
PrivateSQL: A Differentially Private SQL Query Engine

Ios Kotsogiannis‡, Yuchao Tao‡, Xi He⊕, Maryam Fanaeepour‡
Ashwin Machanavajjhala‡, Michael Hay†, Gerome Miklau?

‡ Duke University, ⊕ University of Waterloo, † Colgate University, ? University of Massachusetts, Amherst
{iosk, yctao, maryam, ashwin}@cs.duke.edu, xihe@uwaterloo.ca, mhay@colgate.edu, miklau@cs.umass.edu

ABSTRACT
Differential privacy is considered a de facto standard for pri-
vate data analysis. However, the definition and much of the
supporting literature applies to flat tables. While there ex-
ist variants of the definition and specialized algorithms for
specific types of relational data (e.g. graphs), there isn’t a
general privacy definition for multi-relational schemas with
constraints, and no system that permits accurate differen-
tially private answering of SQL queries while imposing a
fixed privacy budget across all queries posed by the analyst.
This work presents PrivateSQL, a first-of-its-kind end-

to-end differentially private relational database system. Pri-
vateSQL allows an analyst to query data stored in a stan-
dard database management system using a rich class of SQL
counting queries. PrivateSQL adopts a novel generaliza-
tion of differential privacy to multi-relational data that takes
into account constraints in the schema like foreign keys,
and allows the data owner to flexibly specify entities in the
schema that need privacy. PrivateSQL ensures a fixed pri-
vacy loss across all the queries posed by the analyst by an-
swering queries on private synopses generated from several
views over the base relation that are tuned to have low er-
ror on a representative query workload. We experimentally
evaluate PrivateSQL on a real-world dataset and a work-
load of more than 3, 600 queries. We show that for 50% of
the queries PrivateSQL offers at least 1, 000× better error
rates than solutions adapted from prior work.
PVLDB Reference Format:
Ios Kotsogiannis, Yuchao Tao, He Xi, Maryam Fanaeepour, Ash-
win Machanavajjhala, Michael Hay, Gerome Miklau. PrivateSQL:
A Differentially Private SQL Query Engine. PVLDB, 12(11):
1371-1384, 2019.
DOI: https://doi.org/10.14778/3342263.3342274

1. INTRODUCTION
Differential privacy is widely accepted in academia as the

gold standard for private data analysis. An algorithm is dif-
ferentially private if its output does not change significantly
due to input changes. This ensures privacy when changes in

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 12, No. 11
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3342263.3342274

the input correspond to adding or removing an individual’s
data and privacy is quantified by a parameter ε, called the
privacy loss budget. Differential privacy is typically achieved
by carefully injecting noise into the outputs. Recently, we
have seen several real-world deployments at Google [8, 16],
Apple [11], and the US Census Bureau [2,19,30].
Despite the academic success and growing adoption, it is

still extremely hard for non-experts to use differential pri-
vacy. In particular, it is difficult to correctly define the
privacy semantics as well as to design an algorithm which,
given a fixed privacy budget and privacy semantics, offers
the greatest accuracy for a task. Hence, each of the afore-
mentioned deployments has required a team of privacy ex-
perts to design accurate algorithms that satisfy the privacy
definition appropriate for the data.
The algorithm design challenges are compounded when

the input data are relational and have multiple tables. First,
relational databases capture multiple entities and privacy
can be defined at multiple resolutions. For instance, in a re-
lational schema involving persons and households, one could
imagine two privacy policies – one hiding the presence of a
single person record and another hiding the presence of a
household record. The algorithms achieving the highest ac-
curacy for each of the policies are different, and there is no
known system that can automatically suggest an accurate
differentially private mechanism given such privacy policies.
Second, there are no known algorithms for accurately an-

swering complex queries over relational databases involving
joins, groupby and correlated subqueries. Algorithms are
known for accurately answering special classes of queries like
statistical queries (e.g., histograms, CDFs, marginals on a
single table) [7,20,34,35,37,40], sub-graph queries (e.g., tri-
angle counting, degree distribution) [10, 12, 21, 25, 26], and
monotone queries (e.g., counts on joins) [9]. The closest
competitor to our work in terms of query expressivity is
Flex [24], which only offers support for specific and limited
privacy semantics that do not necessarily translate to real-
world policies. Flex does not support queries that have
correlated subqueries or subqueries with groupby opera-
tions (e.g. it cannot support degree distribution queries).
Third, there are no known algorithms for accurately an-

swering sets of complex queries under a common privacy
budget. Sophisticated algorithms are known for answering
sets of statistical queries on a single table [27]. Such mecha-
nisms do not exist for graphs and SQL queries, and all prior
work only optimizes error for single queries.
Our vision is to lower the barrier to entry for non-experts

by building a differentially private relational database that

1371



(a) supports privacy policies on realistic relational schemas
with multiple tables, (b) allows analysts to declaratively
query the database via aggregate queries involving standard
SQL operators like joins, groupby and correlated sub-
queries, (c) automatically designs a strategy with low error
tuned to the privacy policy and analyst queries, and (d) en-
sures differential privacy with a fixed privacy budget over all
queries posed to the system. While there is a growing line of
work on privacy oriented programming frameworks [32, 38]
that share the goal of helping non-experts, none of these
support relational data and declarative query answering; an-
alysts must write differentially private programs themselves.
Our contributions are as follows:
• PrivateSQL is a first of its kind end-to-end differen-

tially private relational database system. PrivateSQL
exposes a differentially private SQL query answering in-
terface to analysts. PrivateSQL accurately answers
SQL queries while imposing a fixed privacy budget across
all queries posed by the analyst.
• PrivateSQL allows privacy to be specified at multiple

resolutions using a novel generalization of differential pri-
vacy for multi-relational databases with constraints. Our
generalization captures popular variants of differential
privacy that apply to specialized examples of relational
data (like Node- and Edge-DP for graphs).
• PrivateSQL employs a new methodology for answer-

ing complex SQL counting queries under a fixed privacy
budget. Our algorithm identifies a set of views over base
relations that support common analyst queries and then
generates differentially private synopses from each view.
Queries posed to the database are rewritten as linear
counting queries over a view and answered using only
the private synopsis corresponding to that view, result-
ing in no additional privacy loss.
• Using a variety of novel techniques like policy-aware re-

writing, truncation, and constraint-oblivious sensitivity
analysis, PrivateSQL ensures that the private synopses
generated from views provably ensure privacy as per the
data owner’s privacy policy, and have high accuracy.
• We evaluate PrivateSQL on use cases inspired by the

U.S. Census data releases and the TPC-H benchmark.
On a workload of>3,600 real world SQL counting queries
inspired by the Census and ε = 1, 50% of our queries
incurred < 6% relative error. In comparison, a system
that uses the state-of-the-art Flex [24] incurs > 100%
error for over 65% of the queries; i.e., Flex has worse
error for these queries than a trivial baseline method that
returns 0 for every answer (see Fig. 9b).

2. OVERVIEW
PrivateSQL is designed to meet three central goals:
• Workloads: The system should answer a workload of

queries with bounded privacy loss.
• Complex Queries: Each query in the workload can be a

complex SQL expression over multiple relations.
• Multi-resolution Privacy : The system should allow the

data owner to specify which entities in the database re-
quire protection.

In this section, we outline key ideas that enable PrivateSQL
to support these goals and describe the system architecture.

2.1 Key Ideas
Prior work [24] has proposed differentially private tech-

niques for answering a single query given a fixed privacy
budget. This does not naturally extend to workload answer-
ing as the privacy loss compounds for each new query an-
swered. Further, by the “fundamental law of information re-
construction” [13] running such a system indefinitely would
leak enough information to rebuild the entire database.

Workloads answered using synopses: To support a
workload of queries, our first key idea is to construct syn-
opses. A synopsis captures important statistical information
about the database – analogous to pre-computed samples in
approximate query processing [4]. The privacy loss budget
is spent constructing and releasing the synopses. Once re-
leased, subsequent queries are answered using only a synop-
sis and not the private database. As the synopsis is public,
there is no privacy cost to querying it and an unlimited num-
ber of queries can be answered (though the fundamental law
also implies that some queries will be poorly approximated).

Synopses generated for selected views: There is con-
siderable prior work on generating a differentially private
statistical summary for a single table. Such strategies have
been shown to support workloads of simple (linear) queries.
But if a synopsis were generated for each base table in the
schema, it is known that complex queries, such as the join
of two tables, would be poorly approximated [33].
This motivates the second key idea: to support complex

queries, we select a set of (complex) views over the base
tables and then generate a synopsis for each of the selected
views. Our approach is based on the assumed availability
of a representative workload, a set of queries that captures,
to a first approximation, the kinds of queries that users are
likely to ask in the future. Views are selected so that each
query in the representative workload can be answered with
a linear query on a single view. Intuitively, views encode the
join structures that are common in the workload.

Sensitivity bounds using rules and truncation: When
PrivateSQL generates a synopsis for each view, it ensures
the synopsis generator is differentially private with respect
to its input, a view instance. A subtle but important point
is that achieving ε-differential privacy with respect to a view
does not imply ε-differential privacy with respect to the base
relations of the schema. A single change in a base relation
could affect multiple records in a view. For example, con-
sider a view that describes individuals living in households
along with employment characteristics of the head of house-
hold. Changing the employment status of the head of an
arbitrary household would affect the records of all members
of that household. To correctly apply differential privacy,
we must know (or bound) the view sensitivity, informally
defined as the worst-case change in the view due to the in-
sertion/deletion of a single tuple in a base relation.
This brings us to the third key idea: we introduce novel

techniques for calculating bounds on view sensitivity. Ex-
act sensitivity calculation is hard, even undecidable [5]. We
employ a rule-based calculator to each relational operator in
the view definition (which is expressed as a relational alge-
bra expression). The per operator bounds compose into an
upper bound on the true sensitivity of the entire view. An
additional challenge is that some queries have high, even
unbounded, sensitivity because of worst case inputs. The

1372



q

ỹ

Analyst

Query Answering 
Phase

Cᴏᴍᴘᴜᴛᴇ
Qᴜᴇʀʏ

MᴀᴘQᴜᴇʀʏ

Private Synopsis Generation Phase

Data Owner Q, R, ε

Private 
Synopses

VR
ᴇᴡ

ʀɪ
ᴛᴇ

Sᴇ
ɴs

C
ᴀʟ

ᴄ

B
ᴜᴅ

ɢᴇ
ᴛA

ʟʟ
ᴏᴄ

Pʀ
ɪᴠ

Sʏ
ɴG

ᴇɴ

VSᴇʟᴇᴄᴛᴏʀ
Generate views based on Q

V1

V2

Vn

Figure 1: Architecture of the PrivateSQL System
previous example has a sensitivity that is equal to the size
of the largest possible household. We address high sensitiv-
ity queries by truncation, an operation that drops records
that cause high sensitivity (e.g., large households). Trun-
cation significantly lowers the variance in query answers at
the expense of introducing bias due to data deletion. We de-
scribe techniques to privately estimate truncation thresholds
and we empirically explore the bias-variance tradeoff.

Privacy at multiple resolutions: A key design goal of
PrivateSQL is to allow the data owner to select the privacy
policy that is most appropriate to the particular context.
Differential privacy, as formally defined, assumes the private
data is encapsulated within a single relation. Adapting it to
multi-relational data is non-trivial, especially given foreign
key constraints. When a tuple is removed from one relation,
it can cause (cascading) deletions in other relations that are
linked to it through foreign keys.
Our fourth key idea is extending differential privacy to the

multi-relational setting. With our approach, one relation is
designated as the primary private relation, but the privacy
protection extends to other secondary private relations that
refer to the primary one through foreign keys. We show this
allows the data owner to vary the privacy resolution (e.g.,
to choose between protecting an individual vs. an entire
household and all its members). We describe this extension
in Section 4 and relate it to prior literature.

View rewriting allows policy flexibility: The challenge
with supporting flexible privacy policies is that now view
sensitivity will depend on the policy. For example, a pol-
icy that protects entire households would generally have
higher sensitivity than a policy that protects individuals.
PrivateSQL is designed to offer the data owner flexibility
to choose the appropriate policy and the system will auto-
matically calculate the appropriate sensitivity.
The fifth and final key idea is that we use view rewriting to

ensure correct, policy-specific sensitivity bounds. Rewriting
makes explicit whether a view depends on the primary pri-
vate relation, even in cases when the view does not mention
it! After rewriting, downstream components (such as sensi-
tivity calculation and synopsis generation) can be oblivious
to the particular policy and apply conventional differential
privacy on the primary private relation.

2.2 System Architecture
We briefly review the architecture of PrivateSQL (illus-

trated in Fig. 1) and the algorithms for the two main oper-
ational phases. The first phase is synopsis generation where
a representative workload is used to guide the selection of
views followed by the differentially private construction and
publication of a synopsis for a chosen set of views. The
second phase is query answering where each user query is
mapped to the appropriate view and then answered using
the released synopsis of that view.

Algorithm 1 Synopsis-Generation
Input: Schema S, private database instance D, representative

workload Q, privacy policy P = (R, ε).
Output: A set of views V and private synopses {S̃V }V ∈V
1: V ← VSelector(S,Q) . Choose views based on workload
2: Reserve εmf to estimate thresholds for relations in views.
3: ε← ε− εmf
4: for each view V in V do
5: V τ,	 ← VRewriter(V, P, S)
6: τV ← Estimate truncation thresholds using εmf/|V|
7: ∆̂V ← SensCalc(V τ,	, S, τV )
8: QV ← {q̄ | q ∈ Q ∧MapQueryToView(q, S) = (q̄, V )}
9: for each V ∈ V do
10: εV ← BudgetAlloc(V, [QV ], [∆̂V ], ε)

11: S̃V ← PrivSynGen(V τ,	, V τ,	(D), εV , QV )

12: return (V, S̃V ) for each V ∈ V

Synopsis generation (described in Algorithm 1) takes as
input a database instanceD, which is private, and its schema
S, which is considered public. It also takes a representative
query workload of SQL queries, Q, and a privacy policy
P = (R, ε) that specifies a privacy budget ε and a primary
private relation R (formally defined in Section 4).
First, the VSelector module (line 1) uses the repre-

sentative workload Q to select a set of view definitions V.
Each view (interpreted as a relational algebra expression)
is rewritten using the VRewriter module (line 5) in two
ways. First, truncation operators are included when there is
a join on at attribute that may result in an unbounded num-
ber of output tuples. Truncation enforces a bound on the
join size by dropping join keys with a multiplicity greater
than a threshold. The thresholds are learned from the data
(line 6) in a differentially private manner. Next, base tables
in the view definition are rewritten using semijoin opera-
tors, making explicit the foreign key dependencies between
the primary private relation and other tables. This ensure
that the computed sensitivity matches the privacy policy.
Next, the SensCalc module (line 7) computes for each

rewritten view V , an upper bound on the global (or worst
case) sensitivity ∆̂R(V ). The sensitivity bound ∆̂V is used
in the privacy analysis and affects how much privacy loss
budget is allocated to each view.
Synopsis generation for each view is guided by a partial

workload QV , which is the set of queries from the represen-
tative workload Q the can be answered by this view. The set
QV is constructed (line 8) by applying the function Map-
QueryToView (constructed by VSelector) to each query
in Q. This function transforms a query q into a pair (q̄, V )
where q̄ is a new query that is linear (or a simple aggregation
without involving joins) on view V .
We now generate a synopsis for each view V . Each syn-

opsis is allocated a portion of the total privacy loss budget.
The BudgetAlloc component (line 10) determines the al-
location based on factors like view sensitivity and/or the
size of QV . Finally, the PrivSynGen component takes as
input the view definition, view instance V (D), a set of linear
queries QV , and a privacy budget εV and returns a differ-
entially private private synopsis S̃V . This module runs an
εV -differentially private algorithm and outputs either a set
of sythetic tuples or a set of query answers (like histograms
or a set of counts).
We present our generalization of differential privacy for

relational databases in Section 4. We outline VSelector

1373



in Section 5. We describe SensCalc and the truncation
rewrite in Section 6, and the semijoin rewrites in Section 7.
PrivSynGen and BudgetAlloc are described in Section 8.

Query answering using views is a well studied problem
[18] and in PrivateSQL is performed by the query an-
swering phase. More specifically, it uses the function Map-
QueryToView, described above, to convert q into a query
q̄ that is linear on a view V . If V is one of the views for which
PrivateSQL generated a synopsis, then q̄ is then executed
on the appropriate private synopsis to produce an answer.
If the query cannot be mapped to any view, it returns ⊥.

3. NOTATION
Databases: We consider databases with multiple relations
S = (R1, . . . , Rk), each relation Ri has a set of attributes
denoted by attr(Ri). For attribute A ∈ attr(Ri), we denote
its full domain by dom(A). Similarly, for a set of attributes
A ⊆ attr(Ri), we denote its full domain by dom(A) =∏
A∈A dom(A). An instance of a relation R, denoted by

D, is a multi-set of values from dom(attr(R)). We represent
the domain of relation R by dom(R). For a record r ∈ D
and an attribute list A ⊆ attr(R), we denote by r[A] the
value that an attribute list A takes in row r.

Frequencies: For value v ∈ dom(A), the frequency of v in
relation R is the number of rows in R that take the value v
for attribute list A; i.e., f(v,A, R) = |{r ∈ R | r[A] = v}|.
We define the max-frequency of attribute list A in relation
R as the maximum frequency of any single value in dom(A);
i.e., mf(A, R) = maxv∈dom(A) f(v,A, R). We will use max-
frequencies of attributes to bound the sensitivity of queries.

Foreign Keys: We consider schemas with key constraints,
denoted by C, in particular primary and foreign key con-
straints. A key is an attribute A or a set of attributes A
that act as the primary key for a relation to uniquely iden-
tify its rows. We denote the set of keys in a relation R by
Keys(R). A foreign key is a key used to link two relations.

Definition 3.1. Given relations R,S and primary key
Apk in R, a foreign key can be defined as:

S.Afk → R.Apk ≡ S Afk
nApkR = S

where the semijoin is the multiset {s | s ∈ S,∃r, s[A] =
r[B]}. That is, for every row in s ∈ S there is exactly one
row r ∈ R such that s[Afk] = r[Apk]. We say that row s ∈ S
refers to row r ∈ R (s → r), and that relation S refers to
relation R (S → R). The attribute (or set of attributes) Afk
is called the foreign key.

We call a set of k tablesD = (D1, . . . , Dk) a valid database
instance of (R1, . . . , Rk) under the schema S and constraints
C if D satisfies all the constraints in C. We denote all valid
database instances under (S, C) by dom(S, C).

SQL queries supported: In Fig. 2 we present the gram-
mar of PrivateSQL supported queries. We consider ag-
gregate SQL queries of the form select count(*) from
S where Φ, where S is a set of relations and sub-queries,
and Φ can be a positive boolean formula (conjunctions and
disjunctions, but no negation) over predicates involving at-
tributes in S. We support equijoins and subqueries in the
where clause, which can be correlated to attributes in the

AggQuery ::= select count(*) from TableList
TableList ::= Table | Table, TableList
Table ::= R | select [AttrList,] [count(*)] from

TableList [where Exp] [groupby AttrList]
AttrList ::= A | A, AttrList
Exp ::= Literal | Exp and Exp | Exp or Exp
Literal ::= A op A | A op val | A in Table

| val op (select count(*) from Table)
op ::= = | < | >

Figure 2: Queries supported by PrivateSQL. The
terminal R corresponds to one of the base relations in the
schema, the terminal A corresponds to an attribute in the
schema and val is a value in the domain of an attribute.

outer query. The grammar does not support negations, non-
equi joins, and joins on derived attributes as tracking sen-
sitivity becomes a challenging and even intractable [5] for
such queries. Extensions for sum/median query support are
discussed in Section 10.

4. PRIVACY MODEL
Privacy for a Single Relation: The formal definition of
differential privacy (DP) considers single relation databases:

Definition 4.1 (DP for Single Relation) A mechanism
M : dom(R) → Ω is ε-differentially private if for any rela-
tional database instance D ∈ dom(R) of size at least 1 and
D′ = D − {t}, and ∀O ⊆ Ω:∣∣ln(Pr[M(D) ∈ O]/Pr[M(D′) ∈ O])

∣∣ ≤ ε
This definition implies that deleting a row from a database
does not significantly change the probability that the output
of the mechanism lies in a specific set. This is equivalent to
the standard definition of differential privacy [15].
However, defining privacy for a schema with multiple re-

lations is more subtle. First, we need to determine which
relation(s) in the schema is(are) private. Second, adding
or removing a record in a relation can cause the addition
and/or removal of multiple rows in other relations due to
schema constraints (like foreign key relationships).
Privacy for Multiple Relations: Given a database re-
lational schema S, we define a privacy policy as a pair P =
(R, ε), where R is a relation of S and ε is the privacy loss
associated with the entity in R. We refer to relation R as
the primary private relation. The output of a mechanism
enforcing P = (R, ε) does not significantly change with the
addition/removal of rows in R.
To capture privacy policies and key constraints, we pro-

pose a definition of neighboring tables inspired by Blowfish
privacy [23]. For two database instances D and D′, we say
that D is a strict superset of D′ (denoted by D = D′) if (a)
∀i,Di ⊇ D′i and (b) ∃i,Di ⊃ D′i. That is, all records that
appear in D′ also appear in D and there is at least one row
in a relation of D that does not appear in D′.

Definition 4.2 (Neighboring Databases)Given a schema
S with a set of foreign key constraints C, and a privacy policy
P = (Ri, ε), for a valid database instance D = (D1, . . . , Dk) ∈
dom(S, C), we denote by 	C(D, Ri) a set of databases such
that ∀D′ ∈ 	C(D, Ri):
• ∃r ∈ Di, but r 6∈ D′i, and
• D′ satisfies C, and

1374



Person

PK pid

FK hid
age
sex
...

Household

PK hid

FK gid
ten
st
...

Geography

PK gid

state
puma
...
...

hid st type

h02 NC owned

h03 NC rent

h04 CA rent

pid age hid
p10 45 h02

p11 46 h02

p12 47 h03

p13 48 h04

hid st
h03 NC

pid age hid
p12 47 h03

p13 48 h03

Household’Person’

hid st
h02 NC

h03 NC

pid age hid
p10 45 h02

p11 46 h02

p13 48 h13

Household’Person’

hid st
h02 NC

h03 NC

pid age hid
p10 45 h02

p11 46 h02

p12 47 h03

p13 48 h03

HouseholdPerson

pid age hid
p10 45 h02

p11 46 h02

p12 47 h03

p13 48 h04

pid age hid
p10 45 h02

p11 46 h02

p12 47 h03

p13 48 h04

Person Household

hid st type

h02 NC owned

h03 NC rent

h04 CA rent

hid st type

h02 NC owned

h03 NC rent

h04 CA rent

Person Household Person Household

(a) A database in-
stance of the Cen-
sus schema.

Person

PK pid

FK hid
age
sex
...

Household

PK hid

FK gid
ten
st
...

Geography

PK gid

state
puma
...
...

hid st type

h02 NC owned

h03 NC rent

h04 CA rent

pid age hid
p10 45 h02

p11 46 h02

p12 47 h03

p13 48 h04

hid st
h03 NC

pid age hid
p12 47 h03

p13 48 h03

Household’Person’

hid st
h02 NC

h03 NC

pid age hid
p10 45 h02

p11 46 h02

p13 48 h13

Household’Person’

hid st
h02 NC

h03 NC

pid age hid
p10 45 h02

p11 46 h02

p12 47 h03

p13 48 h03

HouseholdPerson

pid age hid
p10 45 h02

p11 46 h02

p12 47 h03

p13 48 h04

pid age hid
p10 45 h02

p11 46 h02

p12 47 h03

p13 48 h04

Person Household

hid st type

h02 NC owned

h03 NC rent

h04 CA rent

hid st type

h02 NC owned

h03 NC rent

h04 CA rent

Person Household Person Household

(b) Neighboring
DB instance under
Person policy.

Person

PK pid

FK hid
age
sex
...

Household

PK hid

FK gid
ten
st
...

Geography

PK gid

state
puma
...
...

hid st type

h02 NC owned

h03 NC rent

h04 CA rent

pid age hid
p10 45 h02

p11 46 h02

p12 47 h03

p13 48 h04

hid st
h03 NC

pid age hid
p12 47 h03

p13 48 h03

Household’Person’

hid st
h02 NC

h03 NC

pid age hid
p10 45 h02

p11 46 h02

p13 48 h13

Household’Person’

hid st
h02 NC

h03 NC

pid age hid
p10 45 h02

p11 46 h02

p12 47 h03

p13 48 h03

HouseholdPerson

pid age hid
p10 45 h02

p11 46 h02

p12 47 h03

p13 48 h04

pid age hid
p10 45 h02

p11 46 h02

p12 47 h03

p13 48 h04

Person Household

hid st type

h02 NC owned

h03 NC rent

h04 CA rent

hid st type

h02 NC owned

h03 NC rent

h04 CA rent

Person Household Person Household

(c) Neighboring
DB instance under
Household policy.

Figure 3: Neighboring databases under foreign key
constraints.

• 6 ∃D′′ that satisfies C and D = D′′ = D′.
That is, D′ is a valid database instance that results from
deleting a minimal set of records from D, including r. We
call database instances D,D′ neighboring databases w.r.t.
relation Ri if D′ ∈ 	C(D, Ri).

Example 1. Consider the database of Fig. 3a with schema
Person (pid, age, hid) and Household (hid, st, type). Per-
son.hid is a foreign key to Household. Fig. 3b shows a neigh-
boring instance of the original database under privacy policy
P = (Person, ε). Notice that in that instance, the Household
table is unchanged and only person p10 is removed. How-
ever, under the privacy policy P = (Household, ε) (Fig. 3c)
removing h02 from Household results in deleting two rows
in Person table. In this case, neighboring databases differ
in both the primary private relation Household as well as a
secondary private relation Person.

Definition 4.3 (Secondary Private Relations) Let S be
a schema with constraints C and P = (Ri, ε) be a privacy
policy. Then a relation Rj ∈ S is a secondary private rela-
tion iff: ∃D ∈ dom(S, C), ∃D′ ∈ 	C(D, Ri) s.t. Dj 6= D′j.

We call a policy that results in no secondary private rela-
tions (e.g., Fig. 3b) a simple policy. In this case, neighboring
tables differ in only the primary private relation in exactly
one row. We call policies that result in secondary private
relations (e.g., Fig. 3c) as complex policies.

Definition 4.4 (DP for Multiple Relations) Given a
schema S with foreign key constraints C and privacy policy
P = (R, ε) be a policy. A mechanism M : dom(S, C) → Ω
is P -differentially private if for every set of outputs O ⊆ Ω,
∀D ∈ dom(S, C), and ∀D′ ∈ 	C(D, R):∣∣ln (Pr[M(D) ∈ O]/Pr[M(D′) ∈ O]

)∣∣ ≤ ε
As in standard differential privacy, our definition permits

sequential composition:

Theorem 4.1 (Sequential Composition)Given a schema
S with constraints C, let mechanismsM1,M2 that satisfy P1-
DP and P2-DP, with Pi = (R, εi). Then the sequence of M1

and M2 satisfies Pseq-DP, with Pseq = (R, ε1 + ε2).

Global Sensitivity: Designing differentially private mech-
anisms requires an important notion called global sensitivity
– the maximum change to the query output in neighboring
datasets. In multi-relational databases, the sensitivity of a
query can change depending on which relation is identified
as the primary private relation. We denote by ∆R the sen-
sitivity of a query with respect to relation R ∈ S.
A query that outputs another relation is called a view.

A change in a view is measured using symmetric difference,
and the global sensitivity of a view is defined as follows:

V1: SELECT age, race FROM Person;

q̅1: SELECT count(*) FROM V1 WHERE V1.age < 18;
q̅2: SELECT count(*) FROM V1 WHERE V1.race = ‘Asian’ AND V2.age >= 21;

V2: SELECT relp, race, cnt FROM Person P, 
(SELECT count(*) AS cnt, hid FROM Person GROUP BY hid) AS P2 
WHERE P2.hid = P.hid;
q̅3: SELECT count(*) FROM V2 WHERE V2.cnt = 2;
q̅4: SELECT count(*) FROM V2 WHERE V2.race = Asian AND V2.cnt = 3;

VS
ᴇʟ

ᴇᴄ
ᴛᴏ

ʀ

q1: SELECT count(*) FROM Person WHERE age < 18;
q2: SELECT count(*) FROM Person WHERE race = ‘Asian’ AND V2.age >= 21;
q3: SELECT count(*) FROM Person p WHERE (select count(*) from Person p1 where p1.hid = p.hid) = 2;
q4: SELECT count(*) FROM Person p WHERE 
           (SELECT count(*) FROM Person p1 WHERE p1.hid = p.hid) = 3 and p.race = white and p.relp  = 0;

R
ep

re
se

nt
at

iv
e

W
or

kl
oa

d
{q

1, 
 q

2, 
 q

3, 
 q

4 
}

Figure 4: An execution of VSelector on a work-
load of 4 queries, producing two distinct views.

Definition 4.5 (Global Sensitivity for View) Given a
schema S with foreign key constraints C and privacy policy
P = (R, ε). A view query V takes as input an instance D
and outputs a relation instance V (D). The global sensitivity
of V w.r.t. R is defined as the maximum number of rows
that change in V across neighboring databases w.r.t. R, i.e.,

∆CR (V ) = max
D∈dom(S,Q)

∆CR (V,D) (1)

where, ∆CR (V,D) = max
D′∈	C(D,R)

V (D)4V (D′) (2)

is the down sensitivity of a given instance D and A4B =
(A \B) ∪ (B \A) denotes symmetric difference.

Relationship to Other Privacy Notions: Most vari-
ants of differential privacy that apply to relational data can
be captured using a single private relation and foreign key
constraints on an acyclic schema [5, 9, 14, 25, 26, 29]. For in-
stance, a graph G = (V,E) can be represented as a schema
with relations Node(id) and Edge(src_id, dest_id) with for-
eign key references from Edge to Node (src_id → id and
dest_id → id). Edge-DP [25] is captured by P -DP by set-
ting Edge as the primary private relation R, Node-DP [26]
is captured if we set Node as R. Under the latter policy,
neighboring databases differ in one row from Node and all
rows in Edge that refer to the deleted Node rows. Simi-
larly, user-level- and event-level-DP are also captured using
a database schema User(id, ...), Event(eid, uid, ...) with
events referring to users via a foreign key (uid → id). By
setting the Event (User) as the primary private relation, we
get Event-DP (User-DP, resp.) [14].
The privacy model in FLEX [24] considers neighboring

tables that differ in exactly one row in one relation. FLEX
does not capture standard variants of DP described above
since the FLEX privacy model ignores all constraints in the
schema. For instance, using FLEX for graphs would consider
neighboring databases that differ in exactly one edge or one
node, but never in all the edges connected to a node. Thus,
FLEX’s privacy model can not capture Node-DP.

5. VIEW SELECTION
The view selection module VSelector takes as input a

set of representative queries Q over a schema S and outputs
a set of views V such that every query q ∈ Q is linearly
answerable using some V ∈ V.

Definition 5.1. A query q over schema S is answerable
using a view V if there is a query q̄ defined on the attributes
in V such that for all database instances D ∈ dom(S), we
have, q(D) = q̄(V (D)). Additionally, we say that q is lin-
early answerable using V , if q̄ is linear on V .
Linear answerability ensures that queries in Q can be di-

rectly answered from some V ∈ V without additional join or

1375



group-by operations. Moreover, the privacy analysis of sets
of linear queries is easy and allows the use of well known
workload aware algorithms in the PrivSynGen module.
Fig. 4 shows an execution of VSelector, which for in-

put Q produces view V1 and V2. Queries q1 and q2 can be
answered by the linear queries q̄1 and q̄2 on V1. Similarly,
q3 and q4 can be answered from queries q̄3 and q̄4 on V2.

Approach: We propose a heuristic algorithm VSelector
with the following properties: (a) every q ∈ Q is linearly
answerable using one V ∈ V, (b) all queries mapped to a
view have the same sensitivity, and (c) as many queries as
possible are mapped to the same view. These properties
help minimize the noise added to ensure differential privacy.

VSelector first applies a query transformation func-
tion, denoted by MapQueryToView, that takes as input
a query q and returns a query-view pair (q̄, V ). Then, all
pairs with a common view are grouped together, such that
each view V is associated with a set of transformed queries
QV . This is followed by a step of attribute pruning where a
view V retains only attributes appearing in a query of QV .
In Fig. 4 we see a full execution of VSelector on a work-
load of 4 queries, resulting in views V1 and V2 with partial
workloads QV1 = {q̄1, q̄2} and QV2 = {q̄3, q̄4} respectively.
The MapQueryToView function consists of 3 sequen-

tial steps: (a) the baseline transformation, (b) decorrelation,
and (c) moving filter operations. Following the grammar of
Fig. 2 the baseline transformer takes as input a SQL query q
::= AggQuery and returns V ::= select AttrList from
TableList and q̄ ::= select count(*) from v. Next,
the query transformer performs decorrelation [6] by rewrit-
ing correlated subqueries of views in terms of joins. Finally,
we move filtering operations from the view V to the query
q̄. To illustrate how the MapQueryToView works con-
sider query q3 from the example of Fig. 4 that contains a
correlated subquery, that is transformed to the pair (V2, q̄3).

6. VIEW SENSITIVITY ANALYSIS
Computing the global sensitivity of a SQL view (lines 6-7

of Algorithm 1) is a hard problem [5], as single changes in a
base relation could affect a large (or even unbounded) num-
ber records in the view. Moreover, complex privacy policies
resulting in secondary private relations (see Definition 4.3),
further complicate sensitivity estimation.
In this section we focus on simple privacy policies resulting

only in a primary private relation in the schema and discuss
complex policies in Section 7. Section 6.1 describes Sen-
sCalc a rule-based algorithm that computes the constraint-
oblivious down sensitivity of a a view V on a database in-
stance D. Section 6.2 describes how to rewrite a view us-
ing truncation operators so that for simple privacy policies,
the sensitivity output by SensCalc is indeed the global
sensitivity of the rewritten view V τ (see Theorem 6.1). Sec-
tion 6.3 presents a DPmethod for learning thresholds needed
for truncation operators.
We assume w.l.o.g. that a view V is expressed in rela-

tional algebra. The algebra expression can be viewed as a
tree, where internal nodes are algebra operators and the leaf
nodes are base relations of S.

6.1 Sensitivity Calculator
SensCalc, computes the following variant of down sen-

sitivity that captures the maximum change caused by re-

⨝hid

πrelp, race, cnt

γhid

Person

Trunchid,k

Person

⨝hid

πrelp, race, cnt

Person

Persons

γhid

Trunchid,k

⨝hid

⋉hid

Household

Person

Trunchid,k

⋉hid

Household

γhid

πrelp, race, cnt

Δ=1, mf(hid)=1Δ=0, mf(hid)=k

Δ=k, 
mf(hid)=k

Δ=0, 
mf(hid)=F

Δ=1, mf(hid)=1

Δ=0, 
mf(hid)=k

Δ=k, 
mf(hid)=k

Δ=2k,
IsKey(hid)

Δ＝2k^2+k

Primary Private 
Relation

Secondary 
Private Relation

Person
Δ=0, 

mf(hid)=F

Query Plan Truncation Rewrite

Figure 5: Illustration of Truncation Rewrite (Alg 2)

moving any one tuple from the primary private relation R.
Definition 6.1 (Constraint-Oblivious Down Sensitiv-
ity) Given schema S and a privacy policy (R, ε), the constr-
aint-oblivious down sensitivity of V given D w.r.t. R, de-
noted by ∆R(V,D), is defined as the maximum number of
rows that change in V when removing a row from R.

∆R(V,D) = max
r∈dom(R)

V (D)4V (D− {r}), (3)

where D− {r} means removing tuple r from instance D.
For simple privacy policies, the constraint-oblivious down

sensitivity is equivalent to the down sensitivity (defined in
Section 4 Eq. (4)), i.e., for any simple policy P and any V :
∆R(V,D) = ∆CR (V,D). Combined with truncation rewrites
described later, the sensitivity output by SensCalc will be
the right global sensitivity for simple policies.

SensCalc is a recursive rule-based sensitivity calculator
that takes as input V , schema S, and a relation R designated
as the primary private relation. It also has access to m̂f, a
function that provides bounds on the maximum frequency
mf of any attribute combination of the base relations in V .
The final result is ∆̂R(V, m̂f), as it depends on the bounds
supplied from m̂f – when clear from context we write ∆̂R(V ).
Given an input view V and m̂f, the sensitivity calcula-

tor computes ∆̂R(V, m̂f) by a recursive application of the
rules in Table 1 to each subexpression S of V . The bounds
at the base relations are as follows: the sensitivity bounds
∆̂R(R) = 1 and ∆̂R(R) = 0 for R ∈ S − { R } and the max-
frequency bounds are supplied by m̂f. In Table 1 we sum-
marize the rules of SensCalc. Operators such as project,
select, and groupby do not increase the sensitivity bound
of their input relation, while groupby-count doubles it.
equijoin results in relations with higher sensitivity bounds
compared to its inputs. In terms of the mf bounds, most
unary operators shown in Table 1 have unchanged mf. Note
that we restrict the equijoin operator to join on attributes
from the base relations in S. The last row refers to a trun-
cation operator, which is described in Section 6.2.
These rules are similar to those of elastic sensitivity [24],

but with some key differences that allow for a tighter sensi-
tivity analysis. SensCalc uses additional rules using keys,
as shown in the last column of Table 1. The new rules keep
track of key constraints through operators. This allows the
addition of new rules for joins on key attributes that permit
lower sensitivity bounds than a standard join, as illustrated
in the following example.

Example 2 (Sensitivity Calculation) Consider calcu-
lating the sensitivity of V2 from Fig. 4 under Person policy.
A relational algebra expression for view V2 is (Fig. 5 (left))

πrace,relp,cnt(Person ./hid (γCOUNThid (Person))).

V2 has a row for each person reporting the person’s race, relp,
and size of their household. SensCalc initializes ∆̂R(Person)

1376



Table 1: Update rules for sensitivity and max-frequency bounds. New rules are shaded.
Operators Sensitivity Bound Maximum Frequency Bound Key Set

∆̂R(S) m̂f(A′, S),A′ ⊆ attr(S) Keys(S)

S = πA(R) ∆̂R(R) m̂f(A′, R) {A′ ⊆ attr(S) | A′ ∈ Keys(R)}
S = σφ(R) ∆̂R(R) m̂f(A′, R) {A′ ⊆ attr(S) | A′ ∈ Keys(R)}
S = γA(R) ∆̂R(R) m̂f(A′, R) {A} ∪ {A′ ⊆ attr(S) | A′ ∈ Keys(R)}

S = γCOUNTA (R) 2∆̂R(R) m̂f(A′, R) {A} ∪ {A′ ⊆ attr(S) | A′ ∈ Keys(R)}

S = R1 ./A1=A2 R2 or
S = R1 nA1=A2R2

where A1,A2 are from S

General case
m̂f(A1, R1) · ∆̂R(R2)+
m̂f(A2, R2) · ∆̂R(R1)+

∆̂R(R1) · ∆̂R(R2)

No common max(m̂f(A1, R1) · ∆̂R(R2),
ancestors m̂f(A2, R2) · ∆̂R(R1))

Join on key m̂f(A2, R2) · ∆̂R(R1)+

(A1 ∈ Keys(R1)) ∆̂R(R2)

max(m̂f(Ā2, R1) · m̂f(A2, R1),
m̂f(Ā1, R2) · m̂f(A1, R2))

where Āi = A′ − attr(Ri)

{A′ ∈ Keys(R2)|A1 ∈ Keys(R1)}∪
{A′ ∈ Keys(R1)|A2 ∈ Keys(R2)}

S = τA,k(R) k · ∆̂R(R) min { k, m̂f(A′, R) } if A ⊆ A′; m̂f(A′, R), o.w. {A′ ⊆ S|A′ ∈ Keys(R)}

Algorithm 2 Truncation Rewrite (V, R,k)

1: Initialize V τ ← V
2: for every path pl from leaf relation Rl to root in V do
3: for every R1 ./A1=A2

R2 on pl, where A1 ⊆ attr(Rl) do
4: .(semijoin is also treated as a special equijoin)
5: if A1 /∈ Keys(R1) and R is a base relation of R2 then
6: k ← kA1

7: Insert τA1,k(Rl) above Rl in V τ
8: A ← A∪ (A1)

9: Return V τ

to 1 and applies the rules of Table 1 bottom up. First the
groupby-count operator is processed, resulting in S =
γCOUNThid (Person) with ∆̂R(S) = 2 · ∆̂R(Person) = 2 and S
has hid as a key. Next, the equijoin operator is processed,
joining on key hid of S, producing S./ = Person ./hid S
with: ∆̂R(S./) = F · ∆̂R(S) + ∆̂R(Person) = F · 2 + 1 where
F = m̂f(hid,Person). Note that without the “Join on key”
rule, the bound would be (F · 3 + 2). This difference is only
exacerbated for views with more joins. Last, the projection
operator is processed, leaving the bound unchanged.

Given D, V and upper bounds on max-frequency m̂f, we
can show that ∆̂R(V, m̂f) calculated by SensCalc is an up-
per bound on ∆R(V,D), and thus an upper bound on the
down sensitivity ∆CR (V,D) for simple policies.

6.2 Bounding Sensitivity via Truncations
As shown in Example 2, the sensitivity bounds produced

by the SensCalc can be dependent on the max-frequency
bounds on base relations. We now show how to add trun-
cation operators to the view expression. These operators
delete tuples that contain an attribute combination appear-
ing in a join and whose frequency exceeds a truncation thresh-
old k specified in the operator.

Definition 6.2 (Truncation Operator) The truncation
operator τA,k(R) takes in a relation R, a set of attributes
A ⊆ attr(R) and a threshold k and for all a ∈ dom(A), if
f(a,A, R) > k, then any r from R with r[A] = a is removed.

Truncation rewrite (see Algorithm 2) adds truncation op-
erators to V and forms a new query plan V τ . The algorithm
takes as input a view V , a primary private relation R, and a
vector of truncation thresholds k, indexed by the attribute
subset to which the threshold applies. It traverses every
path pl from relation Rl to the root operator and every join
R1 ./A1=A2 R2 on this path. If one of the join attributes
is from Rl—say A1 ⊆ Rl—and A1 is not a key for R1 and
the primary private table R appears as a base relation in the
expression R2, then we insert τA1,k(Rl) above Rl in V τ .

Algorithm 3 LearnThreshold (D, V τ , θ, εmf )

1: Traverse operators in V τ from leaf to root and add each trun-
cation operator to T if it is not in the list.

2: for τA,k(R) ∈ T do
3: q′i ← sub-tree at τA,k(R) ∈ V τ . Truncate at k = i

4: Q← { (|q
′
i|−|R|·θ)
i

| i = 1, 2, . . .}
5: Set i ← SVT(D, Q, 0, εmf/|T |) as the truncation thresh-

old for τA,k(R)

Example 3. Fig. 5 (right) shows the truncation opera-
tors are inserted before Person relation. The truncation op-
erators cut down the maximum frequency of hid to k so that
the sensitivity bound can be bounded by 3k, even when m̂f for
household id in Person is unbounded. In this case, ∆̂R(S./) =

k·∆̂R(γ
COUNT
hid (Person))+∆̂R(τhid,k(Person)) = k·2+k = 3k.

After truncation rewrite is applied, the estimated sensi-
tivity no longer depends on m̂f, but rather on the trunca-
tion thresholds. If the thresholds are set in a data inde-
pendent manner, or using a DP algorithm (as discussed in
Section 6.3) we can show that the sensitivity output by Sen-
sCalc on V τ is the global sensitivity for simple policies.

Theorem 6.1. Consider a schema S = (R1, . . . , Rk) with
foreign constraints C, and simple privacy policy (R, ε). For
any V , let V τ denote the truncation rewrite of V using a
fixed set of truncation thresholds k (Algorithm 2). The global
sensitivity of V τ is bounded by SensCalc:

∆CR (V τ ) = ∆R(V
τ ) ≤ ∆̂R(V

τ ).

Let M be εv-differentially private algorithm that runs on
V τ (D). ThenM satisfies PV -DP with PV = (R, εv ·∆̂R(V

τ )).

The truncation rewrite introduces bias: i.e., ∃D, V (D) 6=
V τ (D). However, the global sensitivity computed after trun-
cation is usually much smaller reducing error due to noise.
We empirically measure the effect of truncation bias in Sec-
tion 9.4. Our truncation methods are related to Lipschitz
extension techniques which also tradeoff bias for noise typ-
ically by truncating the data. Existing methods apply to
specific queries on graphs [10,12,21,25,26] or only on mono-
tone queries [9]. Our technique applies to general relational
data and more complex queries.

6.3 Learning Truncation Thresholds
We propose LearnThreshold (Algorithm 3), an algo-

rithm for privately learning truncation thresholds. It takes
as input a query plan, V τ , a data instance D, the privacy
parameter εmf , and a parameter θ controlling the number

1377



of tuples preserved. LearnThreshold works in a bottom-
up manner to identify the ordered list T of unique trunca-
tion operators in V τ . For each truncation operator τA,k(R),
let q′i be the sub-query rooted at the operator if truncation
threshold k is set to be i. We consider a stream of queries
Q = {qi | i = 1, 2, . . .}, where qi = (|q′i(D)| − |R| · θ)/i mea-
sures whether θ fraction of R can be preserved if truncating
R at threshold i. The sensitivity of qi is bounded by the
sensitivity of R, which is bounded since the LearnThresh-
old operates bottom-up. We apply the sparse vector tech-
nique [15] which returns the first i such that qi(D) > 0 with
the given privacy budget εmf/|T |.

7. HANDLING COMPLEX POLICIES
We now shift our focus on computing view sensitivity for

complex privacy policies. Recall that under complex pri-
vacy policies, neighboring databases differ in the primary
private relation as well as other secondary private relations
(see Fig. 3c). Due to this, the constraint oblivious down
sensitivity is not the same as the down sensitivity (i.e.,
∆R(V,D) 6= ∆CR (V,D)). Moreover, removing a row in the
primary relation might result in an unbounded number of
rows deleted in the secondary private relation – e.g., un-
der Household policy the maximum change in Person is un-
bounded in the absence of external information. Truncation
operators discussed previously only limit the frequencies of
attributes involved in joins, but not the change in secondary
private relations.
We now present the semijoin rewrite that transforms view

V into V 	 so that the sensitivity computed by SensCalc on
V 	 equals its down sensitivity: ∆R(V

	,D) = ∆CR (V 	,D).
Transitive Referral and Deletion: If S.Afk → R.Apk
is a foreign key constraint, deleting a row r in relation R
results in the cascading deletion of all rows s ∈ S such that
s[Afk] = r[Apk]. Furthermore, if T.A′fk → S.A′pk, then the
deletion of record s ∈ S can recursively result in the deletion
of records in T . We define this property as transitive referral.

Definition 7.1 (Transitive Referral) A relation S tran-
sitively refers to a relation R through foreign keys if there
exists a relation T such that S.A → T.B and T transitively
refers to relation R through foreign keys. Moreover, a row
s ∈ S transitively refers to a row r ∈ R if there is a row
t ∈ T such that s → t and t transitively refers to r. If s
transitively refers to r, we denote that s� r.

A schema is acyclic if no relation in it transitively refers
to itself. We now propose a method of deriving neighboring
databases under acyclic schemas.

Theorem 7.1 (Transitive Deletion) Given an acyclic
schema S = (R1, . . . , Rk) with foreign key constraints C, and
a privacy policy (Ri, ε). For D ∈ dom(S, C) and r ∈ Di, we
denote 	C(D, (r,Ri)) = (D	1 , D

	
2 , . . . , D

	
k ), where D	j =

Dj − {t|t ∈ Dj , t� r}. Then we have:

	C(D, Ri) = ∪r∈Di 	C (D, (r,Ri)).

Based on this theorem, the down sensitivity of a view
(defined in Definition 4.5) can be expressed as:

∆CR (V,D) = max
r∈dom(R)

V (D)4V (	C(D, (r, R)). (4)

Semijoin Rewrite: Our proposed rewrite works in two
steps. First, it replaces every secondary private base rela-
tion Rj in V with a semijoin expression (Eq. (5)) that makes

Primary Private 
Relation

Secondary 
Private Relation

⨝hid

γhid

πrelp, race, cnt

Se
m

jo
in

 R
ew

rit
e

Trunchid,k

⋉hid

Household

Person
Trunchid,k

⋉hid

Person

Household

Figure 6: Query plan of V2 view from Fig. 5, af-
ter adding semijoin operators, where Household is the
primary relation.

explicit the transitive dependence between the primary pri-
vate relation R and Rj . The resulting expression V n is such
that V (D) = V n(D). Moreover, the down sensitivity is now
correct ∆R(V

n,D) = ∆CR (V n,D) since transitive deletion is
captured by the semijoin expressions.
Second, to handle the high sensitivity of secondary pri-

vate base relations, we add truncation operations using (Al-
gorithm 2) to the semijoin expressions and transform V n to
V 	. More formally,

Definition 7.2 (Semijoin Rewrite) The semijoin
rewrite 1) takes as input V and transforms it into V n such
that V n is identical to V except that each base relation Rj
of V is replaced with Rn

j , which is recursively defined as:

Rn
j =

{
Rj , if Rj = R

(((Rj nRn
p(j)1

) nRn
p(j)2

) . . .nRn
p(j)`

) else
(5)

where each relation S ∈ {Rp(j)1 , Rp(j)2 , . . . , Rp(j)`} is such
that: (a) Rj refers to S, and (b) S = R or transitively refers
to the primary private relation R through foreign keys.
2) It transforms V n into V 	 such that V 	 is identical

to V n except that each Rn
j is replaced by R	j by running

Algorithm 2, which is the truncation rewrite of Rn
j .

Lemma 7.1. Given an acyclic schema S with foreign key
constraints C, privacy policy P = (R, ε), and a view V .
Let V n, V 	 be as defined in Definition 7.2. Then, for
any database instance D ∈ dom(S, C), we have V (D) =
V n(D) and the down sensitivity of V 	 equals the constraint-
oblivious down sensitivity of V 	:

∆CR (V 	,D) = ∆R(V
	,D) (6)

Putting it all together: Given a view V , we first apply
Algorithm 2 to V to add truncation operators to the primary
private relation R and obtain V τ . Then we run semijoin
rewrite in Definition 7.2 to get V τ,	. As the second step of
semijoin rewrite introduces extra truncation operators into
the query plan, existing truncation operators may become
redundant, in which case we keep ones closest to the base
relation. The following example shows the entire procedure
of a view rewrite.

Example 4. Recall the query plan V and its truncation
rewrite V τ from Fig. 5. Under the Household policy, Per-
son is a secondary private relation. As shown in Fig. 6 the
semijoin rewrite will replace the Person relations in V τ with
a semijoin between Person and Household. Truncation op-
erators are also added to bound the sensitivity of the Person
table to get V τ,	. Note that the truncation operator in V τ

is redundant in V τ,	 and removed since the semijoin rewrite
introduces the same truncation operator on Person.

1378



Theorem 7.2 shows that after applying the truncation and
semijoin rewrites the sensitivity of V τ,	 output by Sen-
sCalc is the global sensitivity. Proof follows from Theo-
rem 6.1 and Lemma 7.1.

Theorem 7.2. Given an acyclic schema S = (R1, . . . , Rk)
with foreign constraints C, and R ∈ S. For any V , let V τ,	

denote V after applying both the truncation rewrite (Algo-
rithm 2) and the semijoin rewrite (Definition 7.2) , where
the truncation thresholds are k and are fixed. The global
sensitivity of V τ,	 is bounded:

∆CR (V τ,	) ≤ ∆̂R(V
τ,	).

LetM be εv-differentially private algorithm ran on V τ,	(D).
Then M satisfies PV -DP with PV = (R, εv · ∆̂R(V

τ,	)).

8. GENERATING SYNOPSES
In this section we describe how PrivateSQL generates

private synopses. More specifically, we describe how give a
view definition PrivateSQL generates differentially private
synopses and how privacy budget is split across views. We
end this section with an end-to-end privacy analysis.

Private Synopsis Generator The PrivSynGen module
produces a private synopsis of a single materialized view.
The input to PrivSynGen is a materialized view V (D), a
set of linear (on V ) queries QV , and a privacy budget εV .
Its output is D̃V , an εV -DP synopsis of V (D).
This component is probably the most well understood as

it is an instance of a common problem studied in the DP
literature – answering a set of linear queries on a single ta-
ble [22, 31, 39]. Furthermore, synopsis generators can be
workload aware or workload agnostic depending on whether
they optimize their output w.r.t. a set of linear queries QV .
We use both workload-agnostic and workload-aware in-

stances of PrivSynGen, returning a vector of counts. More
specifically, we use: W-nnls, a workload-aware version of
non-negative least squares inference [28], and the workload-
agnostic algorithms Identity and Part, the latter of which
performs the partitioning step of the DAWA algorithm [27].

Privacy Budget Allocator Recall from Definition 4.5 that
changing a row in the primary sensitive relation R results in
changing ∆R(V ) rows in view V , where ∆R(V ) is the sensitiv-
ity of view V . Thus, running an εV -DP algorithm on view V
will satisfy (R,∆R(V ) · εV )-DP. For that reason the any bud-
get allocation strategy for materializing views needs to take
into account the sensitivity of each view. In PrivateSQL,
budget allocation is performed by BudgetAlloc, which
has access to the intermediate non-private outputs of Pri-
vateSQL and returns E = {εV }V ∈V , a budget allocation
that satisfies: ∑

V ∈V
∆̂V εV ≤ ε, (7)

where ∆̂V is an upper bound of ∆R(V ) as computed from
SensCalc (see Section 6.1). The ideal allocator would be
a query fair allocator that splits the budget such that each
query of the representative workload incurs the same error.
In this work, we consider allocators of the following form:

BudgetAlloc = {λV · ε/∆̂V }∀V ∈V
As long as ∀V ∈ V : λV ≥ 0 and

∑
V ∈V λV ≤ 1 this satisfies

Eq. (7). We use 4 strategies for allocating budget – Naive
divides ε equally among views; Wsize, splits the privacy

Table 2: PrivateSQL and input options used.
Census Input Options

Dataset CensusNC , CensusPM
Privacy Policy Person, Household
Privacy Budget ε 2.0, 1.0, 0.5, 0.25, 0.125
Representative Workload W1, W2, W ′1, W ′2
Query Workload W1, W2

TPC-H Input Options
Dataset TPC-H
Privacy Policy Customer
Privacy Budget ε 2.0, 1.0, 0.5, 0.25, 0.125
Representative Workload W3

Query Workload W3

PrivateSQL Config. Options
BudgetAlloc WSize, WSens, Naive, VSens
PrivSynGen W-nnls, Identity, Part

budget according to the size of QV the partial workload of
each view; Wsens allocates the privacy budget according
to the sensitivity of each QV ; and Vsens splits the privacy
budget proportionally to the sensitivity of each view.

Privacy We conclude with a formal privacy statement.
Theorem 8.1. Given an acyclic schema S = (R1, . . . , Rk)

with foreign constraints Q and a privacy policy P = (ε, R),
where R ∈ S. PrivateSQL satisfies P -differential privacy.

9. EXPERIMENTS
We evaluate PrivateSQL on both a use case inspired by

U.S. Census data releases as well as the TPC Benchmark
H(TPC-H) [3]. In Section 9.2 we present an end-to-end
error evaluation analysis. In Section 9.3, we compare with
prior work (Flex [24]). Lastly, in Section 9.4 we evaluate
alternative choices for components of PrivateSQL.

9.1 Setup
Table 2 summarizes settings with defaults in boldface.

Datasets: We use the public synthetic U.S. Census dataset
[36] with the following schema: person(id, sex, gender,
age, race, hid) and household(hid, location). We cre-
ate two datasets from the full Census data by filtering on
location: CensusPM limits to a specific PUMA region (a
region roughly the size of a town) and CensusNC limits to
locations within North Carolina. CensusPM contains 50K
and 38K tuples in Person and Household respectively, while
CensusNC contains 5.4M and 2.7M tuples, resp. We also
use the TPC-H benchmark with a schema consisting of 8 re-
lations. We scaled the data to 150K, 1.5M , and 6M tuples
in the Customer, Order, and Lineitem tables respectively.

Policies: For the Census schema we use policies (Person, ε)
and (Household, ε) where the private object is a single indi-
vidual, or a household, respectively. For the TPC-H schema
we used (Customer, ε) policy, which protects the presence of
customers in the database.

Workload: Summary File 1 (SF-1) [1] is a set of tabula-
tions released by the U.S. Census Bureau. We parsed their
description and constructed two workloads of SQL queries:
W1 andW2. W1 contains 192 complex queries, most of which
contain joins and self joins on the base tables Household and
Person as well as correlated sub-queries. An example query
is the “Number of people living in owned houses of size 3
where the householder is a married Hispanic male.” The

1379



Table 3: View Statistics for queries of W2.
Person policy Household policy

View # of Sens Median Sens Median
Group Queries Bound Qerror Bound Qerror

#1 23 0 0.0 1 948.1
#2 3575 1 85.4 4 400.6
#3 25 2 636.4 8 30,474.2
#4 8 4 5,916.6 16 8,484.8
#5 12 6 5,294.7 24 42,056.4
#6 6 17 17,362.2 68 34,670.4
#7 36 25 8,413.9 100 40,860.3

second workload W2 ⊃W1 includes an additional 3, 493 lin-
ear counting queries on Person relation. An example linear
query is the “Number of males between 18 and 21 years old.”.
For evaluation of TPC-H we used queries q1, q4, q13, q16 from
the benchmark to deriveW3 a workload of 61 queries, by ex-
panding on the group by clause of the original queries.

PrivateSQL configuration: The synopsis generation
and budget allocation are configurable, as described in Sec-
tion 8 and listed in Table 2. For the LearnThreshold al-
gorithm described in Section 6.3, we set threshold as θ = 0.9
and budget as εmf = 0.05 · ε.

Error Measurement: For a query q, let y = q(D) be its
true answer, and ỹ be a noisy answer, we define the absolute
error of ỹ, as: Qerror(y, ỹ) = |y − ỹ|. Similarly, we define
the relative error as: RelError(y, ỹ) = |y− ỹ|/max(50, y).
In all experiments, we run each algorithm for 10 independent
trials and report the average of the error function.

9.2 Overall Error Analysis
We evaluate PrivateSQL on datasets CensusPM and

CensusNC using workloads W1 and W2 and both Person
and Household. Then we evaluate on TPC-H with the W3

workload and Customer policy.

Error Rates: Figs. 7 and 8 summarize the RelError
distribution of PrivateSQL across different input configu-
rations, stratified by the true query answer sizes. In each
figure we draw a horizontal solid black line at y = 1, de-
noting relative error of 100%. A mechanism that always
outputs 0 would achieve this error rate.

PrivateSQL achieves low error on the majority of the
queries. For the Person policy and CensusNC dataset, Pri-
vateSQL achieves at most 2% RelError on 75% of theW1

queries and at most 6% RelError on 50% of theW2 queries
(Figs. 7a and 7c). For the Household policy (Fig. 7b) all error
rates are increased. The noise necessary to hide the presence
of a household is much larger as removing one household
from the dataset affects multiple rows in the Person table.
PrivateSQL also offers high accuracy answers for the W3

workload on the TPC-H benchmark, with > 60% of the
queries achieving less than 10% relative error (Fig. 7d).
Fig. 8a shows error on the CensusPM dataset, using W1

workload and Person policy. The trends are similar to the
CensusNC case, but the error is higher as query answers
are significantly smaller on CensusPM than on CensusNC .
Fig. 8b shows results on the CensusNC , across varying ε val-
ues. As expected, PrivateSQL incurs smaller error higher
values of ε. We omit presentation of other configurations
due to space constraints.

Error vs Query Size: Naturally, true query sizes affect
the relative error rates as much as the query sensitivities;
we now examine those effects. In Fig. 7 and Fig. 8a the

results are grouped by the size of the true query answer.
The number of workload queries in each group is {0− 103 :
24, 103−104 : 73,>104 : 93} forW1 and {0−103 : 1869, 103−
104 : 811, 104 − 105 : 742,>105 : 253} for W2. Queries with
size <103 have the highest error. As the true answer size
increases, the error drops by an order of magnitude. Under
the Person policy, 95% of queries in W1 and W2 with size
>103 have error <10%. The median error for queries in W1

with true answer >104 is <.1%. This further highlights the
real-world utility of PrivateSQL.

View Sensitivities: In Table 3 we show statistics about
the views generated from PrivateSQL for workload W2,
dataset CensusNC , and both Person and Household policies.
Rows of the table correspond to groups of views that have
the same sensitivity. The second column shows the num-
ber of queries that are answerable from views in the group.
The rest of the table summarizes the sensitivity of views
in each group and the median absolute error (QError)
across queries answerable from these views under Person and
Household policy, resp. For instance, there are 3575 queries
answerable by views with sensitivity 1 under Person policy,
and have a median absolute error of 85.
We see that as the view sensitivity of a group increases

so does the median QError across queries. The connec-
tion is not necessarily linear due to choices in PrivSynGen
and BudgetAlloc. We also see that, for the same group,
the Household policy leads to higher sensitivity bounds and
higher error rates. This is because the removal of a single
row in the Household table affects multiple rows in Person.
We also derived the equivalent view statistics for TPC-H.

For W3 PrivateSQL creates 4 views with computed sensi-
tivities: 0, 104, 182, 390 and median QError values: 0, 111,
112K, 3.5K respectively. Again we see that the sensitivity to
error connection is non-linear due to factors like truncation.

9.3 Comparison with Prior Work
We next compare with Flex [24], though a direct com-

parison is difficult for several reasons. Flex is designed for
answering one query at a time, while PrivateSQL answers
multiple queries under a common budget. Flex satisfies
(ε, δ)-differential privacy, a relaxation of DP, whereas for
PrivateSQL, δ = 0. PrivateSQL supports multiple pri-
vacy policies, while Flex does not (and specifically cannot
support the Household policy). We set δ = 1/n for Flex,
where n is the number of rows in the Person table, and con-
sider the Person policy.
For our first comparison, we compare PrivateSQL against

BaselineFlex, a natural extension of Flex adapted for an-
swering a workload of queries, where the privacy budget is
evenly divided across the set of answered queries. Then, we
provide a more direct “apples to apples” comparison by (a)
running both systems one query at a time and (b) comparing
their sensitivity engines.

Workload Query Answering We evaluate performance
on workloadsW1 andW2 on CensusNC dataset. Flex does
not support 42 queries of W1, which are complex queries
containing correlated subqueries. We omit these from the
evaluation. In Fig. 9 we present the results, with error dis-
tributions again stratified by query size. For the W1 work-
load, the BaselineFlex relative error rate exceeds 1 for more
than 75% of the queries, while PrivateSQL has error less
than 2% for 75% of the queries. Even for large query sizes

1380



All Queries 0 – 103 103 – 104 > 104
0

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

R
el

at
iv

e
Er

ro
r

(a) W1, Person, CensusNC

All Queries 0 – 103 103 – 104 > 104
0

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

R
el

at
iv

e
Er

ro
r

(b) W1, Household, CensusNC

All Queries 0 – 103 103 – 104 104 – 105 > 105
0

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

R
el

at
iv

e
Er

ro
r

(c) W2, Person, CensusNC

All Queries 0 – 103 103 – 104 > 104
0

10
−2

10
−1

10
0

10
1

R
el

at
iv

e
Er

ro
r

(d) W3, Customer, TPC-H

Figure 7: Relative error rates of PrivateSQL. Left is W1 on the CensusNC dataset for Person and Household
policies. Right is W2 on CensusNC for Person policy and W3 on the TPC-H. Error rates stratified by true
query answer size.

All Queries 0 – 102 102 – 103 > 103

Query Range

0

10
−2

10
−1

10
0

10
1

10
2

R
el

at
iv

e
Er

ro
r

(a) W1 on CensusPM .

0.125 0.25 0.5 1.0 2.0

Total Budget ε

0

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

R
el

at
iv

e
Er

ro
r

(b) W1 on CensusNC .
Figure 8: Relative error rates for CensusPM

dataset (left), as well as for different ε values (right),
both under Person policy.

All Queries 0 – 103 103 – 104 > 104
10
−410
−210

0
10

2
10

4
10

6
10

810
10

10
12

10
14

10
16

R
el

at
iv

e
Er

ro
r

PRIVSQL

BASELINEFlex

(a) W1 Workload

All Queries 0 – 103 103 – 104 104 – 105 > 105
10
−410
−2
10

0
10

2
10

4
10

6
10

8
10

10
10

12

(b) W2 Workload
Figure 9: Relative error comparison between
BaselineFlex and PrivateSQL for workload an-
swering on the CensusNC dataset.

(> 104), BaselineFlex has high error rates, as W1 mostly
contains complex queries with high sensitivity. For the W2

workload (Fig. 9b) the trends are similar.
One factor that contributes to PrivateSQL achieving

comparably lower error than the baseline extension of Flex
is that it has more sophisticated support for workloads: VS-
elector groups together queries which may compose paral-
lely and enjoy a tighter privacy analysis, and techniques like
W-nnls in the synopsis generator use least squares inference
to further reduce the error of query answers.

Single Query Answering To provide a more direct com-
parison with Flex, we run our system in “single query mode”,
denoted by PrivateSQLsqm, which takes as input a work-
load containing a single query and returns a private syn-
opsis to answer that query. We evaluate both systems on
workload W1 on CensusNC and Person policy and use a
per-query budget of εq = 0.01. We omit showing results for

queries inW2\W1 as those queries have the same sensitivity,
and hence same error under both systems.
This evaluation allows us to decouple error improvements

due to workload-related components – such as VSelector,
BudgetAlloc, and PrivSynGen – and focus on the query
analysis components SensCalc and VRewrite.
Fig. 10 shows for each query the QError of Flex on the

y-axis and the QError of PrivateSQLsqm on the x-axis.
Queries are grouped together w.r.t. their computed sen-
sitivity under SensCalc. Groups #6 and #7 are queries
with correlated subqueries and are unsupported by Flex.
However, for illustration purposes, we allow Flex to use
the de-correlation techniques of VSelector in order to an-
swer them. All queries lie over the dotted x = y diagonal
line, i.e., for every query, PrivateSQLsqm offers lower error
than Flex. This improvement is over 10 orders of magni-
tude for some Flex supported queries (Group 5). All im-
provements are due to two factors: (a) the tighter sensitiv-
ity bounds of SensCalc compared with Flex rules and (b)
the VRewriter truncation technique which helps bound
the global sensitivity, avoiding the need for smoothing.
Next, we isolate the sensitivity engines of both Flex and

PrivateSQL and compute only the sensitivity bounds (with-
out truncation or smoothing). In Fig. 11 we show our re-
sults using the same groups as Fig. 9. For all queries Sen-
sCalc offers a strictly better sensitivity analysis with im-
provements ranging up to 37× on Flex supported queries.
For group #2 that contains > 40% of the W1 queries, Sen-
sCalc offers an improvement of 4×.

0
10

2
10

3
10

4
10

5

PRIVSQLSQM

10
2

10
4

10
6

10
8

10
10

10
12

10
14

10
16

FL
E

X
-S

M

Group 1
Group 2
Group 3
Group 4
Group 5
Group 6
Group 7

Figure 10: Comparing
QError rates of W1

queries on CensusNC .

#1 #2 #3 #4 #5 #6 #7
View Group

0

10
1

10
2

10
3

10
4

Se
ns

it
iv

it
y

Bo
un

d

0 1 2
4

6

33
49

1

8 8

96

1088 1088

11904SENSCALC Rules
FLEX Rules

Figure 11: Compari-
son of Flex and Pri-
vateSQL sensitivity

9.4 System Analysis
We next study the effect of alternative choices for varying

components of PrivateSQL. For brevity, we show results
on CensusNC with the Person policy and workload W1.

1381



WSIZE
(Default)

WSENS NAIVE VSENS
0

10
1

10
2

10
3

10
4

10
5

10
6

A
bs

ol
ut

e
Er

ro
r

(a) BudgetAlloc choices.

W-NNLS
(Default)

IDENTITY PART W-NNLS (W ′1)
0

10
1

10
2

10
3

10
4

10
5

10
6

(b) PrivSynGen choices.
Figure 12: Distribution of absolute error for dif-
ferent instantiations of PrivateSQL (a) shows the
effect of BudgetAlloc and (b) of PrivSynGen.

1
(90%)

2
(52%)

3
(38%)

4
(18%)

6
(4%)

10
(0.1%)

20
(0%)

Truncation Value
Percentage of Removed Tuples

0

10
1

10
2

10
3

10
4

10
5

10
6

A
bs

ol
ut

e
Er

ro
r

(a) Absolute error.

1
(90%)

2
(52%)

3
(38%)

4
(18%)

6
(4%)

10
(0.1%)

20
(0%)

Truncation Value
Percentage of Removed Tuples

0

10
1

10
2

10
3

10
4

10
5

10
6

A
bs

ol
ut

e
Bi

as

(b) Absolute bias.
Figure 13: Error and bias distributions of
truncation-affected queries, for different truncation
values. Numbers in parentheses denote the percent-
age of tuples truncated at the corresponding value.

Effect of Budget Allocator: In Fig. 12a we show the ab-
solute error distribution of PrivateSQL for different Bud-
getAlloc choices. Wsize and Wsens offer the best error
rates, with comparable performance.

Effect of Synopsis Generator: In Fig. 12b we show
the absolute error distribution of PrivateSQL for differ-
ent PrivSynGen choices. For representative workload W1

(left of the dotted line), we see that W-nnls outperforms
the other 2 methods. The non-negative least squares infer-
ence technique offers significant advantage since it optimizes
for the exact queries that the analyst submits.

Effect of Representative Workload: We create W ′1, a
smaller representative workload of 35 queries that capture
the join structures of queries in W1 The change in represen-
tative workload only affects the W-nnls synopsis generator,
as Identity and Part are workload agnostic (Section 8).
The results show that the performance of W-nnls deteri-
orates when W ′1 is used instead of W1 (Fig. 12b, right of
the dotted line). This suggests that data owners with little
knowledge about analyst queries may prefer to instantiate
PrivateSQL with Identity or Part.

Effect of Truncation Operator: The truncation rewrite
operation of VRewriter might introduce bias in the syn-
opses generated – due to tuples being dropped from the base
tables. To quantify this bias, we isolate the queries for which
Algorithm 2 adds a truncation operator in the query plan of
their corresponding view. For all queries in our workloads,
the truncated attribute is hid in Person and in PrivateSQL
the LearnThreshold as described returns w.h.p. a thresh-
old value of 4. For those queries and for different truncation
levels, we measure their total error as well as their bias due

to the addition of truncation in their corresponding views.
In Fig. 13 we summarize our results.
Small truncation values imply less noise (tighter view sen-

sitivity bounds) but more dropped tuples. For small trunca-
tion values, bias dominates overall error. However, note that
some queries have 0 bias even for truncation value 1 (e.g.,
counting households with a single person is not affected by
a truncation value of 1). As the truncation value increases,
the boxplots narrow but also rise. They narrow because the
high error queries improve as their main source of error is
bias which drops with increasing truncation value. They rise
because increasing the truncation value causing more noise
to added to query answers, hurting low error queries. Em-
pirically, we see that a truncation choice between 4 and 6
offers the best of both worlds.

10. CONCLUSIONS
We introduced PrivateSQL, a first of its kind system

that permits differentially private SQL query answering over
relational database schemas with key constraints. The sys-
tem is innovative in several dimensions: (a) it allows a rich
set of privacy policies to be expressed, (b) it generates pri-
vate synopses of views over the base tables to enable answer-
ing sets of SQL queries under a common and fixed privacy
budget, and (c) it employs semijoin rewriting, truncation,
and constraint-oblivious sensitivity analysis to ensure high
accuracy. We empirically evaluated its efficacy on real and
benchmark workloads of SQL queries.

PrivateSQL is a first step towards a broader research
agenda into differentially private relational databases. Pri-
vateSQL currently only supports count queries. Handling
other aggregate queries is an important research direction.
median and quantile queries can already be handled by
first estimating a CDF (which is a set of counts). To han-
dle sum and avg, SensCalc needs to be extended to keep
track of the minimum and maximum values attributes can
take, as the range impacts sensitivity. Truncation operators
may be needed when attributes are skewed. Another limita-
tion of PrivateSQL is that query answering is straightfor-
ward. Another interesting research direction is to use meth-
ods on answering queries using views [18], and statistical
relational inference techniques [17] to make query answer-
ing from noisy synopses more accurate.

Acknowledgements: This work was supported by the Na-
tional Science Foundation under grants 1253327, 1408982,
1409143, and 1409125; and by DARPA and SPAWAR un-
der contract N66001-15-C-4067. The U.S. Government is
authorized to reproduce and distribute reprints for Govern-
mental purposes not withstanding any copyright notation
thereon. The views, opinions, and/or findings expressed are
those of the author(s) and should not be interpreted as rep-
resenting the official views or policies of the Department of
Defense or the U.S. Government.

1382



11. REFERENCES
[1] 2010 census summary file 1. https:

//www.census.gov/prod/cen2010/doc/sf1.pdf.
[2] Census scientific advisory committee fall meeting.

https://www.census.gov/about/cac/sac/meetings/
2018-12-meeting.html.

[3] Tpc benchmark h.
https://http://www.tpc.org/tpch/.

[4] S. Agarwal, B. Mozafari, A. Panda, H. Milner,
S. Madden, and I. Stoica. Blinkdb: Queries with
bounded errors and bounded response times on very
large data. In Proceedings of the 8th ACM European
Conference on Computer Systems, EuroSys ’13, pages
29–42, New York, NY, USA, 2013. ACM.

[5] M. Arapinis, D. Figueira, and M. Gaboardi.
Sensitivity of counting queries. In ICALP, pages
120:1–120:13, 2016.

[6] F. Bancilhon, D. Maier, Y. Sagiv, and J. D. Ullman.
Magic sets and other strange ways to implement logic
programs (extended abstract). In Proceedings of the
Fifth ACM SIGACT-SIGMOD Symposium on
Principles of Database Systems, PODS ’86, pages
1–15, New York, NY, USA, 1986. ACM.

[7] B. Barak, K. Chaudhuri, C. Dwork, S. Kale,
F. McSherry, and K. Talwar. Privacy, accuracy, and
consistency too: A holistic solution to contingency
table release. In Proceedings of the Twenty-Sixth ACM
SIGACT-SIGMOD-SIGART Symposium on Principles
of Database Systems, pages 273–282. Association for
Computing Machinery, Inc., June 2007.

[8] A. Bittau, U. Erlingsson, P. Maniatis, I. Mironov,
A. Raghunathan, D. Lie, M. Rudominer, U. Kode,
J. Tinnes, and B. Seefeld. Prochlo: Strong privacy for
analytics in the crowd. In SOSP, 2017.

[9] S. Chen and S. Zhou. Recursive mechanism: Towards
node differential privacy and unrestricted joins. In
ACM SIGMOD, 2013.

[10] W.-Y. Day, N. Li, and M. Lyu. Publishing graph
degree distribution with node differential privacy. In
SIGMOD, 2016.

[11] A. Differential Privacy Team. Learning with privacy
at scale, 2017.

[12] X. Ding, X. Zhang, Z. Bao, and H. Jin.
Privacy-preserving triangle counting in large graphs.
In Proceedings of the 27th ACM International
Conference on Information and Knowledge
Management, CIKM ’18, pages 1283–1292, New York,
NY, USA, 2018. ACM.

[13] I. Dinur and K. Nissim. Revealing information while
preserving privacy. In ACM PODS, 2003.

[14] C. Dwork, M. Naor, T. Pitassi, and G. N. Rothblum.
Differential privacy under continual observation. In
Proceedings of the Forty-second ACM Symposium on
Theory of Computing, STOC ’10, 2010.

[15] C. Dwork and A. Roth. The algorithmic foundations
of differential privacy. Found. Trends Theor. Comput.
Sci., 2014.

[16] Ú. Erlingsson, V. Pihur, and A. Korolova. Rappor:
Randomized aggregatable privacy-preserving ordinal
response. In CCS, 2014.

[17] L. Getoor and B. Taskar. Introduction to Statistical
Relational Learning (Adaptive Computation and

Machine Learning). The MIT Press, 2007.
[18] A. Y. Halevy. Answering queries using views: A

survey. The VLDB Journal, 10(4):270–294, 2001.
[19] S. Haney, A. Machanavajjhala, J. M. Abowd,

M. Graham, M. Kutzbach, and L. Vilhuber. Utility
cost of formal privacy for releasing national
employer-employee statistics. In SIGMOD, 2017.

[20] M. Hardt, K. Ligett, and F. Mcsherry. A simple and
practical algorithm for differentially private data
release. In F. Pereira, C. Burges, L. Bottou, and
K. Weinberger, editors, Advances in Neural
Information Processing Systems 25, pages 2339–2347.
Curran Associates, Inc., 2012.

[21] M. Hay, C. Li, G. Miklau, and D. Jensen. Accurate
estimation of the degree distribution of private
networks. In ICDM, 2009.

[22] M. Hay, A. Machanavajjhala, G. Miklau, Y. Chen,
and D. Zhang. Principled evaluation of differentially
private algorithms using dpbench. In ACM SIGMOD,
2016.

[23] X. He, A. Machanavajjhala, and B. Ding. Blowfish
privacy: tuning privacy-utility trade-offs using
policies. In ACM SIGMOD, pages 1447–1458, 2014.

[24] N. Johnson, J. P. Near, and D. Song. Towards
practical differential privacy for sql queries. PVLDB,
11(5):526–539, 2018.

[25] V. Karwa, S. Raskhodnikova, A. Smith, and
G. Yaroslavtsev. Private analysis of graph structure.
PVLDB, 4(11):1146–1157, 2011.

[26] S. P. Kasiviswanathan, K. Nissim, S. Raskhodnikova,
and A. Smith. Analyzing graphs with node differential
privacy. In TCC, 2013.

[27] C. Li, M. Hay, G. Miklau, and Y. Wang. A Data- and
Workload-Aware Algorithm for Range Queries Under
Differential Privacy. PVLDB, 7(5):341–352, 2014.

[28] C. Li, G. Miklau, M. Hay, A. McGregor, and
V. Rastogi. The matrix mechanism: optimizing linear
counting queries under differential privacy. The VLDB
journal, 24(6):757–781, 2015.

[29] W. Lu, G. Miklau, and V. Gupta. Generating private
synthetic databases for untrusted system evaluation.
In ICDE, 2014.

[30] A. Machanavajjhala, D. Kifer, J. Abowd, J. Gehrke,
and L. Vilhuber. Privacy: Theory meets practice on
the map. In ICDE, 2008.

[31] R. McKenna, G. Miklau, M. Hay, and
A. Machanavajjhala. Optimizing error of
high-dimensional statistical queries under differential
privacy. PVLDB, 11(10):1206–1219, 2018.

[32] F. D. McSherry. Privacy integrated queries: An
extensible platform for privacy-preserving data
analysis. In ACM SIGMOD, 2009.

[33] I. Mironov, O. Pandey, O. Reingold, and S. Vadhan.
Computational differential privacy. In Advances in
Cryptology - CRYPTO 2009, 2009.

[34] W. Qardaji, W. Yang, and N. Li. Understanding
hierarchical methods for differentially private
histograms. PVLDB, 6(14):1954–1965, 2013.

[35] W. Qardaji, W. Yang, and N. Li. Priview: Practical
differentially private release of marginal contingency
tables. In Proceedings of the 2014 ACM SIGMOD

1383



International Conference on Management of Data,
SIGMOD ’14, pages 1435–1446, New York, NY, USA,
2014. ACM.

[36] W. Sexton, J. M. Abowd, I. M. Schmutte, and
L. Vilhuber. Synthetic population housing and person
records for the united states.
https://doi.org/10.3886/E100274V1.

[37] X. Xiao, G. Wang, and J. Gehrke. Differential privacy
via wavelet transforms. IEEE Trans. on Knowl. and
Data Eng., 23(8):1200–1214, Aug. 2011.

[38] D. Zhang, R. McKenna, I. Kotsogiannis, G. Miklau,

M. Hay, and A. Machanavajjhala. εktelo: A
framework for defining differentially-private
computations. In ACM SIGMOD, 2018.

[39] J. Zhang, G. Cormode, C. M. Procopiuc,
D. Srivastava, and X. Xiao. Privbayes: Private data
release via bayesian networks. In ACM SIGMOD,
2014.

[40] X. Zhang, R. Chen, J. Xu, X. Meng, and Y. Xie.
Towards Accurate Histogram Publication under
Differential Privacy. Proc. SIAM SDM Workshop on
Data Mining for Medicine and Healthcare, 2014.

1384


