
STAR: Scaling Transactions through Asymmetric
Replication

Yi Lu
MIT CSAIL

yilu@csail.mit.edu

Xiangyao Yu
MIT CSAIL

yxy@csail.mit.edu

Samuel Madden
MIT CSAIL

madden@csail.mit.edu

ABSTRACT
In this paper, we present STAR, a new distributed in-memory
database with asymmetric replication. By employing a single-
node non-partitioned architecture for some replicas and a
partitioned architecture for other replicas, STAR is able
to efficiently run both highly partitionable workloads and
workloads that involve cross-partition transactions. The key
idea is a new phase-switching algorithm where the execu-
tion of single-partition and cross-partition transactions is
separated. In the partitioned phase, single-partition trans-
actions are run on multiple machines in parallel to exploit
more concurrency. In the single-master phase, mastership
for the entire database is switched to a single designated
master node, which can execute these transactions with-
out the use of expensive coordination protocols like two-
phase commit. Because the master node has a full copy of
the database, this phase-switching can be done at negligible
cost. Our experiments on two popular benchmarks (YCSB
and TPC-C) show that high availability via replication can
coexist with fast serializable transaction execution in dis-
tributed in-memory databases, with STAR outperforming
systems that employ conventional concurrency control and
replication algorithms by up to one order of magnitude.

PVLDB Reference Format:
Yi Lu, Xiangyao Yu and Samuel Madden. STAR: Scaling Trans-
actions through Asymmetric Replication. PVLDB, 12(11): 1316-
1329, 2019.
DOI: https://doi.org/10.14778/3342263.3342270

1. INTRODUCTION
Recent years have seen a number of in-memory trans-

action processing systems that can run hundreds of thou-
sands to millions of transactions per second by leveraging
multi-core parallelism [46, 50, 54]. These systems can be
broadly classified into i) partitioning-based systems, e.g.,
H-Store [46] which partitions data onto different cores or
machines, and ii) non-partitioned systems that try to mini-
mize the overheads associated with concurrency control in a

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 12, No. 11
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3342263.3342270

P
er

fo
rm

an
ce

% of cross-partition transactions

STAR

Non-partitioned systems

Partitioning-based systems

Figure 1: Partitioning-based systems vs. Non-
partitioned systems

single-server, multi-core setting by avoiding locks and con-
tention whenever possible [37, 38, 50, 54], while allowing any
transaction to run on any core/processor.

As shown in Figure 1, partitioning-based systems work
well when workloads have few cross-partition transactions,
because they are able to avoid the use of any synchroniza-
tion and thus scale out to multiple machines. However,
these systems suffer when transactions need to access more
than one partition, especially in a distributed setting where
expensive protocols like two-phase commit are required to
coordinate these cross-partition transactions. In contrast,
non-partitioned approaches provide somewhat lower perfor-
mance on highly-partitionable workloads due to their inabil-
ity to scale out, but are not sensitive to how partitionable
the workload is.

In this paper, we propose a new transaction processing
system, STAR, that is able to achieve the best of both
worlds. We start with the observation that most modern
transactional systems will keep several replicas of data for
high availability purposes. In STAR, we ensure that at least
one of these replicas is complete, i.e., it stores all records
on a single machine, as in the recent non-partitioned ap-
proaches. We also ensure that at least one of the replicas
is partitioned across several processors or machines, as in
partitioned schemes. The system runs in two phases, using
a novel phase-switching protocol: in the partitioned phase,
transactions that can be executed completely on a single
partition are mastered at one of the partial replicas storing
that partition, and replicated to all other replicas to ensure
fault tolerance and consistency. Cross-partition transactions
are executed during the single-master phase, during which
mastership for all records is switched to one of the com-
plete replicas, which runs the transactions to completion and
replicates their results to the other replicas. Because this
node already has a copy of every record, changing the master

1316

for a record (re-mastering) can be done without transferring
any data, ensuring lightweight phase switching. Further-
more, because the node has a complete replica, transactions
can be coordinated within a single machine without a slow
commit protocol like two-phase commit. In this way, cross-
partition transactions do not incur commit overheads as in
typical partitioned approaches (because they all run on the
single master), and can be executed using a lightweight con-
currency control protocol like Silo [50]. Meanwhile, single-
partition transactions can still be executed without any con-
currency control at all, as in H-Store [46], and can be run
on several machines in parallel to exploit more concurrency.
The latency that phase switching incurs is no larger than
the typical delay used in high-performance transaction pro-
cessing systems for an epoch-based group commit.

Although the primary contribution of STAR is this phase-
switching protocol, to build the system, we had to explore
several novel aspects of in-memory concurrency control. In
particular, prior systems like Silo [50] and TicToc [54] were
not designed with high-availability (replication) in mind.
Making replication work efficiently in these systems requires
some care and is amenable to a number of optimizations. For
example, STAR uses intra-phase asynchronous replication to
achieve high performance. In the meantime, it ensures con-
sistency among replicas via a replication fence when phase-
switching occurs. In addition, with our phase-switching pro-
tocol, STAR can use a cheaper replication strategy than
that employed by replicated systems that need to replicate
entire records [55]. This optimization can significantly re-
duce bandwidth requirements (e.g., by up to an order of
magnitude in our experiments with TPC-C.).

Our system does require a single node to hold an entire
copy of the database, as in many other modern transactional
systems [12, 17, 22, 26, 50, 52, 54]. Cloud service providers,
such as Amazon EC2 [2] and Google Cloud [3], now provide
high memory instances with 12 TB RAM, and 24 TB in-
stances are coming in the fall of 2019. Such high memory
instances are sufficient to store 10 kilobytes of online state
about each customer in a database with about one billion
customers, which exceeds the scale of all but the most de-
manding transactional workloads. In addition, on workloads
with skew, a single-node in-memory database can be further
extended through an anti-caching architecture [10], which
provides 10x larger storage and competitive performance to
in-memory databases.

In summary, STAR is a new distributed and replicated in-
memory database that employs both partitioning and repli-
cation. It encompasses a number of interesting aspects:

• By exploiting multicore parallelism and fast networks,
STAR is able to provide high throughput with serial-
izability guarantees.
• It employs a phase-switching scheme which enables

STAR to execute cross-partition transactions without
two-phase commit while preserving fault tolerance guar-
antees.
• It uses a hybrid replication strategy to reduce the over-

head of replication, while providing transactional con-
sistency and high-availability.

In addition, we present a detailed evaluation of STAR that
demonstrates its ability to provide adaptivity, high avail-
ability, and high-performance transaction execution. STAR
outperforms systems that employ conventional distributed

concurrency control algorithms by up to one order of mag-
nitude on YCSB and TPC-C.

2. BACKGROUND
In this section, we describe how concurrency control allows

database systems to execute transactions with serializability
guarantees. We also introduce how replication is used in
database systems with consistency guarantees.

2.1 Concurrency Control Protocols
Serializability — where the operations of multiple trans-

actions are interleaved to provide concurrency while ensur-
ing that the state of the database is equivalent to some
serial ordering of the transactions — is the gold standard
for transaction execution. Many serializable concurrency
control protocols have been proposed, starting from early
protocols that played an important role in hiding disk la-
tency [4] to modern OLTP systems that exploit multicore
parallelism [50, 54], typically employing lock-based and/or
optimistic techniques.

Two-Phase locking (2PL) is the most widely used classi-
cal protocol to ensure serializability of concurrent transac-
tions [16]. 2PL is considered pessimistic since the database
acquires locks on operations even when there is no con-
flict. By contrast, optimistic concurrency control protocols
(OCC) avoid this by only checking conflicts at the end of a
transaction’s execution [23]. OCC runs transactions in three
phases: read, validation, and write. In the read phase, trans-
actions perform read operations from the database and write
operations to local copies of objects without acquiring locks.
In the validation phase, conflict checks are done against all
concurrently committing transactions. If conflicts exist, the
transaction aborts. Otherwise, it enters the write phase and
copies its local modifications to the database. Modern sys-
tems, like Silo [50], typically employ OCC-like techniques
because they make it easier to avoid the overhead of shared
locks during query execution.

In distributed database systems, cross-partition transac-
tions involving many machines are classically coordinated
using two-phase commit (2PC) [34] protocol to achieve fault
tolerance, since machines can fail independently. The coor-
dinator decides to commit or abort a transaction based on
decisions collected from workers in the prepare phase. Work-
ers must durably remember their decisions in the prepare
phase until they learn the transaction outcome. Once the
decision on the coordinator is made, 2PC enters the com-
mit phase, and workers commit or abort the transaction
based on its decision. Although 2PC does ensure serializ-
ability, the additional overhead of multiple log messages and
network round trips for each transaction can significantly
reduce throughput of distributed transactions. In STAR,
we avoid two-phase commit by employing a phase-switching
protocol to re-master records in distributed transactions to
a single primary, which runs transactions locally and repli-
cates them asynchronously.

2.2 Replication
Modern database systems need to be highly available.

When a subset of servers in a cluster fails, the system needs
to quickly reconfigure itself and replace a failed server with
a standby machine, such that an end user does not expe-
rience any noticeable downtime. High availability requires

1317

A B C D
Node 1

Primary records Secondary records

f nodes

Full replicas Partial replicas

k nodes

A B
Node 2

C
Node 3

D
Node 4…

…

Figure 2: The architecture of STAR

the data to be replicated across multiple machines in order
to allow for fast fail-over.

Primary/backup replication is one of the most widely used
schemes. After the successful execution of a transaction, the
primary node sends the log to all involved backup nodes.
The log can either contains values [32, 33, 36, 42], which
are applied by the backup nodes to the replica, or opera-
tions [43], which are re-executed by the backup nodes. For
a distributed database, each piece of data has one primary
node and one or multiple backup nodes. A backup node for
some data can also be a primary node for some other data.

In distributed database systems, both 2PC and replica-
tion are important to ensure ACID properties. They are
both expensive compared to a single node system, but in
different ways. In particular, replication incurs very large
data transfer but does not necessarily need expensive coor-
dination for each transaction.

3. STAR ARCHITECTURE
STAR is a distributed and replicated in-memory database.

It separates the execution of single-partition transactions
and cross-partition transactions using a novel phase-switching
protocol. The system dynamically switches between parti-
tioned and single-master phases. In STAR, each partition
is mastered by a single node. During the partitioned phase,
queries that touch only a single partition are executed one at
a time to completion on their partition. Queries that touch
multiple partitions (even if those partitions are on a single
machine) are executed in the single-master phase on a single
designated master node.

To support the phase-switching protocol, STAR employs
asymmetric replication. As shown in Figure 2, the system
consists of two types of replicas, namely, (1) full replicas, and
(2) partial replicas. Each of the f nodes (left side of figure)
has a full replica, which consists of all database partitions.
Each of the k nodes (right side of figure) has a partial replica,
which consists of a portion of the database. In addition,
STAR requires that these k partial replicas together contain
at least one full copy of the database. During the partitioned
phase, each node (whether a full or partial replica) acts as
a master for some part of the database. During the single-
master phase, one of the f nodes acts as the master for the
whole database. Note that writes of committed transactions
are replicated at least f+1 times on a cluster of f+k nodes.
We envision f being small (e.g., 1), while k can be much
larger. Having more than one full replica (i.e., f > 1) does
not necessarily improve system performance, but provides
higher availability when failures occur (See Section 4.5).

There are several advantages of this phase switching ap-
proach. First, in the single-master phase, cross-partition
transactions are run on a single master node. As in existing
non-partitioned systems, two-phase commit is not needed

0

4

8

12
16

0 2 4 6 8 10 12 14 16

Sp
ee

du
p

of nodes

P=1% P=5% P=10% P=15%

Figure 3: Performance speedup of asymmetric repli-
cation in STAR over single node execution; P =
Percentage of cross-partition transactions

as the master node runs all cross-partition transactions and
propagates writes to replicas. In contrast, transactions in-
volving multiple nodes in existing distributed partitioning-
based systems are coordinated with two-phase commit, which
can significantly limit the throughput of distributed database
systems [19]. Note that transactions running in the parti-
tioned phase also do not require two-phase commit because
they all run on a single partition, on a single node. Sec-
ond, in the partitioned phase, single-partition transactions
are run on multiple nodes in parallel, providing more con-
currency, as in existing partitioning-based systems. This
asymmetric replication approach is a good fit for workloads
with a mix of single-partition and cross-partition transac-
tions on a cluster of about 10 nodes. We demonstrate this
both empirically and through the use of an analytical model,
as shown in Sections 7 and 6.3. Figure 3 shows the speedup
predicted by our model of STAR with n nodes over a single
node.

STAR uses a variant of Silo’s OCC protocol [50]. Each
record in the database maintains a transaction ID (TID)
from the transaction that last updated the record. The TID
is used to determine which other transactions a committing
transaction may have a conflict with. For example, once a
transaction begins validation, it will abort if any one of the
accessed records is locked by other transactions or has a dif-
ferent TID. The TID is assigned to a transaction after it is
successfully validated. There are three criteria for the TID
obtained from each thread: (a) it must be larger than the
TID of any record in the read/write set; (b) it must be larger
than the thread’s last chosen TID; (c) it must be in the cur-
rent global epoch. The first two criteria guarantee that the
TIDs of transactions having conflicting writes are assigned
in a serial-equivalent order. As in Silo, STAR uses a form of
epoch-based group commit. The serial order of transactions
running within an epoch is not explicitly known by the sys-
tem except across epoch boundaries, since anti-dependencies
(i.e., write-after-read conflicts) are not tracked. Different
from Silo, in which the global epoch is incremented every
40 ms, a phase switch in STAR naturally forms an epoch
boundary. Therefore, the system only releases the result of
a transaction when the next phase switch occurs. At this
time, the global epoch is also incremented.

At any point in time, each record is mastered on one
node, with other nodes serving as secondaries. Transactions
are only executed over primary records; writes of commit-
ted transactions are propagated to all replicas. One way
to achieve consistency is to replicate writes synchronously
among replicas. In other words, the primary node holds the
write locks when replicating writes of a committed trans-
action to backup nodes. However, this design increases the
latency of replication and impairs system performance. In

1318

STAR, writes of committed transactions are buffered and
asynchronously shipped to replicas, meaning the locks on
the primary are not held during the process. To ensure cor-
rectness, we employ the Thomas write rule [47]: we tag each
record with the last TID that wrote it and apply a write if
the TID of the write is larger than the current TID of the
record. Because TIDs of conflicting writes are guaranteed
to be assigned in the serial-equivalent order of the writing
transactions, this rule will guarantee correctness. In addi-
tion, STAR uses a replication fence when phase-switching
occurs. In this way, strong consistency among replicas is
ensured across the boundaries of the partitioned phase and
the single-master phase.

Tables in STAR are implemented as collections of hash ta-
bles, which is typical in many in-memory databases [52, 53,
54]. Each table is built on top of a primary hash table and
contains zero or more secondary hash tables as secondary
indexes. To access a record, STAR probes the hash table
with the primary key. Fields with secondary indexes can be
accessed by mapping a value to the relevant primary key.
Although STAR is built on top of hash tables, it is easily
adaptable to other data structures such as Masstree [31].
As in most high performance transactional systems [46, 50,
54], clients send requests to STAR by calling pre-defined
stored procedures. Parameters of a stored procedure must
also be passed to STAR with the request. Arbitrary logic
(e.g., read/write operations) is supported in stored proce-
dures, which are implemented in C++.

STAR is serializable by default but can also support read
committed and snapshot isolation. A transaction runs under
read committed by skipping read validation on commit, since
STAR uses OCC and uncommitted data never occurs in the
database. STAR can provide snapshot isolation by retaining
additional versions for records [50].

4. THE PHASE SWITCHING ALGORITHM
We now describe the phase switching algorithm we use to

separate the execution of single-partition and cross-partition
transactions. We first describe the two phases and how the
system transitions between them. We next give a brief proof
to show that STAR produces serializable results. In the end,
we discuss how STAR achieves fault tolerance and recovers
when failures occur.

4.1 Partitioned Phase Execution
Each node serves as primary for a subset of the records

in the partitioned phase, as shown on the top of Figure 4.
During this phase, we restrict the system to run transactions
that only read from and write into a single partition. Cross-
partition transactions are deferred for later execution in the
single-master phase.

In the partitioned phase, each partition is touched only by
a single worker thread. A transaction keeps a read set and
a write set in its local copy, in case a transaction is aborted
by the application explicitly. For example, an invalid item
ID may be generated in TPC-C and a transaction with an
invalid item ID is supposed to abort during execution. At
commit time, it’s not necessary to lock any record in the
write set and do read validation, since there are no concur-
rent accesses to a partition in the partitioned phase. The
system still generates a TID for each transaction and uses
the TID to tag the updated records. In addition, writes

of committed transactions are replicated to other backup
nodes.

4.2 Single-Master Phase Execution
Any transaction can run in the single-master phase. Threads

on the designated master node can access any record in any
partition, since it has become the primary for all records.
For example, node 1 is the master node on the bottom of
Figure 4. We use multiple threads to run transactions using
a variant of Silo’s OCC protocol [50] in the single-master
phase.

A transaction reads data and the associated TIDs and
keeps them in its read set for later read validation. During
transaction execution, a write set is computed and kept in a
local copy. At commit time, each record in the write set is
locked in a global order (e.g, the addresses of records) to pre-
vent deadlocks. The transaction next generates a TID based
on its read set, write set and the current epoch number. The
transaction will abort during read validation if any record
in the read set is modified (by comparing TIDs in the read
set) or locked. Finally, records are updated, tagged with the
new TID, and unlocked. After the transaction commits, the
system replicates its write set to other backup nodes.

Note that fault tolerance must satisfy a transitive prop-
erty [50]. The result of a transaction can only be released to
clients after its writes and the writes of all transactions se-
rialized before it are replicated. In STAR, the system treats
each epoch as a commit unit through a replication fence. By
doing this, it is guaranteed that the serial order of transac-
tions is always consistent with the epoch boundaries. There-
fore, the system does not release the results of transactions
to clients until the next phase switch (and epoch boundary)
occurs.

4.3 Phase Transitions
We now describe how STAR transitions between the two

phases, which alternate after the system starts. The sys-
tem starts in the partitioned phase, deferring cross-partition
transactions for later execution.

For ease of presentation, we assume that all cross-partition
transaction requests go to the designated master node (se-
lected from among the f nodes with a full copy of the
database). Similarly, each single-partition transaction re-
quest only goes to the participant node that has the master-
ship of the partition. In the single-master phase, the master
node becomes the primary for all records. In the partitioned
phase, the master node acts like other participant nodes
to run single-partition transactions. This could be imple-
mented via router nodes that are aware of the partitioning
of the database. If some transaction accesses multiple parti-
tions on a non-master node, the system would re-route the
request to the master node for later execution.

In the partitioned phase, a thread on each partition fetches
requests from clients and runs these transactions as dis-
cussed in Section 4.1. When the execution time in the par-
titioned phase exceeds a given threshold τp, STAR switches
all nodes into the single-master phase, as shown in Figure 5.
The phase switching algorithm is coordinated by a stand-
alone coordinator outside of STAR instances. It can be de-
ployed on any node of STAR or on a different node for better
availability.

Before the phase switching occurs, the coordinator in STAR
stops all worker threads. During a replication fence, all

1319

Primary records Secondary records

Partitioned phase

A B C D

Node 1

A B

Node 2

C

Node 3

D

Node 4

Single-master phase

A B C D

Node 1

A B

Node 2

C

Node 3

D

Node 4

Figure 4: Illustrating the two execution phases

Derive 𝜏" and 𝑡$ with Equation (1) and (2)

Start the partitioned phase execution
Sleep 𝜏" seconds
Start a replication fence across participant nodes
Start the single-master phase execution
Sleep 𝜏$ seconds
Start a replication fence across participant nodes

Data: iteration time 𝑒, percentage of cross-partition transactions in a workload P

Monitor throughput 𝑡"

Monitor throughput 𝑡$

Figure 5: Phase transitions in STAR

participant nodes synchronize statistics about the number
of committed transactions with one another. From these
statistics each node learns how many outstanding writes it
is waiting to see; nodes then wait until they have received
and applied all writes from the replication stream to their
local database. Finally, the coordinator switches the system
to the other phase.

In the single-master phase, worker threads on the mas-
ter node pull requests from clients and run transactions
as discussed in Section 4.2. Meanwhile, the master node
sends writes of committed transactions to replicas and all
the other participant nodes stand by for replication. To
further improve the utilization of servers, read-only transac-
tions can run under read committed isolation level on non-
master nodes at the client’s discretion. Once the execution
time in the single-master phase exceeds a given threshold
τs, the system switches back to the partitioned phase using
another replication fence.

The parameters τp and τs are set dynamically according
to the system’s throughput tp in the partitioned phase, the
system’s throughput ts in the single-master phase, the per-
centage P of cross-partition transactions in the workload,
and the iteration time e.

τp + τs = e (1)

τsts
τptp + τsts

= P (2)

Note that tp, ts and P are monitored and collected by the
system in real time, and e is supplied by the user. Thus,
these equations can be used to solve for τp and τs, as these
are the only two unknowns. When there are no cross-partition
transactions (i.e., P = 0 and ts is not well-defined), the sys-
tem sets τp to e and τs to 0.

Intuitively, the system spends less time on synchroniza-
tion with a longer iteration time e. In our experiments, we
set the default iteration time to 10 ms; this provides good
throughput while keeping latency at a typical level for high
throughput transaction processing systems (e.g., Silo [50]
uses 40 ms as a default).

Note that this deferral-based approach is symmetric so
that single-partition transactions have the same expected
mean latency as cross-partition transactions regardless of
the iteration time (i.e., τp + τs), assuming all transactions
arrive at a uniform rate. For a transaction, the latency
depends on when the phase in which it is going to run ends.
The mean latency is expected to be (τp + τs)/2.

4.4 Serializability
We now give a brief argument that transactions executed

in STAR are serializable. A transaction only executes in
a single phase, i.e., it runs in either the partitioned phase
or the single-master phase. A replication fence between the
partitioned phase and the single-master phase ensures that

all writes from the replication stream have been applied to
the database before switching to the next phase.

In the partitioned phase, there is only one thread running
transactions serially on each partition. Each executed trans-
action only touches one partition, which makes transactions
clearly serializable. In the single-master phase, STAR im-
plements a variant of Silo’s OCC protocol [50] to ensure that
concurrent transactions are serializable. With the Thomas
write rule, the secondary records are correctly synchronized,
even though the log entries from the replication stream may
be applied in an arbitrary order.

4.5 Fault Tolerance
In-memory replication provides high availability to STAR,

since transactions can run on other active nodes even though
some nodes failed. To prevent data loss and achieve dura-
bility, the system must log writes of committed transactions
to disk. Otherwise, data will be lost when all replicas fail
(e.g., due to power outage).

In this section, we first describe how STAR achieves dura-
bility via disk logging and checkpointing and then introduce
how failures are detected. Finally, we discuss how STAR
recovers from failures under different scenarios.

4.5.1 Disk logging
In STAR, each worker thread has a local recovery log. The

writes of committed transactions along with some metadata
are buffered in memory and periodically flushed to the log.
Specifically, a log entry contains a single write to a record in
the database, which has the following information: (1) key,
(2) value, and (3) TID. The TID is from the transaction that
last updated the record, and has an embedded epoch num-
ber as well. The worker thread periodically flushes buffered
logs to disk; STAR also flushes all buffers to disk in the
replication fence.

To bound the recovery time, a dedicated checkpointing
thread can be used to periodically checkpoint the database
to disk as well. The checkpointing thread scans the database
and logs each record along with the TID to disk. A check-
point also records the epoch number ec when it starts. Once
a checkpoint finishes, all logs earlier than epoch ec can be
safely deleted. Note that a checkpoint does not need to be
a consistent snapshot of the database, as in SiloR [55], al-
lowing the system to not freeze during checkpointing. On
recovery, STAR uses the logs since the checkpoint (i.e., ec)
to correct the inconsistent snapshot with the Thomas write
rule.

4.5.2 Failure detection
Before introducing how STAR detects failures, we first

give some definitions and assumptions on failures. In this
paper, we assume fail-stop failures. A healthy node is a node

1320

Node 1

Partitioned phase Single-master phase

Revert to Epoch 1

Node 2

Node 3

Node 4

Epoch 1Epoch 0 Epoch 2

Crash!

Figure 6: Failure detection in replication fence

Full replicas Partial replicas

A
Node 1

B C D

A
Node 2

B C D

A
Node 3

B

Node 4
C

Node 5
D

A
Node 6

Node 7
B C

Node 8
D

Failed node id

Case 1: 2, 6, 7, 8

Case 2: 1, 2

Case 3: 3, 4, 5, 6

Case 4: 1, 2, 3, 4, 5, 6

Figure 7: Illustrating different failure scenarios

that can connect to the coordinator, accept a client’s re-
quests, run transactions and replicate writes to other nodes.
A failed node is one on which the process of a STAR in-
stance has crashed [11] or which cannot communicate over
the network.

The coordinator detects failures during the replication
fence. If some node does not respond to the coordinator, it
is considered to be a failed node. The list of failed nodes is
broadcast to all healthy participant nodes in STAR. In this
way, healthy nodes can safely ignore all replication messages
from failed nodes that have lost network connectivity to the
coordinator. Thus, the coordinator acts as a view service
to solve the “split brain” problem, coordinating data move-
ment across nodes on failures. To prevent the coordinator
from being a single point of failure, it can be implemented
as a replicated state machine with Paxos [24] or Raft [39].

Once a failure is detected by the coordinator, the system
enters recovery mode and reverts the database to the last
committed epoch, as shown in Figure 6. To achieve this,
the database maintains two versions of each record. One is
the most recent version prior to the current phase and the
other one is the latest version written in the current phase.
The system ignores all data versions written in the current
phase, since they have not been committed by the database.

We next describe how STAR recovers from failures once
the database has been reverted to a consistent snapshot.

4.5.3 Recovery
We use examples from Figure 7 to discuss how STAR re-

covers from failures. In these examples, there are 2 nodes
with full replicas and 6 nodes with partial replicas (i.e.,
f = 2 and k = 6). A cluster of 8 nodes could fail in
28 − 1 = 255 different ways, which fall into the following
four different scenarios. Here, a “full replica” is a replica
on a single node, and a “complete partial replica” is a set
of partial replicas that collectively store a copy of the entire
database.

(1) At least one full replica and one complete partial replica
remain.

(2) No full replicas remain but at least one complete par-
tial replica remains.

(3) No complete partial replicas remain but at least one
full replica remains.

(4) No full replicas or complete partial replicas remain.
We now describe how STAR recovers under each scenario.

Case 1: As shown in Figure 7, failures occur on nodes 2,
6, 7 and 8. The system can still run transactions with the
phase-switching algorithm. When a failed node recovers,
it copies data from remote nodes and applies them to its
database. In parallel, it processes updates from the relevant
currently healthy nodes using the Thomas write rule. Once
all failed nodes finish recovery, the system goes back to the
normal execution mode.

Case 2: If no full replicas are available, the system falls
back to a mode in which a distributed concurrency control
algorithm is employed, as in distributed partitioning-based
systems (e.g., Dist. OCC). The recovery process on failed
nodes is the same as in Case 1.
Case 3: If no complete partial replicas are available, the
system can still run transactions with the phase-switching
algorithm. However, the mastership of records on lost par-
titions have to be reassigned to the nodes with full replicas.
If all nodes with partial replicas fail, the system runs trans-
actions only on full replicas without the phase-switching al-
gorithm. The recovery process on failed nodes is the same
as in Case 1.
Case 4: The system stops processing transactions (i.e., loss
of availability) when no complete replicas remain. Each
crashed node loads the most recent checkpoint from disk
and restores its database state to the end of the last epoch
by replaying the logs since the checkpoint with the Thomas
write rule. The system goes back to the normal execution
mode once all nodes finish recovery.

Note that STAR also supports recovery from nested fail-
ures. For example, an additional failure on node 3 could
occur during the recovery of Case 1. The system simply
reverts to the last committed epoch and begins recovery as
described in Case 3.

5. REPLICATION: VALUE VS. OPERATION
In this section, we describe the details of our replica-

tion schemes, and how replication is done depending on the
execution phase. As discussed earlier, STAR runs single-
partition and cross-partition transactions in different phases.
The system uses different replication schemes in these two
phases: in the single-master phase, because a partition can
be updated by multiple threads, records need to be fully-
replicated to all replicas to ensure correct replication. How-
ever, in the partitioned phase, where a partition is only up-
dated by a single thread, the system can use a better repli-
cation strategy based on replicating operations to improve
performance. STAR provides APIs for users to manually
program the operations, e.g., string concatenation.

To illustrate this, consider two transactions being run by
two threads: T1: R1.A = R1.B + 1; R2.C = 0 and T2:

R1.B = R1.A + 1; R2.C = 1. Suppose R1 and R2 are two
records from different partitions and we are running in the
single-master phase. In this case, because the writes are
done by different threads, the order in which the writes ar-
rive on replicas may be different from the order in which
transactions commit on the primary. To ensure correctness,
we employ the Thomas write rule: apply a write if the TID
of the write is larger than the current TID of the record.
However, for this rule to work, each write must include the
values of all fields in the record, not just the updated fields.
To see this, consider the example in the left side of Figure 8

1321

A = 0 B = 0TID A = 0 B = 0TID

A = 0 B = 2T2 A = 1 B = 2T2

Incorrect Value Replication Correct Value Replication

Transaction
T1

Transaction
T2

A = 0 B = 2T2 A = 1 B = 2T2Transaction
T1

Transaction
T2

A = 0 B = 0TID

A = 1 B = 0T1

A = 1 B = 2T2

Correct Operation Replication

Transaction
T2

Transaction
T1

Figure 8: Illustrating different replication schemes;
Red rectangle shows an updated field

(only R1 is shown); For record R1, if T1 only replicates A,
T2 only replicates B, and T2’s updates are applied before
T1’s, transaction T1’s update to field A is lost, since T1 is
less than T2. Thus, when a partition can be updated by
multiple threads, all fields of a record have to be replicated
as shown in the middle of Figure 8. Note that fields that
are always read-only do not need to be replicated.

Now, suppose R1 and R2 are from the same partition, and
we run the same transactions in the partitioned phase, where
transactions are run by only a single thread on each parti-
tion. If T2 commits after T1, T1 is guaranteed to be ahead
of T2 in the replication stream since they are executed by
the same thread. For this reason, only the updated fields
need to be replicated, i.e., T1 can just send the new value
for A, and T2 can just send the new value for B as shown
in the right side of Figure 8. Furthermore, in this case,
the system can also choose to replicate the operation made
to a field instead of the value of a field in a record. This
can significantly reduce the amount of data that must be
sent. For example, in the Payment transaction in TPC-C, a
string is concatenated to a field with a 500-character string
in Customer table. With operation replication, the system
only needs to replicate a short string and can re-compute
the concatenated string on each replica, which is much less
expensive than sending a 500-character string over network.
This optimization can result in an order-of-magnitude re-
ductions in replication cost.

In STAR, a hybrid replication strategy is used, i.e., the
master node uses value replication strategy in the single-
master phase and all nodes use the operation replication
strategy in the partitioned phase. The hybrid strategy achieves
the best of of both worlds: (1) value replication enables
out-of-order replication, not requiring a serial order which
becomes a bottleneck in the single master phase (See Sec-
tion 7.5), and (2) in the partitioned phase, operation repli-
cation reduces the communication cost compared to value
replication, which always replicates the values of all fields in
a record.

As discussed earlier, STAR logs the writes of committed
transactions to disk for durability. The writes can come from
either local transactions or remote transactions through repli-
cation messages. By default, STAR logs the whole record
to disk for fast and parallel recovery. However, a replica-
tion message in operation replication only has operations
rather than the value of a whole record. Consider the exam-
ple in the right side of Figure 8. The replication messages
only have T1: A = 1 and T2: B = 2. To solve this problem,
when a worker thread processes a replication message that
contains an operation, it first applies the operation to the
database and then copies the value of the whole record to
its logging buffer. In other words, the replication messages
are transformed into T1: A = 1; B = 0 and T2: A = 1; B

= 2 before logging to disk. By doing this, the logs can still

Non-partitioned Partitioning-based
STAR SYNC ASYNC SYNC ASYNC

Write latency Low High Low High Medium

Commit latency High Low High Low High

Scale out Medium Low Low High High

Performance sensitivity to
cross-partition transactions Low Low Low High High

Replication strategy Hybrid Operation Value Operation Value

Figure 9: Overview of each approach; SYNC: syn-
chronous replication; ASYNC: asynchronous repli-
cation + epoch-based group commit

be replayed in any order with the Thomas write rule during
recovery.

6. DISCUSSION
We now discuss the trade-offs that non-partitioned sys-

tems and partitioning-based systems achieve and use an an-
alytical model to show how STAR achieves the best of both
worlds.

6.1 Non-partitioned Systems
A typical approach to build a fault tolerant non-partitioned

system is to adopt the primary/backup model. A primary
node runs transactions and replicates writes of committed
transactions to one or more backup nodes. If the primary
node fails, one of the backup nodes can take over immedi-
ately without loss of availability.

As we show in Figure 9, the writes of committed trans-
actions can be replicated from the primary node to backup
nodes either synchronously or asynchronously. With syn-
chronous replication, a transaction releases its write locks
and commits as soon as the writes are replicated (low com-
mit latency), however, round trip communication is needed
even for single-partition transactions (high write latency).
With asynchronous replication, it’s not necessary to hold
write locks on the primary node during replication, and the
writes may be applied in any order on backup nodes with
value replication and the Thomas write rule. To address the
potential inconsistency issue when a fault occurs, an epoch-
based group commit (high commit latency) must be used
as well. The epoch-based group commit serves as a barrier
that guarantees all writes are replicated when transactions
commit. Asynchronous replication reduces the amount of
time that a transaction holds write locks during replication
(low write latency) but incurs high commit latency for all
transactions.

The performance of non-partitioned systems has low sen-
sitivity to cross-partition transactions in a workload, but
they cannot easily scale out. The CPU resources on backup
nodes are often under-utilized, using more hardware to pro-
vide a lower overall throughput.

6.2 Partitioning-based Systems
In partitioning-based systems, the database is partitioned

in a way such that each node owns one or more partitions.
Each transaction has access to one or more partitions and
commits with distributed concurrency control protocols (e.g.,
strict two-phase locking) and 2PC. This approach is a good
fit for workloads that have a natural partitioning as the
database can be treated as many disjoint sub-databases.
However, cross-partition transactions are frequent in real-
world scenarios. For example, in the standard mix of TPC-C,

1322

10% of NewOrder and 15% of Payment are cross-partition
transactions.

The same primary/backup model as in non-partitioned
systems can be utilized to make partitioning-based systems
fault tolerant. With synchronous replication, the write la-
tency of partitioning-based systems is the same as non-par-
titioned systems. With asynchronous replication, the write
latency depends on the number of partitions each transac-
tion updates and on variance of communication delays.

If all transactions are single-partition transactions, par-
titioning-based systems are able to achieve linear scalabil-
ity. However, even with a small fraction of cross-partition
transactions, partitioning-based systems suffer from high
round trip communication cost such as remote reads and
distributed commit protocols.

6.3 Achieving the Best of Both Worlds
We now use an analytical model to show how STAR achieves

the best of both worlds. Suppose we have a workload with
ns single-partition transactions and nc cross-partition trans-
actions. We first analyze the time to run a workload with a
partitioning-based approach on a cluster of n nodes. If the
average time of running a single-partition transaction and a
cross-partition transaction in a partitioning-based system is
ts and tc seconds respectively, we have

TPartitioning-based(n) = (nsts + nctc)/n (3)

In contrast, the average time of running a cross-partition
transaction is almost the same as running a single-partition
transaction in a non-partitioned approach (e.g., in a primary-
backup database), and therefore,

TNon-partitioned(n) = (ns + nc)ts (4)

In STAR, single-partition transactions are run on all partic-
ipant nodes, and cross-partition transactions are run with a
single master node. If the replication and phase transitions
are not bottlenecks, we have

TSTAR(n) = (ns/n+ nc)ts (5)

We let K = tc/ts and P = nc/(nc + ns). Thus, K indicates
how much more expensive a cross-partition transaction is
than a single-partition transaction, and P indicates the per-
centage of cross-partition transactions in a workload. We
now give the performance improvement that STAR achieves
over the other two approaches,

IPartitioning-based(n) =
TPartitioning-based(n)

TSTAR(n)
=
KP − P + 1

nP − P + 1

INon-partitioned(n) =
TNon-partitioned(n)

TSTAR(n)
=

n

nP − P + 1

Similarly, we have the scalability of asymmetric replication
by showing the speedup that STAR achieves with n nodes
over a single node,

I(n) =
TSTAR(1)

TSTAR(n)
=

n

nP − P + 1

For different values of K, we plot IPartitioning-based(4) and
INon-partitioned(4) in Figure 10, when varying the percentage
of cross-partition transactions on a cluster of four nodes.
STAR outperforms non-partitioned systems as long as there
are single-partition transactions in a workload. This is be-
cause all single-partition transactions are run on all par-
ticipant nodes, which makes the system utilize more CPU

0%

100%

200%

300%

400%

0 20 40 60 80 100

Im
pr

ov
em

en
t (

%
)

% of cross-partition transactions

K=2 K=4 K=8 K=16 Non-partitioned

Figure 10: Illustrating effectiveness of STAR, vs.
partitioning based systems for varying levels of K,
and against non-partitioned systems

resources from multiple nodes. To outperform partitioning-
based systems, the average time of running a cross-partition
transaction must exceed n times of the average time to run
a single-partition transaction (i.e., K > n).

7. EVALUATION
In this section, we evaluate the performance of STAR fo-

cusing on the following key questions:
• How does STAR perform compared to non-partitioned

systems and partitioning-based systems?
• How does STAR perform compared to deterministic

databases?
• How does the phase switching algorithm affect the

throughput of STAR and what’s the overhead?
• How effective is STAR’s replication strategy?
• How does STAR scale?

7.1 Experimental Setup
We ran our experiments on a cluster of four m5.4xlarge

nodes running on Amazon EC2 [2]. Each node has 16 2.50
GHz virtual CPUs and 64 GB of DRAM running 64-bit
Ubuntu 18.04. iperf shows that the network between each
node delivers about 4.8 Gbits/s throughput. We imple-
mented STAR and other distributed concurrency control al-
gorithms in C++. The system is compiled using GCC 7.3.0
with -O2 option enabled.

In our experiments, we run 12 worker threads on each
node, yielding a total of 48 worker threads. Each node also
has 2 threads for network communication. We made the
number of partitions equal to the total number of worker
threads. All results are the average of three runs. We ran
transactions at the serializability isolation level.

7.1.1 Workloads
To study the performance of STAR, we ran a number of

experiments using two popular benchmarks:
YCSB: The Yahoo! Cloud Serving Benchmark (YCSB)

is a simple transactional workload designed to facilitate per-
formance comparisons of database and key-value systems [6].
It has a single table with 10 columns. The primary key of
each record is a 64-bit integer and each column consists of 10
random bytes. A transaction accesses 10 records and each
access follows a uniform distribution. We set the number of
records to 200K per partition, and we run a workload mix
of 90/10, i.e., each transaction has 9 read operations and
1 read/write operation. By default, we run this workload
with 10% cross-partition transactions that access to multi-
ple partitions.

TPC-C: The TPC-C benchmark [1] is the gold standard
for evaluating OLTP databases. It models a warehouse order

1323

processing system, which simulates the activities found in
complex OLTP applications. It has nine tables and we par-
tition all the tables by Warehouse ID. We support two trans-
actions in TPC-C, namely, (1) NewOrder and (2) Payment.
88% of the standard TPC-C mix consists of these two trans-
actions. The other three transactions require range scans,
which are currently not supported in our system. By de-
fault, we ran this workload with the standard mix, in which
a NewOrder transaction is followed by a Payment transaction.
By default, 10% of NewOrder and 15% of Payment trans-
actions are cross-partition transactions that access multiple
warehouses.

In YCSB, each partition adds about 25 MB to the database.
In TPC-C, each partition contains one warehouse and adds
about 100 MB to the database.

To measure the maximum throughput that each approach
can achieve, every worker thread generates and runs a trans-
action to completion one after another in our experiments.

7.1.2 Concurrency control algorithms
To avoid an apples-to-oranges comparison, we implemented

each of the following concurrency control algorithms in C++
in our framework.

STAR: This is our algorithm as discussed in Section 3.
We set the iteration time of a phase switch to 10 ms. To
have a fair comparison to other algorithms, disk logging,
checkpointing, and the hybrid replication optimization are
disabled unless otherwise stated.

PB. OCC: This is a variant of Silo’s OCC protocol [50]
adapted for a primary/backup setting. The primary node
runs all transactions and replicates the writes to the backup
node. Only two nodes are used in this setting.

Dist. OCC: This is a distributed optimistic concurrency
control protocol. A transaction reads from the database
and maintains a local write set in the execution phase. The
transaction first acquires all write locks and next validates
all reads. Finally, it applies the writes to the database and
releases the write locks.

Dist. S2PL: This is a distributed strict two-phase locking
protocol. A transaction acquires read and write locks during
execution. The transaction next executes to compute the
value of each write. Finally, it applies the writes to the
database and releases all acquired locks.

In our experiments, PB. OCC is a non-partitioned system,
and Dist. OCC and Dist. S2PL are considered as partitioning-
based systems. We use NO WAIT policy to avoid deadlocks in
partitioning-based systems, i.e., a transaction aborts if it
fails to acquire some lock. This deadlock prevention strat-
egy was shown to be the most scalable protocol [19]. We
do not report the results on PB. S2PL, since it always per-
forms worse than PB. OCC [54]. Also note that we added
an implementation of Calvin, described in Section 7.3.

7.1.3 Partitioning and replication configuration
In our experiment, we set the number of replicas of each

partition to 2. Each partition is assigned to a node by a hash
function. The primary partition and secondary partition are
always hashed to two different nodes. In STAR, we have 1
node with full replica and 3 nodes with partial replica, i.e.,
f = 1 and k = 3. Each node masters a different portion of
the database, as shown in Figure 2.

We consider two variations of PB. OCC, Dist. OCC, and
Dist. S2PL: (1) asynchronous replication and epoch-based

group commit, and (2) synchronous replication. Note that
Dist. OCC and Dist. S2PL must use two-phase commit when
synchronous replication is used. In addition, synchronous
replication requires that all transactions hold write locks
during the round trip communication for replication.

7.2 Performance Comparison
We now compare STAR with a non-partitioned system

and two partitioning-based systems using both YCSB and
TPC-C workloads.

7.2.1 Results of asynchronous replication and epoch-
based group commit

We ran both YCSB and TPC-C with a varying percent-
age of cross-partition transactions and report the results in
Figure 11(a) and 11(b). When there are no cross-partition
transactions, STAR has similar throughput compared with
Dist. OCC and Dist. S2PL on both workloads. This is be-
cause the workload is embarrassingly parallel. Transactions
do not need to hold locks for a round trip communication
with asynchronous replication and epoch-based group com-
mit. As we increase the percentage of cross-partition trans-
actions, the throughput of PB. OCC stays almost the same,
and the throughput of other approaches drops. When 10%
cross-partition transactions are present, STAR starts to out-
perform Dist. OCC and Dist. S2PL. For example, STAR
has 2.9x higher throughput than Dist. S2PL on YCSB and
7.6x higher throughput than Dist. OCC on TPC-C. As more
cross-partition transactions are present, the throughput of
Dist. OCC and Dist. S2PL is significantly lower than STAR
(also lower than PB. OCC), and the throughput of STAR
approaches the throughput of PB. OCC. This is because
STAR behaves similarly to a non-partitioned system when
all transactions are cross-partition transactions.

Overall, STAR running on 4 nodes achieves up to 3x
higher throughput than a primary/backup system running
on 2 nodes (e.g., PB. OCC) and up to 10x higher through-
put than systems employing distributed concurrency control
algorithms (e.g., Dist. OCC and Dist. S2PL) on 4 nodes. As
a result, we believe that STAR is a good fit for workloads
with both single-partition and cross-partition transactions.
It can outperform both non-partitioned and partitioning-
based systems, as we envisioned in Figure 1.

7.2.2 Results of synchronous replication
We next study the performance of PB. OCC, Dist. OCC

and Dist. S2PL with synchronous replication. We ran the
same workload as in Section 7.2.1 with a varying percent-
age of cross-partition transactions and report the results in
Figure 11(c) and 11(d). For clarity, the y-axis uses differ-
ent scales (See Figure 11(a) and 11(b) for the results of
STAR). When there are no cross-partition transactions, the
workload is embarrassingly parallel. However, PB. OCC,
Dist. OCC, and Dist. S2PL all have much lower throughput
than STAR in this scenario. This is because even single-
partition transactions need to hold locks during the round
trip communication due to synchronous replication. As we
increase the percentage of cross-partition transactions, we
observe that the throughput of PB. OCC stays almost the
same, since the throughput of a non-partitioned system is
not sensitive to the percentage of cross-partition transac-
tions in a workload. Dist. OCC and Dist. S2PL have lower

1324

0

1,200K

2,400K

3,600K

4,800K

0 20 40 60 80 100

Th
ro

ug
hp

ut
 (t

xn
s/

se
c)

% of cross-partition transactions

STAR PB. OCC Dist. OCC Dist. S2PL

(a) YCSB

0

400K

800K

1,200K

1,600K

0 20 40 60 80 100

Th
ro

ug
hp

ut
 (t

xn
s/

se
c)

% of cross-partition transactions

STAR PB. OCC Dist. OCC Dist. S2PL

(b) TPC-C

0

120K

240K

360K

480K

0 20 40 60 80 100

Th
ro

ug
hp

ut
 (t

xn
s/

se
c)

% of cross-partition transactions

PB. OCC Dist. OCC Dist. S2PL

(c) YCSB w/ Sync. Rep.

0

40K

80K

120K

0 20 40 60 80 100

Th
ro

ug
hp

ut
 (t

xn
s/

se
c)

% of cross-partition transactions

PB. OCC Dist. OCC Dist. S2PL

(d) TPC-C w/ Sync. Rep.

Figure 11: Performance and latency comparison of each approach on YCSB and TPC-C

Synchronous replication Asynchronous replication +
Epoch-based group commit

% of cross-partition
transactions

YCSB TPC-C Each approach has a similar latency due to
epoch-based group commit10% 50% 90% 10% 50% 90%

STAR 6.2/9.4

PB. OCC 0.1/0.2 0.1/0.2 0.1/0.2 0.1/1.1 0.1/1.1 0.1/1.1 5.5/11.3

Dist. OCC 0.2/0.7 0.3/0.9 0.7/0.9 0.2/0.6 0.3/0.7 0.6/0.8 6.4/11.4

Dist. S2PL 0.2/4.5 0.4/6.0 0.6/6.7 0.2/4.9 0.5/6.8 0.8/8.9 6.2/11.2

Figure 12: Latency (ms) of each approach - 50th percentile/99th percentile

throughput, since more transactions need to read from re-
mote nodes during the execution phase. They also need
multiple rounds of communication to validate and commit
transactions (2PC).

Overall, the throughput of PB. OCC, Dist. OCC, and
Dist. S2PL is much lower than those with asynchronous
replication and epoch-based group commit due to the over-
head of network round trips for every transaction. STAR
has much higher throughput than these approaches with
synchronous replication — at least 7x higher throughput
on YCSB, 15x higher throughput on TPC-C.

7.2.3 Latency of each approach
We now study the latency of each approach and report

the latency at the 50th percentile and the 99th percentile
in Figure 12, when the percentage of cross-partition trans-
actions is 10%, 50%, and 90%. We first discuss the latency
of each approach with synchronous replication. We observe
that PB. OCC’s latency at the 50th percentile and the 99th
percentile is not sensitive to the percentage of cross-partition
transactions. Dist. OCC and Dist. S2PL have higher latency
at both the 50th percentile and the 99th percentile, as we
increase the percentage of cross-partition transactions. This
is because there are more remote reads and the commit pro-
tocols they use need multiple round trip communication.
In particular, the latency of Dist. S2PL at the 99th per-
centile is close to 10 ms on TPC-C. In STAR, the iteration
time determines the latency of transactions. Similarly, the
latency of transactions in Dist. OCC and Dist. S2PL with
asynchronous replication and epoch-based group commit de-
pends on epoch size. For this reason, STAR has similar la-
tency at the 50th percentile and the 99th percentile to other
approaches with asynchronous replication. In Figure 12, we
only report the results on YCSB with 10% cross-partition
transactions for systems with asynchronous replication. Re-
sults on other workloads are not reported, since they are all
similar to one another.

An epoch-based group commit naturally increases latency.
Systems with synchronous replication have lower latency,
but Figure 11(c) and 11(d) show that they have much lower

throughput as well, even if no cross-partition transactions
are present. In addition, the latency at the 99th percentile in
systems with synchronous replication is much longer under
some scenarios (e.g., Dist. S2PL on TPC-C). As prior work
(e.g., Silo [50]) has argued, a few milliseconds more latency
is not a problem for most transaction processing workloads,
especially given throughput gains.

7.3 Comparison with Deterministic Databases
We next compare STAR with Calvin [49], which is a deter-

ministic concurrency control and replication algorithm. In
Calvin, a central sequencer determines the order for a batch
of transactions before they start execution. The transac-
tions are then sent to all replica groups of the database to
execute deterministically. In Calvin, a replica group is a set
of nodes containing a replica of the database. All replica
groups will produce the same results for the same batch of
transactions due to determinism. As a result, Calvin does
not perform replication at the end of each transaction. In-
stead, it replicates inputs at the beginning of the batch of
transactions and deterministically executes the batch across
replica groups.

We implemented the Calvin algorithm in C++ in our
framework as well to have a fair comparison. The origi-
nal design of Calvin uses a single-threaded lock manager to
grant locks to multiple execution threads following the de-
terministic order. To better utilize more CPU resources, we
implemented a multi-threaded lock manager, in which each
thread is responsible for granting locks in a different por-
tion of the database. The remaining CPU cores are used as
worker threads to execute transactions.

Increasing the number of threads for the lock manager
does not always improve performance. The reasons are
twofold: (1) fewer threads are left for transaction execution
(2) more communication is needed among worker threads
for cross-partition transactions. In this experiment, we con-
sider three configurations with different number of threads
used in the lock manager in Calvin, namely (1) Calvin-2,
(2) Calvin-4 and (3) Calvin-6. We use Calvin-x to denote
the number of threads used for the lock manager, i.e, there

1325

0

1,200K

2,400K

3,600K

0 20 40 60 80 100

Th
ro

ug
hp

ut
 (t

xn
s/

se
c)

% of cross-partition transactions

STAR Calvin-2 Calvin-4 Calvin-6

(a) YCSB

0

400K

800K

1,200K

1,600K

0 20 40 60 80 100

Th
ro

ug
hp

ut
 (t

xn
s/

se
c)

% of cross-partition transactions

STAR Calvin-2 Calvin-4 Calvin-6

(b) TPC-C

Figure 13: Comparison with deterministic databases

0%

15%

30%

45%

0

1,000K

2,000K

3,000K

0 20 40 60 80 100

O
ve

rh
ea

d
(%

)

Th
ro

ug
hp

ut
 (t

xn
s/

se
c)

Throughput Overhead

(a) Iteration time (ms)

0%

2%

4%

6%

8%

10%

2 4 6 8 10 12 14 16

O
ve

rh
ea

d
(%

)

Iteration Time (10ms) Iteration Time (20ms)

(b) # of nodes

Figure 14: Overhead of phase transitions

are 12 − x threads executing transactions. In all configu-
rations, we study the performance of Calvin in one replica
group on 4 nodes. The results of Calvin-1 and Calvin-3 are
not reported, since they never deliver the best performance.

We report the results on YCSB and TPC-C with a vary-
ing percentage of cross-partition transactions in Figure 13(a)
and 13(b). When there are no cross-partition transactions,
Calvin-6 achieves the best performance, since more paral-
lelism is exploited (i.e., 6 worker threads on each node, yield-
ing a total of 24 worker threads). Calvin-2 and Calvin-4 have
lower throughput as the worker threads are not saturated
when fewer threads are used for the lock manager. In con-
trast, STAR uses 12 worker threads on each node, yielding a
total of 48 worker threads and has 1.4-1.9x higher through-
put than Calvin-6. When all transactions are cross-partition
transactions, Calvin-2 has the best performance. This is be-
cause Calvin-4 and Calvin-6 needs more synchronization and
communication. Overall, STAR has 4-11x higher through-
put than Calvin with various configurations.

7.4 The Overhead of Phase Transitions
We now study how the iteration time of a phase switch

affects the overall throughput of STAR and the overhead
due to this phase switching algorithm with a YCSB work-
load. Similar results were obtained on other workloads but
are not reported due to space limitations. We varied the
iteration time of the phase switching algorithm from 1 ms
to 100 ms and report the system’s throughput and overhead
in Figure 14(a). The overhead is measured as the system’s
performance degradation compared to the one running with
a 200 ms iteration time. Increasing the iteration time de-
creases the overhead of the phase switching algorithm as ex-
pected, since less time is spent during the synchronization.
For example, when the iteration time is 1 ms, the overhead
is as high as 43% and system only achieves around half of
its maximum throughput (i.e., the throughput achieved with
200 ms iteration time). As we increase the iteration time,
the system’s throughput goes up. The throughput levels off
when the iteration time is larger than 10 ms. On a cluster
of 4 nodes, the overhead is about 2% with a 10 ms iteration
time.

We also study the overhead of phase transitions with a
varying number of nodes. We ran the same YCSB workload
and report the results of 10 ms and 20 ms iteration time
in Figure 14(b). Note that we also scale the number of
partitions in the database correspondingly. For example, on
a cluster of 16 nodes, there are 16 × 12 = 192 partitions in
the database. In general, the overhead of phase transitions
is larger with more nodes on a cluster due to variance of
communication delays. In addition, a shorter iteration time
makes the overhead smaller (20 ms vs. 10 ms).

Overall, the overhead of phase transitions is less than 5%

with a 10 ms iteration time on a cluster of less than 10
nodes. In all experiments in this paper, we set the iteration
time to 10 ms. With this setting, the system can achieve
more than 95% of its maximum throughput and have good
balance between throughput and latency.

7.5 Replication and Fault Tolerance
We now study the effectiveness of STAR’s asynchronous

replication in the single-master phase and the effectiveness
of hybrid replication. We only report the results from TPC-
C in this experiment, since a transaction in YCSB always
updates the whole record. In Figure 15(a), SYNC STAR shows
the performance of STAR that uses synchronous replication
in the single-master phase. STAR indicates the one with
asynchronous replication. STAR w/ Hybrid Rep. further
enables operation replication in the partitioned phase on top
of STAR. When there are more cross-partition transactions,
SYNC STAR has much lower throughput than STAR. This is
because more network round trips are needed during repli-
cation in the single-master phase. The improvement of STAR
w/ Hybrid Rep. is also less significant, since fewer transac-
tions are run in the partitioned phase.

We next show the performance degradation of STAR when
disk logging is enabled. We ran both YCSB and TPC-C
workloads and report the results in Figure 15(b). In sum-
mary, the overhead of disk logging and checkpointing is 6%
in YCSB and 14% in TPC-C. Note that non-partitioned and
partitioning-based systems would experience similar over-
heads from disk logging.

7.6 Scalability Experiment
In this experiment, we study the scalability of STAR on

both YCSB and TPC-C. We ran the experiment with a vary-
ing number of m5.4xlarge nodes and report the results in
Figure 16. Note that the database is scaled correspondingly
as we did in Section 7.4. On YCSB, STAR with 8 nodes
achieves 1.8x higher throughput than STAR with 2 nodes.
The performance of STAR stays stable beyond 8 nodes. On
TPC-C, STAR with 4 nodes achieves 1.4x higher through-
put than STAR with 2 nodes. The system stops scaling
with more than 4 nodes. This is because the system satu-
rates the network with 4 nodes (roughly 4.8 Gbits/sec). In
contrast, Dist. OCC, Dist. S2PL and Calvin start with lower
performance but all have almost linear scalability.

We believe it is possible for distributed partitioning-based
systems to have competitive performance to STAR, although
such systems will likely require more nodes to achieve com-
parable performance. Assuming linear scalability and the
network not becoming a bottleneck (the ideal case for base-
lines), distributed partitioning-based systems maybe out-
perform STAR on YCSB and TPC-C with roughly 30-40
nodes.

1326

0

500K

1,000K

1,500K

2,000K

0 20 40 60 80 100

Th
ro

ug
hp

ut
 (t

xn
s/

se
c)

% of cross-partition transactions

SYNC STAR STAR STAR w/ Hybrid Rep.

(a) Replication strategies

0

500K

1,000K

1,500K

2,000K

2,500K

3,000K

YCSB TPC-C

Th
ro

ug
hp

ut
 (t

xn
s/

se
c)

STAR STAR + Disk logging

(b) Fault tolerance

Figure 15: Replication and fault tolerance experiment

0

1,000K

2,000K

3,000K

4,000K

2 4 6 8 10 12 14 16

Th
ro

ug
hp

ut
 (t

xn
s/

se
c)

of nodes

STAR Dist. OCC Dist. S2PL Calvin

(a) YCSB

0

400K

800K

1,200K

1,600K

2 4 6 8 10 12 14 16

Th
ro

ug
hp

ut
 (t

xn
s/

se
c)

of nodes

STAR Dist. OCC Dist. 2PL Calvin

(b) TPC-C

Figure 16: Scalability experiment

8. RELATED WORK
STAR builds on a number of pieces of related work for its

design, including in-memory transaction processing, replica-
tion and durability.

In-memory Transaction Processing. Modern fast in-memory
databases have long been an active area of research [8, 13,
25, 38, 46, 50, 54]. In H-Store [46], transactions local to
a single partition are executed by a single thread associ-
ated with the partition. This extreme form of partitioning
makes single-partition transactions very fast but creates sig-
nificant contention for cross-partition transactions, where
whole-partition locks are held. Silo [50] divides time into
a series of short epochs and each thread generates its own
timestamp by embedding the global epoch to avoid shared-
memory writes, avoiding contention for a global critical sec-
tion. Because of its high throughput and simple design,
we adopted the Silo architecture for STAR, reimplementing
it and adding our phase-switching protocol and replication.
Doppel [37] executes highly contentious transactions in a
separate phase from other regular transactions such that
special optimizations (i.e., commutativity) can be applied
to improve scalability.

F1 [45] is an OCC protocol built on top of Google’s Span-
ner [7]. MaaT [28] reduces transaction conflicts with dy-
namic timestamp ranges. ROCOCO [35] tracks conflicting
constituent pieces of transactions and re-orders them in a
serializable order before execution. To reduce the conflicts
of distributed transactions, STAR runs all cross-partition
transactions on a single machine in the single-master phase.
Clay [44] improves data locality to reduce the number of
distributed transactions in a distributed OLTP system by
smartly partitioning and migrating data across the servers.
Some previous work [27, 9, 5] proposed to move the master
node of a tuple dynamically, in order to convert distributed
transactions into local transactions. Unlike STAR, however,
moving the mastership still requires network communica-
tion. FaRM [14], FaSST [20] and DrTM [53] improve the
performance of a distributed OLTP database by exploiting
RDMA. STAR can use RDMA to further decrease the over-
head of replication and the phase switching algorithm as
well.

Replicated Systems. Replication is the way in which database
systems achieve high availability. Synchronous replication
was popularized by systems like Postgres-R [21] and Galera
Cluster [18], which showed how to make synchronous repli-
cation practical using group communication and deferred
propagation of writes. Tashkent [15] is a fully replicated
database in which transactions run locally on a replica. To
keep replicas consistent, each replica does not communicate
with each other but communicates to a certifier, which de-
cides a global order for update transactions. Calvin [49]

replicates transactions requests among replica groups and
assigns a global order to each transaction for determinis-
tic execution [48], allowing it to eliminate expensive dis-
tributed coordination. However, cross-node communication
is still necessary during transaction execution because of
remote reads. Mencius [30] is a state machine replication
method that improves Paxos to achieve high throughput un-
der high client load and low latency under low client load by
partitioning sequence numbers, even under changing wide-
area network environments. HRDB [51] tolerates Byzan-
tine faults among replicas by scheduling transactions with a
commit barrier. Ganymed [40, 41] runs update transactions
on a single node and runs read-only transactions on a po-
tentially unlimited number of replicas, allowing the system
to scale read-intensive workloads. STAR is the first sys-
tem that dynamically changes the mastership of records, to
avoid distributed coordination. Neither a global order nor
group communication is necessary, even for cross-partition
transactions, since we run these cross-partition transactions
in parallel on a single node.

Recoverable Systems. H-Store [29] uses transaction-level
logging. It periodically checkpoints a transactionally consis-
tent snapshot to disk and logs all the parameters of stored
procedures. H-Store executes transactions following a global
order and replays all the transactions in the same order
during recovery. SiloR [55] uses a multi-threaded paral-
lel value logging scheme that supports parallel replay in
non-partitioned databases. In contrast, transaction-level
logging requires that transactions be replayed in the same
order. In STAR, different replication strategies, including
both SiloR-like parallel value replication and H-Store-like
operation replication are used in different phases, signifi-
cantly reducing bandwidth requirements.

9. CONCLUSION
In this paper, we presented STAR, a new distributed in-

memory database with asymmetric replication. STAR em-
ploys a new phase-switching scheme where single-partition
transactions are run on multiple machines in parallel, and
cross-partition transactions are run on a single machine by
re-mastering records on the fly, allowing us to avoid cross-
node communication and the use of distributed commit pro-
tocols like 2PC for distributed transactions. Our results on
YCSB and TPC-C show that STAR is able to dramatically
exceed the performance of systems that employ conventional
concurrency control and replication algorithms by up to one
order of magnitude.

Acknowledgments. We thank the reviewers for their valu-
able comments. Yi Lu is supported by the Facebook PhD
Fellowship.

1327

10. REFERENCES
[1] TPC Benchmark C. http://www.tpc.org/tpcc/,

2010.

[2] Amazon EC2. https://aws.amazon.com/ec2/, 2019.

[3] Google Cloud. https://cloud.google.com/, 2019.

[4] P. A. Bernstein, V. Hadzilacos, and N. Goodman.
Concurrency Control and Recovery in Database
Systems. Addison-Wesley, 1987.

[5] P. Chairunnanda, K. Daudjee, and M. T. Özsu.
ConfluxDB: Multi-master replication for partitioned
snapshot isolation databases. PVLDB, 7(11):947–958,
2014.

[6] B. F. Cooper, A. Silberstein, E. Tam,
R. Ramakrishnan, and R. Sears. Benchmarking cloud
serving systems with YCSB. In SoCC, pages 143–154,
2010.

[7] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost,
J. J. Furman, S. Ghemawat, A. Gubarev, C. Heiser,
P. Hochschild, W. C. Hsieh, S. Kanthak, E. Kogan,
H. Li, A. Lloyd, S. Melnik, D. Mwaura, D. Nagle,
S. Quinlan, R. Rao, L. Rolig, Y. Saito, M. Szymaniak,
C. Taylor, R. Wang, and D. Woodford. Spanner:
Google’s globally-distributed database. In OSDI,
pages 261–264, 2012.

[8] N. Crooks, M. Burke, E. Cecchetti, S. Harel,
R. Agarwal, and L. Alvisi. Obladi: Oblivious
serializable transactions in the cloud. In OSDI, pages
727–743, 2018.

[9] S. Das, D. Agrawal, and A. El Abbadi. G-Store: a
scalable data store for transactional multi key access
in the cloud. In SoCC, pages 163–174, 2010.

[10] J. DeBrabant, A. Pavlo, S. Tu, M. Stonebraker, and
S. B. Zdonik. Anti-caching: A new approach to
database management system architecture. PVLDB,
6(14):1942–1953, 2013.

[11] G. DeCandia, D. Hastorun, M. Jampani,
G. Kakulapati, A. Lakshman, A. Pilchin,
S. Sivasubramanian, P. Vosshall, and W. Vogels.
Dynamo: Amazon’s highly available key-value store.
In SOSP, pages 205–220, 2007.

[12] C. Diaconu, C. Freedman, E. Ismert, P. Larson,
P. Mittal, R. Stonecipher, N. Verma, and M. Zwilling.
Hekaton: SQL server’s memory-optimized OLTP
engine. In SIGMOD Conference, pages 1243–1254,
2013.

[13] B. Ding, L. Kot, and J. Gehrke. Improving optimistic
concurrency control through transaction batching and
operation reordering. PVLDB, 12(2):169–182, 2018.

[14] A. Dragojevic, D. Narayanan, M. Castro, and
O. Hodson. Farm: Fast remote memory. In NSDI,
pages 401–414, 2014.

[15] S. Elnikety, S. G. Dropsho, and F. Pedone. Tashkent:
uniting durability with transaction ordering for
high-performance scalable database replication. In
EuroSys, pages 117–130, 2006.

[16] K. P. Eswaran, J. Gray, R. A. Lorie, and I. L. Traiger.
The notions of consistency and predicate locks in a
database system. Commun. ACM, 19(11):624–633,
1976.

[17] J. M. Faleiro and D. J. Abadi. Rethinking serializable
multiversion concurrency control. PVLDB,
8(11):1190–1201, 2015.

[18] Galera Cluster.
http://galeracluster.com/products/technology/,
2019.

[19] R. Harding, D. V. Aken, A. Pavlo, and
M. Stonebraker. An evaluation of distributed
concurrency control. PVLDB, 10(5):553–564, 2017.

[20] A. Kalia, M. Kaminsky, and D. G. Andersen. Fasst:
Fast, scalable and simple distributed transactions with
two-sided (RDMA) datagram rpcs. In OSDI, pages
185–201, 2016.

[21] B. Kemme and G. Alonso. Don’t be lazy, be
consistent: Postgres-R, A new way to implement
database replication. In VLDB, pages 134–143, 2000.

[22] K. Kim, T. Wang, R. Johnson, and I. Pandis. ERMIA:
fast memory-optimized database system for
heterogeneous workloads. In SIGMOD Conference,
pages 1675–1687, 2016.

[23] H. T. Kung and J. T. Robinson. On optimistic
methods for concurrency control. ACM Trans.
Database Syst., 6(2):213–226, 1981.

[24] L. Lamport. Paxos made simple. ACM SIGACT
News, 32(4):18–25, 2001.

[25] P. Larson, S. Blanas, C. Diaconu, C. Freedman, J. M.
Patel, and M. Zwilling. High-performance concurrency
control mechanisms for main-memory databases.
PVLDB, 5(4):298–309, 2011.

[26] H. Lim, M. Kaminsky, and D. G. Andersen. Cicada:
Dependably fast multi-core in-memory transactions.
In SIGMOD Conference, pages 21–35, 2017.

[27] Q. Lin, P. Chang, G. Chen, B. C. Ooi, K. Tan, and
Z. Wang. Towards a non-2PC transaction
management in distributed database systems. In
SIGMOD Conference, pages 1659–1674, 2016.

[28] H. A. Mahmoud, V. Arora, F. Nawab, D. Agrawal,
and A. El Abbadi. MaaT: Effective and scalable
coordination of distributed transactions in the cloud.
PVLDB, 7(5):329–340, 2014.

[29] N. Malviya, A. Weisberg, S. Madden, and
M. Stonebraker. Rethinking main memory OLTP
recovery. In ICDE, pages 604–615, 2014.

[30] Y. Mao, F. P. Junqueira, and K. Marzullo. Mencius:
Building efficient replicated state machine for wans. In
OSDI, pages 369–384, 2008.

[31] Y. Mao, E. Kohler, and R. T. Morris. Cache craftiness
for fast multicore key-value storage. In EuroSys, pages
183–196, 2012.

[32] D. McInnis. The basics of DB2 log shipping. https:
//www.ibm.com/developerworks/data/library/

techarticle/0304mcinnis/0304mcinnis.html, 2003.

[33] Microsoft. About log shipping (SQL Server). https://
msdn.microsoft.com/en-us/library/ms187103.aspx,
2016.

[34] C. Mohan, B. G. Lindsay, and R. Obermarck.
Transaction management in the R* distributed
database management system. ACM Trans. Database
Syst., 11(4):378–396, 1986.

[35] S. Mu, Y. Cui, Y. Zhang, W. Lloyd, and J. Li.
Extracting more concurrency from distributed
transactions. In OSDI, pages 479–494, 2014.

[36] MySQL. MySQL 8.0 reference manual,. https://dev.
mysql.com/doc/refman/8.0/en/replication.html,
2019.

1328

http://www.tpc.org/tpcc/
https://aws.amazon.com/ec2/
https://cloud.google.com/
http://galeracluster.com/products/technology/
https://www.ibm.com/developerworks/data/library/techarticle/0304mcinnis/0304mcinnis.html
https://www.ibm.com/developerworks/data/library/techarticle/0304mcinnis/0304mcinnis.html
https://www.ibm.com/developerworks/data/library/techarticle/0304mcinnis/0304mcinnis.html
https://msdn.microsoft.com/en- us/library/ms187103.aspx
https://msdn.microsoft.com/en- us/library/ms187103.aspx
https://dev.mysql.com/doc/refman/8.0/en/replication.html
https://dev.mysql.com/doc/refman/8.0/en/replication.html

[37] N. Narula, C. Cutler, E. Kohler, and R. Morris. Phase
reconciliation for contended in-memory transactions.
In OSDI, pages 511–524, 2014.

[38] T. Neumann, T. Mühlbauer, and A. Kemper. Fast
serializable multi-version concurrency control for
main-memory database systems. In SIGMOD
Conference, pages 677–689, 2015.

[39] D. Ongaro and J. K. Ousterhout. In search of an
understandable consensus algorithm. In ATC, pages
305–319, 2014.

[40] C. Plattner and G. Alonso. Ganymed: Scalable
replication for transactional web applications. In
Middleware, pages 155–174, 2004.

[41] C. Plattner, G. Alonso, and M. T. Özsu. Extending
DBMSs with satellite databases. VLDB J.,
17(4):657–682, 2008.

[42] PostgreSQL. PostgreSQL 9.6.13 documentation.
https://www.postgresql.org/docs/9.6/static/

warm-standby.html, 2019.

[43] D. Qin, A. Goel, and A. D. Brown. Scalable
replay-based replication for fast databases. PVLDB,
10(13):2025–2036, 2017.

[44] M. Serafini, R. Taft, A. J. Elmore, A. Pavlo,
A. Aboulnaga, and M. Stonebraker. Clay:
Fine-grained adaptive partitioning for general
database schemas. PVLDB, 10(4):445–456, 2016.

[45] J. Shute, R. Vingralek, B. Samwel, B. Handy,
C. Whipkey, E. Rollins, M. Oancea, K. Littlefield,
D. Menestrina, S. Ellner, J. Cieslewicz, I. Rae,
T. Stancescu, and H. Apte. F1: A distributed SQL
database that scales. PVLDB, 6(11):1068–1079, 2013.

[46] M. Stonebraker, S. Madden, D. J. Abadi,

S. Harizopoulos, N. Hachem, and P. Helland. The end
of an architectural era (it’s time for a complete
rewrite). In VLDB, pages 1150–1160, 2007.

[47] R. H. Thomas. A majority consensus approach to
concurrency control for multiple copy databases.
TODS, 4(2):180–209, 1979.

[48] A. Thomson and D. J. Abadi. The case for
determinism in database systems. PVLDB,
3(1):70–80, 2010.

[49] A. Thomson, T. Diamond, S. Weng, K. Ren, P. Shao,
and D. J. Abadi. Calvin: fast distributed transactions
for partitioned database systems. In SIGMOD
Conference, pages 1–12, 2012.

[50] S. Tu, W. Zheng, E. Kohler, B. Liskov, and
S. Madden. Speedy transactions in multicore
in-memory databases. In SOSP, pages 18–32, 2013.

[51] B. Vandiver, H. Balakrishnan, B. Liskov, and
S. Madden. Tolerating byzantine faults in transaction
processing systems using commit barrier scheduling.
In SOSP, pages 59–72, 2007.

[52] T. Wang and H. Kimura. Mostly-optimistic
concurrency control for highly contended dynamic
workloads on a thousand cores. PVLDB, 10(2):49–60,
2016.

[53] X. Wei, J. Shi, Y. Chen, R. Chen, and H. Chen. Fast
in-memory transaction processing using RDMA and
HTM. In SOSP, pages 87–104, 2015.

[54] X. Yu, A. Pavlo, D. Sanchez, and S. Devadas. TicToc:
Time traveling optimistic concurrency control. In
SIGMOD Conference, pages 1629–1642, 2016.

[55] W. Zheng, S. Tu, E. Kohler, and B. Liskov. Fast
databases with fast durability and recovery through
multicore parallelism. In OSDI, pages 465–477, 2014.

1329

https://www.postgresql.org/docs/9.6/static/warm-standby.html
https://www.postgresql.org/docs/9.6/static/warm-standby.html

	Introduction
	Background
	Concurrency Control Protocols
	Replication

	STAR Architecture
	The Phase Switching Algorithm
	Partitioned Phase Execution
	Single-Master Phase Execution
	Phase Transitions
	Serializability
	Fault Tolerance
	Disk logging
	Failure detection
	Recovery

	Replication: Value vs. Operation
	Discussion
	Non-partitioned Systems
	Partitioning-based Systems
	Achieving the Best of Both Worlds

	Evaluation
	Experimental Setup
	Workloads
	Concurrency control algorithms
	Partitioning and replication configuration

	Performance Comparison
	Results of asynchronous replication and epoch-based group commit
	Results of synchronous replication
	Latency of each approach

	Comparison with Deterministic Databases
	The Overhead of Phase Transitions
	Replication and Fault Tolerance
	Scalability Experiment

	Related Work
	Conclusion
	References

