, visualizations, etc., but this is
outside the scope of this paper. Instead, Hillview supports this hy-
pothesis empirically: we give vizketches for many visualizations,
by adapting techniques from the sketching/streaming literature.

Good rendering means two things. First, the rendering has a
bounded error with high probability (e.g., histogram bars are off by
at most 1 pixel). Second, the rendering is not cluttered (e.g., there
are at most 50 buckets for a histogram when the screen width is
200 pixels). The precise requirements are carefully chosen for each
type of visualization. These choices are made so that a human can
consume the information effectively without perceiving any errors
in the approximation.

To use vizketches, Hillview defines a computation tree whose
nodes are assigned to the servers (Figure 1). Hillview assumes that
the data is stored on a distributed storage layer, and is sharded into
small chunks, which are distributed to the tree leaves. The shard-
ing can be arbitrary: chunks need not be sorted or partitioned by a
specific key.

To perform a visualization, each leaf independently runs the
vizketch’s summarize function on the shards that it has; this func-
tion might choose to sample or scan the data in the chunk3. The
summaries are then merged along the computation tree, using the
vizketch’s merge function. The root receives the final summary,
which reflects a view of the entire dataset and produces the ren-
dering of the visualization for the client.

Vizketches parallelize the computation across threads and
servers, while reducing computation and network bandwidth to
only what is necessary for a good rendering. They can also provide
partial results for progressive visualizations, in addition to other
benefits (§4.4). We now describe specific vizketches.

4.3 Algorithms
Hillview uses a large number of vizketches. Some produce

graphs (histograms, stacked histograms, heat maps, trellis plot);
others produce information for the spreadsheet tabular view (next
items, quantile for scroll bar, find text, heavy hitters). We de-
scribe a few here; others are omitted due to space limitations but
they follow a similar approach and can be found in Appendix B
of [13]. Vizketches have rigorous guarantees of correctness, which
we present in Appendix C of [13].

A vizketch is parameterized by the target display resolution, and
produces calculations that are just precise enough to render at that
resolution.

Histograms. We are given a numerical column (or a value that can
be readily converted to a real number, such as a date) with range
[x0,x1), a number B of histogram bars, and their maximum pixel
height V . The histogram vizketch (Figure 3(b)) divides the range
[x0,x1) into B equi-sized intervals, one per bin. To maximize use of

3This choice can be made independently for each chunk.

x
x

X= 0 2 4 6

x

0
0 2 4 6

5

10

15

20

0

1/4

1/2

3/4

1

(a) (b)

Figure 3: Charts in Hillview have an error of at most 1/2 pixel
or one color shade with high probability. (a) A histogram with
three bars. The × indicates the correct height for the bar at
most one 1/2 pixel away from the rendering. (b) A heat map
(left) and the density color map (right). The x-axis has bins for
the first variable; the y-axis, for the second variable. The color
indicates the density of each bin, where the error is at most one
color shade with high probability.

screen, we should scale the bars so that the largest one has V pixels.
We furthermore allow an error of .5 pixels in the estimation of the
height of each bar. We prove in Appendix C of [13] that to obtain
this error with probability < 1− δ , it is sufficient to sample n =
O(V 2B2 log(1/δ)) items from the dataset. Notice that this function
is independent on the dataset size, and depends only on the screen
size. The summarize function outputs a vector of B bin counts, and
the merge function adds two vectors.

Heat map. We are given two columns X and Y with ranges [x0,x1)
and [y0,y1), and the pixel dimensions H ×V . A heat map (Fig-
ure 3(d)) defines bins in two dimensions, where each bin consumes
b×b pixels (b is 2 or 3, depending on the screen resolution). Thus,
we have Bx = H/b and By = V/b bins for X and Y . The density
of the data in a bin is represented by a color scale. If we use c≈20
distinct colors, the required accuracy for each bin density is 1/2c.
This requires a target sample size n = O(c2B2

xB2
y log(1/δ))4. The

summarize function samples data with the target rate, counting the
number of values that fall in each bin. It outputs a matrix of Bx×By
bin counts. The merge function adds two such matrices.

Next items. This vizketch is used to render a tabular view of the
spreadsheet given the current row shown at the top R (or R =⊥ to
choose the beginning of the dataset). We are also given a column
sort order, and the number K of rows to show. This vizketch returns
the contents of the K distinct rows that follow R in the sort order.
The summarize function scans the dataset and keeps a priority heap
with the K next values following row R in the sort order. The merge
function combines the two priority heaps by selecting the smallest
K elements and dropping the rest.

Heavy hitters. A vizketch to find heavy hitters works by sampling.
Let K be the maximum number of heavy hitters desired. The basic
idea is to sample with a target size n (determined below), and select
an item as a heavy hitter if it occurs with frequency at least 3n/4K.
A statistical calculation shows that by picking n = K2 log(K/δ),
with probability 1− δ we can obtain all elements that occur more
than 1/K of the time and no elements that occur fewer than 1/4K
of the time. This method is particularly efficient if K is small. We
employ several other algorithsm for finding heavy hitters, described
in Appendix C of [13].

4Sampling can be used only if the map from count to color is linear.

1446

4.4 Benefits
Vizketches bring many benefits to Hillview. In the list below, the

parentheses indicate from where the benefit is inherited: S means
sketches/mergeable summaries, V means visualization-driven com-
putation, and S+V means the combination of both.
• Parallel computation (S). Servers and cores within servers

independently compute on different parts of the data, and the
result is merged.
• Bandwidth efficiency (S+V). When a server finishes its com-

putation, it communicates only a compact summary to be
merged.
• Computation efficiency (S+V). Some computations can done

over a small sample of data based on the required accuracy.
• Progressive visualization (S). As servers complete their com-

putation, the system computes a partial summary that grad-
ually progresses to the final result. This ensures that slow
servers and tail latencies do not hinder interactivity. Users
can cancel a visualization after seeing partial results.
• Accurate visualization (S+V). The resulting visualization has

a precise accuracy guarantee.
• Scalability (S+V). As we add more data, vizketches can sam-

ple more aggressively to enhance efficiency while achieving
the required accuracy.
• Easy to obtain (S). There is a rich literature on mergeable

summarization methods and sketches of various types (his-
tograms, heat maps, heavy hitters, etc); these sketches can
often be converted into vizketches through a relatively sim-
ple analysis that translates the accuracy of the sketch into the
required accuracy of the visualization, as illustrated above.
• Modularity (S). New visualizations can be added to Hillview

by defining new vizketches as two simple functions (§4.1)
without the developer worrying about distributed systems as-
pects.

5. DESIGN AND ARCHITECTURE
We now explain in detail the design and architecture of Hillview,

starting with its high-level design choices (§5.1), followed by a de-
tailed description in the subsequent sections.

5.1 Design choices
We now explain the key design choices of Hillview, which derive

from the power and characteristics of vizketches.
• Distribute computation while minimizing server coordina-

tion. To answer a query, Hillview launches a computation
tree to efficiently distribute the query to worker servers and
aggregate the results according to the vizketch computations.
• Storage-independence. Hillview can access data in a wide

variety of formats (SQL, NoSQL, text, JSON, etc), with
few restrictions on how data is partitioned (§2), and with-
out the need to pre-compute indexes or perform extract-
transform-load. As a result, Hillview does not require any
pre-processing to ingest data. This is beneficial to integrate
Hillview into a diverse analytics pipeline (as explained in
§2), and this is possible because the efficiency and paral-
lelization of vizketches permits forgoing data conversions,
repartitioning, and pre-computations.
• Sample data in a controlled manner. Sampling improves ef-

ficiency but introduces error. Vizketches allow Hillview to
sample while bounding the error to what we can perceive.
• Modular algorithms. Programmers who write vizketch algo-

rithms do not have to worry about concurrency, communica-
tion, or fault-tolerance; they just implement single-threaded

code, and the architecture handles all such issues in a uni-
form and transparent manner.

5.2 Architecture
Figure 1 shows the architecture of Hillview. Hillview is designed

as a cloud service accessible to clients through a web interface. A
web browser handles user interaction with the spreadsheet and ren-
ders the the charts incrementally as computation results arrive. To
produce a visualization, a web server launches the required com-
putation as one or more execution trees. Communication happens
only along the edges of the tree, and is restricted to small mes-
sages: queries in one direction and summaries in the other. Each
tree is rooted at the web server, followed by one or more layers
of aggregation nodes, and several leaf nodes. The leaf nodes per-
form the actual computation over disjoint partitions of the dataset.
These nodes have an in-memory data cache in front of the data in
repositories. There is also a computation cache to reuse prior com-
putations. The aggregation nodes are intended to scale the system
to many servers; a small deployment with tens of servers needs only
one layer.

5.3 Execution tree
A visualization typically involves two execution trees, each in-

trinsically linked to a mergeable summary. The first tree computes
data-wide parameters such as the size and range of the data set; this
computation may be cached from previous visualizations. The sec-
ond tree computes a vizketch for the visualization with the required
accuracy based on the results produced by the first execution tree.

The execution of each tree is based on the summarize and merge
functions (§4.2) of the mergeable summary. A tree executes in two
phases.

The first phase initiates the computation from the root down the
tree to each leaf, and causes the leaf nodes to apply the summarize
method on their data partition. To parallelize execution within a
server, each server runs multiple leaf nodes: there is a thread pool
that serves leafs with work to do. To facilitate this process, the data
partition within a server is divided into micropartitions of 10-20M
rows, each micropartition assigned to a leaf.

The second phase, in its most basic form, executes from the leafs
toward the root, causing each node to aggregate results from its
children through the merge method. Thus, ultimately the root node
combines the output of all nodes, and the result can be rendered.
When processing large datasets in a distributed system, there may
be variation in the processing times across servers and partitions.
If the root had to wait for all other nodes to finish, its completion
would be disrupted by any stragglers, affecting the interactive expe-
rience of users. To address this problem, nodes periodically prop-
agate partially merged results of the vizketch without waiting for
all children to respond. Thus, the root receives partial results and
sends them to the client UI, before it gets the final results. The web
browser then renders results as they arrive, so that users can see a
progression of the computation. Hillview shows a progress bar that
reflects the number of leafs that have completed. Users can cancel
the computation based on the partial results they see.

There is a trade-off between the freshness of the partial results
and the bandwidth savings produced by aggregating partial results.
After receiving a result from a child node, aggregation nodes wait
for 0.1 seconds and aggregate all results that arrive within this inter-
val. This provides frequent updates to the UI; the increase in com-
munication costs is modest because all vizketch results are small
by construction.

Hillview allows users to cancel computations (e.g., because a
partial visualization is satisfactory). This is done by interrupting

1447

an execution tree with a high priority cancellation message that by-
passes the queuing mechanisms in the communication between tree
nodes. This message causes tree nodes to do two things: remove
work for that computation that was previously enqueued, and ig-
nore requests for micropartitions not yet started. We currently do
not stop ongoing computations on a micropartition.

5.4 Data input, caching, and data output
Unlike most database systems, Hillview reads data repositories

without pre-processing, repartitioning, or other optimizations. This
is possible because the computational engine of Hillview—based
on vizketches—makes few assumptions about the data. The as-
sumptions are that repositories do not change while they are ac-
cessed (this can be provided by using storage snapshots or control-
ling write access) and data is horizontally partitioned, ideally with
approximately equal-sized partitions available to each worker, so
that data can be read in parallel. When a worker needs a column,
it reads it completely from the data repository taking advantage of
fast sequential access and columnar access if the repository sup-
ports it (SQL, Parquet, ORC). Once data is read, it is kept in an
in-memory cache; the cache purges entries not used for a while
(currently 2 hours).

Hillview uses two types of caching: data and computation. The
first is an in-memory cache of the raw data in the data repositories.
The data cache is organized by column to provide data locality,
since vizketches tend to operate on relatively few columns.

The computation cache stores results produced by mergeable
summaries; these results are small, allowing a large number of re-
sults to be cached. This is useful for mergeable summaries that pro-
vide auxiliary functionality, such as column statistics, which are
used repeatedly and are deterministic. The computation cache is
indexed by what mergeable summary was used and what dataset
was operated on.

Hillview can save a derived table (§5.6) to a data repository, by
having each worker store its partition of the data. This is imple-
mented through a special vizketch with a summarize function that
writes a data record to the repository and returns an error indication,
while the merge function combines error indications.

5.5 Vizketch modularity and extensibility
The inherent structure of vizketches permits Hillview to cleanly

separate them from the rest of its architecture so that developers can
implement new vizketches without the hard concerns of distributed
systems (communication, coordination, fault tolerance, etc) or data
storage. Specifically, to support a new vizketch, a developer needs
to implement the following things: (1) a serializable5 type for the
vizketch summary, (2) an implementation of the summarize and
merge functions of the vizketch; these all operate on the in-memory
columnar representation of the data, and are independent on the
storage layer, (3) code to render the vizketch summary as a visual-
ization in the user interface of the spreadsheet in the browser, (4)
code to trigger the visualization through a user interface action, and
(5) a function to connect the user interface action to the invocation
of the vizketch in the root node. None of these functions are con-
cerned with concurrency (they are single-threaded), and most of
them can be implemented with only tens of lines of code—the sole
exception is (3), which requires more code to provide the graphical
functionality. We quantify the effort to for step (2) in §7.4.

5I.e., the type should have a serialization method to convert an in-
stance into a byte sequence for network transmission.

5.6 Data transformations
Users may wish to generate new data from existing data as part

of the data exploration process. Users can do that externally to Hill-
view through other analytics tools, and then import the results into
Hillview for inspection (§2). Alternatively, Hillview provides some
support for deriving new data through two common operations: se-
lection (filtering) and user-defined map operations (§3).

Selection permits a user to create a new table that contains a sub-
set of the rows of another table (e.g., rows where the year column
is 2019). A particularly useful selection operation in a spreadsheet
is to zoom in part of a graph, which corresponds to choosing the
rows within the zoom window. To provide this functionality, Hill-
view allows mergeable summaries to work on subsets of rows of
the dataset. More precisely, a table can be derived from other ta-
bles by choosing a subset of the rows. To save space, the tables
share common data and store a “membership set” data structure
that identifies which rows are contained in the table. This mem-
bership set data structure has different implementations, depending
on the density of the filtered data. Dense tables that contain most
rows store a bitmap, while sparse tables store a hashset of the rows
indexes. This information is kept locally for each data partition.

When executing the summarize method, some vizketches work
by sampling a subset of rows. We must ensure that sampling is ef-
ficient (it does not require reading each row) but it is also correct
(it picks rows uniformly at random). For sparse tables, we gener-
ate the first sample by choosing a random row number for the first
element; we generate the following samples by returning the next
elements in sorted order of their hash values. For dense tables we
walk randomly the bitmap in increasing index order.

User-defined maps permits a user to create a column from ex-
isting ones (e.g., add two columns), where the map is an arbi-
trary function. Some map functions are built-in (e.g., converting
strings to integers); additional functions can be written by users in
Javascript. To support this functionality, Hillview creates a new ta-
ble with the new column populated by running the map function at
the leafs of the execution tree. Currently, this data is stored only in
the in-memory caches; if the cached data is reclaimed, the column
is recomputed on demand. We believe this is a reasonable choice
for a spreadsheet, since derived columns tend to be short-lived.

5.7 Memory management
Early versions of Hillview used a distributed garbage-collection

protocol to handle memory management. This protocol was com-
plex and fragile (for example, loss of network messages could cause
memory leaks). In the current version we have simplified memory
management by aggressively using only soft state: all in-memory
data structures are disposable, including at leaf-, aggregation- and
root nodes. The only requirement to implement this architecture is
for the storage layer to provide an API to read a particular snap-
shot of a dataset; in this way, in-memory data is reconstructed by
reloading the original snapshot. We use the Partitioned Data Set ar-
chitecture from Sketch [14] to represent distributed objects; unlike
sketch, all remote references are “soft” — they may not point to
valid data structures.

Each machine performs independently garbage-collection; a
caching layer maintains a working set of recently accessed objects
in memory. In-memory cached objects at leaf nodes can be recon-
structed by reading data from disk; tables obtained from filtering
(§5.6) or by deriving new columns (§5.6) can be regenerated by
re-executing the operation that created them in the first place.

When the root node attempts to access a remote object on a leaf
which no longer exists the leaf reports an error. The root node then
re-executes the query that produced the missing object. This may

1448

require re-executing other queries, that produced the source ob-
jects; the recursion ends when data is read from disk.

To enable query re-execution, the root node maintains a redo log
with all executed operations. The redo log is the only persistent
data structure maintained by Hillview (recall that the storage layer
is not part of Hillview).

5.8 Fault tolerance
Hillview provides fault tolerance by logging operations that ini-

tiate each execution tree, and lazily replaying operations to recon-
struct node state. When the root node restarts after a failure, it reads
the redo log to memory, but does not replay it yet. Replaying occurs
only when the user tries to access a dataset that no longer exists, as
described in §5.7.

Worker nodes are stateless, so restarting the node after a failure is
equivalent to deleting all cached datasets. These datasets are recon-
structed by the root node on demand by replaying log operations.

This lazy aproach is suitable for a spreadsheet, because most
views are short-lived results that a user never accesses again.

For this replay mechanism to work, vizketches must be de-
terministic, otherwise a restarted node becomes inconsistent with
nodes that never crashed. To provide determinism for randomized
vizketches (e.g., those that use sampling), the log includes the seed
used for randomization.

6. IMPLEMENTATION
Hillview consists of 35000 lines of Java and 16000 lines of

TypeScript code. The user interface in the browser is implemented
in TypeScript [95], using parts of the D3 JavaScript library [11].
Graphics is done using SVG [25]. The web server runs the Apache
Tomcat application server [4]. The browser gets progressive replies
from web server using a streaming RPC based on Web Sock-
ets [37]; these RPC messages are serialized as JSON. The cloud
service is implemented in Java. We use Java’s type-safe object
serialization facilities for sending queries and data between ma-
chines. We use the fast collections Java library [34] for efficient
data structures, with customizations for faster sampling. For server-
side JavaScript we use Oracle Nashorn [73].

We use a variety of open-source libraries to interface with ex-
ternal storage layers (e.g., csv files, various log formats (e.g., RFC
5424), JDBC connectors, columnar binary formats such as Parquet
or ORC, etc). The communication between back-end machines
uses GRPC [44]. The core communication APIs are based on reac-
tive streams, using RxJava [80, 64]. We use RxJava’s Observable
datatype for many purposes: (1) It represents a stream of partial
results, (2) it offers support for operation cancellation, through its
unsubscribe method, (3) it is used for reporting progress to the
user for long-running operations, displayed in the form of progress
bars, and (4) it is responsible for managing concurrent execution
on multi-core machines (using the observeOn(threadPool); this
thread pool is used for all of the workers’ computations. The in-
memory tables use as much as possible Java arrays of base types
to reduce pressure on the Java GC. String columns use dictionary
encoding for compression.

7. EVALUATION
Our evaluation goal is to determine whether Hillview provides

interactive performance with large data sets, how Hillview com-
pares to existing systems, how vizketches contribute to that goal,
and how effective the spreadsheet is.

Summary. We find the following results:

• Hillview can handle spreadsheets with 130B rows and 1.4T
cells using only 8 servers. At the upper range, visualizations
can take 20s when loading from disk, but the first partial vi-
sualization appears in a few seconds and gets gradually up-
dated. This is much better than existing systems (§7.1). For
smaller datasets most response times are on the order of hun-
dreds of milliseconds.

• Vizketches perform well on a single thread and scale well
with the number of threads and servers. Vizketches based on
sampling scale super-linearly. This performs signficantly bet-
ter than a database system (§7.2).

• Vizketches are key in Hillview: they implement a broad
range of functionality of the spreadsheet, to the extent that
they are the sole way to access data in the system (§7.3).

• Vizketches are easy to code and do not require an understand-
ing of distributed systems (§7.4).

• Hillview is a spreadsheet with many useful features, able to
answer a diverse set of queries effectively (§7.5).

Testbed. Our testbed consists of eight servers running Linux kernel
4.4. Each server has two sockets with 14-core 2.2Ghz Intel Xeon
Gold 5120 CPUs, 192 GB of DRAM, two SSDs with 381GB and
1.8TB, connected to a 10 Gbps network. The client web browser
runs on a laptop connected to the servers via a 100Mbps network
with 1ms ping time to the servers. This setup represents a typical
enterprise setting.

Dataset. We use a dataset with US airline flight performance met-
rics for the past 20 years [71]. Each row has a flight with its origin,
destination, flight time, departure and arrival delays, etc. This is
a real dataset with numerical, categorical, text, and undefined val-
ues. There are 130 million rows and 110 columns, which amount of
58.2 GB of uncompressed data. In some experiments, we scale the
dataset by a factor of 5, 10, or 100, by replicating its rows and read-
ing them repeatedly from disk. These datasets are labeled “Flight-
Kx” where K=1,5,10,100 indicates the replication factor (K=1 is
the original dataset).

7.1 Hillview end-to-end performance
We measure the end-to-end time that Hillview takes to execute

spreadsheet operations for datasets of various sizes.

Baseline. We compare Hillview against the traditional approach for
big-data spreadsheets, such as Tableau, which is to connect a vi-
sualization front-end to a general-purpose analytics back-end. Our
baseline uses a Spark back-end, and we measure only the analytics
delay (not the rendering delay), giving an advantage to the baseline.
We optimize Spark to our best ability. We write queries in Scala; we
pre-load all data to RAM before measuring; and we use the same
optimizations for each query as Hillview, including sampling.

Workload. Figure 4 shows the visualizations we are measuring.
We picked these operations using two criteria: (1) Each group of
operations corresponds to a user action in the spreadsheet (e.g., ask
for a histogram, or change the sort order of a tabular view). (2) The
operations cover a broad range of vizketches available in Hillview.

Setup. In each experiment, we pick an operation, a dataset size,
and a system. The dataset sizes vary from 5x–100x the original
data, corresponding to 650M–13B rows of data with 110 columns
each, for a total of 71B–1.4T cells. We submit the operation to the
system and measure its response time and amount of data received
by the root node. For Hillview, we submit the operation at the user
interface of the web browser, and we measure two response times

1449

Name Description
O1 Sort, numerical data
O2 Sort 5 columns, numerical data
O3 Sort, string data
O4 Quantile + sort, 5 columns, numerical data
O5 Range + (histogram & cdf), numerical data
O6 Filter + range + (histogram & cdf), numerical data
O7 Distinct + range + histogram, string data
O8 Heavy hitters sampling, string data
O9 Distinct count, numerical data

O10 Range + (stacked histogram & cdf),numerical data
O11 Heatmap, numerical data

Figure 4: Spreadsheet operations. The + indicates serial oper-
ations, while & indicates concurrent operation. Numerical data
refers to integer or floating point.

at the browser: first partial visualization and final visualization. For
the Spark baseline, we start the measurement when the computation
starts, and end the measurement when the query result is obtained.
For Hillview, we consider two cases: data is in memory before the
measurement, and data is cold on disk (SSD). For Spark, we only
consider the case with data in memory.

Results. Figure 5 shows the results for warm data in memory. We
could not run Spark with a dataset larger than 5x because it ex-
hausted the memory at the servers: for example, the 10x dataset has
582 GB on-disk but its in-memory representation expands beyond
the available aggregate memory in the testbed.

The top graph shows the response time. We see that for most
operations, Hillview performs at least as well as Spark, even when
Hillview processes twice the data. We also see that Hillview at 100x
can be slow to compute all results: 7.3–15.2s. However, Hillview
produces a partial visualization quickly, which provides a better
interactive experience.

The bottom graph shows the amount of data received over the
network by the root node (for Hillview) or the master (for Spark);
note that the Y axis is log-scale. Spark consumes an order of mag-
nitude more bandwidth than Hillview, except for O11. This is be-
cause Hillview transmits a small amount of data to produce the
visualizations. The exception, O11, is a heatmap, which contains
a large number of cells and hence its vizketch carries considerable
more data. We also see that Hillview consumes more bandwidth
with a larger dataset. This is because the larger dataset takes longer
to complete, and so Hillview transmits partial visualizations; with
O11, the total amount of data becomes larger than Spark, but it is
still reasonable at 3.5MB.

Figure 6 show the results for cold data on disk. For 5x and 10x
data, visualizations still complete in 3s. For 100x, the delay can be
24s; first visualizations arrive earlier, often within 2.5s (not shown).

In all cases, Hillview provides acceptable performance for inter-
action. In our experience using Hillview, we tend to spend signif-
icantly more time browsing and analyzing charts than waiting for
visualizations (cf §7.5).

7.2 Vizketch microbenchmark
We now consider the base performance of vizketches on one

thread, and its scalability over threads and servers. We run each
measurement multiple times, and we display the variance of mea-
surements after excluding the fastest and slowest measurements;
the variance tends to be small6.

6The first measurement warms up the Java JIT compiler, so it is
generally much slower.

Workload. We benchmark two types of histograms vizketches: one
based on sampling (approximate, with bounded error) and the other
based on streaming (no error). We run these on numeric data.

7.2.1 Single thread performance

Baseline. The baseline is a common high-end commercial in-
memory database system performing a histogram calculation; we
are not allowed to reveal its name.

Setup. In each experiment, we pick a computation method (stream-
ing, sampling, or database system). We measure the time it takes
to execute the method on a single thread on 100 million rows. For
vizketches, we use a tree with a single leaf directly connected to the
root, limiting execution to a single thread. For the database system,
we do not constrain the number of threads that it uses.

Results. We obtain the following measurements:

Method Time (ms)
streaming 527
sampling 197
database system 5,830

We see that the database system is an order of magnitude worse,
because it has overheads that vizketches avoid: data structures must
support indexes, transactions, integrity constraints, logging, queries
of many types, etc. (although none of these are necessary in our
case). In contrast, vizketches are specialized to perform only the
required computation.

7.2.2 Scalability to multiple CPUs
We now consider the performance of vizketches as we run them

on multiple CPUs.

Setup. We consider a computation tree that has n leafs on the same
server, connected to a single root. The system executes each leaf on
a separate thread, up to the available CPUs in the system. In each
experiment, we pick a number n. As we increase n, we also increase
the number of rows to be processed by adding more shards to the
system, keeping constant the number of rows that each leaf gets—
thus, the total number of leafs and the work increase together as n
grows. We expect an approximately constant running time.

Results. Figure 7 shows the results. For the streaming histogram
vizketch, we can see that latency remains constant up to 16 shards,
showing a nearly ideal scalability up to that point. After that, the
server relies on hyper-threading, which impairs scalability. For the
(sampled) histogram vizketch, scalability is super-linear, because
the sample size to obtain a given level of accuracy remains the same
irrespective of the dataset size (§4.3). Thus, as we add more leafs,
we decrease the number of samples (and work done) per leaf.

7.2.3 Scalability to multiple servers
Next, we consider the performance of vizketches as we run them

on many servers.

Setup. In each experiment, we pick a number n of servers and a
vizketch. We use a computation tree that has 64 leaf nodes on each
server, connected to the root. As we increase n, we increase the
number of rows by adding more shards, so that each leaf node main-
tains the same number of shares (and rows). We measure the time
it takes to execute the vizketch running across the servers.

Results. Figure 8 shows the result. As before, for the streaming
histogram vizketch, the latency remains constant as we add more
servers and data, showing ideal scalability. For the sampled his-
togram vizketch, we again observe super-linear scalability due to

1450

0
1
2
3
4
5

O1 O2 O3 O4 O5 O6 O7 O8 O9 O10 O11

D
el

ay
 (s

)

Spark5x Hillview5x Hillview10x Hillview100x Hillview100xF

11.7 15.27.3 7.5

1

100

10000

O1 O2 O3 O4 O5 O6 O7 O8 O9 O10 O11

Da
ta

 (K
B)

Spark5x Hillview5x Hillview10x Hillview100x

Figure 5: End-to-end performance comparison. The top graph shows the response time to produce each visualization, while the
bottom graph shows how many bytes the root node received. Here, we ensure the data is in memory before the measurement starts.
The bars are labeled with the system name (Spark or Hillview) and the dataset size (5x to 100x corresponding to 650M to 13B rows).
Hillview100xF is the time it takes for Hillview to produce the first partial visualization running with 100x data.

0
3
6
9

12
15

O1 O2 O3 O5 O7 O8 O9 O10 O11

D
el

ay
 (s

)

Hillview5xCold Hillview10xCold Hillview100xCold

20.7 24.1 21.4

Figure 6: End-to-end performance of Hillview when data is not
in memory, so it needs to be loaded from SSD. Not shown are
first visualizations, which arrive within 2.5s most of the time,
and within 4s always. O4 and O6 are omitted because in the
spreadsheet these operations never happen with cold data (a
prior action loads the data).

0
500

1000
1500
2000

1 2 4 8 16 32 64
Leaf count

La
te

nc
y

(m
s) Sampled Streaming

Figure 7: Scalability of vizketches as we add more leafs and
shards together. Ideal scalability would be constant latency.

the same effect: the sample size remains constant, so the amount of
work per server decreases with the number of servers.

7.3 Vizketch applicability
We consider our experience of using vizketch to implement the

various spreadsheet functionality, to gain an understanding of the
applicability of vizketches to processing data in Hillview.

1

10

100

1000

1 2 3 4 5 6 7 8
#Servers

La
te

nc
y

(m
s) Sampled Streaming

Figure 8: Scalability as we add more servers and increase the
dataset proportionally. As before, the ideal scalability corre-
sponds to a constant latency. Note that the Y axis is logarithmic.

Vizketch LOC Vizketch LOC
Histogram 114 Next items 191
CDF 114 Find text 108
Stacked histogram 130 Heavy hitters (sampling) 35
Heatmap 130 Range 156
Heatmap trellis 127 Number distinct 117
Quantile 79

Figure 9: Effort required to implement vizketches.

When we started the project, we did not know if vizketches
would suffice or we would need more powerful computation mech-
anisms. In building the system, however, we found vizketches to be
powerful and capable of implementing a broad range of functional-
ity: tabular views, scrolling, simple data transformations, filtering,
table summaries, and various visualizations. We eventually real-
ized that we could implement all data visualization functionality
of Hillview using vizketches; in fact, Hillview has no other way to
visualize data other than vizketches.

7.4 Vizketch coding effort
We now turn our attention to the effort required to write

vizketches. We again report on our experience with Hillview.
Quantitatively, Figure 9 shows the number of lines of back-end

(Java) code required to implement each vizketch in Hillview. We

1451

Question Description
Q1 Who has more late flights, UA or AA?
Q2 Which airline has the least departure time delay?
Q3 What is the typical delay of AA flight 11?
Q4 How many flights leave NY each day?
Q5 Is it better to fly from SFO to JFK or EWR?
Q6 How many destinations have direct flights from both

SFO and SJC?
Q7 What is the best hour of the day to fly?
Q8 Which state has the worst departure delay?
Q9 Which airline has the most flight cancellations?

Q10 Which date had the most flights?
Q11 What is the longest flight in distance?
Q12 Is there a significant difference between taxi times of UA

or AA on the same airport?
Q13 Which city has the best and worst weather delays?
Q14 Which airlines fly to Hawaii?
Q15 Which Hawaii airport has the best departure delays?
Q16 How many flights per day are there between LAX and

SFO?
Q17 Which weekday has the least delay flying from ORD to

EWR?
Q18 Which day in December has the most and least flights?
Q19 How many airlines stopped flying within the dataset pe-

riod?
Q20 How many flights took off but never landed?

Figure 10: Questions used to evaluate the effectiveness of Hill-
view at extracting information from data.

can see that the code is compact: the largest vizketch takes only 191
lines of code. We found that an expert takes only a few hours to im-
plement and test the code. However, some vizketches involve fairly
sophisticated algorithms; selecting or developing those algorithms
took considerably longer than implementing them. In general, de-
veloping the UI to display the data and provide user interaction
requires considerably more effort.

Qualitatively, implementing vizketches never required thinking
about distributed systems or concurrency. A developer simply pro-
vides the summarize and merge functions, which are purely local,
while the rest of Hillview takes care of the distributed systems
aspects of running vizketches across many cores and servers. Of
course, we had to implement the distributed execution framework
for vizketches in Hillview, but this implementation was done once
and benefits all vizketches, including future extensions.

7.5 Hillview effectiveness: case study
We next consider the question of how effective Hillview is to

browse and answer queries on large datasets. We address this ques-
tion through a case study.

Workload. A person who is not familiar with Hillview examines
the Flights-1x data set and formulates a set of questions (shown in
Figure 10) that interests her and that she thinks the dataset answers.

Setup. The experiment is carried out by an operator who is familiar
with Hillview well but does not know the questions ahead of time.
In each experiment, we show a question to the operator and ask him
to answer it using Hillview. Our goal is to understand if the spread-
sheet is powerful enough to answer the question and, if so, how
easily it can do that. Note that this experiment does not evaluate
ease-of-use by beginners, because the operator is an expert. This is
intentional: Hillview users are not casual users but data analysts,

Question Actions Time Question Actions Time
Q1 5 1:11 Q11 3 1:18
Q2 3 1:32 Q12 5 6:44
Q3 4 1:13 Q13 6 6:27
Q4 5 0:47∗ Q14 2 0:20
Q5 5 2:26 Q15 4 1:56
Q6 4 2:15∗ Q16 3 1:07
Q7 2 1:08 Q17 3 1:07
Q8 5 2:56 Q18 2 1:08
Q9 1 0:34 Q19 2 0:40

Q10 1 1:08∗ Q20 — 2:23†

Figure 11: Number of actions and time in minutes:seconds
required for an operator to answer questions using Hillview.
Most of the time is spent thinking about how to best translate a
question into a set of UI operations. Notes: ∗These queries had
only a partially satisfactory answer. †In this question, the data
set did not have enough information to answer it; the measured
time is how long it took to make that determination.

whose job is dedicated to explore data and so they can obtain the
required training.

For each question, we measure the time and number of spread-
sheet actions that the operator takes to answer the question. A
spreadsheet action consists of choosing an operation on a menu,
clicking on the spreadsheet, or dragging the mouse to select a re-
gion. For example Q1 can be answered by filtering the main table
for column Airline=UA, producing a histogram on DepartureDe-
lay, then going back to the main table and filtering for column Air-
line=AA, producing a second histogram on DepartureDelay. To an-
swer the question, we hover the mouse over the histograms to find
the delay percentiles.

Results. Figure 11 shows the results. Answering a question took at
most 6:44 (minutes:seconds), with most questions taking less than
2:30 (all except three). The average and median times are 1:57 and
1:12. Most of the time is the operator thinking about what to do,
rather than waiting for the spreadsheet to respond (if the operator
knew exactly what to do, all queries could be answered in under 30
seconds). The minimum and maximum number of actions were 1
and 6, with mean and median 3.4 and 3. Queries Q4, Q6 and Q10
did not have completely satisfactory answers because the spread-
sheet cannot clearly separate dates (Q4, Q10) or the spreadsheet
did not merge and deduplicate the destinations (Q6). Question Q20
could not be answered because the dataset does not have the in-
formation (e.g., we discovered that it lacks the downed flights on
9/11). We see that Hillview was effective at addressing most queries
at small times, showing that (1) Hillview implements enough func-
tionality to be usable and (2) it provides a interactive experience for
human timescales.

8. RELATED WORK
Hillview is the first spreadsheet to scale massively with in-

teractive speed. Hillview borrows ideas from the algorithms and
computer graphics literature, namely mergeable summaries [2] (or
sketches) and visualization-driven computation; it uses relies on
many techniques from databases (approximate query processing,
on-line analytics), big-data analytics, and distributed systems.

Hillview follows Shneiderman’s visualization mantra [85]:
“overview first, zoom and filter, details on demand”. Fisher [38]
identifies principles for interactively visualizing big data (“look at
less of it” and “look at it faster”); these principles guided the design
of vizketches.

1452

Big data visualization is a broad area; we give an overview of
the closest related work below. For more information, we refer the
reader to several surveys in the area [82, 42, 41, 8, 9]. Compared
to published systems, Hillview achieves the best scalability for the
amount of resources: we are not aware of any system that can han-
dle a trillion cells with only 8 servers.

Distributed visualization engines. Hillview evolved from
Sketch [14], which proposes a distributed data exploration library
with applications to a performance analyzer and a spreadsheet.
VisReduce [50] provides incrementally updated approximations of
visualizations computed over progressively larger samples. Viz-
dom [23] is a simple UI for data manipulation and exploration;
it runs on top of the A-WARE smart caching and streaming en-
gine [24] and uses the Tuppleware analytics system [22].

Visualization using big data query engines. One way to visualize
big data is to connect a visualization engine to an analytics engine,
such as Hive [93], Impala [60], Presto [78], Dremel [65] (com-
mercialized as BigQuery), Drill [46], PowerDrill [45], Spark [103],
Druid [102], or Pinot [49]. This approach has advantages: it reduces
design effort by using existing systems, and it leverages the years of
effort spent in their optimization. However, this approach does not
achieve the speed needed for a spreadsheet: the generality of ana-
lytics engine imposes overheads and computes unnecessary results,
since there is no integration with the visualization engine. Several
systems follow this approach. Microsoft PowerBI [67] using Di-
rectQuery [26] and Polaris/Tableau [90, 98, 99] provide plug-ins to
many analytics engines; as discussed in [17], the users of such sys-
tems have to carefully avoid many queries that cannot be answered
efficiently. IBM BigSheets [12] computes interactively only over a
subset of the data; once the user settles on a query, it is actually run
in batch mode using Spark. HadoopVis [32] uses Hadoop to render
geo-spatial data. ScalaR [6] uses relational databases; the system
in [96] uses MapReduce for mesh rendering and isosurface extrac-
tion. SwiftTuna [51, 52] uses Spark. OmniSci [72] uses GPUs in
one machine for server-side rendering.

Facebook’s Scuba [1] has been used as a back-end to visualiza-
tion systems. Scuba provides fast response times but with a differ-
ent trade-off between data scale, responsiveness, and correctness.
Scuba computes much more than “what you can see”, since its
compute engine is decoupled from its visualization. Thus, queries
might return unbounded amounts of data to the visualization en-
gine, hampering real-time responsiveness. To avoid that, Scuba
truncates worker responses to 100,000 rows ([1, page 4]) and omits
workers that do not respond in 10ms ([1, page 6]). This can produce
arbitrarily incorrect visualizations.

The vizketch computational model is similar to the MPI Re-
duce [87] primitive used in supercomputing, to the Neptune sys-
tem [18], to the architecture of log analytics systems such as
Splunk [88], and to aggregation networks for sensor networks [79];
these are general-purpose platforms, and not visualization systems.

Sampling and indexing. Sampling and indexing are used to ac-
celerate visualization in many systems. [15] considers the problem
of sampling a database for minimizing the error for a given set of
queries. BlinkDB [3] uses stratified sampling, which is effective,
but leaves the burden on users to write appropriate SQL queries
and find appropriate error and time bounds. Smart sampling is used
by [39]. [97] uses stratified sampling to accelerate queries in log
management systems. [101] uses stratified sampling in Scope to
reduce sample sizes while minimizing errors; samples are incre-
mentally maintained. Pangloss [69] uses “optimistic” visualization
on sampled data to provide fast results.

The idea of using perceptual limitations to drive sampling ap-
pears first in [30]. [58] uses perceptual limitations and sampling
algorithms for specific chart types (e.g., bar charts). M4 [53] uses
the screen resolution to rewrite SQL queries to compute reduced re-
sults suitable for renderings of line plots; this is extended for other
chart types in VDDA [54]. Sample+Seek [29] executes responsive
aggregated queries on a single table; it uses measure-biased sam-
pling together with new indexing schemes, specific to the aggrega-
tion computed, to minimize errors. G-OLA [104] handles interac-
tive aggregate OLAP queries over massive data sets.

VAS [76] samples data to minimize the visualization errors for
scatter-plots. SynopViz [10] and Skydive [43] build hierarchical
multi-scale models of the data for browsing linked data sets.

Progressive analytics. Hillview visualizations are incrementally
updated; this technique is called online aggregation [47] or pro-
gressive analytics [39, 89, 94, 35]. There is significant work on
this topic. MapReduce Online [20, 75] is based on MapReduce.
EARL [61] uses statistical boostrapping for providing reliable on-
line early estimates for the output of MapReduce computations.
Progressive Insights [89] finds common subsequences in event se-
ries of medical records, focusing on its UI design for incremen-
tal display and exploration. PIVE [16] adapts computation to lim-
ited screen resolution for iterative algorithms (such as clustering
or dimensionality reduction). DimXplorer[94] performs progres-
sive computation and rendering of dimensionality reduction oper-
ations (such as clustering and PCA); it uses sampling for fast re-
sponse times. Stat! [5] operates in conjunction with a streaming
engine, and presents immediately incremental results. Microsoft’s
Tempe [66] runs on top of a streaming engine and provides pro-
gressive visualizations.

All above systems lack some of the benefits of vizketches: paral-
lelization, computation efficiency, and bandwidth efficiency (§4.4),
which are required for Hillview.

Nanocubes [62], imMens [63], and Hashedcubes [74] improve
interactivity by pre-processing the data to build smart indexes.
DICE [55], Sesame [56] and ForeCache [7] use sessions and local-
ity to pre-compute views or to reuse computation results between
consecutive views. These ideas improve interactivity, but restrict
the scope of queries to pre-processed columns (e.g., the user pre-
selects a few columns to optimize) or spend significant time for
pre-processing. By contrast, Hillview uses no pre-processing or in-
dexes, because we do not know ahead of time which columns the
user might choose to explore.

VisTrees are indexes designed to support quick histogram con-
struction for visualizations [31]. Profiler [57] and Foresight [28]
propose methods to find abnormality in the data; Hillview could
incorporate this functionality, especially Foresight which is based
on sketches. NeedleTail [59] uses a small in-memory index to allow
fast browsing and displaying any-k records. AQP++ [77] combines
approximate query processing with aggregate pre-computation.

9. CONCLUSION
Hillview is a spreadsheet that supports a trillion cells even with

a modest number of servers. Hillview introduces a new query ex-
ecution engine specialized to render tabular views and charts for a
spreadsheet. The new engine uses vizketches, a new but simple idea
that parallelizes computation and calculates only what is needed
for a good visualization. We believe Hillview is a useful tool for
humans to explore data; it nicely complements other tools, such as
analytics frameworks, which have other uses.

1453

10. REFERENCES

[1] L. Abraham, J. Allen, O. Barykin, V. R. Borkar, B. Chopra,
C. Gerea, D. Merl, J. Metzler, D. Reiss, S. Subramanian,
J. L. Wiener, and O. Zed. Scuba: Diving into data at
Facebook. PVLDB, 6(11):1057–1067, 2013.

[2] P. K. Agarwal, G. Cormode, Z. Huang, J. Phillips, Z. Wei,
and K. Yi. Mergeable summaries. In ACM SIGMOD
International conference on Management of data, pages
23–34, 2012.

[3] S. Agarwal, B. Mozafari, A. Panda, H. Milner, S. Madden,
and I. Stoica. BlinkDB: Queries with bounded errors and
bounded response times on very large data. In European
Conference on Computer Systems (EuroSys), Prague, Czech
Republic, 2013.

[4] Apache Tomcat. http://tomcat.apache.org. Retrieved March
2019.

[5] M. Barnett, B. Chandramouli, R. DeLine, S. Drucker,
D. Fisher, J. Goldstein, P. Morrison, and J. Platt. Stat!: an
interactive analytics environment for big data. In ACM
SIGMOD International conference on Management of data,
pages 1013–1016, 2013.

[6] L. Battle, R. Chang, and M. Stonebraker. Dynamic
reduction of query result sets for interactive visualization.
In IEEE International Conference on Big Data, pages 1–8,
Oct 2013.

[7] L. Battle, R. Chang, and M. Stonebraker. Dynamic
prefetching of data tiles for interactive visualization. In
International Conference on Management of Data
(SIGMOD ’16), pages 1363–1375, 2016.

[8] M. Behrisch, D. Streeb, F. Stoffel, D. Seebacher,
B. Matejek, S. H. Weber, S. Mittelstaedt, H. Pfister, and
D. Keim. Commercial visual analytics systems – advances
in the big data analytics field. IEEE Transactions on
Visualization and Computer Graphics, 2018.

[9] N. Bikakis. Big data visualization tools. In S. Sakr and
A. Zomaya, editors, Encyclopedia of Big Data
Technologies, pages 1–6. Springer International Publishing,
Cham, 2018.

[10] N. Bikakis, G. Papastefanatos, M. Skourla, and T. Sellis. A
hierarchical aggregation framework for efficient multilevel
visual exploration and analysis. Semantic Web,
8(1):139–179, 2017.

[11] M. Bostock, V. Ogievetsky, and J. Heer. D3: Data-driven
documents. IEEE Trans. Visualization and Comp. Graphics
(Proc. InfoVis), 2011.

[12] M. Brown. BigSheets for the common man.
https://www.ibm.com/developerworks/library/bd-bigsheets/index.html,
December 2013.

[13] M. Budiu, P. Gopalan, L. Suresh, U. Wieder, H. Kruiger,
and M. K. Aguilera. Hillview: A trillion-cell spreadsheet
for big data (extended version).
https://arxiv.org/abs/1907.04827, 2019.

[14] M. Budiu, R. Isaacs, D. Murray, G. Plotkin, P. Barham,
S. Al-Kiswany, Y. Boshmaf, Q. Luo, and A. Andoni.
Interacting with large distributed datasets using Sketch. In
Eurographics Symposium on Parallel Graphics and
Visualization, Groningen, Netherlands, June 6-7 2016.

[15] S. Chaudhuri, G. Das, and V. Narasayya. A robust,
optimization-based approach for approximate answering of
aggregate queries. In ACM SIGMOD International
conference on Management of data, pages 295–306, 2001.

[16] J. Choo, C. Lee, H. Kim, H. Lee, C. Reddy, B. Drake, and
H. Park. PIVE: Per-iteration visualization environment for
supporting real-time interactions with computational
methods. In Visual Analytics Science and Technology
(VAST), 2014.

[17] R. Christopher and V. Krishnan. Optimizing your Amazon
Redshift and Tableau software deployment for better
performance v2. https://www.tableau.com/sites/default/files/
whitepapers/optimizing tableau aws redshift whitepaper v2.pdf,
2017.

[18] L. Chu, H. Tang, T. Yang, and K. Shen. Optimizing data
aggregation for cluster-based Internet services. In ACM
SIGPLAN Symposium on Principles and Practice of
Parallel Programming (PPoPP), pages 119–130, 2003.

[19] E. Cohen and H. Kaplan. Summarizing data using bottom-k
sketches. In ACM Symposium on Principles of Distributed
Computing (PODC), pages 225–234, New York, NY, USA,
2007. ACM.

[20] T. Condie, N. Conway, P. Alvaro, J. M. Hellerstein,
K. Elmeleegy, and R. Sears. MapReduce online. In USENIX
Conference on Networked Systems Design and
Implementation (NSDI), 2010.

[21] G. Cormode. Data sketching. Communications of the ACM,
60(9):48–55, Aug. 2017.

[22] A. Crotty, A. Galakatos, K. Dursun, T. Kraska, C. Binnig,
U. Cetintemel, and S. Zdonik. An architecture for compiling
UDF-centric workflows. PVLDB, 8(12):1466–1477, 2015.

[23] A. Crotty, A. Galakatos, E. Zgraggen, C. Binnig, and
T. Kraska. Vizdom: Interactive analytics through pen and
touch. PVLDB, 8(12):2024–2027, 2015.

[24] A. Crotty, A. Galakatos, E. Zgraggen, C. Binnig, and
T. Kraska. The case for interactive data exploration
accelerators (IDEAs). In Human-In-the-Loop Data
Analytics (HILDA), pages 11:1–11:6, 2016.

[25] E. Dahlström, P. Dengler, A. Grasso, C. Lilley,
C. McCormack, D. Schepers, J. Watt, J. Ferraiolo, F. Jun,
and D. Jackson. Scalable vector graphics (SVG) 1.1.
https://www.w3.org/TR/SVG/, August 2011.

[26] K. de Jonge. DirectQuery in SQL server 2016 analysis
services. http://download.microsoft.com/download/F/6/F/
F6FBC1FC-F956-49A1-80CD-2941C3B6E417/DirectQuery%20in%
20Analysis%20Services%20-%20Whitepaper.pdf, January 2017.

[27] J. Dean and S. Ghemawat. MapReduce: Simplified data
processing on large clusters. In Symposium on Operating
System Design and Implementation (OSDI), San Francisco,
CA, December 2004.

[28] Ç. Demiralp, P. J. Haas, S. Parthasarathy, and T. Pedapati.
Foresight: Recommending visual insights. PVLDB,
10(12):1937–1940, 2017.

[29] B. Ding, S. Huang, S. Chaudhuri, K. Chakrabarti, and
C. Wang. Sample + seek: Approximating aggregates with
distribution precision guarantee. In ACM SIGMOD
International conference on Management of data, pages
679–694, 2016.

[30] A. Dix and G. Ellis. by chance: enhancing interaction with
large data sets through statistical sampling. In Advanced
Visual Interfaces, pages 167–176, 2002.

[31] M. El-Hindi, Z. Zhao, C. Binnig, and T. Kraska. VisTrees:
fast indexes for interactive data exploration. In Proceedings
of the Workshop on Human-In-the-Loop Data Analytics
(HILDA), page 5, 2016.

1454

http://tomcat.apache.org
https://www.ibm.com/developerworks/library/bd-bigsheets/index.html
https://arxiv.org/abs/1907.04827
https://www.tableau.com/sites/default/files/whitepapers/optimizing_tableau_aws_redshift__whitepaper__v2.pdf
https://www.tableau.com/sites/default/files/whitepapers/optimizing_tableau_aws_redshift__whitepaper__v2.pdf
https://www.w3.org/TR/SVG/
http://download.microsoft.com/download/F/6/F/F6FBC1FC-F956-49A1-80CD-2941C3B6E417/DirectQuery%20in%20Analysis%20Services%20-%20Whitepaper.pdf
http://download.microsoft.com/download/F/6/F/F6FBC1FC-F956-49A1-80CD-2941C3B6E417/DirectQuery%20in%20Analysis%20Services%20-%20Whitepaper.pdf
http://download.microsoft.com/download/F/6/F/F6FBC1FC-F956-49A1-80CD-2941C3B6E417/DirectQuery%20in%20Analysis%20Services%20-%20Whitepaper.pdf

[32] A. Eldawy, M. F. Mokbel, and C. Jonathan. HadoopViz: A
MapReduce framework for extensible visualization of big
spatial data. In International Conference on Data
Engineering (ICDE), Helsinki, Finland, May 2016.

[33] N. Elmqvist and J. Fekete. Hierarchical aggregation for
information visualization: Overview, techniques, and design
guidelines. IEEE Transactions on Visualization and
Computer Graphics, 16(3):439–454, May 2010.

[34] :::fastutil: Fast and compact type-specific collections for
Java. http://fastutil.di.unimi.it. Retrieved October 2017.

[35] J.-D. Fekete and R. Primet. Progressive analytics: A
computation paradigm for exploratory data analysis.
https://arxiv.org/abs/1607.05162, 2016.

[36] J. Feldman, S. Muthukrishnan, A. Sidiropoulos, C. Stein,
and Z. Svitkina. On distributing symmetric streaming
computations. ACM Trans. Algorithms, 6(4):66:1–66:19,
2010.

[37] I. Fette and A. Melnikov. The WebSocket protocol. IETF
RFC 6455, December 2001.

[38] D. Fisher. Big data exploration requires collaboration
between visualization and data infrastructures. In
Human-In-the-Loop Data Analytics (HILDA), pages
16:1–16:5, 2016.

[39] D. Fisher, I. Popov, S. Drucker, and M. Schraefel. Trust me,
I’m partially right: Incremental visualization lets analysts
explore large datasets faster. In SIGCHI Conference on
Human Factors in Computing Systems, pages 1673–1682,
2012.

[40] P. Flajolet, Éric Fusy, O. Gandouet, and F. Meunier.
HyperLogLog: the analysis of a near-optimal cardinality
estimation algorithm. In Conference on Analysis of
Algorithms (AofA) DMTCS proc., pages 127–146, 2007.

[41] A. Ghosh, M. Nashaat, J. Miller, S. Quader, and C. Marston.
A comprehensive review of tools for exploratory analysis of
tabular industrial datasets. Visual Informatics, 2018.

[42] P. Godfrey, J. Gryz, and P. Lasek. Interactive visualization
of large data sets. IEEE Transactions on Knowledge and
Data Engineering, 28(8):2142–2157, 2016.

[43] P. Godfrey, J. Gryz, P. Lasek, and N. Razavi. Visualization
through inductive aggregation. In International Conference
on Extending Database Technology (EDBT), pages
600–603, 2016.

[44] gRPC: A high performance, open-source universal RPC
framework. https://grpc.io/. Retrieved October 2017.

[45] A. Hall, O. Bachmann, R. Büssow, S. Gănceanu, and
M. Nunkesser. Processing a trillion cells per mouse click.
PVLDB, 5(11):1436–1446, 2012.

[46] M. Hausenblas and J. Nadeau. Apache Drill: Interactive
ad-hoc analysis at scale. IEEE Comput. Graph. Appl., 1(2),
June 2013.

[47] J. M. Hellerstein, P. J. Haas, and H. J. Wang. Online
aggregation. In ACM SIGMOD International conference on
Management of data, pages 171–182, 1997.

[48] J. F. Hughes, A. van Dam, M. McGuide, D. F. Sklar, J. D.
Foley, S. K. Feiner, and K. Akeley. Computer Graphics:
Principles and Practice (3rd Edition). Addison-Wesley
Professional, 2013.

[49] J.-F. Im, K. Gopalakrishna, S. Subramaniam,
M. Shrivastava, A. Tumbde, X. Jiang, J. Dai, S. Lee,
N. Pawar, J. Li, and R. Aringunram. Pinot: Realtime OLAP
for 530 million users. In International Conference on

Management of Data (SIGMOD), pages 583–594, 2018.
[50] J.-F. Im, F. G. Villegas, and M. J. McGuffin. VisReduce:

Fast and responsive incremental information visualization
of large datasets. In IEEE International Conference on Big
Data, pages 25–32, Oct 2013.

[51] J. Jo, W. Kim, S. Yoo, B. Kim, and J. Seo. SwiftTuna:
Incrementally exploring large-scale multidimensional data.
In IEEE VIS, Phoenix, AZ, October 2016.

[52] J. Jo, W. Kim, S. Yoo, B. Kim, and J. Seo. SwiftTuna:
Responsive and incremental visual exploration of
large-scale multidimensional data. In Pacific Visualization
Symposium (PacificVis), pages 131–140, Seoul, Korea,
2017.

[53] U. Jugel, Z. Jerzak, G. Hackenbroich, and V. Markl. M4: A
visualization-oriented time series data aggregation. PVLDB,
7(10):797–808, 2014.

[54] U. Jugel, Z. Jerzak, G. Hackenbroich, and V. Markl.
VDDA: Automatic visualization-driven data aggregation in
relational databases. The VLDB Journal, 25(1):53–77, Feb.
2016.

[55] N. Kamat, P. Jayachandran, K. Tunga, and A. Nandi.
Distributed interactive cube exploration. In International
Conference on Data Engineering (ICDE), pages 472–483,
March 2014.

[56] N. Kamat and A. Nandi. A session-based approach to
fast-but-approximate interactive data cube exploration.
ACM Trans. Knowl. Discov. Data, 12(1):1–26, Feb. 2018.

[57] S. Kandel, R. Parikh, A. Paepcke, J. Hellerstein, and
J. Heer. Profiler: Integrated statistical analysis and
visualization for data quality assessment. In Advanced
Visual Interfaces, 2012.

[58] A. Kim, E. Blais, A. Parameswaran, P. Indyk, S. Madden,
and R. Rubinfeld. Rapid sampling for visualizations with
ordering guarantees. PVLDB, 8(5):521–532, 2015.

[59] A. Kim, L. Xu, T. Siddiqui, S. Huang, S. Madden, and
A. Parameswaran. Optimally leveraging density and
locality for exploratory browsing and sampling. In
Proceedings of the Workshop on Human-In-the-Loop Data
Analytics (HILDA 18), HILDA, pages 7:1–7:7, 2018.

[60] M. Kornacker, A. Behm, V. Bittorf, T. Bobrovytsky,
C. Ching, A. Choi, J. Erickson, M. Grund, D. Hecht,
M. Jacobs, I. Joshi, L. Kuff, D. Kumar, A. Leblang, N. Li,
I. Pandis, H. Robinson, D. Rorke, S. Rus, J. Russell,
D. Tsirogiannis, S. Wanderman-Milne, and M. Yoder.
Impala: A modern, open-source SQL engine for Hadoop. In
Conference on Innovative Data Systems Research (CIDR
’15), January 4-7 2015.

[61] N. Laptev, K. Zeng, and C. Zaniolo. Early accurate results
for advanced analytics on MapReduce. PVLDB,
5(10):1028–1039, 2012.

[62] L. Lins, J. T. Klosowski, and C. Scheidegger. Nanocubes
for real-time exploration of spatiotemporal datasets. IEEE
Transactions on Visualization and Computer Graphics,
19(12):2456–2465, 2013.

[63] Z. Liu, B. Jiang, and J. Heer. imMens: Real-time visual
querying of big data. Computer Graphics Forum (Proc.
EuroVis), 32, 2013.

[64] E. Meijer. Your mouse is a database. ACM Queue,
10(3):20–33, Mar. 2012.

[65] S. Melnik, A. Gubarev, J. J. Long, G. Romer,
S. Shivakumar, M. Tolton, and T. Vassilakis. Dremel:

1455

http://fastutil.di.unimi.it
https://arxiv.org/abs/1607.05162
https://grpc.io/

Interactive analysis of web-scale datasets. PVLDB,
3(1-2):330–339, 2010.

[66] Microsoft Corp. Tempe.
http://research.microsoft.com/en-us/projects/tempe/. Retrieved
January 2019.

[67] Microsoft PowerBI. https://powerbi.microsoft.com. Accessed
October 2017.

[68] J. Misra and D. Gries. Finding repeated elements. Science
of Computer Programming, 2:143–152, 1982.

[69] D. Moritz, D. Fisher, B. Ding, and C. Wang. Trust, but
verify: Optimistic visualizations of approximate queries for
exploring big data. In ACM Human Factors in Computing
Systems (CHI), 2017.

[70] S. Muthukrishnan. Data Streams: Algorithms and
Applications. Foundations and trends in theoretical
computer science. Now Publishers, 2005.

[71] U. D. of Transportation. Airline on-time performance data.
https://transtats.bts.gov/Tables.asp?DB ID=120. Retrieved January
2019.

[72] OmniSci is the extreme analytics platform.
https://www.omnisci.com, Retrieved October 2018.

[73] Oracle Corp. Project Nashorn.
http://openjdk.java.net/projects/nashorn/. Retrieved February
2018.

[74] C. A. L. Pahins, S. A. Stephens, C. Scheidegger, and
J. L. D. Comba. Hashedcubes: Simple, low memory,
real-time visual exploration of big data. IEEE Transactions
on Visualization and Computer Graphics, 23(1):671–680,
2017.

[75] N. Pansare, V. R. Borkar, C. Jermaine, and T. Condie.
Online aggregation for large MapReduce jobs. PVLDB,
4(11):1135–1145, 2011.

[76] Y. Park, M. Cafarella, and B. Mozafari. Visualization-aware
sampling for very large databases. In International
Conference on Data Engineering (ICDE), pages 755–766.
IEEE, 2016.

[77] J. Peng, D. Zhang, J. Wang, and J. Pei. AQP++: Connecting
approximate query processing with aggregate
precomputation for interactive analytics. In Proceedings of
the 2018 International Conference on Management of Data
(SIGMOD), pages 1477–1492, 2018.

[78] Presto: Distributed SQL query engine for big data.
https://prestodb.io/, Retrieved 2018.

[79] R. Rajagopalan and P. Varshney. Data-aggregation
techniques in sensor networks: A survey. IEEE
Communications Surveys Tutorials, 8(4):48–63, 2006.

[80] ReactiveX: An API for asynchronous programming with
observable streams. http://reactivex.io/. Retrived October 2017.

[81] R. Rubinfeld and A. Shapira. Sublinear time algorithms.
SIAM J. Discret. Math., 25(4):1562–1588, Nov. 2011.

[82] C. Scheidegger. Interactive visual analysis of big data. In
P. Bühlmann, P. Drineas, M. Kane, and M. van der Laan,
editors, Handbook of Big Data. Taylor and Francis group,
2016.

[83] S. Shalev-Shwartz and S. Ben-David. Understanding
Machine Learning: From Theory to Algorithms. Cambridge
University Press, New York, NY, USA, 2014.

[84] J. Shlens. A tutorial on principal component analysis.
https://arxiv.org/abs/1404.1100, 2014.

[85] B. Shneiderman. The eyes have it: A task by data type
taxonomy for information visualizations. In IEEE

Symposium on Visual Languages, pages 336–343, Boulder,
CO, September 1996.

[86] B. Shneiderman. Extreme visualization: squeezing a billion
records into a million pixels. In ACM SIGMOD
international conference on Management of data (SIGMOD
2008), pages 3–12. ACM, 2008.

[87] M. Snir, S. W. Otto, S. Huss-Lederman, D. W. Walker, and
J. Dongarra. MPI: The complete reference. MIT Press,
Cambridge, MA, 1996.

[88] Splunk: Dashboards and visualizations. http:
//docs.splunk.com/Documentation/Splunk/latest/Viz/Aboutthismanual.

[89] C. D. Stolper, A. Perer, and D. Gotz. Progressive visual
analytics: User-driven visual exploration of in-progress
analytics. IEEE Transactions on Visualization and
Computer Graphics, 20(12):1653–1662, December 2014.

[90] C. Stolte, D. Tang, and P. Hanrahan. Polaris: a system for
query, analysis, and visualization of multidimensional
databases. Commun. ACM, 51(11):75–84, 2008.

[91] M. Stonebraker, S. Madden, D. J. Abadi, S. avros
Harizopoulos, N. Hachem, and P. Helland. The end of an
architectural era (it’s time for a complete rewrite). In
International Conference of Very Large Data Bases
(VLDB), pages 1150–1160, Sept. 2007.

[92] M. Thorup. Bottom-k and priority sampling, set similarity
and subset sums with minimal independence. In
Proceedings of the Forty-fifth Annual ACM Symposium on
Theory of Computing, STOC ’13, pages 371–380, New
York, NY, USA, 2013. ACM.

[93] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka,
S. Anthony, H. Liu, P. Wyckoff, and R. Murthy. Hive: A
warehousing solution over a map-reduce framework.
PVLDB, 2(2):1626–1629, 2009.

[94] C. Turkay, E. Kaya, S. Balcisoy, and H. Hauser. Designing
progressive and interactive analytics processes for
high-dimensional data analysis. IEEE Transactions on
Visualization and Computer Graphics, 23(1):131–140, Jan.
2017.

[95] TypeScript: JavaScript that scales.
http://www.typescriptlang.org/. Retrieved October 2017.

[96] H. Vo, J. Bronson, B. Summa, J. Comba, J. Freire,
B. Howe, V. Pascucci, and C. Silva. Parallel visualization
on large clusters using MapReduce. In IEEE Symposium on
Large Data Analysis and Visualization (LDAV), pages
81–88, oct. 2011.

[97] T. Wagner, E. Schkufza, and U. Wieder. A sampling-based
approach to accelerating queries in log management
systems. In International Conference on Systems,
Programming, Languages and Applications: Software for
Humanity, (SPLASH), Amsterdam, Netherlands, October
2016.

[98] R. Wesley, M. Eldridge, and P. T. Terlecki. An analytic data
engine for visualization in Tableau. In ACM SIGMOD
International conference on Management of data, pages
1185–1194, 2011.

[99] R. M. G. Wesley and P. Terlecki. Leveraging compression
in the Tableau data engine. In ACM SIGMOD International
conference on Management of data, pages 563–573, 2014.

[100] E. Wu, L. Battle, and S. R. Madden. The case for data
visualization management systems: Vision paper. PVLDB,
7(10):903–906, 2014.

[101] Y. Yan, L. J. Chen, and Z. Zhang. Error-bounded sampling

1456

http://research.microsoft.com/en-us/projects/tempe/
https://powerbi.microsoft.com
https://transtats.bts.gov/Tables.asp?DB_ID=120
https://www.omnisci.com
http://openjdk.java.net/projects/nashorn/
https://prestodb.io/
http://reactivex.io/
https://arxiv.org/abs/1404.1100
http://docs.splunk.com/Documentation/Splunk/latest/Viz/Aboutthismanual
http://docs.splunk.com/Documentation/Splunk/latest/Viz/Aboutthismanual
http://www.typescriptlang.org/

for analytics on big sparse data. PVLDB, 7(13):1508–1519,
2014.

[102] F. Yang, E. Tschetter, X. Léauté, N. Ray, G. Merlino, and
D. Ganguli. Druid: A real-time analytical data store. In
ACM SIGMOD International conference on Management of
data, pages 157–168, 2014.

[103] M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker, and
I. Stoica. Discretized streams: Fault-tolerant streaming
computation at scale. In Proceedings of the Twenty-Fourth
ACM Symposium on Operating Systems Principles, pages
423–438, 2013.

[104] K. Zeng, S. Agarwal, A. Dave, M. Armbrust, and I. Stoica.
G-OLA: Generalized on-line aggregation for interactive
analysis on big data. In ACM SIGMOD International
conference on Management of data, pages 913–918, 2015.

1457

	Introduction
	Why a new engine
	Goals and requirements
	Why trillions of cells
	Environment
	Tabular views functionality
	Visualization functionality
	Other features

	Vizketches
	Background
	Basic idea
	Algorithms
	Benefits

	Design and architecture
	Design choices
	Architecture
	Execution tree
	Data input, caching, and data output
	Vizketch modularity and extensibility
	Data transformations
	Memory management
	Fault tolerance

	Implementation
	Evaluation
	Hillview end-to-end performance
	Vizketch microbenchmark
	Single thread performance
	Scalability to multiple CPUs
	Scalability to multiple servers

	Vizketch applicability
	Vizketch coding effort
	Hillview effectiveness: case study

	Related work
	Conclusion
	References

