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ABSTRACT
Despite recent intensive research, existing blockchain sys-
tems do not adequately address all the characteristics of dis-
tributed applications. In particular, distributed applications
collaborate with each other following service level agree-
ments (SLAs) to provide different services. While collab-
oration between applications, e.g., cross-application trans-
actions, should be visible to all applications, the internal
data of each application, e.g, internal transactions, might
be confidential. In this paper, we introduce CAPER, a per-
missioned blockchain system to support both internal and
cross-application transactions of collaborating distributed
applications. In CAPER, the blockchain ledger is formed
as a directed acyclic graph where each application accesses
and maintains only its own view of the ledger including its
internal and all cross-application transactions. CAPER also
introduces three consensus protocols to globally order cross-
application transactions between applications with different
internal consensus protocols. The experimental results re-
veal the efficiency of CAPER in terms of performance and
scalability.
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1. INTRODUCTION
Blockchain, originally devised for the Bitcoin cryptocur-

rency [40], is a distributed data structure for recording trans-
actions maintained by nodes without a central authority
[17]. In a blockchain, nodes agree on their shared states
across a large network of untrusted participants. The unique
features of blockchain such as transparency, provenance, fault
tolerance, and authenticity are used by many systems to de-
ploy a wide range of distributed applications such as supply
chain management [31] and healthcare [12] in a permissioned
settings. Unlike permissionless settings, e.g., Bitcoin [40],
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where the network is public, and anyone can participate
without a specific identity, a permissioned blockchain con-
sists of a set of known, identified nodes that might not fully
trust each other.
To support distributed applications, different character-

istics of such applications need to be addressed by permis-
sioned blockchain systems. Distributed applications require
high performance in terms of throughput and latency, e.g.,
a financial application needs to process tens of thousands
of requests every second with very low latency. Distributed
applications also collaborate with each other to provide dif-
ferent services. Collaborations are defined in service level
agreements (SLAs) which are agreed upon by all involved
applications. SLAs can be written as self executing com-
puter programs, called smart contracts [3]. The collabora-
tion is realized by means of cross-application transactions
that are visible to every application. During the execution
of cross-application transactions, agreement on the shared
state of the collaborating applications is needed without
trusting a central authority or any particular participant.
While cross-application collaborations and the involved data
are visible to every application, the internal data of each ap-
plication, i.e., the application logic, internal transactions,
and their data, might be confidential. Hence, it is desir-
able to restrict access to such data. Although cryptographic
techniques can be used to achieve confidentiality, the high
overhead of such techniques makes them impractical [10].
Existing permissioned blockchains mostly suffer from per-

formance issues in terms of throughput and latency because
of the sequential execution of transactions on all nodes, and
also confidentiality issues since a single blockchain ledger
with all transactions is maintained at every node.
Hyperledger Fabric [10], on the other hand, improves per-

formance by executing the transactions of different applic-
ations that are deployed on the same channel in parallel
and addresses the confidentiality leaks by restricting access
to the blockchain state (using private data collections) and
smart contracts which include the application logic. How-
ever, the blockchain ledger is still maintained by every node.
To provide confidentiality, different applications could have

independent disjoint blockchains. However, to support col-
laboration between applications on distinct blockchains, tech-
niques such as atomic cross-chain swap [27] and Interledger
protocol [49] are needed to exchange (transfer) assets or in-
formation between the blockchains (Interoperability). Such
techniques are often costly, complex, and mainly designed
for permissionless blockchains. Techniques that support col-
laborating applications on a single blockchain either do not
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support internal transactions of applications [51] (results in
data integration issues), or suffer from confidentiality is-
sues since the entire ledger is visible to all applications,
e.g., single-channel Fabric [10], or require a trusted chan-
nel among participants, e.g., multi-channel Fabric [11].
In this paper, we present CAPER: a permissioned block-

chain system that supports both internal and cross-application
transactions of collaborating distributed applications. In
CAPER, each application orders and executes its internal
transactions locally while cross-application transactions are
public and visible to every node. In addition, the blockchain
ledger of CAPER is a directed acyclic graph that includes
the internal transactions of every application and all cross-
application transactions. Nonetheless, for the sake of con-
fidentiality, the blockchain ledger is not maintained by any
node. In fact, each application maintains its own local view
of the ledger including its internal and all cross-application
transactions. Since ordering cross-application transactions
requires global agreement among all applications, CAPER
introduces different consensus protocols to globally order
cross-application transactions.
Lack of trust is an important problem in collaboration

between applications. Lack of trust has two main origins:
first, a physical node (server) might fail, thus behave mali-
ciously, and second, an application could behave maliciously
in the communication with other applications for its bene-
fits. To address both types of behavior, CAPER distin-
guishes between trust at the node level and trust at the ap-
plication level, e.g., while the nodes of an application might
behave non-maliciously within the application, the applica-
tion (as a collection of nodes) might still behave maliciously
in communication with other applications.
A key objective of this paper is to demonstrate how in-

ternal and cross-application transactions of a set of collabor-
ating distributed applications which do not trust each other
can be processed efficiently by a blockchain system while
both confidentiality constraints of internal transactions and
visibility constraints of cross-application transactions are
met. The contributions of this paper are three-fold:

• Introducing Blockchain views where each application
maintains only its own view of the ledger including its
internal and all cross-application transactions.

• CAPER, a permissioned blockchain that supports col-
laborating distributed applications. CAPER supports
both internal and cross-application transactions.

• Three different consensus protocols for globally order-
ing cross-application transactions among applications
with different local consensus protocols.

The rest of this paper is organized as follows. Section 2
briefly describes the limitations of current blockchain sys-
tems and motivates the problem. The CAPER model and
architecture are introduced in Section 3 and Section 4. Sec-
tion 5 and Section 6 present consensus in CAPER. Section 7
presents a performance evaluation of CAPER. Section 8 dis-
cusses related work, and Section 9 concludes the paper.

2. BACKGROUND AND MOTIVATION
A blockchain is a distributed data structure for record-

ing transactions, maintained by nodes without a central au-
thority [17]. Existing blockchain systems can be divided

into two main categories: permissionless blockchains, e.g,
Bitcoin [40], and permissioned blockchains, e.g., Tender-
mint [32].

2.1 Limitations of Permissioned Blockchain
Blockchains have unique features, such as transparency,

provenance, fault tolerance, and authenticity, which appeal
to a wide range of distributed applications, e.g., supply chain
management [31] and healthcare [12]. However blockchain
systems suffer from some limitations. In the following, we
mainly focus on permissioned blockchains and discuss three
of their significant limitations: poor performance, lack of
confidentiality, and inefficient cross-application transaction
support. Note that some of these limitations exist in per-
missionless blockchain systems as well.
Existing blockchains mostly utilize an order-execute archi-

tecture where nodes agree on a total order of the blocks of
transactions using a consensus protocol and then the trans-
actions are executed in the same order on all nodes sequen-
tially. The sequential execution of transactions, however,
reduces the blockchain performance in terms of throughput
and latency. To address this issue, Hyperledger Fabric [10]
presents a new architecture for permissioned blockchains by
switching the order of the execution and ordering phases.
In Fabric, the transactions of different applications are first
executed in parallel and then an ordering service establishes
consensus on a total order of requests.
While Fabric reduces the latency of the system by execut-

ing transactions in parallel, the sequential construction of
blocks could still be a performance bottleneck when the sys-
tem is deployed on a single channel or if channels use the
same ordering service. In Bitcoin [40], (single-channel) Fab-
ric [10], and many other permissioned and permissionless
blockchains, blocks cannot be constructed simultaneously
and only a single chain is allowed on the entire network.
In contrast to this linear structure, some other blockchains,
e.g., Iota [44], and Hashgraph [14], are structured as a direc-
ted acyclic graph (DAG). The DAG structure can increase
the throughput of transactions by exploiting parallel con-
struction resulting in the parallel execution of transactions
in different blocks. In such a structure, the blocks (transac-
tions) that are independent of each other can be constructed
and added to the ledger simultaneously.
Batching transactions into blocks is another reason for the

low performance of blockchains. Blocks were originally cre-
ated, first, to amortize the cost of cryptography, e.g., solving
proof-of-work, and second, to make data transfers more ef-
ficient in a large geo-distributed setting. However, Stream-
Chain [28] demonstrates that in permissioned blockchains,
since proof-of-work is not required, batching transactions
into blocks decreases performance.
Besides the performance issues, confidentiality of data is

required in many permissioned blockchains. A blockchain
might need to restrict access to smart contracts (which in-
clude the logic of applications), blockchain ledger, and trans-
action data. While cryptographic techniques can be used
to achieve confidentiality, the considerable overhead of such
techniques makes them impractical [10]. Fabric ensures the
confidentiality of data using Private Data Collections [7].
Private Data Collections manage confidential data that two
or more applications on a single channel want to keep private
from other applications on that channel. The confidential-
ity of smart contracts in Fabric is also ensured by storing
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Figure 1: A Supply Chain Scenario

the smart contracts of different applications on different sets
of nodes, called endorsers. The endorsers of an application
are responsible for executing the transactions of the applic-
ation independent of the other applications. However, the
blockchain ledger is still maintained by the agents of every
application within a channel.
In addition to performance and confidentiality issues, many

applications need to collaborate with each other to provide
different services. Distributed applications are often de-
signed and implemented in different blockchain systems, each
of which processes and stores data independently [29]. In
this case, inter-application collaboration could be performed
as an atomic cross-chain swap [27] or using the Interledger
protocol [49] where two applications (parties) exchange (trans-
fer) assets or information across their blockchains. Atomic
cross-chain transactions are also addressed between permis-
sioned blockchains (channels) in Fabric by either assuming
the existence of a trusted channel among the participants
or using an atomic commit protocol [11]. In general, sup-
porting cross-application transactions is an expensive and
challenging task. Nonetheless, for collaborating applications
in a single permissioned blockchain, since the participants
of cross-application transactions are known beforehand and
the transactions follow service level agreements, we might
be able to find a solution that preserves both confidentiality
and performance.

2.2 A Motivating Example: Supply Chain
We now consider collaborative workflows as a use-case to

illustrate the aforementioned limitations. In a collaborative
workflow, different parties need to communicate across or-
ganizations to provide services. However, the lack of trust
between parties is problematic.
Figure 1 shows a Supply Chain scenario (reported in [51]).

The workflow involves five participants (applications): Sup-
plier, Manufacturer, Bulk Buyer, Carrier, and Middleman
where each of the participants might have multiple trus-
ted or untrusted nodes that perform different internal tasks
(transactions). For example, the production process in the
Manufacturer involves Financial, Marketing, and Purchas-
ing departments and includes different internal tasks such
as assembly, painting, drying, testing, and packaging. Parti-
cipants also need to communicate with each other to provide
different services. The Bulk Buyer communicates with the
Manufacturer to place an order, the Manufacturer places an
order for materials via a Middleman, the Middleman for-
wards the order to a Supplier and arranges transportation
by a Carrier. Once the materials are acquired, the Supplier
informs the Carrier and the Carrier picks them up and deliv-
ers them to the Manufacturer. As soon as the goods become
available, the Manufacturer delivers them to the Bulk Buyer.
These collaborations are defined in service level agreements
which are agreed upon by all participants.

Now the Manufacturer might receive the materials later
than agreed upon or might receive something different from
what they agreed on. In this case, the Supplier might ar-
gue that this is exactly what was ordered by the Middleman
while the Middleman would blame the Supplier. The situ-
ation is complicated for the Carrier since the Manufacturer
might refuse to accept the delivery. The Carrier is now
eligible for compensation from either the Supplier or the
Middleman depending on who is responsible for the fault.
To tackle such an issue, permissioned blockchain systems

can be used among all the different participants to ensure
agreement on the shared state of the collaborating parties
without trusting a central authority or any particular parti-
cipant [51]. The blockchain basically monitors the execution
of the collaborative process and checks conformance between
the process execution and SLAs. Any blockchain-based solu-
tion has to address the following concerns.
First, the blockchain system should support both cross-

application and internal transactions. For example, in the
Supply Chain scenario, in addition to cross-application trans-
actions, the Manufacturer might want to use the blockchain
for its internal transactions, e.g., calculating materials de-
mand or testing the product, to benefit from the the unique
features of blockchain. Second, in contrast to the cross-
application transactions which are public and can be ac-
cessed by all participants, the internal transactions of each
application and their data should only be accessed by the
nodes of the application to preserve confidentiality, e.g., the
internal transactions of the Manufacturer show its internal
process for producing a product which the Manufacturer
might intend to keep as a secret. Third, the solution has to
address the performance aspect as well.
One possible solution is to implement all applications within

a single blockchain where all the transactions are maintained
in a single blockchain ledger which is replicated among all
the nodes in the blockchain. This solution handles the cross-
application transactions efficiently because every node ac-
cesses all the data. However, since the ledger is replicated
among all the nodes and every transaction is visible to all
applications, the confidentiality of data is not preserved.
Another solution is to implement each application on a

separate blockchain. In that way, participants can perform
their internal transactions in parallel resulting in higher per-
formance and since their data is maintained on different
blockchains, the confidentiality of data is preserved. To
perform communication between different applications, one
approach is to use cross-chain swap operation, which, as dis-
cussed earlier, is expensive. An alternative approach is to
use a new blockchain to maintain public transactions. How-
ever, since public transactions use data which is provided
by internal transactions, e.g., to place an order, the Man-
ufacturer needs to calculate demand internally, and these
two types of transactions are stored in different blockchains,
data integration becomes an expensive and challenging task.
In this paper, we present a new approach that not only

addresses the performance and confidentiality issues, but
also handles cross-application transactions efficiently.

3. THE CAPER MODEL
In this section, the CAPER model is introduced. We first

present distributed applications and the blockchain ledger,
and then show how the distributed applications are deployed
in the blockchain.

1387



Figure 2: (a): A blockchain ledger consisting of Four
applications, (b), (c), (d), and (e): The views of the
blockchain from different applications

3.1 Distributed Applications
CAPER is a blockchain system designed to support a set

of collaborating distributed applications which might not
trust each other. Each application maintains two sets of
private and public records. The private records of an ap-
plication are accessible only to the application whereas the
public records are replicated on all applications.
CAPER supports internal and cross-application transac-

tions. Internal transactions are performed within an ap-
plication following the logic of the application, e.g., in the
Supply Chain scenario, the Manufacturer calculates mater-
ials demand internally. Internal transactions of an applic-
ation can read and write its private records, however they
can only read (and not write) the public records. Cross-
application (public) transactions, on the other hand, involve
multiple applications and are visible to all applications, e.g.,
the Manufacturer places an order for materials via a Middle-
man. Cross-application transactions follow the service level
agreements (SLAs) between the involved applications. SLAs
present the flow of communication between the applications
and indicate different aspects of the services, e.g., quality,
availability, and responsibilities, that should be provided by
different applications. For example, in the Supply Chain
scenario, the Carrier is responsible for delivering requested
materials to the Manufacturer in two business days from the
date it is informed by the Supplier. Public records can only
be updated via Cross-application transactions.

3.2 Blockchain Ledger
The blockchain ledger is an append-only data structure

recording transactions in the form of a hash chain where each
block contains a batch of transactions. In a permissioned
blockchain, as discussed in Section 2, batching transactions
into blocks decreases performance (Since proof-of-work is
not required [28]). Thus, in CAPER, each block consists
of a single transaction. The blockchain ledger in CAPER
consists of both internal transactions of all applications and
all cross-application transactions in the system. To support
both types of transactions, we generalize the notion of a
blockchain ledger from a linear chain to a directed acyclic
graph (DAG) where nodes of the graph are transactions and
edges enforce the order of transactions.
Within an application, since transactions have access to

the same datastore, a total order between the transactions
that are initiated by the application is enforced to ensure
consistency. To present the total order of transactions in
the blockchain ledger, transactions are chained together, i.e.,

each transaction includes the cryptographic hash of the pre-
vious transaction. In addition, since cross-application trans-
actions update data which is replicated on all the applica-
tions, to ensure consistency, cross-application transactions
are totally ordered as well. Furthermore, internal trans-
actions of applications might use data that is provided by
cross-application transactions, e.g., the Manufacturer cal-
culates materials demand based on the place-order cross-
application transaction of the Bulk Buyer. To show such
data dependencies, an internal transaction includes the cryp-
tographic hash of a cross-application transaction in the ledger.
In summary, the blockchain ledger has three properties:

(1) There is a total order between all transactions (internal
as well as cross-application) that are initiated by an applic-
ation, (2) There is a total order between cross-application
transactions, and (3) An internal transaction of an applica-
tion might include the cryptographic hash of a cross-application
transaction (that is initiated by another application).
In addition to internal and cross-application transactions,

a unique initialization transaction (block), called genesis
transaction, is considered for the blockchain. Function H(.)
also denotes the cryptographic hash function. For simplicity,
to show that transaction t includes H(t′) (i.e. t is ordered
immediately after t′ as explained in properties 1 and 2 or
has data dependency to t′ as explained in property 3) we
include an edge from t to t′ in the DAG representation of
the blockchain ledger.
Fig. 2(a) shows a CAPER blockchain ledger consisting of

four applications α1, α2, α3, and α4. In this figure, λ is the
genesis transaction. Internal and cross-application transac-
tions of each application are also specified. For example,
t11, t13, t14, and t15 are the internal transactions of applic-
ation α1, and t12,1, t23,2, and t34,3 are the cross-application
transactions initiated by α1, α2, and α3 respectively. Note
that each cross-application transaction is labeled with ti,j
where i indicates the order of the transaction among the
transactions that are initiated by its initiator application
and j presents the order of the transaction among all cross-
application transactions. As can be seen, transactions (both
internal and cross-application) that are initiated by an ap-
plication are chained together (property 1), e.g. t31, t32,
t33, t34,3, and t35. In addition, cross-application transac-
tions are chained together (property 2), i.e., t12,1, t23,2, and
t34,3. Finally, an internal transaction might include the hash
of a cross-application transaction that shows the data de-
pendency of the internal transaction to the cross-application
transaction (property 3), e.g., internal transactions t22 of α2
has edge to cross-application transaction t12,1.
Note that, since an edge from transaction t to transaction

t′ indicates that t occurs after t′ (t includes the hash of t′,
thus t′ has to be appended to the ledger earlier), it is easy
to show that the resulting graph is acyclic.
In contrast to the cross-application transactions that are

visible to and maintained by all applications, the internal
transactions of an application present confidential data about
the application, e.g., its business logic. For example, in the
Supply Chain scenario, the internal transactions of the Man-
ufacturer show its internal process for producing a product
which the Manufacturer might intend to keep as a secret.
The presented blockchain ledger, however, is at odds with
confidentiality because every application has access to every
transaction. For the sake of confidentiality, we want to pro-
hibit an application from observing the internal transactions
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of other applications. To achieve this, in CAPER, the en-
tire blockchain ledger is not maintained by any application.
In fact, each application only maintains its own view of the
blockchain ledger that includes its internal transactions and
all the cross-application transactions. The blockchain ledger
is indeed the union of all these physical views.
Fig. 2(b)-(e) show the views of the blockchain ledger for

applications α1, α2, α3, and α4 respectively where each ap-
plication maintains only the part of the ledger consisting of
its internal and all the cross-application transactions.

3.3 Application Deployment on a Blockchain
Each application in CAPER, in addition to the datastore

and its view of the blockchain ledger, maintains a “private
smart contract” to implement the application logic, and a
“public smart contract” to implement the logic of cross-
application transactions.
A smart contract, as exemplified by Ethereum [3], is a

computer program that self-executes once it is established
and deployed. Smart contracts are similar to database trig-
gers where the logic of the contract is triggered to be ex-
ecuted once some conditions or terms are met. It has the
advantages of being updated in real-time, ensuring accurate
execution, and requiring little human intervention. A smart
contract can also handle automatic conditional payments
from escrow. When a payment function is triggered, the
smart contract automatically checks the defined conditions,
and transfers the money according to the defined rules [51].
Each application in CAPER has its own private smart

contract which includes the logic of the internal transactions.
In addition, a public smart contract is written to include the
logic of cross-application transactions which is determined
by the service level agreements between the applications.
As discussed in Section 2, to execute a collaborative pro-
cess, participants agree on SLAs which are then written
in the public smart contracts. The public smart contract
runs on every application to check if the cross-application
transactions are conforming to the SLAs, and enforce the
conditions defined in the cross-application transactions. In
contrast to most existing blockchains where every smart con-
tract runs on all nodes, which is at odds with confidential-
ity, in CAPER, each private smart contract runs only on
its application. To support cross-application transactions,
however, the public smart contract runs on every applica-
tion. Furthermore, both private and public smart contracts
can be written in domain-specific languages, e.g., Solidity,
to ensure the deterministic execution of transactions.
In the Supply Chain scenario in Figure 1, each of the five

involving applications, i.e., Supplier, Manufacturer, Bulk
Buyer, Carrier, and Middleman, executes its internal trans-
actions following the application logic, which is implemen-
ted in its private smart contract. Once a cross-application
transaction is requested, e.g., the Bulk Buyer places an or-
der with the Manufacturer, every application executes and
appends the transaction to its view of the ledger. To execute
the cross-application transactions, the public smart contract
is used which includes the SLAs (that are agreed upon by
all applications). Hence, if the requested transaction does
not conform to the SLAs, it will be detected. For each cross-
application transaction the SLA defines several conditions to
check. SLA also includes actions for non-conforming trans-
actions, e.g., if the Carrier delivers the materials later than
agreed upon, it will be penalized as specified in the SLA or

if the delivered materials are something different from what
they agreed on, the transaction will be aborted.

4. THE CAPER ARCHITECTURE
CAPER consists of a set of nodes in an asynchronous

distributed system where each application runs on a (non-
empty) disjoint subset of nodes called the agents of the ap-
plication. We use N and A to denote the set of nodes and
applications. In addition, Nα indicates the set of agents of
application α ∈ A where for each pair of applications α1 and
α2 in A, Nα1 ∩Nα2 = ∅.
Nodes are connected by point-to-point bi-directional com-

munication channels. Network channels are pairwise au-
thenticated, which guarantees that a malicious node cannot
forge a message from a correct node, i.e., if node i receives
a message m in the incoming link from node j, then node j
must have sent message m to i beforehand.
Furthermore, messages may contain public-key signatures

and message digests [19]. A message digest is a numeric
representation of the contents of a message produced by
collision-resistant hash functions. Message digests are used
to detect changes and alterations to any part of the message.
We denote a messagem signed by replica r as 〈m〉σr and the
digest of a message m by D(m). For signature verification,
we assume that all machines have access to the public keys
of all other machines.
Nodes in CAPER might crash, behave maliciously, or be

reliable. In addition, we assume that applications do not
trust each other, thus we model application failures as Byz-
antine failures. In fact, we define two levels of behavior in
the system. First, at the node level, each agent might be
a crash-only, a Byzantine, or a reliable node. In a crash
failure model, nodes operate at arbitrary speed, may fail by
stopping, and may restart. Whereas, in a Byzantine failure
model, faulty nodes may exhibit arbitrary, potentially ma-
licious, behavior. A reliable node, on the other hand, never
fails. Second, at the application level, an application (as a
group of agents) might behave maliciously. Note that these
two levels of behavior are independent of each other. Thus,
even if the agents of an application are crash-only nodes, the
application might still behave maliciously.
Ordering the transactions within each application needs

consensus among the agents of the application. To estab-
lish consensus, asynchronous fault-tolerant protocols can be
used. Fault-tolerant protocols use the state machine rep-
lication algorithm [34] where nodes agree on an ordering of
incoming requests. The algorithm has to satisfy two main
properties, (1) safety: all correct nodes receive the same re-
quests in the same order, and (2) liveness: all correct client
requests are eventually ordered. Fischer et al. [24] show that
in an asynchronous system, where nodes can fail, consensus
has no solution that is both safe and live. Based on that
impossibility result, in most fault-tolerant protocols, safety
is satisfied without any synchrony assumption, however, a
synchrony assumption is considered to ensure liveness.
Crash fault-tolerant protocols guarantee safety in an asyn-

chronous network using 2f+1 nodes to overcome the sim-
ultaneous failure of any f nodes while in Byzantine fault-
tolerant protocols, 3f+1 nodes are usually needed to provide
the safety property in the presence of f malicious nodes.
We now briefly introduce Paxos [35] and PBFT [19] as two

well-known crash and Byzantine fault-tolerant protocols.
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In Paxos [35], which guarantees safety in an asynchronous
network using 2f+1 nodes, upon receiving a request from a
client, the primary (assuming it is already elected) initiates
a consensus protocol among the agents of the applications
by multicasting an accept message including the transac-
tion. Once an agent receives an accept message, it sends an
accepted message to the primary. The primary waits for f
accepted messages from different agents (plus itself becomes
f + 1), multicasts a commit message to all the agents, and
sends a reply to the client. Upon receiving a commit message
from the primary, each agent executes the transaction.
In the presence of malicious nodes, PBFT [19] can be used.

In PBFT, which guarantees safety in an asynchronous net-
work using 3f+1 nodes, during a normal case execution, a
client sends a request to the primary node, and the primary
multicasts a pre-prepare message to all agents. Then, during
the prepare and commit phases, all agents communicate to
each other to reach agreement and send responses back to
the client. Note that in Paxos only the primary sends the
reply message to the client whereas in PBFT every agent
sends the reply message and the client waits for f+1 match-
ing reply messages before accepting the result.
Paxos and PBFT can be used to establish consensus among

the agents of an application to order internal transactions.
To establish consensus for cross-application transactions, since
applications may not trust each other, a Byzantine fault-
tolerant protocol among applications is needed. To provide
both safety and liveness for consensus at the application
level, we assume that at most b |A|−1

3 c applications might
be malicious. As a result, to commit a cross-application
transaction, by a similar argument as in PBFT [19], at
least two-thirds (b 2|A|

3 c + 1) of the applications including
the initiator application of each cross-application transac-
tion must agree on the order of the transaction. We need
agreement from agents of the initiator application to ensure
that the cross-application transaction is consistent with the
internal transactions of the initiator application. The con-
formance between a cross-application transaction and the
SLAs is checked by every application during the execution
of the transaction, thus, if the initiator application initiates
a transaction that does not conform to the SLAs, it will be
detected by other applications during the execution.

5. LOCAL CONSENSUS IN CAPER
In this section, we show how internal transactions are

ordered and executed in CAPER. CAPER employs local
consensus within an application to order transactions where
the agents of an application, independent of other nodes in
the network, agree on the order of transactions.
The local consensus protocols in CAPER are pluggable.

Depending on the failure model of nodes (agents), the ap-
plication can use a crash fault-tolerant protocol, e.g., Paxos
[35], or a Byzantine fault-tolerant protocol, e.g., PBFT [18],
as the local consensus protocol. The application might not
even use a consensus protocol and rely on a single non-faulty
reliable node to order the transactions. The number of re-
quired agents is also determined by the protocol and the
maximum number of simultaneous failures in the network.
The local consensus protocol to order the internal trans-

actions of an application is initiated by one of the agents,
called the primary. The normal case operation for CAPER
to execute an internal transaction proceeds as follows. A

client c requests an internal transaction tx for an applica-
tion by sending a message 〈REQUEST, tx, τc, c〉σc to the agent
p of the application it believes to be the primary. Here, τc is
the client’s timestamp and the entire message is signed with
signature σc. The timestamps of clients are used to totally
order the requests of each client and to ensure exactly-once
semantics for the execution of client requests.
When the primary p receives a request from a client, it

first checks the signature to ensure it is valid, and then ini-
tiates a local consensus algorithm by multicasting a mes-
sage, e.g., accept message in Paxos or pre-prepare message in
PBFT, including the requested transaction to other agents.
To provide a total order between transactions, the primary
also includes H(t) in the message where H(.) denotes the
cryptographic hash function and t is the previous transac-
tion that is ordered by the application. If the transaction
has a data dependency to a cross-application transaction (as
discussed in Section 3.2), the primary includes the crypto-
graphic hash of the cross-application transaction as well.
The agents then establish agreement on a total order of

transactions using the utilized consensus protocol, execute
the transaction, and append it to the blockchain ledger.
Finally, either the primary or every agent node (depend-
ing on the local consensus protocol) sends a reply message
〈REPLY, τc, u〉σo to client c where tsc is the timestamp of the
corresponding request and u is the execution result.

6. GLOBAL CONSENSUS IN CAPER
In this section, we show how cross-application transac-

tions are ordered and executed in CAPER using global con-
sensus among applications. We introduce three ordering ap-
proaches for achieving global consensus in CAPER.
Ordering transactions using a disjoint set of nodes was

introduced by Hyperledger [10] to enhance the scalability of
the system and to add flexibility for implementing the con-
sensus protocol, i.e., different protocols can be used to estab-
lish consensus. Similarly, in the first approach of CAPER,
a disjoint set of nodes, called orderers, which are not the
agents of any application, are used to globally order cross-
application transactions. The global consensus protocol among
orderers is pluggable and depending on the specifications of
the system, a crash, a Byzantine, or any other fault-tolerant
protocol can be used.
In the absence of such orderer nodes, and in the second

approach, CAPER relies on the applications to order cross-
application transactions in a hierarchical way. To distin-
guish between trust at the node level and trust at the ap-
plication level, agreement is established in two levels: a local
level among the agents of each application, and a global level
among the applications of the system.
Although the second approach does not require a set of

orderers to order transactions, the hierarchical nature of the
algorithm, which needs local consensus within each applic-
ation for each step of global ordering, makes the protocol
expensive. In the third approach, similar to the second ap-
proach, the agents of all applications order cross-application
transactions, however, agreement is established in one level.
In all three approaches, when agreement is achieved, the

agents execute the transaction and append it to their local
views of the ledger. Note that if the transaction does not
follow the service level agreements, which are implemented
in the public smart contract, it will be detected during the
execution of the transaction (as discussed in Section 3.3).
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Algorithm 1 Global Consensus using Orderers
1: init():
2: r := node_id
3: O := the set of orderer nodes
4: p := the primary agent of the initiator application
5: o := the primary agent of the orderers

6: upon receiving m=〈REQUEST, tx, τc, c〉σc and (r == p):
7: if m is valid then
8: initiate local consensus
9: if agreement is achieved then
10: send 〈〈ORDER, hL, d, r〉σr ,m〉 to o . either primary or every

agent r of the initiator application

11: upon receiving valid 〈〈ORDER, hL, d, r〉σr ,m〉 from the sufficient
number of agents and node is the primary orderer o

12: initiate a global consensus among orderers O
13: if agreement is achieved then
14: multicast 〈SYNC, hL, hG, d, o〉σo ,m〉 . o or every orderer

15: upon receiving 〈SYNC, hL, hG, d, o〉σo ,m〉 from the primary or-
derer (or a sufficient number of orderers)

16: execute and append the transaction to the ledger

6.1 Global Consensus using a Separate Set of
Orderers

Using a separate set of nodes to order transactions adds
flexibility to the system by allowing the global consensus
implementation to be tailored to the trust assumption of a
particular deployment. In addition, since the orderers are
decoupled from the agents that execute transactions and
maintain the blockchain ledger, using orderers enhances the
scalability of the system.
In the first approach, CAPER orders the cross-application

transactions using a disjoint set of orderers O where for each
application α in A, O∩Nα = ∅. As discussed earlier, a cross-
application transaction is ordered locally among the trans-
actions that are initiated by the initiator application and
globally among all cross-application transactions, thus both
local and global orderings are needed. Since orderers are not
involved in the local consensus and application agents do not
participate in the global consensus, these two orderings are
separated from each other. As a result, cross-application
transactions are first, similar to the internal transactions,
ordered locally within each application using the applica-
tion consensus protocol and then ordered globally among all
cross-application transactions using orderers. Note that the
cross-application transactions are ordered first locally and
then globally to prevent the case where the agents of the
initiator application do not agree on the local order of a
transaction that has already been ordered globally. Once
orderers agree on the global order of the transaction, they
multicast the transaction to all the applications, thus, every
agent of every application executes and appends the trans-
action to its ledger.
The normal case operation of global consensus using or-

derers to execute a cross-application transaction is presented
in Algorithm 1. Although not explicitly mentioned, every
sent and received message is logged by the nodes. As in-
dicated in lines 1-5 of the algorithm, nodes p and o are the
primary agent of the initiator application and the primary
orderer respectively and O is the set of orderers.
As shown in lines 6-10 of the algorithm, when primary

agent p receives a valid request 〈REQUEST, tx, τc, c〉σc from an
authorized client c (with timestamp τc) to execute a cross-
application transaction tx, it initiates the local consensus

Figure 3: Global Consensus using a Set of Orderers

protocol to establish agreement on the order of the cross-
application transaction among all transactions that are ini-
tiated by the application. Once agreement is achieved, de-
pending on the local consensus protocol, either the primary
or every agent r of the initiator application sends a signed
order message 〈〈ORDER, hL, d, r〉σr ,m〉 including the client’s
request message m to the primary orderer node where d is
m’s digest and hL = H(t) where t is the previous transaction
that is ordered by the application. Note that hL is included
in the order messages to let orderers know that the agents of
the application agree on the local order of the transaction.
When the order message is sent to the primary orderer,

the primary of the application waits for the corresponding
reply (sync) message from the orderers before initiating any
other transactions. In addition, when local agreement is es-
tablished, nodes wait for global agreement before appending
the transaction to the blockchain ledger.
As shown in lines 11-14, once primary orderer o receives

a sufficient number (determined by the local consensus pro-
tocol of the initiator application, i.e., 1 for crash fault-tolerant
and f + 1 for Byzantine fault-tolerant) of valid matching or-
der messages (with valid signature, matching hL, and match-
ing message digest), primary orderer o initiates the (global)
consensus protocol by multicasting the transaction to other
orderers to establish a total order on cross-application trans-
actions. Once the orderers reach agreement on the order of
the transaction, depending on the global consensus protocol,
either the primary or every orderer node o multicasts a sync
message 〈SYNC, hL, hG, d, o〉σo ,m〉 to all the agent of every
application where d is the digest of m, hL is copied from
order message of the initiator application, and hG = H(t)
such that t is the previous cross-application transaction.
Upon receiving a sync message, the agents of each ap-

plication log the message. Once an agent receives a suf-
ficient number of matching sync messages (determined by
the utilized global consensus protocol), the agent executes
the transaction and appends the transaction to its block-
chain ledger (as can be seen in lines 15 and 16). Note that
the agents of the initiator application consider both hL and
hG hashes to append the transaction to the ledger while
the agents of the other applications only consider the hash
of the previous cross-application transaction (hG). Finally,
depending on the utilized local consensus protocol, either
the primary or every agent node r of the initiator applica-
tion sends a reply message 〈REPLY, τc, u〉σr to client c where
tsc is the timestamp of the corresponding request and u is
the result of executing the request.
The flow of cross-application transactions using a set of

orderers in a blockchain consisting of four applications α1,
α2, α3, and α4 can be seen in Figure 3. Here application α1
initiates the cross-application transaction. In addition, o1,
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Algorithm 2 Hierarchical Global Consensus
1: init():
2: r := node_id
3: α := the application that initiates the consensus
4: P := the set of primary agents of all applications
5: p := the primary of α

6: upon receiving transaction m and (r == p)
7: if m is valid then
8: multicast 〈〈PROPOSE, hL, hG, d〉σp ,m〉 to P

9: if (r == p) OR (upon receiving 〈〈PROPOSE, hL, hG, d〉σp ,m〉 from
initiator primary p and r ∈ P )

10: initiate local consensus
11: if agreement is achieved then
12: multicast 〈ACCEPT, hL, hG, d, r〉σr to P . r or all agents

13: upon receiving matching 〈ACCEPT, hL, hG, d, q〉σq from two-
thirds of the applications including α and r ∈ P

14: initiate a local consensus
15: if agreement is achieved then
16: multicast 〈COMMIT, hL, hG, d, r〉σr . either r or all agents

17: upon receiving matching 〈COMMIT, hL, hG, d, r〉σr from two-
thirds of the applications including α

18: execute and append the transaction to the ledger

o2, and o3 are the orderer nodes. Upon receiving a cross-
application transaction from a client, the primary node n1
of α1 validates the transaction and similar to internal trans-
actions, initiates a local consensus algorithm to order the
transaction within the application. Once the transaction is
internally ordered, an order message is sent to the primary
orderer node. The orderers use a global consensus protocol,
e.g., a crash fault-tolerant protocol with f = 1 in Figure 3,
to agree on the global order of the transaction and then since
here the orderers are crash-only nodes, the primary orderer
(node o1) multicasts sync messages including the transaction
to every agent of every application. Each agent then valid-
ates the transaction, executes the transaction, and appends
it to the ledger.
Safety and Liveness. Since the global ordering protocol
is pluggable, its safety and liveness are implied due to Paxos
[35] and PBFT [19]. The order of cross-application trans-
actions on different applications is unique because cross-
application transactions are ordered sequentially by orderers
and the agents of every application follows the order that is
provided by orderers. Note that if the agents of an applica-
tion do not follow the provided order, the application might
not be able to initiate cross-application transactions in the
future (since the initiated transactions might not conform
to SLAs). To ensure a total order between transactions that
are initiated by the same application, once the primary of
an application sends a cross-application transaction to be
ordered by the orderers, the primary stops initiating any
other transactions and waits for the reply from the orderers.

6.2 Hierarchical Global Consensus
While using a separate set of orderer nodes makes the

agreement routine simple and modular, it comes with an
extra cost of adding orderers to the system. In the absence
of such orderer nodes, reaching consensus on the order of the
cross-application transactions needs the participation of all
applications. To distinguish between trust at the node level
and trust at the application level, CAPER uses an asyn-
chronous Byzantine fault-tolerant protocol for the global
consensus where for each cross-application transaction and

Figure 4: Hierarchical Global Consensus

in each phase of the global consensus, every application runs
its local consensus protocol between its agents to internally
decide on the application vote in that phase.
In addition, since the agents of the initiator application

participate in the global consensus, in contrast to the first
approach, the local and global orderings are merged to-
gether. However for each step of the global ordering the
protocol ensures that the initiator application agrees with
the ordering. Hence the transaction is ordered correctly
with respect to the transactions that are initiated by the
initiator application.
Furthermore, in each step of the global ordering and within

each application, once agreement is established, depending
on the utilized local consensus protocol, either the primary,
e.g., in Paxos, or every agent, e.g., in PBFT, sends the vote
to other applications.
Algorithm 2 presents the hierarchical global consensus.

Same as before, every sent and received message is logged
by the agents. As presented in lines 1-5 of the algorithm, P
is the set of primary agents of all applications and p is the
primary agent of the initiator application α.
Once the primary agent p of the initiator application re-

ceives a valid cross-application transaction, as indicated in
lines 6-8, it multicasts a signed 〈〈PROPOSE, hL, hG, d〉σp ,m〉
message to the primary agents of every application where
d is the digest of m, hL = H(t) such that t is the pre-
vious transaction that is initiated by the application, and
hG = H(t′) such that t′ is the previous cross-application
transaction. Note that hash hL is only used by the agents
of the initiator application to ensure that the new trans-
action is ordered correctly with respect to the transactions
that are initiated by the application. The agents of the other
applications ignore hL.
As can be seen in lines 9-12, upon receiving a propose mes-

sage from an application, the primary agent of every applic-
ation checks the signature, hash hG, and message digest to
ensure the message is valid. Then, every primary agent (in-
cluding the primary of the initiator application) internally
initiates the local consensus protocol to establish agreement
on the order of the requested transaction. If agreement is
achieved, depending on the utilized local consensus protocol,
either the primary or every agent multicasts an accept mes-
sage to the primary agents of all other applications. Note
that local consensus is needed to ensures that non-faulty
agents agree with the received propose message. Hence, if
agreement achieved, they just log the messages and do not
append the transaction to their copies of the ledger.
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Algorithm 3 One-Level Global Consensus
1: init():
2: r := node_id
3: α := the application that initiates the consensus
4: p := the primary agent of α

5: upon receiving transaction m and (r == p)
6: if m is valid then
7: broadcast 〈〈PROPOSE, hL, hG, d〉σp ,m〉 to every agents

8: upon receiving 〈〈PROPOSE, hL, hG, d〉σp ,m〉 from primary p
9: if the message is valid then
10: broadcast 〈ACCEPT, hL, hG, d, r〉σr

11: upon receiving matching 〈ACCEPT, hL, hG, d, r〉σr from local-
majority of two-thirds of the applications including α

12: if the message is valid then
13: broadcast 〈COMMIT, hL, hG, d, r〉σr

14: upon receiving matching 〈COMMIT, hL, hG, d, r〉σr from local-
majority of two-thirds of the applications including α

15: execute and append the transaction to the ledger

As shown in lines 13-16, each application waits for valid
accept messages from two-thirds of the applications includ-
ing the initiator application which are matched with the
accept message that is sent by the application. Note that a
valid accept message from initiator application is needed to
ensure that the transaction is consistent with the transac-
tions that are initiated by that application. Upon receiving
a sufficient number of accept messages, the primary agent
of each application initiates the local consensus protocol to
establish agreement on the received accept messages. Once
agreement is achieved, the application (either the primary
or every agent) multicasts a commit message to every agent
of all other applications.
The propose and accept phases of the global consensus,

similar to pre-prepare and prepare phases of PBFT [19],
guarantee that non-malicious applications agree on a total
order for the transactions. Indeed, they ensure that no fork
happens in the blockchain, i.e., it is not possible to have
two different transactions with the same hash hG. This is
true because at least two-thirds (b 2|A|

3 c + 1) of the applic-
ations agreed with the order of each transactions, thus any
two quorums of applications intersect in at least b |A|−1

3 c+ 1
applications. Since at most b |A|−1

3 c applications might be
malicious, there is at least one non-malicious application in
the intersection of any two quorums.
Finally, in lines 17 and 18, similar to the previous phase,

if an application receives matching commit messages from
two-thirds of the applications including the initiator one that
match the application’s commit message, its agents execute
the transaction and append it to their ledgers.
Figure 4 shows the hierarchical consensus with four ap-

plications (similar to Figure 3) where applications α1 and
α3 use a crash fault-tolerant (CFT) protocol and applica-
tion α2 uses a Byzantine-fault-tolerant (BFT) protocol as
their local consensus protocol. Here, the primary of applic-
ation α1 initiates the consensus.
As an optimization, for a system with a high percentage of

cross-application transactions and to prevent the initiation
of concurrent cross-application transactions, the primary
node of one of the applications can be designated as a super
primary where every application sends its cross-application
transaction to the super primary and the super primary ini-
tiates the protocol.

Figure 5: One-level Global Consensus

Safety and Liveness. In the hierarchical consensus, as
discussed earlier, since at least b 2|A|

3 c + 1 of the applica-
tions must agree with the order of a transaction and at most
b |A|−1

3 c applications might be malicious, safety is ensured.
Indeed, if two or more concurrent transactions are initiated,
at most one of them collects the required number of mes-
sages (two-thirds of the applications) , i.e., it is not possible
for more than one of them to be ordered with the same hash
hG. If none of the concurrent transactions collects enough
votes, all initiator applications try to send their transactions
again. In such a situation and to ensure liveness, CAPER
assigns a timer to each transaction and delays the transac-
tions to prevent concurrent re-initiation of the transactions.

6.3 One-Level Global Consensus
While hierarchical consensus eliminates the need for hav-

ing an extra set of orderer nodes and also distinguishes
between trust at the node level and trust at the application
level, it requires an expensive two-level consensus protocol
where each step of the global consensus needs the entire local
consensus protocol to be run within each application. In this
section, we introduce a one-level global consensus protocol
where for each cross-application transaction, the agents of
all applications participate to achieve consensus on the order
of the transaction.
Since the number of agents of each application depends

on the utilized consensus protocol within the application,
the required number of matching replies to ensure that the
majority of agents of an application agree on the order of
the transaction is different from application to application.
Therefore, we define local-majority as the required number of
matching messages from the agents of an application. If the
agents of an application are crash-only nodes, local-majority
for the application is equal to f + 1 (from the total 2f + 1
agents), and if the agents of an application might behave
maliciously, local-majority for the application is equal to
2f + 1 (from the total 3f + 1 agents). For an application
that has only a single reliable agent, local-majority is one.
Algorithm 3 presents the one-level global consensus. Vari-

able p indicates the primary agent of the initiator applica-
tion α. As shown in lines 5-7, the primary of the initiator
application broadcasts a signed propose message including
the transaction, the hash of the previous transaction that is
initiated by the application (hL), and the hash of the previ-
ous cross-application transaction (hG) to the agents of every
application. Same as before, hL is only used by the agents
of the initiator application.
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Figure 6: Throughput/Latency Measurement by Increasing the percentage of Cross-application Transactions

Once an agent receives a propose message, it checks the
signature, message digest, and hash hG to ensure the mes-
sage is valid. If the agent belongs to the initiator application,
it also checks hash hL. Once the message is validated, the
agent broadcasts an accept message to every agent of every
application, as indicated in lines 8-10.
As presented in lines 11-13, upon receiving valid accept

messages from the local-majority of two-thirds of the ap-
plications including the initiator application that match the
accept message which is sent by the agent, each agent broad-
casts a commit message to every agent of every application.
The propose and accept phases of the algorithm, similar to
pre-prepare and prepare phases of PBFT [19], guarantee
that non-faulty agents agree on a order for the transactions.
Finally, as shown in lines 14 and 15, once an agent re-

ceives valid commit messages from local-majority of two-
thirds of the applications including the initiator application
that matches its commit message, the agent considers the
transaction as committed, thus, executes the transaction
and appends the transaction to the ledger.
Figure 5 shows the one-level consensus in CAPER for four

applications with different failure modes.

Safety and Liveness. To ensure safety in one-level con-
sensus, in each of the accept and commit phases, matching
messages from the local majority of two-thirds of the ap-
plication is required. Local majority of each application is
needed to ensure that any two quorums intersect in at least
one non-faulty node within the application and two-thirds of
the applications is needed to ensure that any two quorums
intersect in at least one non-malicious application (since at
most b |A|−1

3 c applications might be malicious). To ensure
liveness, similar to the hierarchical consensus, CAPER as-
signs timers to delay concurrent transactions and also as an
optimization uses a super primary for systems with a high
percentage of cross-application transactions.

7. EXPERIMENTAL EVALUATIONS
In this section, we conduct several experiments to evalu-

ate CAPER. As explained earlier, CAPER consists of a set
of collaborating distributed applications where each applic-
ation maintains its data in a datastore consisting of private
and public records. The private records of the datastore,
which are replicated across the agents of application, in-
clude the data of internal transactions. The public records,
on the other hand, are replicated across every agent of every
application and include the data of cross-application trans-
actions. For the purpose of this evaluation, applications are

implemented as simple accounting applications where clients
can initiate transactions to transfer assets from one or more
of their accounts to other accounts.
In addition to CAPER, we also implemented a permis-

sioned blockchain system specifically designed in the execute-
order-validate architecture introduced by Fabric [10] where
the transactions (internal as well as cross-application) of dif-
ferent applications are executed by the agents (endorsers)
of their applications in parallel, ordered by a separate set
of orderers, and then validated by every agent of every ap-
plication. Each block also consists of a single transaction
(as in [28]). Note that in the case of Fabric, all internal as
well as cross-application transactions are ordered by order-
ers and all the applications maintain the same blockchain
ledger (i.e., the confidentiality of data is not preserved).
The experiments are conducted on the Amazon EC2 plat-

form. Each VM is Compute Optimized c4.2xlarge instance
with 8 vCPUs and 15GB RAM, Intel Xeon E5-2666 v3 pro-
cessor clocked at 3.50 GHz. In each experiment, we increase
the total number of transactions per second from 100 to
100000 (by increasing the number of clients running on a
single VM) and measure the end-to-end throughput (x-axis)
and latency (y-axis) of the system. The load is equally dis-
tributed among the applications.

7.1 Workloads with Cross-Application trans-
actions

In the first set of experiments, we measure the perform-
ance of CAPER for workloads with different percentage of
cross-application transactions, i.e., 0%, 20%, 80%, and 100%.
We consider four applications where each application has
three agents and uses a Paxos protocol with f = 1 to estab-
lish consensus on its internal transactions. To process cross-
application transactions we implement all three approaches,
using a set of orderers (we refer to this approach as or-
derers), hierarchical, and one-level, which are explained in
Section 6. Orderers are implemented using a typical Kafka
orderer setup with 3 ZooKeeper nodes, 4 Kafka brokers and
3 orderers (similar to the ordering service of Fabric [10]).
The results are shown in Figure 6(a)-(d).
When all transactions are internal (Figure 6(a)), each ap-

plication processes its transactions independent of other ap-
plications. In such a situation, CAPER is able to process
upto 36000 transactions (9000 transactions per application)
with very low latency (∼10 ms). Here, since there is no de-
pendency between the transactions of different applications
and the blockchain views of applications are constructed in
parallel, the throughput of the entire system increases lin-
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early by increasing the number of applications. With the
same latency as CAPER (∼10 ms), Fabric processes 3000
transactions. Fabric is able to process upto 7000 transac-
tions in total with 40 ms latency, however, the end-to-end
throughput is saturated beyond 7000 transactions. In Fab-
ric, adding more applications only increases the number of
parallel execution threads and since every transaction of all
applications is ordered by the same set of orderers, the per-
formance of Fabric is not significantly improved. Note that
since all transactions are internal, if Fabric uses different
channels for different applications, it can linearly scale as
the number of applications increases. However, even with
that improvement, CAPER still provides higher throughput
(∼29% higher in its peak throughput).
In the second set of experiments, the workload is changed

to include 20% cross-application transactions which are equally
initiated by different applications. As can be seen in Fig-
ure 6(b), when CAPER is not heavily loaded, the one-level
consensus approach has better performance since it involves
less number of communication phases. As can be seen, the
one-level approach processes ∼16000 transactions with 90
ms latency whereas the hierarchical and orderers approaches
have latencies of 220 and 150 ms latency respectively in or-
der to process the same number of transactions.
Once CAPER becomes heavily loaded, cross-application

transactions might be initiated in parallel. As a result, the
latencies of the hierarchical and one-level approaches are
dramatically increased (as discussed in Section 6). With
400 ms latency, using orderers, CAPER is able to process
30000 transactions whereas the one-level and hierarchical
approaches process 18000 and 19000 transactions (resp.).
The performance of Fabric, however, is not affected by

increasing the percentage of cross-application transactions
(since all transactions are ordered by the same set of or-
derers) and Fabric still processes upto 7000 transactions in
total with 40 ms latency.
Increasing the percentage of cross-application transactions

to 80% (Figure 6(c)) decreases the performance of all three
approaches. In this case, using orderers, CAPER is able to
process∼10000 transaction with sub-second latency whereas
the hierarchical and one-level approaches process upto 6000
transactions with the same latency. This is expected be-
cause in the hierarchical and one-level approaches when the
system is heavily loaded, different nodes receive concurrent
transactions in different orders.
When all transactions are cross-application, the one-level

consensus can only process ∼4000 transactions per second
with 800 ms latency whereas using the orderers, CAPER is
able to process ∼9000 transactions with the same latency.
Fabric, same as before, is able to process upto 7000 transac-
tions in total with 40 ms latency which is better than both
hierarchical and one-level approaches.
As mentioned before, since Fabric orders all internal as

well as cross-application transactions by the same set of or-
derers, the performance of Fabric is not affected by increas-
ing the percentage of cross-application transactions. As a
result, in workloads with 80% and 100% cross-application
transactions, Fabric performs better than all other approaches
in terms of latency. In fact, for cross-application transac-
tions and to achieve consensus, CAPER uses either mul-
tiple rounds of consensus (in the orderers and hierarchical
approaches) or a Byzantine fault-tolerant protocol with a
large number of participants (in the one-level approach).
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Figure 7: Performance with 4 and 8 Applications

This is in contrast to Fabric that relies on a single crash
fault-tolerant protocol (with only three nodes) to order the
transactions which results in a lower latency. However, Fab-
ric does not ensure confidentiality of data in this settings.
Note that even with 100% cross-application transactions,

the throughput of CAPER using the orderers approach is
slightly higher than Fabric (9% higher in its peak through-
put) because the throughput of Fabric is affected by con-
flicting transactions, i.e., transactions that access the same
records, due to its execute-order-validate architecture [9] (in
the experiments, ∼10% of the transactions are conflicting).

7.2 Performance with Multiple Applications
In the next set of experiments, we measure the perform-

ance of CAPER in two deployments with 4 and 8 applic-
ations where each application has three agents and uses a
Paxos protocol with f = 1 to establish consensus on its in-
ternal transactions. For each deployment, we consider work-
loads with 90% internal and 10% cross-application transac-
tions (the typical settings in partitioned databases [50] [48]).
For the deployment with four applications (Figure 7(a)),

the performance of CAPER is close to the scenario in Fig-
ure 6(b) where in the workloads with less than∼20000 trans-
actions per second, the one-level consensus has better per-
formance and beyond that, using orderers is more beneficial.
Increasing the number of applications (Figure 7(b)), how-
ever, results in higher latency for the same throughput in
both one-level and hierarchical consensus due to the increas-
ing number of nodes which increases the chance of conflict
between concurrent transactions. Note that since 90% of
the transactions are internal, increasing the number of ap-
plications improves the overall throughput of CAPER near-
linearly (using orderers, CAPER processes upto ∼32000 and
∼59000 transactions per second with four and eight applic-
ations (respectively) with 30 ms latency). As mentioned
earlier, in Fabric, increasing the number of applications does
not significantly improve the performance.

8. RELATED WORK
Most existing permissioned blockchain systems follow the

order-execute architecture and differ mainly in their order-
ing routines. The ordering protocol of Tendermint [32] is
different from the original PBFT in two ways. First, only
a subset of nodes participate in the consensus protocol and
second, the leader is changed after the construction of every
block (leader rotation). Quorum [20], as an Ethereum-based
[3] permissioned blockchain, introduces a consensus protocol
based on Raft [41], a well-known crash fault-tolerant pro-
tocol. Quorum, similar to CAPER, supports public and
private transactions, however, in Quorum, both public and

1395



private transactions are ordered using the same consensus
protocol which results in lower throughput in comparison to
CAPER. Quorum also uses cryptography techniques to en-
sure confidentiality of private transactions. Chain Core [1],
Multichain [26], Hyperledger Iroha [5], and Corda [2] are
some other prominent permissioned blockchains that utilize
order-execute architecture.
Fabric [10], as a permissioned blockchain, introduces the

execute-order-validate architecture and leverages parallel-
ism by executing the transactions of different applications
simultaneously. Fabric presents modular design, pluggable
fault-tolerant protocol, policy-based endorsement, and non-
deterministic execution for the first time in the context of
permissioned blockchains. In a recent release, Fabric also
utilizes the Raft protocol [41] for its ordering service where a
leader node is elected (per channel) and replicates messages
to the followers. Raft mainly helps organizations to have
their own ordering nodes, participating in the ordering ser-
vice, which leads to a more decentralized system. CAPER
utilizes some of the Fabric properties such as modular design
and pluggable protocol. In addition, and in contrast to
single-channel Fabric, CAPER constructs blocks simultan-
eously and ensures the confidentiality of both transaction
data and ledger, whereas Fabric ensures only transaction
data confidentiality using Private Data Collections [7].
Applications deployed on the same or different blockchains

need to communicate with each other in order to exchange
assets or information. Atomic cross-chain swaps [27] are
used for trading assets on two unrelated blockchains. Atomic
swaps use hash-lock and time-lock mechanisms to either per-
form all or none of a cryptographically linked set of transac-
tions. Interledger protocols (ILPV [49]) which are presented
by the World Wide Web Consortium (W3C) use a general-
ization of atomic swaps and enable secure transfers between
two blockchain ledgers using escrow transactions. Since the
redemption of an escrow transaction needs fulfillment of all
the terms of an agreement, the transfer is atomic. Lightning
network [39] [43] also generalizes atomic swap to transfer
assets between two different clients via a network of micro-
payment channels. Blocknet [22], BTC [16], Xclaim [53],
POA Bridge [6] (designed specifically for Ethereum), Wan-
chain [8], and Fusion [4] are some other blockchain systems
that allow users to transfer assets between two chains.
Fabric also addresses atomic cross-chain swap between

permissioned blockchains that are deployed on different chan-
nels by either assuming the existence of a trusted channel
among the participants or using an atomic commit pro-
tocol [11] [10]. CAPER is different from Fabric in two ways:
First, cross-chain communications follow the service level
agreements and are visible to everyone, and second, CAPER
does not need a trusted channel among the participants.
Using sidechain is proposed in [13] to transfer assets from

a main blockchain to the sidechain(s) and execute some
transactions in the sidechain(s). Sidechains can reduce con-
firmation time, support more functionality than the main
blockchain, and reduce the transaction cost. In sidechains,
a set of known nodes, called functionaries, are responsible
for moving the assets back from the sidechain to the main
chain. Liquid [23], Plasma [42], Sidechains [25], and RSK
[37] are some other blockchain systems that use sidechains.
Polkadot [52] and Cosmos [33] also construct a main chain
which is used by a set of (side) blockchains, i.e., parachains
in Polkadot and zones in Cosmos, to exchange value or in-

formation. Both Polkadot and Cosmos rely on Byzantine
consensus protocols in both sender and receiver sides.
Our work is also related to blockchain systems with Direc-

ted acyclic graph structure. Byteball [21] and Iota [44] are
two DAG structured permissionless blockchains. In Byte-
ball, a set of privileged users, called witnesses, determines a
total order on the DAG to prevent double spending, whereas,
in Iota [44], the number of descendant transactions is used
to commit a transaction and abort the other one. In Iota,
the blockchain, called Tangle, grows in more than one dir-
ection. Indeed, once a user issues a transaction, the user
must pick two existing transactions and approve them (res-
ults in adding edges from the new transaction to the existing
ones). The user will also solve a small PoW puzzle similar to
Bitcoin. Hashgraph [14] is another DAG structured permis-
sioned blockchain that combines a voting algorithm with a
gossip protocol to achieve consensus among nodes. In Hash-
graph nodes submit transactions (events) and gossip about
transactions by randomly choosing other nodes (neighbors).
Each transaction in Hashgraph includes the hash of the pre-
vious transactions of both sender and receiver. This process
continues until convergence when all nodes become aware
of all transactions. Hashgraph, in contrast to CAPER, does
not distinguish between internal and cross-application trans-
actions which results in lower performance as well as con-
fidentiality issues. Vegvisir [30], Ghost [46], Inclusive pro-
tocol [38], DagCoin [36], Phantom [47], Spectre [45], and
MeshCash [15] are some other DAG structured blockchain
systems. In CAPER, in contrast to all these blockchains,
internal transactions of different applications are added in-
dependent of each others and only cross-application transac-
tions need a global consensus. As a result, first, the double
spending problem never occurs, and second, internal trans-
actions can be processed simultaneously, which results in
lower latency and higher throughput.

9. CONCLUSION
In this paper, we proposed CAPER, a permissioned block-

chain system that supports both internal and cross-application
transactions of collaborating distributed applications. CAPER
targets both performance and confidentiality aspects of block-
chain systems. To achieve better performance, CAPER or-
ders and executes internal transactions of different applica-
tions simultaneously. In addition, to achieve confidentiality,
the blockchain ledger is not maintained by any node and
each application maintains its own local view of the ledger
including its internal and all cross-application transactions.
CAPER also distinguishes between trust at the node level
and trust at the application level and allows an application
to behave maliciously for its benefit while its nodes are non-
malicious. Furthermore, CAPER introduces three consensus
protocols to globally order cross-application transactions:
using a separate set of orderers, hierarchical consensus, and
one-level consensus. Our experiments show that for lightly
loaded applications one-level consensus shows better per-
formance whereas using a set of orderers is more beneficial
for heavily loaded applications. In the absence of extra re-
sources for orderers, the hierarchical approach can provide
better performance in heavily loaded applications.
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