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ABSTRACT
Strongly consistent distributed systems are easy to reason
about but face fundamental limitations in availability and
performance. Weakly consistent systems can be implemented
with very high performance but place a burden on the ap-
plication developer to reason about complex interleavings
of execution. Invariant confluence provides a formal frame-
work for understanding when we can get the best of both
worlds. An invariant confluent object can be efficiently repli-
cated with no coordination needed to preserve its invariants.
However, actually determining whether or not an object is
invariant confluent is challenging.

In this paper, we establish conditions under which a com-
monly used sufficient condition for invariant confluence is
both necessary and sufficient, and we use this condition to
design (a) a general-purpose interactive invariant confluence
decision procedure and (b) a novel sufficient condition that
can be checked automatically. We then take a step beyond
invariant confluence and introduce a generalization of invari-
ant confluence, called segmented invariant confluence, that
allows us to replicate non-invariant confluent objects with a
small amount of coordination.

We implemented these formalisms in a prototype called
Lucy and found that our decision procedures efficiently han-
dle common real-world workloads including foreign keys,
rollups, escrow transactions, and more. We also found that
segmented invariant confluent replication can deliver up to
an order of magnitude more throughput than linearizable
replication for low contention workloads and comparable
throughput for medium to high contention workloads.
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1. INTRODUCTION
When an application designer decides to replicate a piece

of data, they have to make a fundamental choice between
weak and strong consistency. Replicating the data with
strong consistency using a technique like distributed trans-
actions (e.g., [12, 34]) or state machine replication (e.g., [39,
27, 31, 37]) makes the application designer’s life very easy.
To the developer, a strongly consistent system behaves ex-
actly like a single-threaded system running on a single node,
so reasoning about the behavior of the system is simple [24].
Unfortunately, strong consistency is at odds with perfor-
mance. The CAP theorem and PACELC theorem tell us
that strongly consistent systems suffer from higher latency
at best and unavailability at worst [19, 13, 1]. On the
other hand, weak consistency models like eventual consis-
tency [44], PRAM consistency [30], causal consistency [2],
and others [32, 33] allow data to be replicated with high
availability and low latency, but they put a tremendous bur-
den on the application designer to reason about the complex
interleavings of operations that are allowed by these weak
consistency models. In particular, weak consistency models
strip an application developer of one of the earliest and most
effective tools that is used to reason about the execution of
programs: application invariants [25, 10] such as database
integrity constraints [21, 22]. Even if every transaction exe-
cuting in a weakly consistent system individually maintains
an application invariant, the system as a whole can produce
invariant-violating states.

Is it possible for us to have our strongly consistent cake
and eat it with high availability too? Can we replicate a
piece of data with weak consistency but still ensure that its
invariants are maintained? Yes... sometimes. Bailis et al.
introduced the notion of invariant confluence as a necessary
and sufficient condition for when invariants can be main-
tained over replicated data without the need for any coor-
dination [8]. If an object is invariant confluent with respect
to an invariant, we can replicate it with the performance
benefits of weak consistency and (some of) the correctness
benefits of strong consistency.

Unfortunately, to date, the task of identifying whether or
not an object actually is invariant confluent has remained
an exercise in human proof generation. Bailis et al. man-
ually categorized a set of common objects, transactions,
and invariants (e.g. foreign key constraints on relations, lin-
ear constraints on integers) as invariant confluent or not.
Hand-written proofs of this sort are unreasonable to expect
from programmers. Ideally we would have a general-purpose
program that can automatically determine invariant con-
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fluence for us. The first main thrust of this paper
is to make invariant confluence checkable: to design
a general-purpose invariant confluence decision procedure,
and implement it in an interactive system.

Unfortunately, designing such a general-purpose decision
procedure is impossible because determining the invariant
confluence of an object is undecidable in general. Still, we
can develop a decision procedure that works well in the com-
mon case. For example, many prior efforts have developed
decision procedures for invariant closure, a sufficient (but
not necessary) condition for invariant confluence [29, 28].
The existing approaches check whether an object is invari-
ant closed. If it is, then they conclude that it is also invariant
confluent. If it’s not, then the current approaches are un-
able to conclude anything about whether or not the object
is invariant confluent.

In this paper, we take a step back and study the underly-
ing reason why invariant closure is not necessary for invari-
ant confluence. Using this understanding, we construct a
set of modest conditions under which invariant closure and
invariant confluence are in fact equivalent, allowing us to
reduce the problem of determining invariant confluence to
that of determining invariant closure. Then, we use these
conditions to design a general-purpose interactive invariant
confluence decision procedure and a new sufficient condition
for invariant confluence, dubbed merge reducibility. Merge
reducibility covers some cases that are not covered by in-
variant closure, and it can be checked automatically.

The second main thrust of this paper is to par-
tially avoid coordination even in programs that re-
quire it, by generalizing invariant confluence to a property
called segmented invariant confluence. While invariant con-
fluence characterizes objects that can be replicated without
any coordination, segmented invariant confluence allows us
to replicate non-invariant confluent objects with only occa-
sional coordination. The main idea is to divide the set of
invariant-satisfying states into segments, with a restricted
set of transactions allowed in each segment. Within a seg-
ment servers act without any coordination; they synchro-
nize only to transition across segment boundaries. This de-
sign highlights the trade-off between application complexity
and coordination-freedom; more complex applications re-
quire more segments which require more coordination, and
vice-versa.

Finally, we present Lucy: an implementation of our deci-
sion procedures and a system for replicating invariant conflu-
ent and segmented invariant confluent objects. Using Lucy,
we find that our decision procedures can efficiently handle a
wide range of common workloads. For example, in Section 7,
we apply Lucy to foreign key constraints, escrow transac-
tions, an auction application, and the TPC-C benchmark.
Lucy processes these workloads in less than half a second,
and no workload requires more than 66 lines of code to spec-
ify. Moreover, we find that segmented invariant confluent
replication can achieve 10x to 100x more throughput than
linearizable replication for low-coordination workloads.

In closing, here is an outline of the paper and of our con-
tributions: We propose a novel expression-oriented defini-
tion of invariant confluence that is both formal and simple
(Section 2). We develop an understanding of why invari-
ant closure is not necessary for invariant confluence and use
this understanding to develop conditions under which it is
both necessary and sufficient (Section 3). We exploit these

conditions to design a general-purpose interactive decision
procedure for invariant confluence (Section 4). We again ex-
ploit these conditions to design a novel non-trivial sufficient
condition for invariant confluence, called merge reducibility.
We present segmented invariant confluence: a generalization
of invariant confluence that uses a small amount of coordi-
nation to maintain invariants for replicated objects that are
otherwise not invariant confluent (Section 6). We evaluate
our methods using a prototype implementation called Lucy
(Section 7).

2. INVARIANT CONFLUENCE
Informally, a replicated object is invariant confluent

with respect to an invariant if every replica of the object
is guaranteed to satisfy the invariant despite the possibility
of different replicas being concurrently modified or merged
together [8]. In this section, we make this informal notion
of invariant confluence precise.

We begin by introducing our system model of replicated
objects in which a distributed object and accompanying in-
variant is replicated across a set of servers. Clients send
transactions to servers, and a server executes a transaction
so long as it maintains the invariant. Servers execute trans-
actions without coordination, but to avoid state divergence,
servers periodically gossip with one another and merge their
replicas. After we introduce the system model, we present
a formal definition of invariant confluence.

2.1 System Model
A distributed object O = (S,t) consists of a set S of

states and a binary merge operator t : S × S → S that
merges two states into one. A transaction t : S → S is a
function that maps one state to another. An invariant I is
a subset of S. Notationally, we write I(s) to denote that s
satisfies the invariant (i.e. s ∈ I) and ¬I(s) to denote that
s does not satisfy the invariant (i.e. s /∈ I).

Example 1. O = (Z,max) is a distributed object consisting
of integers merged by the max function; t(x) = x + 1 is a
transaction that adds one to a state; and {x ∈ Z |x ≥ 0} is
the invariant that states x are non-negative.

Note that by modelling a transaction t as a function S →
S, we focus exclusively on the effects that a transaction has
on the object (i.e. “writes” to the object). Transactions are
also free to read the value of the object, but these reads
are not captured by our model because, as we’ll see, they do
not affect invariant confluence. For example, we could model
any read-only transaction as a function t where t(s) = s for
every s ∈ S.

In our system model, a distributed object O is replicated
across a set p1, . . . , pn of n servers. Each server pi manages a
replica si ∈ S of the replicated object. Every server begins
with a start state s0 ∈ S, a fixed set T of transactions,
and an invariant I. Servers repeatedly perform one of two
actions.

First, a client can contact a server pi and request that
it execute a transaction t ∈ T . pi speculatively executes t,
transitioning from state si to state t(si). If t(si) satisfies
the invariant—i.e. I(t(si))—then pi commits the transac-
tion and remains in state t(si). Otherwise, pi aborts the
transaction and reverts to state si.

Second, a server pi can send its state si to another server
pj with state sj causing pj to transition from state sj to
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state si t sj . Servers periodically merge states with one
another in order to keep their states loosely synchronized1.
Note that unlike with transactions, servers cannot abort a
merge; server pj must transition from sj to si t sj whether
or not si t sj satisfies the invariant.

Informally, O is invariant confluent with respect to s0,
T , and I, abbreviated (s0, T, I)-confluent, if every replica
s1, . . . , sn is guaranteed to always satisfy the invariant I in
every possible execution of the system.

2.2 Expression-Based Formalism
To define invariant confluence formally, we represent a

state produced by a system execution as a simple expression
generated by the grammar

e ::= s | t(e) | e1 t e2

where s represents a state in S and t represents a transac-
tion in T . As an example, consider the system execution in
Figure 1a in which a distributed object is replicated across
servers p1, p2, and p3. Server p3 begins with state s0, tran-
sitions to state s2 by executing transaction u, transitions to
state s5 by executing transaction w, and then transitions to
state s7 by merging with server p1. Similarly, server p1 ends
up with state s6 after executing transactions t and v and
merging with server p2. In Figure 1b, we see the abstract
syntax tree of the corresponding expression for state s7.

p1

p2

p3

s0 s1 s3 s6

s0 s2 s4

s0 s2 s5 s7

t v

u

u w

(a) System Execution

t
s7

w
s5

t
s6

u
s2

s0

v
s3

t
s1

s0

t
s4

t
s1

s0

u
s2

s0

(b) Expression

Figure 1: A system execution and corresponding expression

We say an expression e is (s0, T, I)-reachable if it corre-
sponds to a valid execution of our system model. Formally,
we define reachable(s0,T,I)(e) to be the smallest predicate
that satisfies the following equations:

• reachable(s0,T,I)(s0).

• For all expressions e and for all transactions t in the set
T of transactions, if reachable(s0,T,I)(e) and I(t(e)),
then reachable(s0,T,I)(t(e)).

• For all expressions e1 and e2, if reachable(s0,T,I)(e1)
and reachable(s0,T,I)(e2), then reachable(s0,T,I)(e1 t
e2).

Similarly, we say a state s ∈ S is (s0, T, I)-reachable if there
exists an (s0, T, I)-reachable expression e that evaluates to s.
Returning to Example 1 with start state s0 = 42, we see that
all integers greater than or equal to 42 (i.e. {x ∈ Z |x ≥ 42})
are (s0, T, I)-reachable, and all other integers are (s0, T, I)-
unreachable.

1Notably, if O is a CRDT—i.e. O is a semilattice and every
transaction t ∈ T is inflationary—then this periodic merging
ensures that O is strongly eventually consistent [41].

x

y

s0

s1

s2

s3

(a) Invariant

x

y

s0

s1

s2

s3

(b) Reachable points

Figure 2: An illustration of Example 2

Finally, we say O is invariant confluent with respect to
s0, T , and I, abbreviated (s0, T, I)-confluent, if all reach-
able states satisfy the invariant:

{s ∈ S | reachable(s0,T,I)(s)} ⊆ I

3. INVARIANT CLOSURE
Our ultimate goal is to write a program that can auto-

matically decide whether a given distributed object O is
(s0, T, I)-confluent. Such a program has to automatically
prove or disprove that every reachable state satisfies the in-
variant. However, automatically reasoning about the possi-
bly infinite set of reachable states is challenging, especially
because transactions and merge functions can be complex
and can be interleaved arbitrarily in an execution. Due to
this complexity, existing systems that aim to automatically
decide invariant confluence instead focus on deciding a suf-
ficient condition for invariant confluence—dubbed invari-
ant closure—that is simpler to reason about [29, 28]. In
this section, we define invariant closure and study why the
condition is sufficient but not necessary. Armed with this
understanding, we present conditions under which it is both
sufficient and necessary.

We say an object O = (S,t) is invariant closed with
respect to an invariant I, abbreviated I-closed, if invariant
satisfying states are closed under merge. That is, for every
state s1, s2 ∈ S, if I(s1) and I(s2), then I(s1 t s2).

Theorem 1. Given an object O = (S,t), a start state s0 ∈
S, a set of transactions T , and an invariant I, if I(s0) and
if O is I-closed, then O is (s0, T, I)-confluent.

Theorem 1 states that invariant closure is sufficient for in-
variant confluence. Intuitively, recall that our system model
ensures that transaction execution preserves the invariant,
so if merging states also preserves the invariant and if our
start state satisfies the invariant, then inductively it is im-
possible for us to reach a state that doesn’t satisfy the in-
variant.

This is good news because checking if an object is in-
variant closed is more straightforward than checking if it is
invariant confluent. Existing systems typically use an SMT
solver like Z3 to check if an object is invariant closed [16,
9, 20]. If it is, then by Theorem 1, it is invariant confluent.
Unfortunately, invariant closure is not necessary for invari-
ant confluence, so if an object is not invariant closed, these
systems cannot conclude that the object is not invariant con-
fluent. The reason why invariant closure is not necessary for
invariant confluence is best explained through an example.

Example 2. Let O = (Z×Z,t) consist of pairs (x, y) of in-
tegers where (x1, y1)t (x2, y2) = (max(x1, x2),max(y1, y2)).
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Algorithm 1 Interactive invariant confluence decision pro-
cedure

// Return if O is (s0, T, I)-confluent.
function IsInvConfluent(O, s0, T , I)

return I(s0) and Helper(O, s0, T , I, {s0}, ∅)

// R is a set of (s0, T, I)-reachable states.
// NR is a set of (s0, T, I)-unreachable states.
// I(s0) is a precondition.
function Helper(O, s0, T , I, R, NR)

closed, s1, s2 ← IsIclosed(O, I −NR)
if closed then return true
Augment R,NR with random search and user input
if s1, s2 ∈ R then return false

return Helper(O, s0, T , I, R, NR)

Our start state s0 ∈ Z× Z is the point (0, 0). Our set T of
transactions consists of two transactions: tx+1((x, y)) = (x+
1, y) which increments x and ty−1((x, y)) = (x, y− 1) which
decrements y. Our invariant I = {(x, y) ∈ Z × Z |xy ≤ 0}
consists of all points (x, y) where the product of x and y is
non-positive.

The invariant and the set of reachable states are illus-
trated in Figure 2 in which we draw each state (x, y) as a
point in space. The invariant consists of the second and
fourth quadrant, while the reachable states consist only of
the fourth quadrant. From this, it is immediate that the
reachable states are a subset of the invariant, so O is in-
variant confluent. However, letting s1 = (−1, 1) and s2 =
(1,−1), we see that O is not invariant closed. I(s1) and
I(s2), but letting s3 = s1 t s2 = (1, 1), we see ¬I(s3).

In Example 2, s1 and s2 witness the fact that O is not
invariant closed, but s1 is not reachable. This is not partic-
ular to Example 2. In fact, it is fundamentally the reason
why invariant closure is not equivalent to invariant conflu-
ence. Invariant confluence is, at its core, a property of reach-
able states, but invariant closure is completely ignorant of
reachability. As a result, invariant-satisfying yet unreach-
able states like s1 are the key hurdle preventing invariant
closure from being equivalent to invariant confluence. This
is formalized by Theorem 2.

Theorem 2. Consider an object O = (S,t), a start state
s0 ∈ S, a set of transactions T , and an invariant I. If the
invariant is a subset of the reachable states (i.e. I ⊆ {s ∈
S | reachable(s0,T,I)(s)}), then

(I(s0) and O is I-closed) ⇐⇒ O is (s0, T, I)-confluent

The forward direction of Theorem 2 follows immediately
from Theorem 1. The backward direction holds because
any two invariant satisfying states s1 and s2 must be reach-
able (by assumption), so their join s1 t s2 is also reachable.
And because O is (s0, T, I)-confluent, all reachable points,
including s1 t s2, satisfy the invariant.

4. INTERACTIVE DECISION PROCEDURE
Theorem 2 tells us that if all invariant satisfying points are

reachable, then invariant closure and invariant confluence
are equivalent. In this section, we present the interactive in-
variant confluence decision procedure shown in Algorithm 1,
that takes advantage of this result.

4.1 The Decision Procedure
A user provides Algorithm 1 with an object O = (S,t),

a start state s0, a set of transactions T , and an invariant I.
The user then interacts with Algorithm 1 to iteratively elim-
inate unreachable states from the invariant. Meanwhile, the
algorithm leverages an invariant closure decision procedure
to either (a) conclude that O is or is not (s0, T, I)-confluent
or (b) provide counterexamples to the user to help them
eliminate unreachable states. After all unreachable states
have been eliminated from the invariant, Theorem 2 allows
us to reduce the problem of invariant confluence directly to
the problem of invariant closure, and the algorithm termi-
nates. We now describe Algorithm 1 in detail. An example
of how to use Algorithm 1 on Example 2 is given in Figure 3.

IsInvConfluent assumes access to an invariant closure
decision procedure IsIclosed(O, I). IsIclosed(O, I) re-
turns a triple (closed, s1, s2). closed is a boolean indicating
whether O is I-closed. If closed is true, then s1 and s2 are
null. If closed is false, then s1 and s2 are a counterexample
witnessing the fact that O is not I-closed. That is, I(s1)
and I(s2), but ¬I(s1 t s2) (e.g., s1 and s2 from Example 2).
As we mentioned earlier, we can (and do) implement the in-
variant closure decision procedure using an SMT solver like
Z3 [16].

IsInvConfluent first checks that s0 satisfies the invari-
ant. s0 is reachable, so if it does not satisfy the invari-
ant, then O is not (s0, T, I)-confluent and IsInvConfluent
returns false. Otherwise, IsInvConfluent calls a helper
function Helper that—in addition to O, s0, T , and I—
takes as arguments a set R of (s0, T, I)-reachable states and
a set NR of (s0, T, I)-unreachable states. Like IsInvCon-
fluent, Helper(O, s0, T, I, R,NR) returns whether O is
(s0, T, I)-confluent (assuming R and NR are correct). As
Algorithm 1 executes, NR is iteratively increased, which
removes unreachable states from I until I is a subset of
{s ∈ S | reachable(s0,T,I)(s)}.

First, Helper checks to see if O is (I − NR)-closed. If
IsIclosed determines that O is (I − NR)-closed, then by
Theorem 1, O is (s0, T, I −NR)-confluent, so

{s ∈ S | reachable(s0,T,I−NR)(s)} ⊆ I −NR ⊆ I

Because NR only contains (s0, T, I)-unreachable states, then
the set of (s0, T, I)-reachable states is equal to set of (s0, T, I−
NR)-reachable states which, as we just showed, is a subset
of I. Thus, O is (s0, T, I)-confluent, so Helper returns true.

If IsIclosed determines that O is not (I − NR)-closed,
then we have a counterexample s1, s2. We want to determine
whether s1 and s2 are reachable or unreachable. We can do
so in two ways. First, we can randomly generate a set of
reachable states and add them to R. If s1 or s2 is in R,
then we know they are reachable. Second, we can prompt
the user to tell us directly whether or not the states are
reachable or unreachable.

In addition to labelling s1 and s2 as reachable or unreach-
able, the user can also refine I by augmenting R and NR
arbitrarily (see Figure 3 for an example). In this step, we
also make sure that s0 /∈ NR since we know that s0 is reach-
able.

After s1 and s2 have been labelled as (s0, T, I)-reachable
or not, we continue. If both s1 and s2 are (s0, T, I)-reachable,
then so is s1 t s2, but ¬I(s1 t s2). Thus, O is not (s0, T, I)-
confluent, so Helper returns false. Otherwise, one of s1 and
s2 is (s0, T, I)-unreachable, so we recurse.
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R NR I −NR

(a) IsInvConfluent determines I(s0) and then calls
Helper with R = {s0}, NR = ∅, and I =
{(x, y) |xy ≤ 0}.

R NR I −NR

(b) Helper determines that O is not (I − NR)-closed with counterexample
s1 = (−1, 1) and s2 = (1,−1). Helper randomly generates some (s0, T, I)-
reachable points and adds them to R. Luckily for us, s2 ∈ R, so Helper knows
that it is (s0, T, I)-reachable. Helper is not sure about s1, so it asks the user.
After some thought, the user tells Helper that s1 is (s0, T, I)-unreachable, so
Helper adds s1 to NR and then recurses.

R NR I −NR

(c) Helper determines that O is not (I − NR)-
closed with counterexample s1 = (−1, 2) and s2 =
(3,−3). Helper randomly generates some (s0, T, I)-
reachable points and adds them to R. s1, s2 /∈
R,NR, so Helper ask the user to label them. The
user puts s1 in NR and s2 in R. Then, Helper
recurses.

R NR I −NR

(d) Helper determines that O is not (I − NR)-closed with counterexample
s1 = (−2, 1) and s2 = (1,−1). Helper randomly generates some (s0, T, I)-
reachable points and adds them to R. s2 ∈ R but s1 /∈ R,NR, so Helper asks
the user to label s1. The user notices a pattern in R and NR and after some
thought, concludes that every point with negative x-coordinate is (s0, T, I)-
unreachable. They update NR to −Z × Z. Then, Helper recurses. Helper
determines that O is (I −NR)-closed and returns true!

Figure 3: An example of a user interacting with Algorithm 1 on Example 2. Each step of the visualization shows reachable
states R (left), non-reachable states NR (middle), and the refined invariant I −NR (right) as the algorithm executes.

Helper recurses only when one of s1 or s2 is unreachable,
so NR grows after every recursive invocation of Helper.
Similarly, R continues to grow as Helper randomly explores
the set of reachable states. As the user sees more and more
examples of unreachable and reachable states, it often be-
comes easier and easier for them to recognize patterns that
define which states are reachable and which are not. As
a result, it becomes easier for a user to augment NR and
eliminate a large number of unreachable states from the in-
variant. Once NR has been sufficiently augmented to the
point that I −NR is a subset of the reachable states, The-
orem 2 guarantees that the algorithm will terminate after
one more call to IsIclosed.

4.2 Limitations
Our interactive invariant confluence decision procedure

has two limitations. First, Algorithm 1 requires an invari-
ant closure decision procedure, but determining invariant
closure is undecidable in general. In practice, we can imple-
ment an invariant closure decision procedure using an SMT
solver like Z3 that works well on simple objects, invariants,
and merge operators (e.g., integers, tuples, infinite sets, bit
vectors, linear constraints, basic arithmetic, tuple projec-
tion, basic set operations, bit arithmetic). But, SMT solvers
are mostly unable to analyze more complex constructs (e.g.,
finite lists [26], graphs, recursive algebraic data types, non-
linear constraints, merge operators that contain loops or re-
cursion).

Second, Algorithm 1 relies on a user to identify unreach-
able states. As we saw in Figure 3, the set of unreachable
states can sometimes be clear, especially if there’s a notice-
able pattern in the set of reachable states. However, if the
set of transactions is large or complex or if the merge opera-
tor is complex, then reasoning about unreachable states can

be difficult. Unlike with reachable states—where verifying
that a state is reachable only requires thinking of a single
way to reach the state—verifying that a state is unreach-
able requires a programmer to reason about a large number
of system executions and conclude that none of them can
lead to the state. In the future, we plan on exploring ways
to help a user reason about unreachable states and ways to
discover sets of unreachable states automatically.

5. MERGE REDUCTION
In Section 3, we discussed how invariant confluence is fun-

damentally a property of reachability and that invariant clo-
sure is sufficient but not necessary for invariant confluence
because it fails to incorporate any notion of reachability.
Using this intuition, we established Theorem 2 and then ex-
ploited the theorem in Algorithm 1. In this section, we again
take advantage of this intuition to develop a new sufficient
condition for invariant confluence that can be checked with-
out user interaction and that covers some cases not covered
by invariant closure.

An expression e = t1(t2(. . . (tn(s)) . . .)) is merge-free
if does not contain any merges (i.e. it is generated by the
grammar e ::= s | t(e)). An object O = (S,t) is merge-
reducible with respect to a start state s0 ∈ S, a set of
transactions T , and an invariant I, abbreviated (s0, T, I)-
merge reducible, if for every pair e1 and e2 of merge-free
(s0, T, I)-reachable expressions, there exists some merge-free
(s0, T, I)-reachable expression e3 that evaluates to the same
state as e1 t e2. Intuitively, if O is merge-reducible, we can
replace e1 t e2 (which has one merge) with e3 (which has
no merges) to obtain an equivalent expression with fewer
merges.
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Theorem 3. Given an object O = (S,t), a start state s0 ∈
S, a set of transactions T , and an invariant I, if I(s0) and if
O is (s0, T, I)-merge reducible, then O is (s0, T, I)-confluent.

Merge-reducibility is a sufficient condition for invariant
confluence, but unlike with invariant closure, it is not straight-
forward to automatically determine if an object is merge-
reducible. In Theorem 4, we outline a sufficient condition
for merge-reducibility that is straightforward to determine
automatically.

Theorem 4. Given an object O = (S,t), a start state
s0 ∈ S, a set of transactions T , and an invariant I, if the fol-
lowing criteria are met, then O is (s0, T, I)-merge reducible
(and therefore (s0, T, I)-confluent).

1. O is a join-semilattice.

2. For every t ∈ T , there exists some st ∈ S such that for
all s ∈ S, t(s) = st st. That is, every transaction t is
of the form t(s) = s t st for some constant st.

3. For every pair of transactions t1, t2 ∈ T and for all
states s ∈ S, if I(s), I(t1(s)), and I(t2(s)), then I(t1(s)t
t2(s)).

4. I(s0).

Theorem 1 states that invariant closure is a sufficient con-
dition for invariant confluence, and Theorem 4 states that
criteria (1) – (4) are sufficient conditions for invariant con-
fluence. How do these sufficient conditions relate to one
another? Clearly, not all invariant closed objects are semi-
lattices, so invariant closure does not imply criteria (1) –
(4). Conversely, there are some objects that satisfy criteria
(1) – (4) that are not invariant closed. Here’s one example.

Example 3. Let O = (P(N),∪) where P(N) is the power set
of the natural numbers. Our start state s0 = {0} is the set of
0. Let tY (X) = X∪Y be the transaction that unions Y with
its argument X. Our set T = {tY |Y ⊆ N} of transactions
consists of all possible tY . Our invariant I consists of all non-
empty sets X that contain only even or only odd elements.
That is, I = {X ⊆ 2N |X 6= ∅} ∪ {X ⊆ 2N + 1 |X 6= ∅}.

Criteria (1), (2), (3) and (4) are all satisfied. However, O
is not I-closed. Let s1 = {0} and s2 = {1}. Then, I(s1) and
I(s2), but letting s3 = s1 ∪ s2 = {0, 1}, ¬I(s3).

Invariant closure is not necessary for invariant confluence
because it fails to incorporate any notion of reachability.
Criteria (1) – (4) are also unnecessary, but they can be used
to prove that some non-invariant closed objects are invari-
ant confluent because the criteria do incorporate notions
of reachability. In particular, criterion (3) is a slight vari-
ant of invariant closure; it also states that invariant satisfy-
ing states should be closed under merge. The fundamental
difference is that criterion (3) restricts its attention to the
merge of two states that are reachable from a common an-
cestor state.

In Example 3, we saw this fundamental difference rear its
head. O is not I-closed because the union of an odd-only
set with an even-only set is a set with both odd and even in-
tegers. However, if we begin in an invariant satisfying state,
we cannot reach both an odd-only and even-only set. Cri-
terion (3) is able to recognize this fact and conclude that O
is invariant confluent despite it not being invariant closed.

6. SEGMENTED INVARIANT CONFLUENCE
If a distributed object is invariant confluent, then the ob-

ject can be replicated without the need for any form of coor-
dination to maintain the object’s invariant. But what if the
object is not invariant confluent? In this section, we present
a generalization of invariant confluence called segmented
invariant confluence that can be used to maintain the
invariants of non-invariant confluent objects, requiring only
a small amount of coordination. In Section 7, we see that
replicating a non-invariant confluent object with segmented
invariant confluence can achieve between 10x and 100x more
throughput than linearizable replication for certain work-
loads.

The main idea behind segmented invariant confluence is
to segment the state space into a number of segments and
restrict the set of allowable transactions within each segment
in such a way that the object is invariant confluent within
each segment (even though it may not be globally invariant
confluent). Then, servers can run coordination-free within a
segment and need only coordinate when transitioning from
one segment to another. We now formalize segmented invari-
ant confluence, describe the system model we use to repli-
cate segmented invariant confluent objects, and introduce a
segmented invariant confluence decision procedure.

6.1 Formalism
Consider a distributed object O = (S,t), a start state

s0 ∈ S, a set of transitions T , and an invariant I. A seg-
mentation Σ = (I1, T1), . . . , (In, Tn) is a sequence (not a
set) of n segments (Ii, Ti) where every Ti is a subset of T
and every Ii ⊆ S is an invariant. O is segmented invari-
ant confluent with respect to s0, T , I, and Σ, abbreviated
(s0, T, I,Σ)-confluent, if the following conditions hold:

• The start state satisfies the invariant (i.e. I(s0)).

• I is covered by the invariants in Σ (i.e. I = ∪n
i=1Ii).

Note that invariants in Σ do not have to be disjoint.
That is, they do not have to partition I; they just have
to cover I.

• O is invariant confluent within each segment. That is,
for every (Ii, Ti) ∈ Σ and for every state s ∈ Ii, O is
(s, Ti, Ii)-confluent.

Example 4. Consider again the object O = (Z × Z,t),
transactions T = {tx+1, ty−1}, and invariant I = {(x, y) |xy ≤
0} from Example 2, but now let the start state s0 be (−42, 42).
O is not (s0, T, I)-confluent because the points (0, 42) and
(42, 0) are reachable, and merging these points yields (42, 42)
which violates the invariant. However, O is (s0, T, I,Σ)-
confluent for Σ = (I1, T1), (I2, T2), (I3, T3), (I4, T4) where

I1 = {(x, y) |x < 0, y > 0} T1 = {tx+1, ty−1}
I2 = {(x, y) |x ≥ 0, y ≤ 0} T2 = {tx+1, ty−1}
I3 = {(x, y) |x = 0} T3 = {ty−1}
I4 = {(x, y) | y = 0} T4 = {tx+1}

Σ is illustrated in Figure 4. Clearly, s0 satisfies the invariant,
and I1, I2, I3, I4 cover I. Moreover, for every (Ii, Ti) ∈ Σ, we
see that O is Ii-closed, so O is (s, Ti, II)-confluent for every
s ∈ Ii. Thus, O is (s0, T, I,Σ)-confluent.
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(a) (I1, T1). (b) (I2, T2). (c) (I3, T3). (d) (I4, T4).

Figure 4: An illustration of Example 4

6.2 System Model
Now, we describe the system model used to replicate a

segmented invariant confluent object without any coordi-
nation within a segment and with only a small amount of
coordination when transitioning between segments. As be-
fore, we replicate an object O across a set p1, . . . , pn of n
servers each of which manages a replica si ∈ S of the ob-
ject. Every server begins with s0, T , I, and Σ. Moreover, at
any given point in time, a server designates one of the seg-
ments in Σ as its active segment. Initially, every server
chooses the first segment (Ii, Ti) ∈ Σ such that Ii(s0) to be
its active segment. We’ll see momentarily the significance
of the active segment.

As before, servers repeatedly perform one of two actions:
execute a transaction or merge states with another server.
Merging states in the segmented invariant confluence system
model is identical to merging states in the invariant conflu-
ence system model. A server pi sends its state si to another
server pj which must merge si into its state sj . Transaction
execution in the new system model, on the other hand, is a
bit more involved. Consider a server si with active segment
(Ii, Ti). A client can request that pi execute a transaction
t ∈ T . We consider what happens when t ∈ Ti and t /∈ Ti

separately.
If t /∈ Ti, then pi initiates a round of global coordina-

tion to execute t. During global coordination, every server
temporarily stops processing transactions and transitions to
state s = s1t . . .tsn, the join of every server’s state. Then,
every server speculatively executes t transitioning to state
t(s). If t(s) violates the invariant (i.e. ¬I(t(s))), then every
server aborts t and reverts to state s. Then, pi replies to the
client. If t(s) satisfies the invariant (i.e. I(t(s))), then every
server commits t and remains in state t(s). Every server
then chooses the first segment (Ii, Ti) ∈ Σ such that Ii(t(s))
to be the new active segment. Note that such a segment
is guaranteed to exist because the segment invariants cover
I. Moreover, Σ is ordered, so every server will determinis-
tically pick the same active segment. In fact, an invariant
of the system model is that at any given point of normal
processing, every server has the same active segment.

Otherwise, if t ∈ Ti, then pi executes t immediately and
without coordination. If t(si) satisfies the active invariant
(i.e. Ii(t(si))), then pi commits t, stays in state t(si), and
replies to the client. If t(si) violates the global invariant (i.e.
¬I(t(si))), then pi aborts t, reverts to state si, and replies
to the client. If t(si) satisfies the global invariant but vio-
lates the active invariant (i.e. I(t(si)) but ¬Ii(t(si))), then
pi reverts to state si and initiates a round of global coordi-
nation to execute t, as described in the previous paragraph.
Transaction execution is summarized in Algorithm 2.

This system model guarantees that all replicas of a seg-
mented invariant confluent object always satisfy the invari-
ant. All servers begin in the same initial state and with the
same active segment. Thus, because O is invariant confluent
with respect to every segment, servers can execute transac-

Algorithm 2 Transaction execution in the segmented in-
variant confluence system model

if t /∈ Ti then
Execute t with global coordination

else
if Ii(t(si)) then Commit t
else if ¬I(t(si)) then Abort t
else Execute t with global coordination

tions within the active segment without any coordination
and guarantee that the invariant is never violated. Any
operation that would violate the assumptions of the invari-
ant confluence system model (e.g. executing a transaction
that’s not permitted in the active segment or executing a
permitted transaction that leads to a state outside the ac-
tive segment) triggers a global coordination. Globally coor-
dinated transactions are only executed if they maintain the
invariant. Moreover, if a globally coordinated transaction
leads to another segment, the coordination ensures that all
servers begin in the same start state and with the same ac-
tive segment, reestablishing the assumptions of the invariant
confluence system model.

6.3 Interactive Decision Procedure
In order for us to determine whether or not an object O

is (s0, T, I,Σ)-confluent, we have to determine whether or
not O is invariant confluent within each segment (Ii, Ti) ∈
Σ. That is, we have determine if O is (s, Ti, Ii)-confluent
confluent for every state s ∈ Ii. Ideally, we could leverage
Algorithm 1, invoking it once per segment. Unfortunately,
Algorithm 1 can only be used to determine if O is (s, Ti, Ii)-
confluent for a particular state s ∈ Ii, not for every state
s ∈ Ii. Thus, we would have to invoke Algorithm 1 |Ii| times
for every segment (Ii, Ti), which is clearly infeasible given
that Ii can be large or even infinite.

Instead, we develop a new decision procedure that can be
used to determine if an object is (s, T, I)-confluent for ev-
ery state s ∈ I. To do so, we need to extend the notion
of reachability to a notion of coreachability and then gen-
eralize Theorem 2. Two states s1, s2 ∈ I are coreachable
with respect to T and I, abbreviated (T, I)-coreachable, if
there exists some state s0 ∈ I such that s1 and s2 are both
(s0, T, I)-reachable.

Theorem 5. Consider an object O = (S,t), a set of trans-
actions T , and an invariant I. If every pair of states in the
invariant are (T, I)-coreachable, then

O is I-closed ⇐⇒ O is (s, T, I)-confluent for every s ∈ I

The proof of the forward direction is exactly the same
as the proof of Theorem 1. Transactions always maintain
the invariant, so if merge does as well, then every reachable
state must satisfy the invariant. For the reverse direction,
consider two arbitrary states s1, s2 ∈ I. The two points are
(T, I)-coreachable, so there exists some state s0 from which
they can be reached. O is (s0, T, I)-confluent and s1 t s2 is
(s0, T, I)-reachable, so it satisfies the invariant.

Using Theorem 5, we develop Algorithm 3: a natural gen-
eralization of Algorithm 1. Algorithm 1 iteratively refines
the set of reachable states whereas Algorithm 3 iteratively
refines the set of coreachable states, but otherwise, the core
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Algorithm 3 Interactive invariant confluence decision pro-
cedure for arbitrary start state s ∈ I

// Return if O is (s, T, I)-confluent for every s ∈ I.
function IsInvConfluent(O, T , I)

return Helper(O, T , I, ∅, ∅)

// R is a set of (T, I)-coreachable states.
// NR is a set of (T, I)-counreachable states.
function Helper(O, T , I, R, NR)

closed, s1, s2 ← IsIclosed(O, I, NR)
if closed then return true
Augment R,NR with random search and user input
if (s1, s2) ∈ R then return false

return Helper(O, T , I, R, NR)

of the two algorithms is the same.2 Now, a segmented in-
variant confluence decision procedure, can simply invoke Al-
gorithm 3 once on each segment.

Example 5. Let O = (Z3 × Z3,t) be an object that sep-
arately keeps positive and negative integer counts (dubbed
a PN-Counter [40]), replicated on three machines. Every
state s = (p1, p2, p3), (n1, n2, n3) represents the integer (p1+
p2 + p3) − (n1 + n2 + n3). To increment or decrement the
counter, the ith server increments pi or ni respectively, and
t computes an element-wise maximum. Our start state
s0 = (0, 0, 0), (0, 0, 0); our set T of transactions consists of
increment and decrement; and our invariant I is that the
value of s is non-negative.

Applying Algorithm 1, IsIclosed returns false with the
states s1 = (1, 0, 0), (0, 1, 0) and s2 = (1, 0, 0), (0, 0, 1). Both
are reachable, so O is not (s0, T, I)-confluent and Algorithm 1
returns false. The culprit is concurrent decrements, which
we can forbid in a simple one-segment segmentation Σ =
(I, T+) where T+ consists only of increment transactions.
Applying, Algorithm 3, IsIclosed again returns false with
the same states s1 and s2. This time, however, the user
recognizes that the two states are not (T+, I)-coreachable
(all modifications of (n1, n2, n3) require global coordination,
so it is impossible for s1 and s2 to differ on these values).
The user refines NR with the observation that two states
are coreachable if and only if they have the same values of
n1, n2, n3. After this, IsIclosed and Algorithm 3 return
true.

6.4 Discussion and Limitations
There are a few things worth noting about segmented in-

variant confluence, its system model, and its decision pro-
cedure. First, invariant confluence is a very coarse-grained
property. If an object is invariant confluent, then we can
replicate it with no coordination. If it is not invariant con-
fluent, then we have no guarantees. There’s no in-between.
Segmented invariant confluence, on the other hand, is a
much more fine-grained property that can be applied to ap-
plications with varying degrees of complexity. Segmented

2Another small difference is that IsIclosed behaves differ-
ently in Algorithm 1 and Algorithm 3. In Algorithm 3,
IsIclosed returns a triple (closed, s1, s2). If closed is false,
then s1, s2 ∈ I are two states not in NR such that I(s1) and
I(s2) but ¬I(s1 t s2). If no such states exist, then closed is
true, and s1 and s2 are null.

invariant confluence provides guarantees to complex applica-
tions that require a large number of segments and to simple
applications with a smaller number of segments, whereas in-
variant confluence only provides guarantees to applications
that can be segmented into a single segment.

Second, while our segmented invariant confluence deci-
sion procedure can help decide whether or not an object
is segmented invariant confluent, it cannot currently help
construct a segmentation. It is the responsibility of the pro-
grammer to think of a segmentation that is amenable to
segmented invariant confluence. This can be an onerous
process. In the future, we plan to explore ways by which we
can automatically suggest segmentations to the application
designer to ease this process.

7. EVALUATION
In this section, we describe and evaluate Lucy: a proto-

type implementation of our decision procedures and system
models.

7.1 Implementation
Lucy includes an implementation of the interactive deci-

sion procedure described in Algorithm 1, an implementation
of a decision procedure that checks criteria (1) - (4) from
Theorem 4, and an implementation of the decision proce-
dure described in Algorithm 3. The decision procedures are
implemented in roughly 2,500 lines of Python. Program-
mers specify objects, transactions, and invariants in a small
Python DSL and interact with the interactive decision pro-
cedures using an interactive Python console. Note that a
programmer only has to run the decision procedures offline
a single time to check the invariant confluence of their dis-
tributed object. The decision procedures do not have to be
run online when transactions are being processed.

We use Z3 [16] to implement our invariant closure decision
procedure, compiling an object and invariant into a formula
that is satisfiable if and only if the object is not invariant
closed. If the object is invariant closed, then Z3 concludes
that the formula is unsatisfiable. Otherwise, if the object
is not invariant closed, then Z3 produces a counterexample
witnessing the satisfiability of the formula.

Lucy also includes an implementation of the invariant con-
fluence and segmented invariant confluence system models
in roughly 3,500 lines of C++. Users specify objects, trans-
actions, invariants, and segmentations in C++. Lucy then
replicates the objects using segmented invariant confluence.
Clients send every transaction request to a randomly se-
lected server. When a server receives a transaction request,
it executes Algorithm 2 to attempt to execute the transac-
tion locally. If the transaction requires global coordination,
then the server forwards the transaction request to a pre-
determined leader. When the leader receives a transaction
request, it broadcasts a coordination request to the other
servers. When a server receives a coordination request from
the leader, it stops processing transactions and sends the
leader its state. When the leader receives the states of all
other servers, it executes the transaction, and then sends
its state to the other servers. When a server receives a new
state, it adopts the state, computes its new active segment,
and resumes normal processing. After every 100 transac-
tions processed, a server sends a merge request to a ran-
domly selected server.
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Table 1: Example 6 to Example 10 Summary

Example Run time (s) Lines of code

6 0.09 7
7 (all transactions) 0.06 8
7 (limited transactions) 0.09 10
8 0.04 21
9 0.09 49
10 (Invariant 1) 0.46 66
10 (Invariant 2) 0.44 33

Lucy can also replicate an object with eventual consis-
tency and with linearizability. With eventual consistency,
clients send every transaction request to a randomly selected
server. The server executes the transaction locally and re-
turns immediately to the client, sending merge requests af-
ter every 100 transactions. With linearizability, clients send
every transaction request to a predetermined leader. The
leader relays the transaction request to all other servers,
and when the leader receives replies from them, it executes
the transaction and replies to the client. This communica-
tion pattern mimics the “normal operation” of state machine
replication protocols [27, 31].

Because fault-tolerance is largely an orthogonal concern
to invariant confluence, Lucy is implemented without fault-
tolerance. It would be straightforward to add fault-tolerance
to Lucy, but it would not affect our discussions or evaluation,
so we leave it for future work.

7.2 Decision Procedures
We now evaluate the practicality and efficiency of our de-

cision procedure prototypes. We begin by demonstrating
the decision procedure on a handful of simple, yet practical
examples. We then discuss how our tool can be used to an-
alyze the TPC-C benchmark. All decision procedures were
run on a MacBook Pro laptop with a 3.5 GHz Intel Core i7
processor and 16 GB of RAM. A summary of these results
is given in Table 1.

Example 6 (Z2). We begin with a minimal working ex-
ample. Consider again our recurring example of Z2 from
Example 2. The Python code used to describe the object,
transactions, and invariant is given in Figure 5. When we
call checker.check(), the interactive decision procedure pro-
duces a counterexample s1 = (0, 1), s2 = (1, 0) in less than
a tenth of a second and automatically recognizes that s2 is
reachable. After we label s1 as unreachable and refine the
invariant with y ≤ 0, the interactive decision procedure de-
termines that the object is invariant confluent, again, in less
than a tenth of a second. Note that the object is invariant
confluent but not invariant closed, so prior work [29, 28,
10, 20] that relies on invariant closure—or another equiva-
lent sufficient condition—to determine invariant confluence
would not be able to identify this example as invariant con-
fluent.

Example 7 (Foreign Keys). A 2P-Set X = (AX , RX) is a
set CRDT composed of a set of additions AX and a set of
removals RX [40]. We view the state of the set X as the
difference AX − RX of the addition and removal sets. To
add an element x to the set, we add x to AX . Similarly,
to remove x from the set, we add it to RX . The merge of
two 2P-sets is a pairwise union (i.e. (AX , RX)t(AY , RY ) =
(AX ∪AY , RX ∪RY )).

checker = InteractiveInvariantConfluenceChecker()
x = checker.int_max(’x’, 0) # An int, x, merged by max.
y = checker.int_max(’y’, 0) # An int, y, merged by max.
checker.add_transaction(’increment_x’, [x.assign(x + 1)])
checker.add_transaction(’decrement_y’, [y.assign(y - 1)])
checker.add_invariant(x * y <= 0)
checker.check()

Figure 5: Example 6 specification

We can use 2P-sets to model a simple relational database
with foreign key constraints. Let object O = (X,Y ) =
((AX , RX), (AY , RY )) consist of a pair of two 2P-Sets X
and Y , which we view as relations. Our invariant X ⊆ Y
(i.e. (AX − RX) ⊆ (AY − RY )) models a foreign key con-
straint from X to Y . We ran our decision procedure on
the object with initial state ((∅, ∅), (∅, ∅)) and with trans-
actions that allow arbitrary insertions and deletions into X
and Y . After less than a tenth of a second, the decision
procedure produced a reachable counterexample witnessing
the fact that the object is not invariant confluent. A con-
current insertion into X and deletion from Y can lead to a
state that violates the invariant. This object is not invariant
confluent and therefore not invariant closed. Thus, previous
tools depending on invariant closure as a sufficient condition
would be unable to conclude definitively that the object is
not invariant confluent.

We also reran the decision procedure, but this time with
insertions into X and deletions from Y disallowed. In less
than a tenth of a second, the decision procedure correctly
deduced that the object is now invariant confluent. These
results were manually proven in [8], but our tool was able to
confirm them automatically in a negligible amount of time.

Example 8 (Auction). We now consider a simple auction
system introduced in [20]. Our object consists of a set B of
integer-valued bids and a optional winning bid w. Initially,
B = ∅ and w = ⊥ (indicating that there is no winning
bid yet) and we merge states by taking the union of B and
the maximum of w (where ⊥ < n for all integers n). One
transaction tb places a bid b by inserting it into B. Another
transaction tclose closes the auction and sets w equal to the
largest bid in B. Our invariant is that if the auction is
closed (i.e. w 6= ⊥), then w = max(B). We ran our decision
procedure on this example and in a third of a second, it
produced a reachable counterexample witnessing the fact
that the object is not invariant confluent. If we concurrently
close the auction and place a large bid, then we can end up
in a state in which the auction is closed, but there is a bid
in B larger than w.

We then segmented our object as follows. The first seg-
ment ({(B,w) |w = ⊥}, {tb | b ∈ Z}) allows bidding so long
as the bid is open. The second segment ({B,w |w 6= ⊥} ∩
I, ∅) includes all auctions that have already been closed and
forbids all transactions. This segmentation captures the in-
tuition that bids should be permitted only when the auction
is open. We ran our segmented invariant confluence decision
procedure on this example, and it was able to deduce with-
out any human interaction that the example was segmented
invariant confluent in less than a tenth of a second.

Example 9 (Escrow Transactions). Escrow transactions
are a concurrency control technique that allows a database
to execute transactions that increment and decrement nu-
meric values with more concurrency than is otherwise pos-
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sible with general-purpose techniques like two-phase lock-
ing [36]. The main idea is that a portion of the numeric
value is put in escrow, after which a transaction can freely
decrement the value so long as it is not decremented by
more than the amount that has been escrowed. We show
how segmented invariant confluence can be used to imple-
ment escrow transactions.

Consider again the PN-Counter s = (p1, p2, p3), (n1, n2, n3)
from Example 5 replicated on three servers with transac-
tions to increment and decrement the PN-Counter. In Ex-
ample 5, we found that concurrent decrements violate in-
variant confluence which led us to a segmentation which
prohibited concurrent decrements. We now propose a new
segmentation with escrow amount k that will allow us to per-
form concurrent decrements that respect the escrowed value.
The first segment ({(p1, p2, p3), (n1, n2, n3) | p1, p2, p3 ≥ k ∧
n1, n2, n3 ≤ k}, T ) allows for concurrent increments and
decrements so long as every pi ≥ k and every ni ≤ k.
Intuitively, this segment represents the situation in which
every server has escrowed a value of k. They can decrement
freely, so long as they don’t exceed their escrow budget of
k. The second segment is the one presented in Example 5
which prohibits concurrent decrements. We ran our decision
procedure on this example and it concluded that it was seg-
mented invariant confluent in less than a tenth of a second
and without any human interaction.

Example 10 (TPC-C). TPC-C is a ubiquitous OLTP bench-
mark with a workload that models a simple warehousing
application [18]. The TPC-C specification outlines twelve
“consistency requirements” (read invariants) that govern the
warehousing application. In [8], Bailis et al. categorize the
invariants into one of three types:

Three of the twelve invariants involve foreign key con-
straints. As discussed in Example 7, our decision proce-
dures can automatically verify conditions under which for-
eign key constraints are invariant confluent.

Seven of the twelve invariants involve maintaining arith-
metic relationships between relations. Our decision
procedures can correctly identify these as invariant conflu-
ent. Consider, for example, invariant 1 which dictates that
a warehouse’s year to date balance W YTD is equal to the sum
of the district year to date balances D YTD of the twenty dis-
tricts that are associated with the warehouse. The Pay-
ment transaction randomly selects a district and increments
W YTD and D YTD by a randomly generated amount. We model
this workload with a PN-Counter for W YTD and twenty PN-
Counters for the twenty instances of D YTD. We applied Lucy
to this workload, and it determined that the workload was
invariant confluent in less than a second.

Two of the twelve invariants involve generating sequen-
tial and unique identifiers. Consider, for example, invari-
ant 2 which dictates that a district’s next order ID D NEXT O ID
is equal to the maximum order id O ID of orders within the
district. The New Order transaction places an order with
O ID equal to the current value of D NEXT O ID and then incre-
ments D NEXT O ID. We model this workload with an integer
for D NEXT O ID and a map for O ID that maps order IDs to
order. We applied Lucy to this workload and in less than a
second, it produced a counterexample that—when labelled
as reachable—confirms Bailis et al.’s finding that the work-
load is not invariant confluent [8]. Thus, the TPC-C bench-
mark requires some form of coordination to ensure unique
and sequential IDs. Alternatively, as Bailis et al. describe
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Figure 6: Segmented invariant confluent replication
throughput versus coordination induced by executing dis-
allowed decrement transactions.

in [8], the workload can be run coordination free if we drop
the requirement that IDs are assigned sequentially.

7.3 Segmented Invariant Confluence
Now, we evaluate the performance of replicating an ob-

ject with segmented invariant confluence as compared to the
performance of replicating it with eventual consistency or
linearizability. There are two hypotheses about the perfor-
mance of segmented invariant confluent replication that we
aim to confirm. First, segmented invariant confluent replica-
tion provides higher throughput and better scalability than
linearizable replication for workloads that require little co-
ordination (i.e. low-coordination workloads). Second, the
throughput and scalability of segmented invariant confluent
replication decreases as we increase the fraction of transac-
tions that require coordination.

These hypotheses state that segmented invariant conflu-
ent replication is more performant than linearizable repli-
cation for low-coordination workloads. But by how much?
We also aim to measure the absolute performance and scal-
ability benefits of segmented invariant confluent replication
and how they vary as we vary the coordination required by
a workload. We perform two controlled microbenchmarks
to confirm our hypotheses and discover the absolute perfor-
mance benefits. The workloads themselves are trivial but
are not the focus of our experiments. Our objective is to
obtain a controlled measure of throughput and scalability
as we vary workload contention.

Benchmark 1. Consider again the PN-Counter from Ex-
ample 5 and the corresponding transactions, invariants, and
single-segment segmentation that forbids concurrent decre-
ments. We replicate this object on 16 servers deployed on 16
m5.xlarge EC2 instances within the same availability zone.
Each server has three colocated clients that issue increment
and decrement transactions. We replicate the object with
eventual consistency, segmented invariant confluence, and
linearizability and measure the system’s total throughput as
we vary the fraction of client requests that are decrements.
The results are shown in Figure 6.

Both eventually consistent replication and linearizable repli-
cation are unaffected by the workload, achieving roughly
375,000 and 12,000 transactions per second respectively. Seg-
mented invariant confluent replication performs well for low-
decrement (i.e. low-coordination) workloads and performs
increasingly poorly as we increase the fraction of decrement
transactions, eventually performing worse than linearizable
replication. For example, with 5% decrement transactions,
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Figure 7: Throughput of eventually consistent, segmented
invariant confluent, and linearizable replication measured
against the number of nodes for workloads with varying
fractions of decrement transactions. For example, the “seg-
mented (0.2)” line measures the performance of segmented
invariant confluent replication with 20% decrement trans-
actions. Eventually consistent replication and linearizable
replication are not affected by workload.

segmented invariant confluent replication performs over an
order of magnitude better than linearizable replication; with
50% decrements, it performs as well; and with 100% decre-
ments, it performs two times worse.

These results offer two insights. First, the relationship be-
tween segmented invariant confluent and linearizable repli-
cation is analogous to the relationship between optimistic
and pessimistic concurrency control protocols. Linearizable
replication pessimistically assumes that concurrently exe-
cuting any pair of transactions will lead to an invariant vi-
olation. Thus, clients send transactions directly to a leader
to be linearized. Conversely, segmented invariant confluent
replication optimistically attempts to perform every trans-
action locally and without coordination. A server only ini-
tiates a round of coordination if it is found to be necessary.
As a consequence, segmented invariant confluent replication
can offer substantial performance benefits over linearizable
replication for low-coordination workloads. However, it is
inferior for medium to high contention workloads because
the majority of transactions that are sent to a server are
eventually aborted and relayed to the leader. This addi-
tional latency is avoided by linearizable replication which
sends transactions directly to the leader.

Second, throughput does not decrease linearly with the
amount of coordination. Even infrequent coordination can
drastically decrease throughput. Increasing the fraction of
decrements from 0% to 1% decreases throughput by a fac-
tor of 2. Increasing again to 3%, the throughput decreases
by another factor of 2. With 90% coordination-free trans-
actions (i.e. 10% decrements), we achieve only 10% of the
throughput of eventually consistent replication.

Benchmark 2. In this benchmark, we measure the scale-
out of segmented invariant confluent replication. We re-
peat Benchmark 1 while we vary the number of servers that
we use to replicate our object. When we replicate with n
servers, we use 3n clients (the 3 colocated clients on each
server) as part of the workload. The results are shown in
Figure 7.

Eventually consistent replication scales perfectly with the
number of nodes, confirming the results in [8]. Linearizable
replication, on the other hand, scales up to about 3 servers
before performance begins to decrease. Segmented invariant
confluent replication scales well for low-coordination work-
loads and poorly for high-coordination workloads. For 1%,
5%, 20%, and 50% decrement transactions, segmented in-
variant confluent replication scales up to 24, 12, 4, and 1
server respectively.

These results echo the results of Benchmark 1. For low-
coordination workloads, segmented invariant confluent repli-
cation can offer almost an order of magnitude better scala-
bility compared to linearizable replication, but coordination
decreases scalability superlinearly. Even infrequent coordi-
nation can drastically reduce the scalability of segmented in-
variant confluent replication with segmented invariant con-
fluent replication ultimately scaling worse than linearizable
replication for high-coordination workloads.

8. RELATED WORK
RedBlue Consistency and SIEVE. RedBlue consis-

tency is a consistency model that sits between causal consis-
tency and linearizability [29]. With RedBlue consistency, ev-
ery operation is manually labelled as either red or blue. All
operations are executed with causal consistency, but with
the added restrictions that red operations are executed in
a single total order embedded within the causal ordering.
In [29], Li et al. introduce invariant safety as a sufficient
(but not necessary) condition for RedBlue consistent ob-
jects to be invariant confluent. Invariant safety is an analog
of invariant closure. In [28], Li et al. develop sophisticated
techniques for deciding invariant safety that involve calcu-
lating weakest preconditions. These techniques are comple-
mentary to our work and can be used to improve the in-
variant closure subroutine used by our decision procedures.
In contrast with these techniques, our invariant confluence
decision procedures can determine the invariant confluence
of objects that are not invariant safe.

The Demarcation and Homeostasis Protocols. The
homeostasis protocol [38], a generalization of the demarca-
tion protocol [11], uses program analysis to avoid unnec-
essary coordination between servers in a sharded database
(whereas invariant confluence targets replicated databases).
The protocol guarantees that transactions are executed with
observational equivalence with respect to some serial exe-
cution of the transactions. This means that intermediate
states may be inconsistent, but externally observable side
effects and the final database state are consistent. The ob-
servational equivalence guaranteed by the homeostasis pro-
tocol is stronger than the guarantees of invariant confluence.
As a result, there are invariants and workloads that the
homeostasis protocol would execute with more coordination
than a segmented invariant confluent execution. Moreover,
the homeostasis and demarcation protocols’ mechanism of
establishing global invariants and operating without coor-
dination so long as the invariants are maintained is very
similar to our design of segmented invariant confluence.

Explicit Consistency. Explicit consistency [10] is a
consistency model that combines invariant confluence and
causal consistency, similar to RedBlue consistency with in-
variant safety. To determine if a workload is amenable to
explicitly consistent replication, Balegas et al. determine if
all pairs of transactions can be concurrently executed on the
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same start state without violating the invariant [10]. Bale-
gas et al. argue that this is a sufficient condition for explicit
consistency. It is similar to criterion (3) in Theorem 4. In
our work, we take a step further and explore sufficient and
necessary conditions for invariant confluence. Balegas et al.
also describe a variety of techniques—like conflict resolution,
locking, and escrow transactions [36]—that can be used to
replicate workloads that do not meet their sufficient condi-
tions. Segmented invariant confluence is a general-purpose
formalism that can be used to model simple forms of these
techniques.

Token Based Invariant Confluence. In [20], Gots-
man et al. discuss a hybrid token based consistency model
that generalizes a family of consistency models including
causal consistency, sequential consistency, and RedBlue con-
sistency. An application designer defines a set of tokens and
specifies which pairs of tokens conflict, and transactions ac-
quire some subset of the tokens when they execute. This
allows the application designer to specify which transactions
conflict with one another. Gotsman et al. develop sufficient
conditions to determine whether a given token scheme is
sufficient to guarantee that a global invariant is never bro-
ken. The token based approach allows users to specify cer-
tain conflicts that are not possible with segmented invariant
confluence because a segmentation only allows transactions
within a segment to acquire a single self-conflicting lock.
However, segmented invariant confluence also introduces the
notion of invariant segmentation, which cannot be emulated
with the token based approach. For example, it is difficult to
emulate escrow transactions with the token based approach.

Serializable Distributed Databases. In Section 7, we
saw that segmented invariant confluent replication vastly
outperforms linearizable replication for low coordination work-
loads, and it performs comparably or worse for medium
and high coordination workloads. Distributed databases
like Calvin [43], Janus [35], and TAPIR [45] employ al-
gorithmic optimizations to implement serializable transac-
tions with high throughput and low latency. While seg-
mented invariant confluent replication will likely always out-
perform serializable replication for low coordination work-
loads, these databases make serializable replication the most
performant option for executing workloads that require a
modest amount of coordination.

Branch and Merge. Bayou [42], Dynamo [17], and
TARDiS [15] all take a branch and merge approach to main-
taining distributed invariants without coordination. With
this approach, servers execute transactions without any co-
ordination but keep track of the causal dependencies be-
tween transactions. Periodically, two servers merge states
and invoke a user defined merge function to reconcile the di-
vergent states. This approach does not provide any formal
guarantees that invariants are maintained. Its correctness
depends on the correctness of the potentially complex user
defined merge functions.

CRDTs. CRDTs [41, 40] are distributed semilattices
with inflationary update methods. Due to their algebraic
properties, CRDTs can be replicated with strong eventual
consistency without the need for any coordination. Our def-
inition of distributed objects and our invariant confluence
system model are inspired directly by the corresponding def-
initions and system models in [41]. CRDTs are eventually
consistent but may not preserve invariants. Conversely, in-
variant confluent objects preserve invariants but may not be

eventually consistent. Thus, it is natural (though not nec-
essary) to use CRDTs as distributed objects. If a CRDT
is determined to be invariant confluent with respect to a
particular invariant and set of transactions, then it achieves
a combination of strong eventual consistency and invariant
preservation. Any CRDT (e.g., counters, sets, graphs, se-
quences) can be used for this purpose. Finally, our criteria
in Theorem 4 also borrow ideas from CRDTs, exploiting the
algebraic properties of semilattices.

CALM Theorem. Bloom [4, 5, 14] and its formal-
ism, Dedalus [6, 3], are declarative Datalog-based program-
ming languages that are designed to program distributed
systems. The accompanying CALM theorem [23, 7] states
that if and only if a program can be written in the mono-
tone fragment of these languages, then there exists a consis-
tent, coordination-free implementation of the program. The
CALM theorem provides guarantees about the consistency
of program outputs. It does not directly capture our notions
of transactions or invariant maintenance during program ex-
ecution. Moreover, Bloom and Dedalus are general-purpose
programming languages that can be used to implement a
variety of distributed systems that are outside of the scope
of invariant confluence.

9. CONCLUSION
This paper revolved around two major contributions. First,

we developed a deeper understanding of invariant closure
and invariant confluence by looking at the two criteria with
reachability in mind. We found that invariant closure fails
to incorporate a notion of reachability, and using this intu-
ition, we developed conditions under which invariant closure
and invariant confluence are equivalent. We implemented
this insight in an interactive invariant confluence decision
procedure that automatically checks whether an object is
invariant confluent, with the assistance of a programmer.

Second, we proposed a new consistency model and gener-
alization of invariant confluence, segmented invariant con-
fluence, that can be used to replicate non-invariant conflu-
ent objects with a small amount of coordination while still
preserving their invariants. We found that segmented in-
variant confluence naturally subsumes existing techniques
for maintaining invariants of replicated objects (e.g. locking
and escrow transactions), and we developed an interactive
decision procedure for segmented invariant confluence.

Through our evaluation, we found that our decision pro-
cedures could analyze a number of realistic workloads, each
in less than a second. We also showed that segmented in-
variant confluence can significantly outperform linearizable
replication for low-coordination workloads.
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