
Automatic Index Selection for Large-Scale Datalog
Computation

Pavle Subotić†, Herbert Jordan‡, Lijun Chang§, Alan Fekete§, Bernhard Scholz§
† University College London, ‡ University of Innsbruck, § The University of Sydney

† pavle.subotic.15@ucl.ac.uk, ‡ herbert.jordan@uibk.ac.at
§ {lijun.chang, alan.fekete, bernhard.scholz}@sydney.edu.au

ABSTRACT
Datalog has been applied to several use cases that require very
high performance on large rulesets and factsets. It is common to
create indexes for relations to improve search performance. How-
ever, the existing indexing schemes either require manual index se-
lection or result in insufficient performance on very large tasks.
In this paper, we propose an automatic scheme to select indexes.
We automatically create the minimum number of indexes to speed
up all the searches in a given Datalog program. We have in-
tegrated our indexing scheme into an open-source Datalog en-
gine SOUFFLÉ. We obtain performance on a par with what users
have accepted from hand-optimized Datalog programs running on
state-of-the-art Datalog engines, while we do not require the ef-
fort of manual index selection. Extensive experiments on large real
Datalog programs demonstrate that our indexing scheme results
in considerable speedups (up to 2x) and significantly less memory
usage (up to 6x) compared with other automated index selections.

PVLDB Reference Format:
Pavle Subotić, Herbert Jordan, Lijun Chang, Alan Fekete, Bernhard Scholz.
Automatic Index Selection for Large-Scale Datalog Computation. PVLDB,
12(2): 141-153, 2018.
DOI: https://doi.org/10.14778/3282495.3282500

1. INTRODUCTION
There has been a resurgence in the use of Datalog in several

computer science communities [18], including program analysis
where it is used as a domain specific language for succinctly spec-
ifying various classes of static analyses. In this setup, an input
program to be analyzed is converted into an extensional database
(EDB), while the analysis specification is encoded as a set of
Datalog rules that compute the analysis result as an intensional
database (IDB).

Example 1. Figures 1a and 1b depict a simplified taint analysis
encoded as a Datalog program, used for detecting the vulnera-
bilities of a web-based hospital management system. The source
code of the management system is converted into EDB relations,
e.g., Src, Sink, Role, Access, Zone, and Priv, where rela-
tions Role and Access for access policy are shown in Figure 1a.

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 12, No. 2
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3282495.3282500

Datalog rules are constructed for the security analysis, enumer-
ating all possible vulnerability cases. This part of the ruleset is
shown in Figure 1b; we omit the Datalog rules for computing the
IDB relation Path that defines the control flow of the source code.
For example, the first rule adds an error involving source code lo-
cations s and e to the appropriate IDB relation, whenever s is a
user (uid) input (Src) for which there exists a program path to e, a
database connection (Sink) location that has no Role for uid. That
is, the user has connected to the database without a role. Note
that, as conventional, underscore is used for anonymous variables
whose values are not important. The results of the analysis, deter-
mining the set of error paths, are stored in the IDB relation Err.

Such use cases of Datalog in program analysis, typically consist
of hundreds of rules and result in giga-tuple sized IDB relations, as
shown in [21, 37]. Several specialized high-performance Datalog
engines [19, 21, 24] have been employed for performing such com-
putations. These engines use Datalog as a computational notation,
and exploit bottom-up evaluation techniques that usually involve
some degree of compilation. To reduce lookup times, relations are
stored as in-memory, index-organized tables [24, 36]. Selecting the
appropriate indexes in this setting requires novel techniques, com-
pared to those standard for physical design in relational platforms.

The theory of the index selection problem (ISP) for relational
database management systems [12, 20, 22, 31] uses variants of the
0-1 knapsack problem, which has been shown to be NP-hard [26].
Deployed approaches such as [11] use heuristics and integrate with
what-if query optimization calculations. These techniques are sur-
veyed in Bruno [8], but they are too computationally expensive for
large Datalog analyses. Essential differences include (i) indexes
are needed for both EDB and IDB relations, (ii) the Datalog re-
lations are often wide (not normalized), and thus they offer a very
large number of possible indexes, and (iii) the Datalog programs
typically consist of hundreds of relations and hundreds of deeply
nested rules (see Table 2 in Section 7). As a result, the special-
ized Datalog engines often require users to provide annotations
to guide the choice of indexes; for example, the DOOP frame-
work [37] uses a code-rewriting technique that manually chooses
an index for each relation and introduces “Opt” relations for build-
ing multiple indexes on a relation. To allow widespread use of
program analysis, we must move beyond approaches that put the
optimization burden on the user, who requires painstaking trial and
error over hundreds of rules and annotations.

Auto-Indexing. In this paper, we formulate an automatic in-
dexing scheme for Datalog computations, aiming to achieve the
best performance/memory usage while not requiring the interven-
tion of end users. Our approach was motivated by experiences
with industry use cases involving large-scale program analysis per-
formed with the state-of-the-art compilation-based Datalog en-

141

Access
Role Operation
a del
a insert
a select
rw insert
rw select
w insert
r select

Role
Name Role Doctor Role Patient
M.Smith a a
L.James rw r
N.Jones r rw
D.Cousins w n

(a) EDB relations Access, Role

(r1) Err(s, e) :- Src(uid, s), Path(s, e), Sink(e, , “Con”),
!Role(uid, ,).

(r2) Err(s, e) :- Src(uid, s), Path(s, e), Sink(e, dbid, op),
Zone(dbid, “Doctor”), Access(l, op), !Role(uid, l,).

(r3) Err(s, e) :- Src(uid, s), Path(s, e), Sink(e, dbid, op),
Zone(dbid, “Patient”), Access(l, op), !Role(uid, , l).

(r4) Err(s, e) :- Src(uid, s), Path(s, e), Sink(e, dbid, “Priv”),
Privileged(l1, l2), !Role(uid, l1, l2).

(b) Datalog rules for vulnerability detection

for all t1 ∈ Src do
for all t2 ∈ σx=t1(y)(Path) do

for all t3 ∈ σx=t2(y),z=“Con”(Sink)

do
if σx=t1(x)(Role) = ∅ then

if (t1(y), t2(y)) 6∈ Err then
add (t1(y), t2(y)) to
Err

(c) Nested loop joins for Datalog rule (r1)

Figure 1: Example Datalog analysis for vulnerability detection

gine SOUFFLÉ [21]. We found inadequate performance until we
introduced our new technique into SOUFFLÉ, however the ideas
should apply more broadly to any engine that computes a Datalog
program in successive phases. That is, initially there are analysis
phases that consider only the rules and produce code to perform a
query evaluation plan resembling a nested loop join, and these are
followed by an evaluation phase that executes the compiled query
on the facts (i.e., IDB), producing a materialized IDB. Our auto-
indexing is conducted at one of the analysis phases, and it chooses
indexes that improve the performance of the compiled code.

The key insights of our work are as follows. We identify that the
compiled evaluation is built from frequently repeated calls to sim-
ple selections, each on a single relation (which might be in EDB or
in IDB). We call these primitive searches, and a primitive search re-
turns the tuples in a relation which satisfy a predicate that involves
testing some of the attributes for equality to a given value. For ex-
ample, Figure 1c depicts the evaluation logic that is compiled for
the Datalog rule (r1) in Figure 1b where the first, second, and third
attributes of a relation are assumed to be accessed by x, y, and z,
respectively. There are three primitive searches σx=t1(y)(Path),
σx=t2(y),z=“Con”(Sink), and σx=t1(x)(Role), where the first one
looks up all tuples in relation Path whose first attribute value is
equal to t1(y) — the second attribute value of a tuple t1 from rela-
tion Src. Note that each primitive search is a very restricted kind
of range query: for each attribute, we are either checking equality
to a value, or else we accept any value in that attribute.

Our next insight is that the evaluation of a primitive search can
be greatly sped up if the relation has a clustered B-tree index that
covers the search predicate. This means that the set of attributes
where equality is checked, forms a prefix of the sequence of at-
tributes used to lexicographically define the index. For example,
the primitive search σx=v1,z=v3 is covered by the index ` = x ≺ z
(that means, an index using x followed by z as its key) but not by
`′ = x ≺ y ≺ z. When a search is covered by an index, the
tuples that match the search are a contiguous part of the scan of
the index leaves. Accessing these can be much faster than a full
table scan, which is what an engine would use in the absence of an
index. Because the relations are so large, we find that queries are
typically infeasible in practice unless there is some index to cover
every primitive search among the rules. On the other hand, each in-
dex uses considerable space, and so we are driven to minimize the
number of indexes constructed. Thus we define an abstract task,
the Minimum Index Selection Problem (MISP), aiming to select the
minimum number of indexes to cover all primitive searches used in
the ruleset. We notice that this can be significantly fewer than one
index for each primitive search on the relation. For example, the in-
dex ` = x ≺ y ≺ z covers three primitive searches: S1 = σx=v1 ,
S2 = σx=v′1,y=v′2 , and S3 = σx=v′′1 ,y=v′′2 ,z=v′′3 .

Finally, we are able to solve the MISP efficiently, using a re-
lationship between the search space of indexes and the search
space of search chains among lexicographic orders. To do so, we
abstract each primitive search as its set of search attributes, re-
ferred to as a search; for example, S1 = {x}, S2 = {x, y}, and
S3 = {x, y, z} are the searches corresponding to the above three
primitive searches. A sequence of k searches S1, . . . , Sk form a
search chain if each search Si is a proper subset of its immediate
successor search Si+1. As a result, all searches in the same search
chain can be covered by a single index. We prove that the optimal
MISP solution can be constructed from the optimal set (i.e., with
the minimum cardinality) of search chains that cover all primitive
searches. Then we apply the combinatorial result of Dilworth’s
theorem [15] to compute the minimum number of search chains,
and thus the minimum number of indexes, inO(|S|2.5 + |S|2 ·m)
time, for a set S of primitive searches on a relation with m at-
tributes. This is much faster than a brute force examination of all
possible sets of indexes on this relation, which would have a time
complexity of O(2m

m

).
We have implemented our index selection approach as the de-

fault indexing technique of the SOUFFLÉ Datalog engine. We
found that the computation overhead for our index selection is neg-
ligible, i.e., no slowdowns were observed during compilation. Us-
ing our technique, SOUFFLÉ has managed to efficiently compute
program analyses typically deemed too large for Datalog engines,
and moreover, the performance exhibited by SOUFFLÉ has been on
a par with recent state-of-the-art hand-crafted analyzers [14].

Contributions. Our contributions are summarized as follows.

• We formally define the minimum index selection problem
(MISP) to find the minimum number of indexes to cover all prim-
itive searches.
• We present a polynomial-time algorithm to solve MISP opti-

mally via computing search chains.
• We formulate an automatic indexing scheme for large-scale
Datalog computation based on this theory.
• We demonstrate the effectiveness of our indexing scheme in an

open-source Datalog engine, SOUFFLÉ, with large, real world
rulesets and factsets.

Note that this paper builds on prior work [33, 21] by some of
the same authors. In [33] we introduce an overview of SOUFFLÉ
as a compilation framework for Datalog, and the paper [21] is a
tool paper focusing on the synthesis of C++ via Futamura projec-
tions. Both papers mention index selection, however, neither the
theory nor the implementation details of index selection is filled
in by prior papers. This work introduces the formal problem def-
inition of MISP, precise algorithms for solving MISP, brute-force
estimates, proof sketches, and evaluation of MISP in comparison
to other index selection techniques.

142

We remark that our scheme is based on clustered B-tree index
structures kept in-memory. If multiple indexes are needed, we ma-
terialize replicas of the relation so that each index can be clustered.

Organization. The paper is organized as follows. We highlight
related works in Section 2, and present preliminary definitions
in Section 3. In Section 4, we introduce an automatic indexing
scheme and formally define the minimum index selection problem
(MISP). In Section 5, we present a polynomial-time algorithm to
solve MISP optimally. We evaluate our automatic indexing scheme
in an open-source Datalog engine in Section 7. We discuss other
extensions of our techniques in Section 8 and draw relevant con-
clusions in Section 9.

2. RELATED WORK
Datalog Engines. Datalog has been pro-actively researched
in several computer science communities [9, 28, 29, 30], where
a comprehensive introduction to Datalog can be found in [1].
Driven by applications in data integration, networking, and pro-
gram analysis, Datalog has recently regained considerable in-
terests, e.g., see [18] for a survey of these developments. Log-
icblox [3] is a commercial propitiatory system which focuses on
encoding business logic. The latest version 4 of LogicBlox is
single-threaded execution and less amenable for recursive queries.
Hence, Logicblox cannot be directly employed for highly-recursive
workloads occurring in static program analysis. BigDatalog [36]
is a Datalog system that executes queries on the unified analytics
engine Apache Spark. The system is designed for recursive ag-
gregate queries and applications typically found in social network
and other data-analytics application with large-data. The aim of
BigDatalog is to exploit coarse-grain parallelism in Datalog pro-
grams. Static program analysis and security analysis have different
workload characteristics requiring a fine-grain parallelism caused
by a large number of mutual recursive relations with several hun-
dred rules. Datalog-MC [39] uses an in-memory parallel evalua-
tion of Datalog programs on shared-memory multi-core machines.
Datalog-MC hash-partitions tables and executes the partitions on
cores of a shared-memory multi-core system using a variant of
hash-join. To parallel evaluate Datalog, Datalog rules are repre-
sented as and-or trees that are compiled to Java. Flix [25] is a new
Datalog-inspired domain specific language for static program anal-
ysis extending the expressiveness of Datalog with arbitrary lattice
structures. Flex does not have as a research objective performance
rather expressiveness.

Other Datalog platforms. Note that the use-cases of static pro-
gram analysis requires particular capabilities in Datalog engines
including fast fixed-point calculations for highly mutual recur-
sive relations with very deep joins, domain specific extensions
of Datalog including complex element types, components, and
widening-techniques. Various engines have been used for static
program analysis including Logicblox version 3 [23], µZ [19], bd-
dbddb [38], and SOUFFLÉ [21], which is currently the state-of-
the-art Datalog engine used in Java points-to [6], Amazon’s AWS
cloud, and Smart-Contract analysis [17].

Index Selection in Datalog Engines. Consider PA-Datalog,
which is a variant of Logicblox version 3, and has been used
in DOOP for program analysis. This engine stores each relation
(whether EDB or IDB) in an index, where the structure is based
on the order of attributes as listed in the relation. As shown in [7],
execution efficiency of DOOP can be greatly improved by a man-
ual code-rewriting technique [2], which replicates a relation mul-
tiple times (corresponding to attributes listed in different orders)

and thus it creates a distinct index for each replica. This manual
index creation, although resulting in an enormous speedup [7], re-
quires end-users to be familiar with the underlying indexing mech-
anism of a Datalog engine. The manual code-rewriting technique
is error-prone and consumes much human time and effort, on pro-
grams with hundreds of rules. Also, the hand-optimized Datalog

rule-sets become obfuscated, and maintainability and readability
are hampered. In contrast, we seek an automated approach to iden-
tifying appropriate index structures.

In bddbddb the system chooses a global variable order, and in-
dexes each relation once, according to the restriction of the global
order to the attributes of the relation. This means that many
searches are not able to use the index with an increasing number
of rules and relations occurring in standard static program analysis
workloads.

Index Selection in Relational Databases. A recent monograph on
optimizing performance of SQL queries is given by Bruno [8]. One
aspect is physical design, including the choice of index structures.
In the context of relational databases, the problem of automatically
selecting indexes for a set of database queries, referred to in the
literature as the index selection problem (ISP) [12, 20, 22, 31], is
well studied and has been shown to be NP-hard [26]. It is typi-
cally formulated as a variant of the 0-1 knapsack problem, which
balances the overall execution time of queries for an index con-
figuration (i.e., a subset of indexes that influence the performance
of a query) and the cost of index maintenance. Our index selec-
tion problem differs from the classic ISP literate and to the best
of our knowledge is the first formulation for Datalog. Firstly, in
our case, we only need to support primitive searches, which oc-
cur in equi-joins and simple value queries. Secondly, the nature of
Datalog restricts the search predicate of each primitive search to
be an equality predicate over the attributes of the relation. We fur-
ther assume that each primitive search benefits from being indexed.
Thus, we formulate our problem as automatically selecting the min-
imum number of indexes to cover all searches, and we show that
unlike the relational problem, we can solve it optimally in polyno-
mial time. In contrast to semi-automatic techniques such as WFIT
index tuning algorithm [32] that are aimed at relational databases,
our approach is designed to be fully automatic and computed on the
fly at compilation time. Offline index selection approaches aimed
such as AutoAdmin [10] relay recommendations to a DBA by per-
forming a cost based analyses of a workload. The DBA then makes
the final selection based on the feedback. Our approach is designed
to automatically select the optimal index set on very large rulesets,
and, hence, is designed to scale to large Datalog programs by hav-
ing minimal overheads. Our algorithm however, can be used in
conjunction with a manual or automatic join selection algorithm to
provide an additional optimal index set cost metric to aid in general
query optimization.

3. PRELIMINARIES
Like database queries, Datalog programs also work on rela-

tions. A relation R is a subset of an m-ary Cartesian product
D = D1× · · · ×Dm (i.e., R ⊆ D), where Di (1 ≤ i ≤ m) are the
domains of the relation. Elements of a relation R are referred to as
tuples. Each tuple t = 〈e1, e2, . . . , em〉 ∈ R has a fixed length m,
and ei is an element of the domain Di for 1 ≤ i ≤ m.

Given a relation R, attributes are used to refer to specific ele-
ment positions of tuples of R. The set of attributes of R, denoted
by AR = {x1, . . . , xm}, are m distinct symbols, and we write
R(x1, . . . , xm) to associate symbol xi to the i-th position in the
tuples. The elements of a tuple t = 〈e1, . . . , em〉 can be accessed

143

by access function t(xi) that maps tuple t to element ei. For exam-
ple, given a relation R(x, y, z) and a tuple t = 〈e1, e2, e3〉 ∈ R,
the access function is {t(x) 7→ e1, t(y) 7→ e2, t(z) 7→ e3}.

3.1 Datalog Program Computation
A Datalog program P consists of a finite set of Datalog rules
{r1, r2, . . .}, each of the form:

r : R0(X0)← R1(X1), R2(X2), . . . , Rd(Xd).

Each Rj(Xj) is called an atom, where Rj is a relation name and
Xj is a sequence of constants, variables, and symbol “ ” indicating
irrelevance; for example, R(u, , 1) where u is a variable. R0(X0)
is called the head of the rule, and other atoms form the body of the
rule. The semantic meaning of a Datalog rule is that given a bind-
ing of all variables to constants, the head of the rule holds if each
atom in the body of the rule holds. In this paper, we allow negated
predicates in the body, but we limit its usage by the semantics of
stratified Datalog (see [1] for the details of stratified Datalog).

The set of relations that appear in the heads of P ’s rules are re-
ferred to as the intensional database (IDB), while the set of other
relations are referred to as the extensional database (EDB). In a
Datalog program, tuples of the EDB are given, and the system
computes tuples of the IDB. This is typically achieved by a bottom-
up evaluation of the set of rules [1]. In brief, the process starts from
an instance I of P that consists only of EDB tuples (also called
facts). Then, an immediate consequence operator ΓP is repeatedly
applied to I to generate new IDB tuples to be included into I . The
process completes when a fixed-point is reached, i.e. no more IDB
tuples can be generated.

Primitive Search for Datalog Rule Evaluation. In the bottom-up
evaluation process, a Datalog rule is typically evaluated via nested
loop joins. For presentation simplicity, we partition the sequence
of body atoms of a Datalog rule into positive (referred to as R+

i)
and negative (referred to as R−j) occurrences (i.e., negative if it is
negated in the body), and restate the above Datalog rule as

R0(X0)← R+
1 (X1), . . . , R+

h (Xh), R−h+1(Xh+1), . . . , R−d (Xd),

where h is the number of positive atoms. Then, this Datalog rule
is evaluated via nested loop joins, as shown in Figure 2. Note,
the ordering may change due to leveling, i.e, negative predicates
hoisted to outer loops for performance reasons.

loop1: for all t1 ∈ σϕ1(X1)(R
+
1) do

loop2: for all t2 ∈ σϕ2(t1,X2)(R
+
2) do

.

looph: for all th ∈ σϕh(t1,...,th−1,Xh)(R
+
h) do

if σϕh+1(t1,t2,...,th)(R
−
h+1) = ∅ then

. . .

if σϕd(t1,t2,...,th)(R
−
d) = ∅ then

if π(t1, . . . , th) 6∈ R0 then
add π(t1, . . . , th) to R0

Figure 2: Nested loop joins for evaluating a Datalog rule

In the nested loop joins, we iterate over tuples that are obtained
from a primitive search, which will be defined shortly, on a posi-
tive relation. Then, negative occurring atoms are tested for empti-
ness with respect to primitive searches. Finally, the appropriate at-
tributes of the tuples involved in the current iteration are projected,
and a new tuple is inserted into the IDB relation for the head atom
of the rule, if that tuple is not already in the relation.

A vital benefit of the nested loop implementation is its memory
efficiency. At any time, the system stores the current tuples of the
primitive searches on h relations only; there is no need to fully
materialize the intermediate results of joining a prefix of the set of
relations. The size of intermediate results could easily exceed the
sizes of the eventual IDB tables.

Definition 1 (PRIMITIVE SEARCH). A primitive search has the
following form:

σx1=v1,...,xk=vk (Ri) = {t ∈ Ri | t(x1) = v1, . . . , t(xk) = vk}.

Here, Ri is a relation and x1 = v1, . . . , xk = vk is a search predi-
cate, where x1, . . . , xk are attributes and v1, . . . , vk are constants.

A primitive search extracts all tuples from a relation that adhere
to the search predicate. In this paper, we limit the search predi-
cate to be equalities of left-hand-side attributes and right-hand-side
constants as it holds for all the real Datalog programs we tested in
Section 7. Note that in our notation {x1, . . . , xk} does not neces-
sarily have to consist of the first k attributes of the relation Ri, and
the constants v1, . . . , vk are obtained either from Xi or from other
tuples in relations further up the nested loop joins (i.e., t1, . . . , ti−1

in Figure 2)

Speeding Up Primitive Searches via Indexing Relations. After
constructing the nested loop joins for all rules in a Datalog pro-
gram, the most critical factor to the performance of evaluating the
Datalog program is how the primitive searches are conducted. Ob-
viously, a primitive search can be achieved by conducting a linear
scan of all tuples of the relation and checking the search predicate
against each tuple. However, the time complexity of linear scan
over a relation with n tuples is O(n), which is too costly for large
relations considering that each primitive search is invoked repeat-
edly many times. In this paper, we aim at creating indexes for rela-
tions to speed up the primitive searches, and we study the following
problem whose formal definition will be given in Section 4.

Problem 1. Given the primitive searches in the nested loop joins of
all rules in a Datalog program, we study the problem of creating
indexes for relations to speed up all the primitive searches.

4. INDEXING RELATIONS
In this section, we first introduce indexes to speed up primitive

searches, and then formally define our problem of minimum index
selection.

4.1 From Primitive Search to Lex Search
To enable indexes on a relation, we introduce an order among

tuples in a relation to make them comparable. Since a tuple may
have several elements, an order of tuples is imposed by element-
wise comparison using a sequence over all attributes of the relation;
this comparison is known as a lexicographical order. We denote
an attribute sequence by ` = x1 ≺ x2 ≺ · · · ≺ xm where ≺
denotes a chaining of elements to form a sequence. Then, given `
that is formed by all attributes of a relation, a lexicographical order
v` D × D is a total order (i.e., reflexive, asymmetric, transitive)
defined over the domain D of the relation with respect to `. For
two tuples a, b ∈ D, when (a, b) ∈ v` D × D, we write a v` b
and we say that a is smaller than b with respect to `. Note that
a v` a, and for any two different tuples a, b ∈ D, we either have
a v` b or b v` a but not both.

Given an ordered set of tuples, tuple lookups can be performed
efficiently using some notion of a balanced search tree, called an
index, in which tuples can be found in logarithmic time rather than

144

Table 1: Primitive and Lex searches for relation Role in the nested loop joins for rules (r1)–(r4) in Figure 1b

Lex Search Predicate ρ(`, a, b)
Literal Primitive Search Lower Bound a Upper Bound b Naı̈ve `s Minimum `s
Role(v1, ,) σx=v1 〈v1,⊥,⊥〉 〈v1,>,>〉 x x ≺ y ≺ z
Role(v1, v2,) σx=v1,y=v2 〈v1, v2,⊥〉 〈v1, v2,>〉 x ≺ y x ≺ y ≺ z
Role(v1, , v3) σx=v1,z=v3 〈v1,⊥, v3〉 〈v1,>, v3〉 x ≺ z x ≺ z
Role(v1, v2, v3) σx=v1,y=v2,z=v3 〈v1, v2, v3〉 〈v1, v2, v3〉 x ≺ y ≺ z x ≺ y ≺ z

in linear time. In this paper, we abstract away the underlying im-
plementation details of an index with an attribute sequence, and
we use ` to denote both an index and the attribute sequence based
on which the index is constructed. It is worth mentioning that dif-
ferent attribute sequences usually result in different lexicographical
orders, and thus different indexes. That is, for tuples a, b ∈ D and
attribute sequences ` and `′, it is possible that a v` b and b v`′ a.

Given an index `, we define a lex search as follows.

Definition 2 (LEX SEARCH). A lex search σρ(`,a,b) is defined for
a relation R ⊆ D and its semantics is given by,

σρ(`,a,b)(R) = {t ∈ R | a v` t v` b}.

ρ(`, a, b) is a lex search predicate, where ` is an index on R, and
the lower bound a and the upper bound b are tuples in D.

Constructing Lex Searches from Primitive Searches. As lex
searches can be efficiently conducted based on an index, we would
like to transform each primitive search σx1=v1,...,xk=vk (R) into
an equivalent lex search σρ(`,a,b)(R). A lex search contains two
symbolic bounds a and b, as well as an index `, in the lex search
predicate. Thus, we need to construct a, b, and `, which will be
discussed in the following. We assume that the relation R has m
attributes in total.

Firstly, we describe how to construct the lower bound a and the
upper bound b. If k = m, then all attributes of R are in the
search predicate, and a = b and they are trivially defined by the
search predicate. Otherwise, the primitive search does not spec-
ify all attributes of R in its search predicate, and unspecified val-
ues need to be padded with infima and suprema values for lower
and upper bounds, respectively. We define an unspecified element
for the lower/upper bound construction by an artificial constant4,
and let vk+1 = 4. We assume that 4 is not element of any of
the domains Di. We define a surjective index mapping function
i : {1, . . . ,m} → {1, . . . , k+ 1} that maps the specified elements
to their corresponding constant values, and maps the unspecified el-
ements to 4 (i.e., vk+1). The construction of the lower and upper
bound is performed by the functions lb and ub, respectively,

a = lb(v1, . . . , vk)

b = ub(v1, . . . , vk)

that replace the unspecified 4 value with the infimum ⊥j and the
supremum >j of the domain Dj , respectively. Formally, the func-
tions are defined as lb(v1, . . . , vk) = 〈v′1, . . . , v′m〉 where

v′j =

{
vij if vij 6= 4
⊥j otherwise

and ub(v1, . . . , vk) = 〈v′′1 , . . . , v′′m〉 where

v′′j =

{
vij if vij 6= 4
>j otherwise

Secondly, we show in Lemma 1 that given a = lb(v1, . . . , vk)
and b = ub(v1, . . . , vk), we have σx1=v1,...,xk=vk (R) =

σρ(`,a,b)(R) if the k-th prefix of l is {x1, . . . , xk}. Before that,
we first define prefix set.

Definition 3 (PREFIX SET). Given an attribute sequence (i.e., an
index) ` = x1 ≺ x2 ≺ · · · ≺ xm, the k-th prefix of ` is
{x1, . . . , xk} if k ≤ m, and it is {x1, . . . , xm} otherwise.

Lemma 1. Given a = lb(v1, . . . , vk), b = ub(v1, . . . , vk), and an
index ` whose k-th prefix is {x1, . . . , xk}, then

σx1=v1,...,xk=vk (R) = σρ(`,a,b)(R),

holds for any R ⊆ D.

From Lemma 1, to transform a primitive search
σx1=v1,...,xk=vk (R) into an equivalent lex search, the index
for the lex search can be any sequence of all attributes of R such
that the first k attributes are x1, . . . , xk in an arbitrary order. Thus,
we also use ` = x1 ≺ · · · ≺ xk which is only a subsequence of the
attributes of R to denote an index, since the chaining order of the
remaining attributes is irrelevant for the lex search.

Example 2. Consider the primitive searches in the second col-
umn of Table 1, their corresponding lex searches are illustrated
in the third to fifth columns, where the third column shows the
lower bound a, the forth column shows the upper bound b, and
the fifth column shows the index `. Here, given a primitive search
σx1=v1,...,xk=vk (R), the index is selected as ` = x1 ≺ · · · ≺ xk.
Thus, each lex search uses a distinct index.

Remarks. The lex searches σρ(`,a,b)(R) constructed from primi-
tive searches σx1=v1,...,xk=vk (R), as discussed in above, are in a
special form. That is, for any attribute xi ∈ {x1, . . . , xk} we have
a(xi) = b(xi) = vi, and for any attribute xi ∈ AR\{x1, . . . , xk}
we have a(xi) = ⊥i and b(xi) = >i. Thus, the results of a lex
search form a consecutive interval in the lexicographical order of
all tuples of R with respect to `. As a result, any one-dimensional
order-based index (e.g., B-tree) can be used to implement `, and a
lex search can be executed in linear-log time in the size of the out-
put in the worst case, i.e., O(|σρ(`,a,b)(R)| logn) where n is the
number of tuples in the relation R. It is worth mentioning that for
general range searches, one would need a multi-dimensional index
(e.g., R-tree) to implement `, which has a higher time complexity
and runs slower than one-dimensional index such as B-tree. Thus,
in this paper we only consider the special range searches, which
we refer to as lex searches. Lex searches can be supported by one-
dimensional indexes.

It is easy to construct an example where a particular primitive
search cannot be transformed into a lex search using a particular
index `, and thus this search cannot be sped up by `. For example,
for R(x, y) = {〈1, 1〉, 〈1, 2〉, 〈2, 1〉} and ` = x ≺ y, we have
σy=1(R) = {〈1, 1〉, 〈2, 1〉} which is the first and third tuple in the
lexicographical order `. In view of this, we say that an index covers
a primitive search if it can be used to speed up the primitive search
by a lex search. We have the following corollary.

Corollary 1 (INDEX COVER). An index ` covers a primitive search
σx1=v1,...,xk=vk (R) for all R ⊆ D if and only if the k-th prefix of
` is {x1, . . . , xk}.

145

As the lex search that is transformed from a primitive search
is uniquely determined by the index and the primitive search, we
focus our discussions on indexes rather than lex searches in the
remainder of the paper.

4.2 Minimum Index Selection
Due to the lower look-up time complexity of lex searches com-

pared with that of linear scan, indexes are essential for efficient
Datalog program computations. However, when constructing in-
dexes, the question remains: what is the best set of indexes needed
to cover all primitive searches for a given relation. In this section
we define the minimum index selection problem.

Before formally defining our problem, we first establish some
additional notations. Firstly, we abstract a primitive search
σx1=v1,...,xk=vk as its set of search attributes, which we refer to
as a search and is denoted by S = {x1, . . . , xk}. This is because
the constants v1, . . . , vk are irrelevant to index creation. Secondly,
given a set S of searches and a set L of indexes on a relation R,
we would like to know whether L can cover S. Note that, since
all primitive searches with the same set of attributes (i.e., the same
search) can be covered by the same index, in the following when
referring search set we use the set-based semantics. We formalize
this via the l-cover predicate.

Definition 4 (L-COVER). Given a set S of searches and a set L of
indexes on a relation R, we define a predicate l-coverS(L) which
is true if for every search S ∈ S, there exists an index ` ∈ L that
covers S .

Then, based on the definition of l-cover, we would like to find the
smallest set of indexes that cover a search set S. The rationalities
of minimizing the number of indexes are as follows. Firstly, fol-
lowing Corollary 1, an index represented by an attribute sequence
` may cover a multitude of searches assuming the elements of its
prefixes coincide with the attributes of the searches. For example,
two searches S1 = {x} and S2 = {x, y} on a relation can be cov-
ered by the same index ` = x ≺ y. Secondly, for a search that can
be covered by multiple indexes, the benefits of the different indexes
are the same, i.e., they will result in the same running time. Thirdly,
the fewer the indexes, the lower the creation and maintenance costs
of these indexes.

As indexes and searches on different relations are independent,
we consider each relation separately. We formulate our problem as
follows.

Problem 2 (Minimum Index Selection Problem (MISP)). Given
a set S of searches on a relation R, the minimum index selection
problem is to find a set of indexes with the minimum cardinality
such that all searches of S are covered by the index set, i.e.,

fS = arg min
L:l-coverS(L)

|L|.

Example 3. Continuing Example 2, the set of searches in Table 1
is S =

{
{x}, {x, y}, {x, z}, {x, y, z}

}
. It can be covered by two

indexes `1 = x ≺ y ≺ z and `2 = x ≺ z, which is shown in
the sixth column of Table 1; this is smaller than the four indexes
used in Example 2. Indeed, two is the smallest number of indexes
to cover S, since it is easy to see that {x, y} and {x, z} cannot be
covered by the same index.

5. COMPUTING THE OPTIMAL MISP
In this section, we propose an algorithm to solve MISP optimally

in polynomial time. We begin with discussing the inviability of a
brute-force approach.

5.1 Inviability of a Brute-force Approach
Before presenting our algorithm, we discuss the size of the

search space of MISP. If it is very large, then a brute-force algo-
rithm is not viable, especially for high performance engines.

Given a set S of searches on a relation R, let A be the set of at-
tributes of R that are relevant for the searches, i.e., A =

⋃
S∈S S .

We use LA to represent the set of all possible permutation/se-
quences that may be formed by the elements of A, i.e., LA =⋃
X⊆A,X 6=∅ Pm(X). Here, Pm(X) denotes the set of permuta-

tions of a set X which is the set of all possible sequences formed
by all elements of X such that each element occurs exactly once.
Now, we bound |LA|. Although constructing a closed form is hard,
it can be bounded by the following lemma.

Lemma 2. Given a set A of m attributes (i.e., A =
{x1, . . . , xm}), the cardinality of the set LA of all sequences of
A is bounded by m! ≤ |LA| ≤ e ·m!.

Proof. The lower bound is given by |Pm(A)| = m!, since
Pm(A) ⊆ LA. The upper bound is computed as follows, |LA| =∣∣∣⋃X⊆A,X 6=∅ Pm(X)

∣∣∣ =
∑
X⊆A,X 6=∅ |X|! =

∑
1≤i≤m

(
m
i

)
i! =

m!
∑

1≤i≤m
1

(m−i)! = m!
∑

0≤i≤m−1
1
i!
≤ m!

∑
i≥0

1
i!

= e ·m!

where the second equality follows from the fact that, for any X ⊆
A and Y ⊆ A with X 6= Y , we have Pm(X) ∩ Pm(Y) = ∅.

Note that, the absolute error of the over-approximation of
|LA| is small, i.e., e · m! − |LA| = m!

∑
i≥m

1
i!

=∑
i≥0

m!
(i+m)!

≤
∑
i≥0

1
i!

= e. The values of |LA| and

the relative error ε = e·m!−|LA|
|LA|

of its over-approximation,
for m varying between 1 and 9, is given in the table below:

m |LA| ε · 100
1 1 171.828
2 4 35.914
3 15 8.731
4 64 1.936
5 325 0.367
6 1956 0.059
7 13699 0.008
8 109600 0.001
9 986409 ≈ 0.000

Recall that, MISP searches for
the smallest subset of LA that cov-
ers all primitive searches on a rela-
tion. Thus, a brute-force approach
would require to iterate through all
subsets of LA. Then, the search
space of a brute-force approach is
2LA = {L | L ⊆ LA}, and its size
is |2LA | = 2|LA|. Using the ap-
proximation of |LA| in Lemma 2,
we obtain a complexity of O(2e·m!).

Theorem 1. A brute-force approach for MISP exhibits a worst-
case time complexity of O(2m

m

).

Proof. As discussed above, the time complexity of a brute-force
approach for MISP is O(2e·m!). Then, this theorem follows from
Sterling’s approximation of m!. Note that, the approximation be-
comes more precise for a large m.

As a result, a brute-force approach becomes intractable very
quickly. For example, for a relation with 4 attributes, a brute-force
MISP algorithm has to test 264 ≈ 1.8 × 1019 different subsets of
LA for coverage and minimality.

5.2 Computing MISP via Chain Cover
In view of the inviability of a brute-force approach, we propose

to solve MISP via computing a chain cover of the searches. In the
following, we first formulate the minimum chain cover problem
(MCCP) and prove that an optimal MISP solution can be obtained
from an optimal MCCP solution. Then, we propose a polynomial-
time algorithm MinIndex that solves MISP optimally.

146

{x}

{x, y}

{x, z}

{x, y, z}

{x}

{x, y}

{x, z}

{x, y, z}

S S

(a) Bipartite graph

{x}

{x, y}

{x, z}

{x, y, z}

{x}

{x, y}

{x, z}

{x, y, z}

S S

(b) Maximum matching

{x}

{x, y} {x, z}

{x, y, z}

(c) Chain cover

Figure 3: Running example of computing MCCP for searches {x}, {x, y}, {x, z}, and {x, y, z}.

5.2.1 Minimum Chain Cover Problem
We define a search chain C as a set of searches {S1, . . . ,Sk}

that subsume each other and form a total order, i.e., C ≡ S1 ⊂
S2 ⊂ · · · ⊂ Sk. A search chain is related to an index as follows.

Lemma 3. Given a search chain C = S1 ⊂ S2 ⊂ · · · ⊂ Sk, we
can construct an index to cover all searches of C.

Proof. We prove this lemma by constructing such an index that
covers all searches of C. Let Si − Si−1 denote the set of attributes
of Si that are not in Si−1. Then, it is easy to see that any index
conforming with S1 ≺ (S2 − S1) ≺ · · · ≺ (Sk − Sk−1) is such
an index, i.e., attributes of Si+1 − Si appear later than attributes
of Si − Si−1. Note that, the attributes of S1 and the attributes of
Si − Si−1 can be ordered arbitrarily, respectively, within their sets
of attributes.

Following Lemma 3, we say that a search chain C covers all its
searches, i.e., C covers S for every search S ∈ C. Then, we would
like to know whether a set C of search chains can cover all searches
in a search set S. We formalize this via the c-cover predicate.

Definition 5 (C-COVER). Given a set S of searches and a set C of
search chains on a relation R, we define a predicate c-coverS(C)
which is true if for every search S ∈ S, there is a search chain
C ∈ C that covers S , i.e.,

c-coverS(C) = ∀S ∈ S : ∃C ∈ C : S ∈ C.

Now, we are ready to define our minimum chain cover problem,
which aims to find the smallest set of search chains to cover all
searches in a given set of searches.

Problem 3 (Minimum Chain Cover Problem (MCCP)). Given a
set S of searches on a relationR, the minimum chain cover problem
is to find the minimum set gS of search chains to cover S, i.e.,

gS = arg min
C:c-coverS(C)

|C|

The rational of defining MCCP is that given a set C of search
chains covering all searches in a search set S, we can construct a
set of indexes of cardinality |C| to cover S by following Lemma 3.
Thus, the smaller the cardinality of C, the better.

Moreover, there is a one-to-one correspondence between solu-
tions of MISP and solutions of MCCP, as proved by the following
lemma.

Lemma 4. Given any search set S on a relation R, there is a one-
to-one correspondence between search chains C that cover S and
indexes L that cover S, such that |C| = |L|.

Proof. Following from Lemma 3, we know that given any set C
of search chains that cover S, we can construct an index set of
cardinality |C| to cover S. Thus, what remains to be proved in this

lemma is that given any index `, we can construct a search chain C
to cover all searches that are covered by `.

Given an index ` and a set S of searches, we let S` denote the
subset of S that are covered by `. We will show that S` is a search
chain. Firstly, it is easy to see that for any S ,S ′ ∈ S`, we have
|S | 6= |S ′|. Secondly, following Corollary 1, we know that for any
S ,S ′ ∈ S`, we have either S ⊂ S ′ or S ′ ⊂ S , since the k-th
prefix of ` is a subset of a (k + 1)-th prefix of `. Thus, the lemma
holds.

Following from Lemma 4, we have the following corollary,
which states that we can obtain an optimal MISP solution from
an optimal MCCP solution.

Corollary 2. Given any search set S on a relation R, an optimal
MISP solution can be obtained from an optimal MCCP solution.

5.2.2 A Polynomial-time MISP Algorithm
We have shown in Corollary 2 that we can obtain an optimal

MISP solution from an optimal MCCP solution. The good news
is that MCCP can be solved optimally in polynomial time by the
Dilworth’s Theorem [15], which states that in a finite partial order,
the size of a maximum anti-chain is equal to the minimum number
of chains needed to cover its elements. An anti-chain is a subset of
a partially ordered set such that any two elements in the subset are
unrelated, and a chain is a totally ordered subset of a partial ordered
set. Although Dilworth’s Theorem is non-constructive, there exists
constructive versions that solve the minimum chain cover problem
either via the maximum matching problem in a bipartite graph [16]
or via a max-flow problem [27]. Both problems are optimally solv-
able in polynomial time.

The general idea of computing a minimum chain cover for a
search set S is as follows. Firstly, a bipartite graphGS = (U, V,E)
is constructed such that there is a vertex in both U and V for
each search S ∈ S, and there is an edge between S ∈ U
and S ′ ∈ V if S is a proper subset of S ′ (i.e., S ⊂ S ′).
For example, Figure 3a illustrates the bipartite graph constructed
for the search set S = {{x}, {x, y}, {x, z}, {x, y, z}} in Ta-
ble 1, where the edge set is given by the strict subset relation-
ship between a search pair, i.e., ({x}, {x, y}), ({x}, {x, z}), ({x},
{x, y, z}), ({x, y}, {x, y, z}) and ({x, z}, {x, y, z}).

Secondly, a minimum chain cover is obtained from a maximum
matching M of GS . A subset M of GS ’s edges forms a match-
ing if each vertex of U and V appears at most once in M, and
it is a maximum matching if it has the largest cardinality among
all matchings of GS . Note that, a vertex u of U is considered
to be different from a vertex v of V , even when u and v refer to
the same search. For example, for the bipartite graph GS in Fig-
ure 3a, {({x}, {x, y}), ({x, y}, {x, y, z})} is a maximum match-
ing as shown in Figure 3b, while {({x}, {x, y}), ({x}, {x, z})} is
not a matching since {x} of U appears twice. Given a matching
M of GS , a set of |S| − |M| search chains that cover all searches

147

of S is constructed as follows: initially each search of S forms a
singleton search chain of its own, then each edge ofM joins two
search chains and thus reduces the total number of search chains
by one. For example, for the maximum matching in Figure 3b, the
two search chains are obtained as {x} ⊂ {x, y} ⊂ {x, y, z} and
{x, z} which are pictorially shown in Figure 3c.

Alternatively, we can view the edges of the bipartite graph GS
as directed edges in a unipartite graph with S as the set of ver-
tices, e.g., see Figure 3c with both solid and dotted lines. Then,
the edges of a matchingM of GS form |S| − |M| directed paths
in the unipartitie graph (each corresponding to one search chain),
since each vertex has at most one in-coming edge and at most
one out-going edge due to the definition of matching. Specifically,
each chain starts from a search that do not have any predecessors
(i.e., in-coming edges) in the matching M. Moreover, the set of
search chains constructed from a maximum matching of GS has
the smallest cardinality. This is because, given any set C of non-
overlapping search chains of S, a matching of |S| − |C| edges
can be constructed for GS , since each search chain C ∈ C adds
|C| − 1 edges to the matching; two search chains are non-overlap
if their sets of searches are non-overlap. Note that, for any search
set S, there is a minimum chain cover whose search chains are
non-overlap, since a search chain remains valid after removing any
search from it. As a result, a minimum set of search chains is con-
structed from a maximum matching of GS , where the pseudocode
of the computation is shown in Algorithm 1. Finally, given the

Algorithm 1: MinChainCover(S)

Input: A set S of searches
Output: A minimum chain cover C of S

1 M← MaximumMatching(S,S, {(S ,S ′) ∈ S × S | S ⊂ S ′});
2 Initialize C to be the empty set;
3 for all u1 ∈ S s.t. 6 ∃(u0, u1) ∈M do
4 Find maximal path (u1, u2), (u2, u3), . . . , (uk−1, uk) ⊆M ;
5 Add u1 ⊂ u2 ⊂ u3 ⊂ · · · ⊂ uk−1 ⊂ uk to C ;

6 return C

set C of search chains that is computed by Algorithm 1 for cov-
ering the search set S, a set L of |C| indexes can be constructed
to cover S by following the proof of Lemma 3. For example, the
search chain {x} ⊂ {x, y} ⊂ {x, y, z} is converted to the index
{x} ≺ {x, y} − {x} ≺ {x, y, z} − {x, y} which is x ≺ y ≺ z,
and the search chain {x, z} can be converted to either index x ≺ z
or index z ≺ x. The pseudocode for such a conversion is shown in
Algorithm 2, and denoted by MinIndex.

Algorithm 2: MinIndex(S)

Input: A set S of searches
Output: A minimum set L of indexes to cover S

1 C ← MinChainCover(S);
2 Initialize L to be the empty set;
3 for all S1 ⊂ S2 ⊂ · · · ⊂ Sk−1 ⊂ Sk ∈ C do
4 Add to L an arbitrary index conforming with

S1 ≺ S2 − S1 ≺ · · · ≺ Sk − Sk−1;

5 return L

The correctness of MinIndex (Algorithm 1 and Algorithm 2) fol-
lows from the above discussions. Let m be the number of distinct
attributes in S; note that, m is at most the number of attributes in a
relation. Then, the time complexity of MinIndex is bounded by the
following theorem.

Theorem 2. The time complexity of MinIndex (Algorithm 1 and
Algorithm 2) is O(|S|2.5 + |S|2 ·m).

Proof. The time complexity follows from the facts that, construct-
ing the bipartite graph G takes O(|S|2 · m) time, computing the
maximum matching inG takesO(|S|2.5) time, and both construct-
ing chain cover from matchingM and constructing indexes from
chain cover take O(|S| ·m) time.

Note that, as both |S| and m are not large in practice (e.g., they
are at most hundreds), the running time of MinIndex usually is neg-
ligible compared with the total running time of a Datalog program.

6. INTEGRATING INTO SOUFFLÉ
We have implemented our index selection approach as the

default indexing technique of the open-source Datalog engine
SOUFFLÉ, which works as follows. It first translates a given
Datalog ruleset (also called a program) into C++ code during the
code generation phase, then it compiles the C++ code into binary
executable code at the code compilation phase, and finally the code
execution phase executes the binary code on the EDB (i.e., input
facts) to compute the IDBs. For more details of SOUFFLÉ, please
refer to [21, 33].

Index selection occurs in the code generation phase, which also
performs several rewrite transformations. In the first step, a query
translator converts each rule of an input Datalog program to a
nested loop join. It selects the best loop order, minimizing the it-
eration space of the nested loop join with the aid of a query plan-
ner [1] or user hints. In the second step, primitive searches (see
Definition 1) are identified from the nested loop joins. In the last
step, indexes are selected by our algorithm MinIndex to cover the
primitive searches, and the primitive searches are replaced by index
operations on relations based on the selected indexes.

The code execution phase of SOUFFLÉ is also divided into sev-
eral steps. It ingests the whole factset (i.e., EDB) into main memory
and stores them in EBD index structures. The binary code runs on
in-memory structures, and repeatedly adds rows to the various IDB
index structures which are initially empty. Finally, the computed
IDB relations are output to disk. Note that, the first two steps are
interleaved.

7. EXPERIMENTS
In this section, we evaluate our auto-indexing scheme by measur-

ing an implementation of it, and also some alternative schemes, in a
production-strength Datalog engine SOUFFLÉ [21]. The outcome
of our evaluations is to validate the following claims.

Claim-I: Negligible Index Selection Overhead During Analysis.
The time taken for selecting the indexes using our auto-
indexing scheme does not substantially slow down the code
generation and compilation phases compared to alternative
indexing schemes.

Claim-II: Significant Performance Benefit During Execution.
Our auto-indexing scheme provides a good combination of
fast runtime evaluation and low memory footprint.

Claim-III: Good Enough, Without Hand Optimizations. Our
auto-indexing scheme delivers runtime evaluation speed
and memory usage that compare well with what users have
accepted as worth the effort of hand optimizations.

7.1 Experimental Setup
Our experiments were performed on an Intel(R) Core(TM) i7-

7700K CPU at 4.20GHz with 64GB of physical RAM running
Ubuntu 16.04.3 LTS on the bare-metal. The experiments were con-
ducted in isolation without virtualization so that runtime results are

148

Table 2: Cloud security ruleset sizes

Program #Rules #Relations
sec1 250 325
sec2 254 329
sec3 245 320

Table 3: Network factset sizes

Dataset #Facts Dataset #Facts
N1075 3,515 N3511 4,290
N2340 3,503 N9087 4,343
N3500 4,340

Table 4: DaCapo factset sizes

Dataset # Facts Dataset #Facts
lu-index 4,396,394 antlr 8,319,095
lu-search 4,396,394 jython 5,203,400
bloat 4,468,277 pmd 8,388,217
eclipse 4,389,763 fop 8,769,560

Auto None Single Maximal
MinIndex gen compile gen compile gen compile gen compile

1o1h 0.0015 0.99 86.86 1 79.64 0.99 76.94 0.99 89.11
2o2h 0.0015 1.02 87.02 1 79.3 1 76.78 0.99 89.3
3o3h 0.0015 1.01 87.13 0.99 79.88 0.99 77.59 1.01 89.4
sec1 0.0008 0.09 106.9 0.1 94.84 0.1 93.11 0.1 114.23
sec2 0.0008 0.11 113.11 0.11 95.56 0.1 92.31 0.11 120.01
sec3 0.0008 0.09 107 0.1 93.41 0.09 91.71 0.1 109

Figure 4: Code generation time (gen) and compilation time (compile) in seconds

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

sec1 sec2 sec3 1o1h 2o2h 3o3h

R
a

tio
 o

f
C

o
m

p
ile

 T
im

e

None/Auto
Single/Auto

Maximal/Auto

Figure 5: Ratio of compilation time w.r.t. Auto

robust. All experiments shown here are run in single-thread mode
for SOUFFLÉ V1.3.1-175-g2977f469 and G++ V7.3.0.

7.1.1 Compared Indexing Schemes
We compare the following three indexing schemes, all imple-

mented by us in SOUFFLÉ.

• Auto: our auto-indexing scheme presented in Algorithm 2.
• Maximal: one index for each distinct search on a relation.
• Single: only one index for each relation. To choose the best in-

dex for a relation R for a given workload, we first count the fre-
quency of each individual search S on R which is obtained by
instrumenting the search pattern while executing the Datalog

program once. Then, the best single index is selected as the
one whose set of covered searches has the maximum total fre-
quency. This can be computed in quadratic time to the number
of searches by dynamic programming (cf. Chapter 12, [13]); we
omit the details.

Intuitively, these two alternative indexing schemes, Maximal and
Single, should be especially good for the execution speed and the
memory efficiency, respectively. However Maximal uses much
more memory for the numerous indexes, and Single doesn’t cover
every search and thus could be very slow in evaluating the pro-
gram. Our experiments in Section 7.2.2 validate these expectations,
and show that Auto offers an excellent compromise, with runtime
similar to Maximal and much less than Single, and using memory
similar to Single and substantially less than Maximal.

To aid in understanding the implications and overheads of the
indexing in SOUFFLÉ, we also include some measurements for two
radically different approaches. In the code analysis steps, we con-
sider an scheme we call None, in which there is no work done to
choose indices based on the searches to be performed; instead the
system stores each relation with the single index that is determined
by the lexicographic order of the attributes in the relation. This es-
tablishes a baseline for seeing the overhead of the work done in any
approach that examines the set of searches in order to create suit-
able indices. For the execution phase, we have implemented what
we call Hash, where the relations (both EDB and IDB) are stored
using the STL hash map. As a hash map cannot be shared between
two different searches, Hash builds one hash map for each distinct
search in the same way as Maximal. We discuss the implications
of this below.

In addition, for the workloads of one use case from program
analysis, we also compare our auto-indexing scheme in SOUFFLÉ
to another Datalog system PA-Datalog, an optimized Logicblox
Ver.3 for program analysis. The ruleset used with PA-Datalog has
been heavily hand-optimized through months of work by experts,

specially for the use case. Because these are different engines, the
comparison of speed and memory is not truly apples-to-apples.
Nevertheless, we will illustrate in Section 7.2.3 that our auto-
indexing scheme in SOUFFLÉ results in better performance without
human optimizing effort, compared to what users have accepted as
sufficiently good to justify the effort of hand-optimization.

7.1.2 Case Studies
We perform our evaluations using two real-world case studies:

namely, a cloud security use case and a program analysis use case.
These use cases are of very large scale, where the Datalog pro-
grams contain hundreds of rules and relations and produce giga-
tuple output relations.

Use Case-I: Cloud Security Analysis. The first use case is to an-
alyze the security of Amazon networks. In this industrial use case,
a Domain Specific Language (DSL) is used to describe security
properties of networks and to query about the networks. A transla-
tor automatically converts the security specifications and queries in
a DSL to a Datalog program where the properties of the given net-
works are encoded as EDBs (i.e., input relations). The generated
Datalog programs are unoptimized, since the DSL doesn’t offer
annotations for hand-crafted optimizations such as enforcing good
indexing schemes. It is worth pointing out that this use case has re-
source constraints including a low memory footprint and runtime
limitations, as imposed by running the security analysis as a ser-
vice in Amazon Lambda [35].

For this use case, we consider three security analysis workloads
(i.e., three Datalog programs), each encoding specific security
properties and security queries. We name these three programs as
sec1, sec2, and sec3, where the numbers of rules and relations
of these programs are shown in Table 2. At execution time, the
programs run on five network factsets that vary in complexity: net-
works N1075 and N2340 have less complexity whereas networks
N3500, N3511, and N9087 are more complex in terms of their net-
work connectivity. The EDB sizes (i.e., total number of tuples in
all input relations) of the five network datasets are summarized in
Table 3.

Use Case-II: Program Analysis. The second use case is DOOP
program analysis that performs points-to analyses for Java pro-
grams; DOOP is publicly available and open source [37]. Specifi-
cally, a Java program is encoded as an EDB (i.e. input relations)
and the points-to analysis is expressed as a Datalog program.
DOOP’s points-to analysis has been used to analyze very large li-
braries such as the Oracle JDK [21]; as a result, it requires very
fast execution and low memory footprints in order to be solved
in a feasible time and with feasible resources. The DOOP anal-
ysis workloads have different parameterizable precisions, which

149

1

3

4
25% 50% 75%

Percentile of Relations

#
In

de
xe

s

0

0.5

1

R
ed

uc
tio

n
R

at
e

|S| |L| Reduction Rate

(a) Index distribution of DOOP

1

5

9
25% 50% 75%

Percentile of Relations

#
In

de
xe

s

0

0.5

1

R
ed

uc
tio

n
R

at
e

|S| |L| Reduction Rate

(b) Index distribution of sec1

1

5

11
25% 50% 75%

Percentile of Relations

#
In

de
xe

s

0

0.5

1

R
ed

uc
tio

n
R

at
e

|S| |L| Reduction Rate

(c) Index distribution of sec2

1

3

5
25% 50% 75%

Percentile of Relations

#
In

de
xe

s

0

0.5

1

R
ed

uc
tio

n
R

at
e

|S| |L| Reduction Rate

(d) Index distribution of sec3

Figure 6: Index distribution for all rulesets

depend on (1) how concrete Java objects are abstracted to a fi-
nite set of objects in a sound fashion and (2) how much context
is stored for each variable. For example, a context could be a
trace over last few call-sites or receiver object of a method call.
In our testing, we use three representative precision settings, 1-
object-sensitive+1-heap (1o1h), 2-object-sensitive+2-heap (2o2h),
and 3-object-sensitive+3-heap (3o3h). Each of these precision set-
tings corresponds to a Datalog program containing 496 relations
and 469 rules. However, increased precision leads to larger re-
lations due to added rule complexity. Each analysis program is
applied at execution time to 8 factsets from the DaCapo06 bench-
mark suite [4], where the sizes of these factsets are summarized in
Table 4.

7.2 Experimental Results
We present experimental results to validate our claims in the fol-

lowing three subsubsections.

7.2.1 Code Analysis Performance

Index Selection Overhead. In order to quantify the overhead of
index selection in our Auto indexing scheme, we also implemented
an indexing scheme (None) which trivially builds the index on a
relation’s attributes in order as they appear. The code generation
time (gen) and the code compilation time (compile) for all the four
indexing schemes, Auto, None, Single, and Maximal, for both use
cases are shown in Figure 4. We observe that the code generation
time for the four indexing schemes are almost the same. Recall that
index selection occurs during code generation. Thus, the different
index selection methods have little impact on the code generation
time. This is because index selection takes a negligible portion
of the code generation time, e.g., less than 1% for Auto; the time
of index selection by MinIndex is shown in the second column of
the table in Figure 4. Note that, here we did not include in the
measurement for Single the extra preliminary activities that collect
statistics information such as frequencies of searches.

On the other hand, different index choices may lead to differ-
ent work in the code compilation phase too, and the more indexes
whose construction needs to be compiled, the longer the compila-
tion time. The main reason is that each index requires additional
templatized comparator functions that the C++ compiler needs to
unroll at template instantiation time. Thus, in this phase, None and
Single are slightly faster than Auto and Maximal, as shown in Fig-
ure 4 and Figure 5. Nevertheless, the differences are not significant.

Overall, the time for code generation which also conducts index
selection is negligible compared with the code compilation time,
and our Auto indexing scheme does not substantially slow down
the code generation and compilation time. It is also worth men-
tioning that the binary code is independent of the dataset and, once
generated, it can be run on any input dataset (i.e., factset).

Distribution of Index Reduction. We analyze the number of in-
dexes constructed for the various Datalog programs. Recall that,

given a set of searches we compute the smallest set of indexes
L to cover/speed up all searches of S, while the Maximal index-
ing scheme constructs one index for each search in S, and Single
constructs one index for each relation. Thus, the reduction ra-
tio for the number of indexes of Auto over Maximal will be up-
per bounded by |S| for a relation (which is the reduction ratio for
Single over Maximal). The distributions of |S| among all relations
that have at least two searches for the three cloud security analy-
ses, sec1, sec2, and sec3, are shown as blue squares measured
against the left-hand scale, in Figures 6b, 6c, and 6d, respectively.
We can see that more than 50 percent of the relations have only
two searches, and more than 80 percent of the relations have at
most three searches; this means that for 80 of the relations, |L|/|S|
is at least 1/3. In order to quantify the reduction ratio of Auto
over Maximal, we define it as 1− |L|/|S|. The distributions of the
reduction ratio are shown as black line in Figures 6b, 6c, and 6d,
measured against the right-hand scale. We can see that, for 25 per-
cent of the relations, there is no reduction (i.e., |S| = |L|), for an-
other 25 percent of the relations, the reduction is around 50%, and
for the remaining 50 percent of relations, the reduction is between
50% and 70%. Finally, the distributions of the actual number of
indexes |L| constructed for the relations are shown as red diamond
in Figures 6b, 6c, and 6d measured against the left-hand scale. For
cloud security analyses sec1 and sec3, the largest number of in-
dexes constructed for a relation is only two, while the largest num-
ber searches on a relation is 9. For cloud security analysis sec2,
the largest number of indexes constructed for a relation is three,
while the largest number searches on a relation is 11. As shown in
Figure 6a, similar results are also observed for the DOOP program
analysis.

7.2.2 Evaluation-time Performance
To justify our choice of adopting a linear order-based index (i.e.,

B-tree index), we also implemented an indexing scheme that uses
the hash technique, denoted by Hash. Specifically, Hash uses
C++’s hash map to index relations. As a hash map cannot be shared
between two different searches, Hash builds one hash map for each
distinct search in the same way as Maximal.

Running Time. The time of the code execution phase for the four
indexing schemes, Auto, Maximal, Hash and Single, running on
the three cloud security analyses on networks is shown in Figure 7.
The time is divided into loading time that loads factset/EDB from
disk to main memory and builds indexes for the EDB, and execut-
ing time that repeatedly computes and adds rows to the IDB index
structures. As there are some searches that can’t exploit an index
in Single, this takes an excessively long time (i.e., more than 24
hours, denoted by TLE) when given one of the three large net-
works: N3500, N3511, and N9087. Thus, Single is not suitable to
process large-scale Datalog programs. The running time of Auto
is almost the same as that of Maximal, and in fact Auto is often
slightly faster. This is because execution involves both construct-
ing the indexes for IDB as the facts are computed on the fly, as well

150

N1075 N2340 N3500 N3511 N9087
load exec load exec load exec load exec load exec

s
e
c
1

Auto 0.001 123 0.005 155 0.003 4788 0.003 4643 0.003 4676
Maximal 0.003 194 0.005 156 0.003 5000 0.003 4940 0.003 4832
Hash 0.1 194 0.35 126 1.12 11962 1.64 11096 2 9455
Single 0.002 357 0.004 181 - TLE - TLE - TLE

s
e
c
2

Auto 0.003 147 0.005 156 0.003 4416 0.003 4476 0.003 4494
Maximal 0.003 232 0.005 158 0.003 4662 0.003 4660 0.003 4449
Hash 0.1 442 0.34 122 1.57 59230 - OOM 1.56 10495
Single 0.002 367 0.005 177 - TLE - TLE - TLE

s
e
c
3

Auto 0.003 132 0.005 157 0.004 4439 0.003 4602 0.003 4610
Maximal 0.003 184 0.005 156 0.003 5076 0.003 5106 0.003 5043
Hash 0.1 4819 0.28 121 1.49 86410 - TLE - TLE
Single 0.002 381 0.005 188 - TLE - TLE - TLE

Figure 7: Running time in seconds for cloud security analysis (TLE: time limit exceeded)

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

N1075 N2340 N3500 N3511 N9087

R
a
ti
o
 o

f
R

u
n
n
in

g
 T

im
e Maximal/Auto

Hash/Auto
Single/Auto

Figure 8: Ratio of running time w.r.t. Auto
for sec1

N1075 N2340 N3500 N3511 N9087
load exec load exec load exec load exec load exec

s
e
c
1

Auto 0.002 0.35 0.002 0.35 0.002 4.598 0.002 4.598 0.002 3.742
Maximal 0.002 0.43 0.002 0.44 0.002 28.527 0.002 28.527 0.002 22.515
Hash 0.002 1.1 0.003 1.187 0.002 44.333 0.002 44.337 0.002 36.381
Single 0.002 0.35 0.002 0.35 - TLE - TLE - TLE

s
e
c
2

Auto 0.003 1.4 0.003 0.35 0.002 14.969 0.002 14.970 0.002 11.910
Maximal 0.002 3.7 0.002 0.44 0.002 37.443 0.002 37.443 0.002 29.778
Hash 0.002 6.9 0.003 1.199 0.002 58.370 - OOM 0.002 48.228
Single 0.002 0.7 0.002 0.35 - TLE - TLE - TLE

s
e
c
3

Auto 0.002 0.9 0.003 0.35 0.002 1.710 0.002 1.710 0.002 1.693
Maximal 0.002 1.6 0.002 0.44 0.002 3.054 0.002 3.054 0.002 3.031
Hash 0.002 3.3 0.004 1.199 0.002 6.792 - TLE - TLE
Single 0.002 0.4 0.002 0.35 - TLE - TLE - TLE

Figure 9: Memory usage for cloud security analysis (GB)

 0

 2

 4

 6

 8

 10

 12

 14

N1075 N2340 N3500 N3511 N9087

R
a
ti
o
 o

f
M

e
m

o
ry

 U
s
a
g
e

Maximal/Auto
Hash/Auto

Single/Auto

Figure 10: Ratio of memory usage w.r.t.
Auto for sec1

as doing the primitive searches. The latter aspect should in prin-
ciple be the same for Auto and Maximal, but Maximal constructs
more indexes than Auto. Hash is often much slower than Auto and
Maximal, due to the inefficient data structure of hash map in prac-
tice. The ratio of the running time of Maximal, Hash, and Single
with respect to Auto for sec1 is shown in Figure 8.

The running time of the execution phase for Auto, Maximal,
Hash and Single on the three DOOP program analyses are illus-
trated in Figure 11. The general trend is similar to that for cloud
security analysis. Although Single can complete all the DOOP
program analysis, it takes significantly more time than Auto and
Maximal.

Overall, we find that Auto runs even a bit faster than
Maximal, and it is significantly faster than Single and Hash.
This validates our motivation to construct enough indexes so that
every search is sped up, and to use linear order-based index struc-
tures.

Memory Usage. We evaluate the memory usage of Auto compared
to Single, Maximal, and Hash. We define the memory usage im-
provement of an indexing scheme A over another scheme B as the
ratio of memory usage or B compared to that of A.

The memory usages of Auto, Single, Maximal, and Hash for
cloud security analyses, sec1, sec2, and sec3, are shown in Fig-
ure 9. We see that Single always consumes the smallest amount of
memory, and Hash always consumes the largest amount of mem-
ory. The memory usage improvement of Auto over Maximal can
be up-to 6, e.g., see Figure 10. The memory usage penalty for
Auto compared to Single is at most two times. Figure 12 shows
the memory usage of Auto, Single, Maximal and Hash for DOOP
program analysis, where the memory usage improvement of Auto
over Maximal is around 2, and Auto consumes only around 20%
more memory than Single.

Overall, the memory usage of Auto is not far from that of
Single, and better than Maximal and Hash.

7.2.3 Against PA-Datalog
We also measured the heavily hand-optimized PA-Datalog sys-

tem for the DOOP program analysis, on the same hardware. The
results are shown in Figure 11 and Figure 12. We see that Auto
is faster and consumes less memory than PA-Datalog. The run-
ning time improvement ranges from 3–5x, and the memory usage
improvement ranges from 2–5x. This demonstrates that our Auto
indexing scheme works well enough, automatically getting per-
formance that previously required extensive hand optimization.

7.2.4 Hashing
As mentioned, the SOUFFLÉ engine uses a linear B-tree index

structure for each relation. In light of the value of hash techniques
in SQL database engines [5], we explain why those ideas are not
used in SOUFFLÉ. Note first that the traditional hash-join, where
each input is partitioned by a hash on the join attribute, and then
the output is produced in hash buckets, is not suitable for the multi-
way joins involved in many Datalog rules, as we can’t afford the
space for materializing the whole intermediate relation (which will
be the input to the next stage of the join, and thus needs to be hashed
itself). So we are left with doing a nested loop join, where each re-
lation is stored as a hash-index. This is what we measured above,
as Hash, and found it was not competitive. We reported experi-
ments with the STL hash map, but we also explored other hash im-
plementations such as Google sparse hashmap implementation, but
none were notably better in memory consumption and runtime at
the same time. For example, Google’s sparse hash-set implemen-
tation has the issue that it would not permit multi-sets which are
essential for storing different tuples with the same key in the index.
Independent of this issue, micro-benchmarks for Google’s sparse
hashmap indicate that the memory consumption reduces at most
by a factor of two. However, the runtime of the query execution
would increase substantially. Their dense version of the set would
have the reverse effect. Hence, the STL’s unordered multiset is a
good compromise in terms of runtime and memory consumption.
It is also the case that hash implementations typically don’t paral-

151

lu-index lu-search bloat eclipse antlr jython pmd fop
load exec load exec load exec load exec load exec load exec load exec load exec

1
o
1
h

Auto 2.3 17.3 2.4 21.1 2.4 14.8 2.3 19.6 4.4 35.1 2.8 23.9 4.7 36.2 4.7 36.6
Maximal 2.4 20.4 2.4 22.6 2.4 20.7 2.3 20.7 4.5 35 2.9 25.2 4.7 37.6 4.5 36.6
Hash 2.8 38.4 2.8 27.2 2.9 35 2.7 36 5.3 63.3 3.4 51.5 5.5 78.3 5.8 82.7
Single 2.3 823 2.2 811 2.1 834 2.3 810 4.4 1352 2.8 926 4.4 1386 4.5 1399

PA-Datalog - 46 - 46 - 45 - 48 - 91 - 115 - 112 - 112

2
o
2
h

Auto 2.3 119 2.3 119 2.2 117 2.4 119 4.3 132 3 122 4.4 133 4.9 135
Maximal 2.3 138 2.3 138 2.3 136 2.3 140 4.4 150 2.8 141 4.4 153 4.6 154
Hash 2.6 183 2.6 181 2.6 182 3 217 5.1 201 3.3 188 5.1 203 5.2 210
Single 2.3 3370 2 3376 2.0 3288 2.3 3326 4.4 3508 2.8 4869 4.4 5026 4.3 5112

PA-Datalog - 245 - 255 - 256 - 454 - 441 - 388 - 291 - 461

3
o
3
h

Auto 2.3 445 2.2 446 2.3 443 2.3 442 4.2 454 2.8 448 4.3 463 4.5 458
Maximal 2.3 508 2.2 506 2.2 505 2.3 506 4.4 519 2.7 509 4.4 522 4.5 518
Hash 2.4 1826 2.6 1657 2.6 1798 2.6 1903 5.1 1757 3.2 1675 5.1 1691 5.3 1736
Single 2.3 24441 2 25238 2 26734 2.3 23211 4.3 28030 2.7 37889 4.4 41476 4.5 44074

PA-Datalog - 1259 - 1301 - 1285 - 1477 - 1273 - 1464 - 1379 - 1415

Figure 11: Running time for DOOP program analysis (seconds)

lu-index lu-search bloat eclipse antlr jython pmd fop
load exec load exec load exec load exec load exec load exec load exec load exec

1
o
1
h

Auto 0.37 0.29 0.37 0.28 0.38 0.27 0.38 0.28 0.71 0.36 0.45 0.34 0.72 0.37 0.75 0.38
Maximal 0.37 0.44 0.37 0.44 0.38 0.43 0.38 0.43 0.71 0.52 0.45 0.5 0.72 0.54 0.75 0.54
Hash 0.44 1.35 0.44 1.34 0.45 1.3 0.44 1.35 8.46 2.02 0.55 1.67 0.86 2.1 0.89 2.09
Single 0.37 0.20 0.37 0.19 0.38 0.18 0.38 0.19 0.71 0.25 0.45 0.23 0.71 0.27 0.75 0.25

PA-Datalog - 2.7 - 2.7 - 2.8 - 2.7 - 3.1 - 4.7 - 4.7 - 5

2
o
2
h

Auto 0.37 0.8 0.37 0.8 0.38 0.79 0.38 0.79 0.71 0.87 0.45 0.84 0.72 0.89 0.75 0.89
Maximal 0.37 1.68 0.37 1.68 0.38 1.67 0.38 2.05 0.71 1.77 0.45 2.18 0.72 1.78 0.75 1.79
Hash 0.44 3.9 0.44 3.92 0.46 3.89 0.45 3.89 8.46 4.58 0.56 4.23 0.86 4.65 0.89 4.66
Single 0.37 0.6 0.37 0.61 0.38 0.59 0.38 0.6 0.71 0.67 0.45 0.45 0.71 0.61 0.75 0.6

PA-Datalog - 3.3 - 3.7 - 3.7 - 3.3 - 3.7 - 4.9 - 5 - 5

3
o
3
h

Auto 0.37 3.88 0.37 3.88 0.38 3.87 0.38 3.8 0.71 3.9 0.45 3.92 0.73 4.05 0.75 3.85
Maximal 0.37 7.99 0.37 8 0.38 7.99 0.38 8 0.71 8.09 0.45 8.5 0.72 8.09 0.75 8.12
Hash 0.44 17.3 0.45 19.43 0.46 19.41 0.46 19.41 8.46 15.9 0.56 19,76 0.86 20.17 0.89 20.2
Single 0.37 2.99 0.37 2.99 0.38 2.98 0.38 2.92 0.71 2.98 0.45 3.05 0.71 3.11 0.75 2.95

PA-Datalog - 9.4 - 9.4 - 9.5 - 9.5 - 9.7 - 10.7 - 10.7 - 10.8

Figure 12: Memory usage for DOOP program analysis (GB)

lelize as well as B-trees. In some experiments with multiple cores,
hash implementations showed limited scaling, unlike B-Trees.

7.2.5 Summary.
Overall, the experimental results demonstrate the value of our

Auto indexing scheme for large-scale Datalog computation. Dur-
ing analysis, there is little extra work; and in executing, Auto
runs with speed similar to (even faster than) Maximal, and using
slightly more memory than Single. As Single is often too slow,
and Maximal uses much memory, our Auto gives a good approach
for processing large Datalog program such as those from program
analysis, without needing the effort of hand optimization.

8. EXTENSIONS
Single Inequality. Although we limited the search predicate in
our primitive search to be equalities of left-hand-side attributes and
right-hand-side constants, our techniques can be extended for in-
equality constraints on one attribute: First, the bounds of the lex
search predicate are to be adapted for the attribute of the inequal-
ity. Second, the attribute has to be the last one among the attributes
in the search with respect to the lexicographical order. The order-
ing restriction is encoded in the bipartite graph G = (U, V,E) by
omitting edges in the standard construction. Specifically, there is
an edge between S ∈ U and S′ ∈ V if (1) S is a proper subset
of S′, (2) S has no inequality, and (3) if S′ has an inequality on
attribute x, then S does not have x. However, if there are multiple
inequalities in a search, other techniques will be needed.

Loop Scheduling. Some Datalog engines such as Logicblox ver-
sion 4 [24] use a leapfrog join that, while requiring users to specify

indexes manually, alleviates users from specifying join order. In-
tegrating our technique into such an engine is not obvious as we
assume a fixed literal order before our technique is applied. Typi-
cally, this can be manually identified using a profiler, or automat-
ically using heuristic techniques [34]. During performance tuning
of large Datalog programs, we have observed that only a few rules
require manual loop scheduling. Therefore, our preference is to fix
loop orders rather than indexes for a better user experience.

Nevertheless, it will be an interesting future work to integrate
automatic loop scheduling and automatic indexing selection.

9. CONCLUSION
We presented an automatic indexing scheme for large-scale

Datalog applications that typically consist of hundreds of
Datalog rules and millions of relation tuples. Such use cases
could not previously be computed by state-of-the-art Datalog en-
gines without considerable hand-crafted optimizations. We have
formally defined the minimum index selection problem, aiming for
a low memory footprint while still allowing every search to be sped
up, and we proposed an algorithm to optimally solve this prob-
lem in polynomial time. Our technique has been implemented in
the SOUFFLÉ Datalog engine, and measured to give fast speed
and low memory. Our automatic indexing scheme releases end-
users from a daunting obligation to carefully annotate Datalog

programs, and it delivers comparable, even improved, performance
to what they have accepted from making such efforts.

Acknowledgments. This research was supported partially by the
Australian Government through the ARC Discovery Project fund-
ing scheme (DP180104030) and by the European Union’s Hori-
zon 2020 research and innovation program as part of the FETHPC
AllScale project (No 671603).

152

10. REFERENCES
[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of

Databases. Addison-Wesley, 1995.
[2] T. Antoniadis, K. Triantafyllou, and Y. Smaragdakis. Porting

doop to souffle;: A tale of inter-engine portability for
datalog-based analyses. In Proc. SOAP Workshop, pages
25–30, 2017.

[3] M. Aref, B. ten Cate, T. J. Green, B. Kimelfeld, D. Olteanu,
E. Pasalic, T. L. Veldhuizen, and G. Washburn. Design and
implementation of the logicblox system. In Proc. SIGMOD,
pages 1371–1382, 2015.

[4] S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S.
McKinley, R. Bentzur, A. Diwan, D. Feinberg, D. Frampton,
S. Z. Guyer, M. Hirzel, A. Hosking, M. Jump, H. Lee,
J. E. B. Moss, A. Phansalkar, D. Stefanović, T. VanDrunen,
D. von Dincklage, and B. Wiedermann. The DaCapo
benchmarks: Java benchmarking development and analysis.
In Proc. OOPSLA, pages 169–190, Oct. 2006.

[5] S. Blanas, Y. Li, and J. M. Patel. Design and evaluation of
main memory hash join algorithms for multi-core cpus. In
Proc. SIGMOD, pages 37–48, 2011.

[6] M. Bravenboer and Y. Smaragdakis. Strictly declarative
specification of sophisticated points-to analyses. In Proc.
OOPSLA, pages 243–262, 2009.

[7] M. Bravenboer and Y. Smaragdakis. Strictly declarative
specification of sophisticated points-to analyses. SIGPLAN
Not., 44(10):243–262, Oct. 2009.

[8] N. Bruno. Automated Physical Database Design and Tuning.
CRC Press, Inc., Boca Raton, FL, USA, 1st edition, 2011.

[9] S. Ceri, G. Gottlob, and L. Tanca. What you always wanted
to know about datalog (and never dared to ask). IEEE Trans.
on Knowl. and Data Eng., 1(1):146–166, 1989.

[10] S. Chaudhuri and V. Narasayya. Autoadmin ”what-if” index
analysis utility. Association for Computing Machinery, Inc.,
June 1998.

[11] S. Chaudhuri and V. R. Narasayya. An efficient cost-driven
index selection tool for Microsoft SQL Server. In Proc.
VLDB, pages 146–155, 1997.

[12] D. Comer. The difficulty of optimum index selection. ACM
Trans. Database Syst., 3(4):440–445, Dec. 1978.

[13] T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson.
Introduction to Algorithms. McGraw-Hill Higher Education,
2nd edition, 2001.

[14] J. Dietrich, N. Hollingum, and B. Scholz. Giga-scale
exhaustive points-to analysis for java in under a minute. In
Proc. OOPSLA, pages 535–551, 2015.

[15] R. Dilworth. A decomposition theorem for partially ordered
sets. Ann. Math. (2), 51:161–166, 1950.

[16] D. R. Fulkerson. Note on dilworth’s decomposition theorem
for partially ordered sets. Proc. Amer. Math. Soc., 7(4):pp.
701–702, 1956.

[17] N. Grech, M. Kong, A. Jurisevic, L. Brent, B. Scholz, and
Y. Smaragdakis. Madmax: Surviving out-of-gas conditions
in ethereum smart contracts. In Proc. OOPSLA (to appear),
2018.

[18] T. J. Green, S. S. Huang, B. T. Loo, and W. Zhou. Datalog
and recursive query processing. Foundations and Trends in
Databases, 5(2):105–195, 2013.

[19] K. Hoder, N. Bjørner, and L. M. de Moura. Z- an efficient
engine for fixed points with constraints. In Proc. CAV, pages

457–462, 2011.
[20] M. Ip, L. Saxton, and V. Raghavan. On the selection of an

optimal set of indexes. IEEE Trans. on Software
Engineering, SE-9(2):135–143, March 1983.

[21] H. Jordan, B. Scholz, and P. Subotic. Soufflé: On synthesis
of program analyzers. In Proc. CAV, pages 422–430, 2016.

[22] J. Kratica, I. Ljubic, and D. Tošic. A genetic algorithm for
the index selection problem. In Proc. of EvoWorkshops,
pages 280–290, Berlin, Heidelberg, 2003. Springer-Verlag.

[23] LogicBlox and P. (UoA). PA-Datalog.
http://snf-705535.vm.okeanos.grnet.gr/
agreement.html, 2018. [Online; accessed 30-Jan-2018].

[24] LogicBlox Inc. Declartive cloud platform for applications
that combine transactions & analytics.
http://www.logicblox.com.

[25] M. Madsen, M.-H. Yee, and O. Lhoták. From datalog to flix:
A declarative language for fixed points on lattices. SIGPLAN
Not., 51(6):194–208, June 2016.

[26] G. Piatetsky-Shapiro. The Optimal Selection of Secondary
Indices is NP-complete. SIGMOD Rec., 13(2):72–75, Jan.
1983.

[27] W. Pijls and R. Potharst. Another note on dilworth’s
decomposition theorem. Journal of Discrete Mathematics,
2013:4, 2013.

[28] R. Ramakrishnan, D. Srivastava, and S. Sudarshan. Efficient
bottom-up evaluation of logic programs. In P. Dewilde and
J. Vandewalle, editors, Computer Systems and Software
Engineering, pages 287–324. Springer US, 1992.

[29] R. Ramakrishnan and J. D. Ullman. A survey of deductive
database systems. Journal of Logic Programming,
23(2):125–149, 1995.

[30] K. Ramamohanarao and J. Harland. An introduction to
deductive database languages and systems. PVLDB,
3(2):107–122, 1994.

[31] M. Schkolnick. The optimal selection of secondary indices
for files. Information Systems, 1(4):141 – 146, 1975.

[32] K. Schnaitter and N. Polyzotis. Semi-automatic index tuning:
Keeping dbas in the loop. PVLDB, 5(5):478–489, 2012.

[33] B. Scholz, H. Jordan, P. Subotic, and T. Westmann. On fast
large-scale program analysis in datalog. In Proc. CC, pages
196–206, 2016.

[34] P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A.
Lorie, and T. G. Price. Access path selection in a relational
database management system. In Proc. SIGMOD, pages
23–34, 1979.

[35] A. W. Services. Serverless Architectures with AWS Lambda.
Technical report, Amazon Web Services, 11 2017.

[36] A. Shkapsky, M. Yang, M. Interlandi, H. Chiu, T. Condie,
and C. Zaniolo. Big data analytics with datalog queries on
spark. In Proc. SIGMOD, pages 1135–1149, 2016.

[37] Y. Smaragdaiks, M. Bravenboer, and G. Kastrinis. Doop: A
framework for java pointer analysis.
http://doop.program-analysis.org/.

[38] J. Whaley, D. Avots, M. Carbin, and M. S. Lam. Using
datalog with binary decision diagrams for program analysis.
In Proc. APLAS, pages 97–118, 2005.

[39] M. Yang, A. Shkapsky, and C. Zaniolo. Scaling up the
performance of more powerful datalog systems on multicore
machines. The VLDB Journal, 26(2):229–248, Apr. 2017.

153

